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Abstract. The mean vector and covariance matrix are sufficient statistics when the un-
derlying distribution is multivariate normal. Many type of statistical analyses used in
practice rely on the assumption of multivariate normality (Gaussian model). For these
analyses, maintaining the mean vector and covariance matrix of the masked data to be
the same as that of the original data implies that if the masked data is analyzed using
these techniques, the results of such analysis will be the same as that using the original
data. For numerical confidential data, a recently proposed perturbation method makes it
possible to maintain the mean vector and covariance matrix of the masked data to be
exactly the same as the original data. However, as it is currently proposed, the per-
turbed values from this method are considered synthetic because they are generated
without considering the values of the confidential variables (and are based only on the
non-confidential variables). Some researchers argue that synthetic data results in infor-
mation loss. In this study, we provide a new methodology for generating non-synthetic
perturbed data that maintains the mean vector and covariance matrix of the masked
data to be exactly the same as the original data while offering a selectable degree of
similarity between original and perturbed data.

1 Introduction

Many organizations, both private and public, gather and store data about indi-
viduals and other entities in their databases. In some cases, this data contains
sensitive information regarding the entities. The organizations are required ei-
ther ethically or legally to prevent disclosure of the sensitive information con-
tained in their databases. Organizations use several different approaches to pre-

17



18 Krishnamurty Muralidhar, Rathindra Sarathy

vent disclosure of the sensitive information. These include restricting access to
specific individuals, using database control techniques, masking the data prior
to providing access, releasing interval data rather than individual data points,
etc. Among masking approaches, data perturbation has gained considerable
attention in the literature.

As its name implies, data perturbation involves the perturbation of the original
values of the sensitive data by using random noise terms. Data perturbation is
applicable both when the sensitive data is categorical and numerical. However,
this study, as in most applications of data perturbation, deals with numerical
confidential variables. Data perturbation is non-reversible (unless the specific
random numbers used to generate the noise terms are known). Hence, the user
can be told exactly what type of modification was performed on the data. There
has been considerable research in the area of data perturbation relating to both
categorical and numerical confidential data. Important contributions to this
topic have come from a variety of researchers including Fienberg [5], Fuller [6],
and Rubin [11].

For numerical data, Burridge [1] recently proposed a perturbation method
(called Information Preserving Statistical Obfuscation) that makes it possible to
maintain the mean vector and covariance matrix of the masked data to be ex-
actly the same as the original data. A related approach has also been suggested
by Ting et al. [12] for the case where the entire data set is confidential. A modifi-
cation to ensure maximum security was proposed by Muralidhar and Sarathy
[10]. It is well known that the mean vector and covariance matrix are sufficient
statistics for the multivariate normal distribution. In addition, the assumption of
multivariate normality also underlies many statistical analyses that are com-
monly used in practice including hypothesis tests and confidence intervals relat-
ing to one mean, multiple means, regression analysis, and even some advanced
analyses such as principal components analysis and canonical correlation analy-
sis. Hence, even if the original data is not multivariate normal, maintaining the
mean vector and covariance matrix of the masked data to be the same as the
original data has the advantage that, for many parametric statistical analyses,
the results of the analysis using the masked data are identical to that using the
original data. Thus, generating perturbed data with the mean vector and covari-
ance matrix identical to the original data enhances its statistical usefulness.

One perceived disadvantage of Burridge’s approach [1] is that the data gener-
ated in this manner is considered “synthetic” or artificial, since the perturbed
values are not generated as a direct function of the original, sensitive values.
While it is true that the perturbed data is generated to have some of the same
characteristics (mean vector and covariance matrix) of the original data, the per-
turbed values are not “based” on the original values. Some researchers have
argued that synthetic data results in information loss since the original and per-
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turbed values may differ considerably in form and value [2]. This perceived loss
of information may induce reluctance among some researchers and practitio-
ners to adopt this otherwise useful approach. Other researchers have criticized
the use of synthetic data because it may change the marginal distribution of the
individual confidential variables both in the complete data set as well as in sub-
domains. This means that results of analyses that do not rely on the normal
(Gaussian) model will be different when masked data is used in place of the
original data.

Thus, there is a need to develop alternative techniques that will satisfy two
important requirements for the general case in which the data set consists of
both confidential and non-confidential variables: (1) maintaining the mean vec-
tor and covariance matrix of the masked data to be the same as that of the origi-
nal data, and (2) for reasons mentioned above, allow data providers to generate
perturbed data that has a selectable level of similarity with the original data.
Currently, such a methodology is not available. In this study, we develop new
perturbation models which exactly preserve the mean vector and covariance
matrix of the original attributes while offering a selectable degree of similarity
between original and perturbed data.

2 Burridge’s Data Perturbation Method

To describe Burridge’s data perturbation method, consider a data set of size n
consisting of a single confidential attribute X and a single non-confidential at-
tribute S. In the first step, a linear regression model is constructed to predict the

values of X using S. From this model, the intercept (BO) and the slope (Bl) are

estimated, and the predicted values of xi are computed as

X; :Bo + (Bl X Si)'
ey

Next, a vector of noise terms (A) of size n is generated from a standard normal
distribution. The variable A is then regressed on (S and X) and the residuals
from this regression are computed [1, 10]. Let B represent the residuals. B has

mean 0 and is orthogonal to both S and X. Let o5 be the variance of B. B is then

transformed as follows to a new variable C,
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, Oxx,0ss,andGyq are the variance of X, S, and co-

variance between X and S, respectively. Finally, the perturbed values Y are gen-
erated as

y,=%,+c,i=1,2, ..., n.

(3)

The resulting perturbed variable Y has exactly the same mean and variance as X.
In addition, the covariance between Y and S is exactly the same as the covariance
between X and S. The procedure can be easily extended to the multivariate case
where there are multiple confidential variables or non-confidential variables, or
both [1, page 322]. For the sake of brevity, we do not reproduce the exact proce-
dure here.

It is important to note that, when the underlying distribution of X is not nor-
mal, the perturbed values Y resulting from Burridge’s procedure will have a
distribution that is different from X. Descriptive analyses performed on Y will
yield different results from descriptive analyses performed on X. In addition,
while the results of the regression analysis performed using Y will be identical
to that using X, the residuals resulting from performing regression analysis us-
ing Y will be different from that using X. Hence, the results of residual analysis
performed using Y will be different from that using X.

To illustrate Burridge’s procedure, consider the data set provided in Table 1,
consisting of 25 observations for X and S. For the sake of simplicity and without
loss of generality, we assume that both X and S have zero mean and unit vari-
ance. The correlation between X and S was specified as 0.40. Regressing X on S

results in an estimate of Bl = 0.40. Using this estimate, the predicted values X
were computed for each observation (see Table 1). Further, we can also compute
o’ = (1 -0.4?) = 0.84. The next column represents the set of random variables

generated from a univariate normal distribution with mean 0 and variance 1.
The values of A were then regressed on both X and S. The residuals from this
regression (B) are provided in the next column. The variance of B can be com-
puted as 1.14986. For each observation bi we compute (bi x 1.149860> x 0.84°%) to
result in C. Finally, for each observation, we compute y, =X, +c¢; to result in Y.

It is easily verified that Y has mean 0 and variance 1, exactly the same as that of
X. Further, the correlation between Y and S is 0.40 which is exactly the same as
that between X and S. Hence, the results of any analysis for which the mean and
covariance are sufficient statistics (such as regression analysis) will be exactly
the same when using Y in place of X.
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Table 1. An Illustration of Burridge’s Approach
s X X A B C Y
22314 06972 -0.8925 16781 08870 07581 -0.1344
-0.6940 -17339 02776 -0.2585 0.6289 05375  0.2600
12790 11636 05116 -0.8054 -0.5939 -0.5076 0.0040
04442 04836 01777 00599 07554 0.6457 0.8233
15884 01432 0.6354 -14330 -1.7398 -1.4870 -2.1224
10069 08774 04028 14600 17114 14627  1.8655
02114 07093 -0.0846 04867 03930 03359 0.2514
0.8827 09078 03531 1.6928 18866 16125 1.9655
04523 09337 01809 09563 09882 0.8446  1.0255
-1.0557 27687 04223 -15491 -03010 -0.2573 -0.6796
0.0808 0.1185 0.0323 -13363 -1.0504 -0.8978 -0.8654
00729 02172 00292 -0.7465 -0.5098 -0.4357 -0.4065
03407 -1.7221 -0.1363 -05045 05002 04276 02913
07820 03549 03128 04106 0.8294 07089  1.0217
04765 15159 01906 -0.8556 -1.0892 -0.9309 -0.7403
0.8657 02492 03463 -11230 -0.3910 -0.3342 0.0121
-0.0043 05429 -0.0017 16322 16888 14435 14417
05420 -0.0771 02168 -0.8659 -03275 -0.2799 -0.0631
11997 03667 -0.4799 -04529 -0.3845 -0.3287 -0.8085
18372 06342 07349 -15737 -0.9189 -0.7854 -0.0505
10015 -13335 -0.4006 05212 11133 09515  0.5509
07178 02504 02871 -13421 -0.6609 -0.5649 -0.2778
03491 02160 01397 -23514 -20179 -1.7248 -1.5851
01329 -0.1370 00531 -15908 -1.1666 -0.9971 -0.9440
15950 0.0904 -0.6380 0.0534 -0.2308 -0.1973 -0.8353

0.0000 Mean 0.0000
1.0000 Variance 1.0000
0.4000 Correlation with S 0.4000

By maintaining the mean vector and covariance matrix exactly, the procedure
described above maximizes its analytical value of the perturbed data for many
common types of statistical analyses based on the normal model. In addition,
generating the perturbed values as a function of S and a noise term also maxi-
mizes security [9]. In practice, perturbed data generated in this fashion are re-
ferred to as synthetic data. Thus, from a statistical perspective, the procedure
described above is an extremely versatile procedure resulting in analytical value
and low disclosure risk.

Some researchers have argued, however, that synthetic data results in infor-
mation loss, because the perturbed data may be very “different” from the origi-
nal values. In fact, one measure of this “difference” or information loss pro-
posed in the literature is based on the distance between the original and per-
turbed values. If the distance is high, then information loss is deemed to be high
[2]. By this definition of information loss, procedures that generate synthetic
data fare poorly since X and Y are conditionally independent (given S, mean
vector, and covariance matrix). Others may argue that this approach is simply
the equivalent of releasing the non-confidential microdata, the mean of confi-
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dential variables and the covariance matrix of the entire data set. Thus, regard-
less of the merits of Burridge’s procedure, it is of little consequence if it is not
used in practice. Since the primary resistance to the procedure is the synthetic
nature of the perturbed data, we propose an alternative to Burridge’s procedure
by creating perturbed attributes which exactly preserve the mean vector and
covariance matrix of the original attributes while offering a selectable degree of
similarity between original and perturbed data. We describe such a procedure
in the following sections.

3 Generating Non-Synthetic Perturbed Data that
Maintain the Mean Vector and Covariance Matrix

In this section, we show that it is possible to generate non-synthetic data sets
that satisfy the same statistical requirements as Burridge [1]. We begin with the
simple case of a single confidential variable X and a single non-confidential vari-
able S. We will extend this to the more general case of multiple confidential and
non-confidential variables in the following section. For simplicity and without
loss of generality, we will assume that mean of both X and S equal 0. Let Gf(x ,

2 . . .
Ogs, and o4 represent the variance of X, variance of S, and the covariance be-

tween X and S, respectively. Assume that the perturbed values of Y are gener-
ated as follows:

y,=y+ox,+Bs,+e,i=1,2,..., n,

(4)
where y:(l—a)i—ﬁg, X is the mean of X, S is the mean of S, n represents the
number of observations in the data set, and e is a noise term generated from a
normal distribution with mean (exactly) equal to 0, variance (exactly) equal to
o.,. It is also assumed that e is generated in such a manner that it is orthogonal

to both X and S. The parameter « is the “similarity” parameter. When a = 1, X
and Y are identical while when a = 0, X and Y are most dissimilar. Thus, the
parameter a allows the data provider to control the level of similarity between
the original and masked data.

In the above model we can obtain the necessary conditions under which the
perturbed values will satisfy the same statistical requirements as Burridge’s
procedure. For convenience, we shall refer to these as “sufficiency require-
ments”, even though they represent sufficiency requirements only under multi-
variate normality assumptions. First it is easy to see that if we take expectation
of the expression in equation (4), the expected value of Y is X. For simplicity
and without loss of generality, we will assume that Xand S = 0. In order to

TRANSACTIONS ON DATA PRIVACY (2008)



Generating Sufficiency-based Non-Synthetic Perturbed Data 23

satisfy the sufficiency requirements, it is necessary that the covariance between
Y and S be o,4. To satisfy this condition,

Cov(Y,S) = Cov[(aX + BS + €)(S)] = aE(XS) + B E(5?) = 00 +B0§S
)
since E(eS) = 0. Setting this expression equal to o, yields
Cov(Y,S) = G, =00 ¢ +Po% -
(6)
Hence, in order to maintain the covariance between Y and S to be 6,4, it is nec-

essary that:
B=(1-a)2%.

Oss
?)
The third and final condition is that the variance of Y equals the variance of X.
We can derive the variance of Y as

62y =02y =E[(0X +BS+e)aX+pS+e)|=
0’03y +B’05s +0, +2(“B)(st)- 8)
Now substituting the value of § from equation (7) yields the following;:

SS

©)

2
c
. . 2
In the above expression, the expression Gy —@

2
SS

is always greater than or

. 2 V. .
equal to zero. Hence, in order for o, to be positive, it is necessary that -1 < a <

+1. When a is negative, the perturbed values are negatively correlated to the
original values. This type of model is almost never used in practice and in the
remainder of the paper, we will limit our discussion the range 0 <a <1.

For simplicity and without loss of generality, consider the situation where
both X and S have mean 0 and unit variance (resulting in y = 0). Using the re-
sults in equation (5) through equation (9), we can rewrite equation (4) as fol-

lows:

y,=ox; +(1-a)ps; +1/‘1—a2 Rl—p2 iui

(10)
where 0 is the correlation between X and S and ui is normally distributed with
mean 0, unit variance, and is orthogonal to both X and S. When a =1, we get y =
0, B =0, and the coefficient of ui is also zero, resulting in yi = xi, which is the
equivalent of releasing the unmodified values of X. When 0 < a < 1, the value of
a represents the extent to which the perturbed value is a function of the original
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value. Large (small) values of a indicate that the original values are a significant
(non-significant) component of the perturbed value. Conversely, as the value of
a approaches zero (one), the level of perturbation increases (decreases). One
additional advantage of this procedure over Burridge’s procedure is that, when
the underlying distribution of X is not normal, the extent to which the distribu-
tion of Y resembles the distribution of X will be a direct function of the specifica-
tion of a. When « is close to 1, the distribution of Y will be very similar to that of
X.

Finally, when « = 0, the perturbed values yi are not a function of the confiden-
tial value xi, but is a function of only S and u, implying that the perturbed data
is synthetic. In this case, we can verify that the values of Y are generated from
the conditional distribution of XIS. In other words, when a = 0, this model re-
duces to Burridge’s model.

It is important to note that, like Burridge’s results, these results are theoretical
and require no empirical validation. In addition, the results are also distribution
free and are valid regardless of the distribution of X, S, and the noise terms. An
additional advantage of this procedure is that the results are valid for a data set
of any size. While the results need not be verified empirically, in the following
section, we provide a simple illustration of the proposed approach.

Consider the data set considered earlier consisting of 25 observations for X and
S. As before, let X and S have zero mean and unit variance. Let o, the correlation
between X and S, equal 0.4. A simulated data set with these characteristics is
provided in Table 2 along with e and perturbed values for several specifications
of a. When a = 0.999, the coefficients of si and ui are very small, indicating that
the perturbed values Y consist mostly of the original values X, with very little
additional noise. As a decreases, the value of (3 and the coefficient of the error
term increases. In each case, it can be easily verified that sufficiency is main-
tained. The mean and variance of Y are exactly the same as that of X in every
case. Further, in every case, the covariance between Y and S is exactly the same
as that of X and S.

We can also derive the information loss arising from this model by considering
the difference between the perturbed (Y) and original (X) values. As indicated
earlier, Domingo-Ferrer and Torra [2] contend that the closer the values of X
and Y, the greater the data utility arising from the perturbed data. We can assess
the similarity between X and Y by considering the variance of (X — Y). Large
values for the variance of (X — Y) would indicate greater information loss.
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Table 2. Original and perturbed data for the univariate example

a= 0.9990 0.8000 0.6000 0.4000 0.2000 0.0000

S X Y Y Y Y Y Y
-2.2314 0.6972 0.7295 0.8341 0.6678 0.4382 0.1682 -0.1344
-0.6940 -1.7339 -1.7084 -1.1201 -0.7213 -0.3674 -0.0422 0.2600
1.2790 1.1636 1.1402 0.7286 0.4967 0.3072 0.1446 0.0040
0.4442 -0.4836 -0.4540 0.0361 0.2974 0.5049 0.6780 0.8233
-1.5884 0.1432 0.0759 -0.9047 -1.3578 -1.6868 -1.9366 -2.1224
1.0069 0.8774 0.9423 1.6601 1.8577 1.9332 1.9309 1.8655
-0.2114 0.7093 0.7235 0.7521 0.6605 0.5409 0.4033 0.2514
0.8827 0.9078 0.9794 1.7644 1.9759 2.0528 2.0439 1.9655
0.4523 0.9337 0.9708 1.2899 1.3083 1.2561 1.1590 1.0255
-1.0557 -2.7687 -2.7779 -2.4538 -2.0360 -1.5967 -1.1437 -0.6796
0.0808 0.1185 0.0782 -0.4374 -0.6342 -0.7560 -0.8301 -0.8654
0.0729 0.2172 0.1975 -0.0818 -0.2066 -0.2950 -0.3601 -0.4065
-0.3407 -1.7221 -1.7014 -1.1484 -0.7457 -0.3787 -0.0345 0.2913
0.7820 0.3549 0.3866 0.7718 0.9052 0.9793 1.0158 1.0217
0.4765 1.5159 1.4730 0.6923 0.2410 -0.1325 -0.4565 -0.7403
0.8657 -0.2492 -0.2635 -0.3306 -0.2783 -0.1982 -0.1002 0.0121
-0.0043 0.5429 0.6069 1.3001 1.4798 1.5391 15215 1.4417
0.5420 -0.0771 -0.0894 -0.1863 -0.1835 -0.1573 -0.1162 -0.0631
-1.1997 -0.3667 -0.3816 -0.5866 -0.6749 -0.7359 -0.7793 -0.8085
1.8372 0.6342 0.5992 0.1831 0.0462 -0.0252 -0.0548 -0.0505
-1.0015 -1.3335 -1.2900 -0.5760 -0.1991 0.0983 0.3451 0.5509
0.7178 -0.2504 -0.2751 -0.4818 -0.4873 -0.4456 -0.3739 -0.2778
0.3491 0.2160 0.1388 -0.8341 -1.1943 -1.4106 -1.5350 -1.5851
0.1329 -0.1370 -0.1814 -0.6972 -0.8586 -0.9368 -0.9618 -0.9440
-1.5950 0.0904 0.0808 -0.1737 -0.3588 -0.5274 -0.6856 -0.8353
Variance of X 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
p 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000
Variance of (Original — Perturbed) value 0.0017 0.3360 0.6720 1.0080 1.3440 1.6800

Theoretically, we can derive the variance of (X -Y) as

Variance(X -Y)= (Gix + wa —20yy )= 2((5?()( —Oxy )r

(11)

where oy is the covariance between X and Y. We can derive G, as

2
Oy =E[(aX+BS+e)X]=a0§(X +PB0 4 =0‘0§<x +(l—a) (st) )

2
SS

(12)
Replacing the above result in equation (11) results in

2
Variance(X - Y)=2| (1-a) 6%y — (0xs)

2
SS

(13)

2
Oss

For a given data set, the expression | G5y — is fixed. Hence, the utility

resulting from the perturbation is a direct function of a. When a is close to 1,
the variance of (X — Y) is very small, resulting in very little information loss.
When a approaches 0, the resulting variance of (X — Y) is higher, resulting in
higher information loss. The variance of X and Y is the highest for Burridge’s
model (a = 0). Thus, when a is small, the results of analyses that rely on the
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normal (Gaussian) model using the masked data will be the same as that using
the original data; but not the results of analyses for all other models. As a ap-
proaches 1, the masked data resembles the original data to a large extent. In this
case, all analyses that are appropriate for the original data are also appropriate
for the masked data. The extent to which the results differ will depend upon the
selection of a. We believe that this represents a reasonable compromise between
releasing unmasked data (and risking complete disclosure) and synthetic data.
An important aspect of this compromise is the level of security that results from
the selection of a specific value of a.

As the variance of (X — Y) decreases, the reduction in information loss is also
accompanied by an increase in disclosure risk. When a = 1, the variance of (X -
Y) = 0 resulting in complete disclosure of confidential information. This is con-
sistent since when a = 1, the original values are released unmodified. When «a =
0, the variance of (X - Y) is maximum resulting in the lowest possible level of
disclosure risk. However, this risk is non-zero since an intruder will use the val-
ues of the non-confidential variables to predict values of the confidential vari-
ables [8, 9]. The results in Table 2 indicate that as a approaches 1 (0), disclosure
risk increases (decreases) while information loss decreases (increases). Thus, the
results in Table 2 clearly indicate the explicit trade-off between information loss
as measured by the variance of (X — Y) and disclosure risk. It is important to
note that we do not, in general, suggest the use of the variance of (X - Y) as a
measure of disclosure risk. Many sophisticated approaches for assessing disclo-
sure risk have been proposed [3, 4, 13]. In this study however, we are only inter-
ested in assessing the relative level of disclosure risk resulting from the specifica-
tion of a. The variance of (X —Y) serves this narrow purpose.

4 Generating Perturbed Values for the Multivariate
Case

The results for the multivariate case are presented in this section. Let X (= Xj,
..., Xx) represent a set of K confidential variables, let S (=S, ..., S.) represent a
set of L non-confidential variables, and let Y (= Y3, ..., Yk) represent the set of K
masked variables. Let n represent the number of records in the data set. Let
Yyx, Xg, and Xy, represent the covariance matrix of X, S, and Y, respectively.
Let Xyyand X,g represent the covariance between (X and S) and (Y and S),
respectively. Let X, S, and Y be the mean vector of X, S and Y, respectively.
Let a be a matrix of size (K x K) representing the multipliers of X and let  be a
matrix of size (K x L) representing the multipliers of S.

Using the above definition, the perturbed values yi are generated as follows:
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y,=v+x,a' +sB" +e,,i=1,...,n
(14)
As in the univariate case, we require that
(1) Xy =Xxx,
(2) Xys=X4,and
3) Y =X.
Based on these requirements, we can derive the following:

|3T = Zg;zsx (I ~a' )’

(15)

v=I-a)X-PBS,and

(16)

X.= (ZXX - szzgézsx )_ o (ZXX - 2xszg;}:'sx )aT
17)

where I is the identity matrix, X is the mean vector of X, and S is the mean vec-
tor of S and X, is the covariance matrix of the noise terms e.

Thus, a completely specifies the perturbation model shown in equation (14).
However, a must be selected carefully to ensure that the resulting covariance
matrix of the error terms is positive definite. Unlike the univariate case where
we were able to specify an upper and lower limit for the parameter «, the only
way to verify whether a particular a is appropriate is to evaluate whether X as
shown in equation (17) is positive definite.

As in the univariate case, the specification of the a matrix represents the extent
to which the masked data is a function of the original data. There are three pos-
sible options for specifying the o matrix:

(1) ais a diagonal matrix and all values in the diagonal are equal. This
would represent a situation where all the confidential variables are per-
turbed the same level. In addition, the value of Yiis a function only of Xi
and does not depend on the value of X;. Let a represent the value of the
diagonal. In this case, it is easy to verify from equation (17) that when 0 <
a<1,X,, will be positive definite.

(2) ais a diagonal matrix and all values in the diagonal are not equal. This
would represent a situation where the confidential variables are per-
turbed at different levels. As in the previous case, the perturbed values
of a particular variable are a function of the original values of that par-
ticular confidential variable and not other confidential variables. How-
ever, in this case, after the specification of a, it is necessary to verify that
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the resulting X, is positive definite. If not, it may be necessary to re-
specify a so that the resulting X, is positive definite.

(3) ais not a diagonal matrix. In this case, the perturbed values for a par-
ticular variable are a function of the original values of that confidential
variable as well as the original values of other confidential variables.
This is the most general of the specifications and also the most compli-
cated. However, we do not see any advantages that arise from this speci-
fication. Hence, for the purposes of this study, we will only consider the
first two specifications.

5 Empirical Examples

As noted earlier, the results derived in the previous section will hold for a data
set of any size, any underlying distribution and any noise distribution. While
these results require no empirical evaluation, we provide a few empirical exam-
ples to illustrate the application of the proposed approach. As a first example,
consider the case where the data provider requests that all variables be per-
turbed the same level and specifies that o = 0.90. Table 3 provides the results of
generating perturbed values for a data set consisting 25 records with 2 non-
confidential variables and 2 confidential variables with the following character-

. 1.0 0.4
X104 1.0/

istics:

(18)

1.0 0.6
Y= , and
0.6 1.0

(19)
. 02 04
X103 —02]f
(20)

The mean vectors X and S were specified as 0 resulting in y = 0. Based on the
data provider’s request, a is specified as:
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_10.900 0.000
- {o.ooo 0.900}'
(21)
In this case, the data provider has requested that all variables be perturbed at
the same level. Using equation (12), we can compute 8 as

T {—0.006250 0.043750}

—-0.028125 —-0.003125
(22)
The resulting covariance of the noise term can be computed using equation (17)
as

ee

0.159125 0.089063
{0.089063 0.172782}
(23)

It can be verified that X, above is positive definite. The perturbed values for the
data set above are presented in Table 3 (under Example 1). The specification of
a as shown in equation (23) implies that the perturbed values of the confidential
variables are heavily influenced by the original values of the confidential vari-
ables. The non-confidential variables play a very small role in the perturbation.
The extent of the noise term is also relatively small about 16% for the first and
about 17% for the second confidential variables. The results show that the per-
turbed values Y have the same mean vector and covariance matrix as X. It can
be easily verified that for most traditional parametric statistical analyses (such
as confidence intervals and hypothesis testing for the mean, analysis of vari-
ance, regression analysis, multivariate analysis of variance, multivariate multi-
ple regression, etc.) using (Y and S) in place of (X and S) will yield exactly the
same results.

Now consider a specification where for the same data set, the data provider
wishes that the coefficient for the first variable should be 0.9 and that for the
second variable should be 0.2. In this case, the data provider would like a much
higher level of perturbation for variable 2 than for variable 1. From this specifi-
cation,

_10.900 0.000
- {o.ooo 0.200} '
(24)
The resulting covariance matrix for the noise term is as follows:

_[0.1591 0.3844}

0.3844 0.8730
(25)
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It can be verified that the above covariance matrix is not positive definite and it
would be necessary for the data provider to consider alternative specifications
in this case. In order to maintain the sufficiency requirements, it is necessary
that some restrictions be imposed on the selection of the a. Extremely disparate
specifications such as the one above are likely to create problems as illustrated
above.

For the same example, assume that the data provider re-specifies the following
a:

_10.800 0.000
[o.ooo 0.300} '
(26)

In this case, the two variables are perturbed at different levels, the first variable
being perturbed less than the second variable. The resulting values for f and
X can be computed as follows:

B ~0.01250 —0.19687
10.08750 —0.02187 |
(27)

ee

0.3015 0.3563
{0.3563 0.8275 }
(28)

We can verify that X, is positive definite. The results of applying this specifica-
tion on the original data set are also provided in Table 3 (under Example 2). As
before, it is easy to verify that the mean vector and covariance matrix of the
masked data (Y, S) are exactly the same as that of the original data (X, S). Con-
sequently, for those types of statistical analyses for which the mean vector and
covariance matrix are sufficient statistics, the results of the analysis using the
masked data will yield the same results as the original data.
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Table 3. Original and perturbed data for multivariate examples

Example 1 Example 2 Example 3
| 0.9000 0.0000 0.8000 0.0000 0.0000 0.0000
@ 0.0000 0.9000 0.0000 0.3000 0.0000 0.0000
S S X1 X2 Y1 Y2 Y1 Y2 Y1 Y2
-0.3793 0.5233 -0.2353 0.5124 0.1266 1.1704 0.4558 1.7471 0.9711 1.6967
-0.1618 0.3718 2.7470 0.6557 1.8349 0.7243 1.5139 0.4749 -1.3292 0.3339
-1.4152 -0.4663 -0.4189 0.0167 -0.4062 -0.5252 -0.5693 -0.9662 -0.1560 -0.9214
-0.4077 0.3961 -1.7639 -1.3652 -1.6766 -0.7302 -1.3380 0.7144 -0.0511 1.2222
0.2739 -0.8532 -0.0608 0.8891 0.1494 0.5883 0.0881 -0.2059 0.1673 -0.5251
1.1068 2.0839 1.8246 -0.3132 1.7891 -0.5967 1.6102 -0.9549 0.9863 -1.0123
2.1818 0.9395 -0.4480 -0.8477 -0.6355 -0.9176 -0.6351 -0.9116 -0.3213 -0.8504
-1.0073 -2.3853 -0.4345 0.2968 -0.0961 0.6512 0.0273 1.1112 -0.0790 1.1571
0.9858 1.0781 -1.3258 -1.8018 -1.3418 -2.1354 -1.3572 -1.8118 -0.0249 -1.4183
0.1139 -0.2034 -0.2942 -0.5151 0.5774 0.5455 1.0672 2.0557 1.8581 2.2952
0.4142 -0.8983 -0.3442 -0.2562 -0.5779 -0.5704 -0.7306 -0.8655 -0.9379 -0.8478
-0.8580 0.3205 1.1242 1.7454 1.0228 1.3899 0.8615 0.2431 0.1746 -0.2370
0.2773 -0.4921 -0.3768 -1.4787 0.3883 -1.3504 0.5205 -0.4834 1.4896 -0.0933
0.6457 -0.1180 0.0981 0.4519 0.1197 0.8283 0.2513 0.9642 0.0013 0.8300
-0.1903 0.6411 -0.2113 0.4001 -0.5856 -0.3399 -0.8348 -1.3984 -0.6818 -1.5803
-0.8776 0.1346 -0.5433 0.3189 -0.2591 0.5750 -0.0715 0.8461 0.6149 0.8476
-0.7941 -1.0653 -0.0322 2.0761 -0.0898 2.0652 -0.0753 1.1721 -0.4604 0.6490
-1.1311 -1.7688 -0.9724 1.1834 -1.4099 0.4398 -1.6757 -0.8390 -1.7688 -1.1468
-0.7989 -0.8843 -0.1855 -0.5428 -0.8414 -0.6864 -1.0338 -0.4976 -1.8070 -0.2596
0.2944 1.3029 1.1571 1.4588 1.7095 1.5185 1.8201 0.8500 1.9579 0.3765
-0.0638 0.0855 -0.5562 -0.3392 -0.9546 -0.1490 -0.9186 0.2239 -1.0095 0.3703
2.1286 1.3500 1.6608 -0.0101 1.6619 -0.1186 1.5464 -0.5447 0.7361 -0.7451
-1.0819 -0.3042 -0.0716 -0.9457 0.1728 -0.6908 0.2553 0.2259 0.4937 0.6096
1.5504 0.3104 -0.5016 -0.6148 -0.7614 -0.6332 -0.7699 -0.5867 -0.6810 -0.5267
-0.8059 -0.0989 0.1646 -0.9752 0.0835 -1.0525 -0.0077 -0.5629 -0.1430 -0.2240
Variance  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Correlation with S1  0.2000 -0.3000 0.2000 -0.3000 0.2000 -0.3000 0.2000 -0.3000
Correlation with S2  0.4000 -0.2000 0.4000 -0.2000 0.4000 -0.2000 0.4000 -0.2000
Correlation between Xi & X» 0.4000 0.4000 0.4000 0.4000

The final illustration in Table 3 (under Example 3) shows the case where the
perturbed values are generated as a function of only the non-confidential vari-
ables and the coefficients of the confidential variables are set to zero (& = 0). It is
easily verified this is the same as the procedure suggested by Burridge [1].

The information loss resulting from the data is also presented in the table
measured by the variance of the original and perturbed values. The measure
clearly shows an increase in information loss measured using variance (X - Y) as
a approaches 0, because when a = 0 the perturbed values are independent of
the original values resulting in synthetic data.. By contrast, as a approaches I,
the resulting information loss is very low. As observed earlier, the opposite is
true for disclosure risk; as a approaches 0, disclosure risk decreases and as «
approaches I, disclosure risk approaches 100%. Thus, the implementation of this
procedure needs to be evaluated by considering the trade-off between informa-
tion loss and disclosure risk.
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6 Conclusions

In general, when generating perturbed data it is desirable that the analysis per-
formed on the masked data yield results that are identical to that using the
original data. The only way to achieve this objective is to maintain all sufficient
statistics of the masked data to be the same as the original data. In practice, it is
impossible to achieve this objective. However, many statistical analyses em-
ployed in practice are based on the normal (Gaussian) model. In these cases, if
we maintain the mean vector and covariance matrix of the masked data to be
the same as that of the original data, the results of the analysis using the masked
data will be the same as that using the original data.

In Burridge’s approach, the perturbed values are generated as a function of the
non-confidential values and the estimates of the mean vector and covariance
matrix. The perturbed values generated in this manner are deemed synthetic.
Some researchers and practitioners are uncomfortable with synthetic confiden-
tial data that have no “relationship” to the orginal confidential values, and pre-
fer perturbed values to be based on the values of the confidential variables. As
indicated earlier, Burridge’s approach also modifies the marginal characteristics
of the original data as a whole, as well as in sub-groups. Hence, results of analy-
ses that do not rely on the normal (Gaussian) model will be different when
masked data is used in place of the original data.

In this study, we provide a simple technique that allows data providers to cre-
ate perturbed attributes which preserve a set of statistics (mean vector and co-
variance matrix) of the original attributes exactly while offering a selectable de-
gree of similarity between original and perturbed data. The data provider can
explicitly specify the degree of similarity between the original and masked data
by appropriately choosing a. The data provider also has the flexibility to specify
different levels of similarity for different confidential variables. Hence, for con-
fidential variables that are considered more sensitive than others, the data pro-
vider can choose a higher level of perturbation (lower level of similarity). We
believe that this approach offers a reasoned compromise between releasing un-
masked data and synthetic data. We hope that generating perturbed values in
this manner will lead to a greater acceptance of masked numerical data. The
procedure described in this study will be available in u-Argus [7] package in the
near future.
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