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Abstract. Privacy preserving data mining and statistical disclosure control have introduced several
methods for data perturbation that can be used for ensuring the privacy of data respondents. Such
methods, as rank swapping and microaggregation, perturbate the data introducing some kind of
noise. Nevertheless, it is usual that data are edited with care after collection to remove inconsisten-
cies, and such perturbation might cause the introduction of new inconsistencies to them.

In this paper we study the development of methods for microaggregation that avoid the introduction
of such inconsistencies. That is, methods that ensure the protected data to satisfy a set of given
constraints.
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1 Introduction

In recent years, several methods for ensuring data privacy have been developed. Data
protection methods can be categorized into data-driven (or general purpose ones) and
computation-driven (or specific purpose ones). That is, methods that can be used for pub-
lishing data independently of their posterior use, and methods developed for a particular
data use (e.g., two parties want to mine association rules from their databases for mar-
ket basket analysis). Computation-driven methods are usually based on cryptographic
tools [30] (they follow the path of secure multi-party computation [31]) and data-driven
ones on the perturbation of the data. That is, the latter methods consist of introducing some
noise into the data so that the exact figures of a particular respondent are not disclosed. At
present, a large number of perturbative methods exist. They are studied and compared in
the areas of privacy preserving data mining and statistical disclosure control. Two of the
most used and successful methods of the perturbative approach are rank swapping [16, 17]
and microaggregation [7, 15, 19].
Data editing [14, 20] is a field of statistical disclosure control that is devoted to the analysis

and correction of raw data for their improvement. The basic idea is that data should satisfy
a set of requirements (or constraints) before their release. E.g. non negative values are not
permitted for people’s age. Data editing is typically applied to the original data and, in any
case, before any perturbation takes place.
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Perturbative methods have been developed so far without taking much into account the
intrinstic properties of the data. That is, without taking into account the requirement or the
constraints that the data elements have to satisfy. However, data after perturbation should
maintain the constraints. E. g., it is not acceptable that a perturbative approach assigns
negative values to the variable age, or that it assigns a value of 9000 miles to the variable
distance from household to work. Naturally, it is always possible to edit again the data after
data protection, but this can cause some additional difficulties. E.g., if the perturbated
data maintains the mean of the original data, an assignment of a value equal to zero to all
negative ages will affect the mean and, thus, the original mean is no longer maintained.
In this paper we study the case of microaggregation. We study how this method can be

modified so that a set of requirements or constraints (edit constraints) are satisfied. We
show that microaggregation can cope with some of the constraints in a natural manner.
In a few recent papers, the problem of combining protection mechanisms and editing

constraints has been considered. See e.g. [24, 25]. In this paper we focus on microaggrega-
tion. As we will see here, this permits us to derive general rules on how microaggregation
should be performed on real data to satisfy the constraints.
The structure of this paper is as follows. In Section 2 we review a few concepts that are

needed in the rest of the paper. In particular, we will review a few elements of data editing
and give an overview on some of the constraints that are into use. Although data editing
is a field in statistical disclosure control, and although we will use the terminology in such
field, the aspects outlined here are general to any database (e.g., data cleaning tasks and
procedures are in common use and can be used for similar purposes). Section 2 also con-
tains a short overview of microaggregation. In Section 3 we will present a few results about
how microaggregation can take into account the (edit) constraints expressed on the data.
The paper finishes with some conclusions and future work.

2 Preliminaries

In this section we review a few concepts that are needed in the rest of this paper. First, we
will review some of the edit constraints in use. Then, we will review the main aspects of
microaggregation, focusing on those that are relevant in this paper.

2.1 Edit Constraints

Data editing is the process of manipulating raw data to reduce the errors present and im-
prove their quality. Several definitions exist each one strengthening different aspects of
the process. For example, Pierzchala [20] distinguishes editing as either a validating pro-
cedure or a statistical process. Then, in the case of a validating procedure, edition is a
“within-record action with the emphasis on detecting inconsistencies, impossibilities, and
suspicious situations and correcting them. Examples of validation include: checking to see
if the sum of parts adds up to the total, checking that the number of harvested acres is less
than or equal to that of planted acres”. In the case of editing as a statistical process, we
have that “checks are based on a statistical analysis of respondent data”. In this case, we
might have, e.g., between-record checking. For example, we might be interested in the de-
tection of outliers (through “edit limits generated from distributions of a subset of current
records”). Time series have also been used for this purpose to detect inliers [8].
In addition to such edit constraints, there exists also macro-editing, which consists of

checking aggregations of data. This is used when data is aggregated before its publica-
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tion (e.g. to construct tabular data – following statistical disclosure control jargon – or data
summaries). We will not consider this case here.
In any case, editing is usually formalized in terms of a set of edit constraints; that is,

constraints that the data should satisfy. Once such constraints are written, it is possible to
check the validity of the data by checking whether the data satisfy the constraints. Then,
the data that violate the constraints can be corrected to solve the inconsistencies.
Several types of constraints can be found in the literature. We present a classification of a

few of them below. Although the classification is biased towards our study, we consider it
general enough for other purposes.

Constraints on the possible values. The values of a given variable are restricted to a pre-
defined set. For example, the values should belong to a given interval, should be
positive or bounded by a given value. This is the case of the variables salary and age.

EC-PV: age ∈ [0, 125]

Note that this constraint can be further generalized for subsets of variables. For ex-
ample, constraining the values for a pair (v1, v2). Nevertheless, when such general-
ization takes place, it is possible to express the constraint in other terms. For example,
when v1 and v2 correspond, respectively, to the probability of A and not A, we can re-
quire (v1, v2) to be in the set {(0, 1), (0.1, 0.9), . . .} or, alternatively, use the contraint
v1 +v2 = 1. Note that such latter expression for the constraint can also be classified as
one of the constraints below (e.g. it can be either considered as a constraint of the type
“one variable governs the possible values of another one”, or as a “linear constraint”).

One variable governs the possible values of another one. The values of a variable v2 are
constrained by the values of the first one. A simple case is the variable sex governing
the variable number of pregnacies. It is clear that not all values are acceptable for number
of pregnacies when sex=male. Formally,

EC-GV1: If sex=male THEN number of pregnacies = 0

Another example is the constraint expressed in the following rule [25]:

EC-GV2: IF age < 17 THEN gross income < mean income

In this case, three variables are taken into account age, gross income and mean income.

The example given above (from [20]) that the number of harvested acres should be
less than or equal to that of planted acres is another example of this type of constraint.
That is,

EC-GV3: harvested acres ≤ planted acres

Linear constraints. Some numerical variables satisfy some linear constraints. That is, a
variable can be expressed as a linear combination of a set of other variables. For ex-
ample, in a data set about economical data the following equation involving variables
net, tax and gross should hold:

EC-LC1: net + tax = gross
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Non-linear constraints. In this case some relationships between variables hold, but they
are not linear. For example, the following equation should be satisfied for the vari-
ables applicable VAT Rate, price exc. VAT and retail price:

EC-NLC1: price exc. VAT · ( 1.00 + applicable VAT Rate) = retail price

Also, the following should hold with respect to wage sum, hours paid for, and wage rate
(from [13]):

EC-NLC2: wage sum = hours paid for · wage rate

Other types of constraints. Other classes of constraints might be considered. For example,
constraints on non-numerical variables (ordinal or categorical variables).

In the case of considering data editing in combination with a perturbative approach, we
can consider an additional constraint.

Values are restricted to exist in the domain. In this case, not only the values should be-
long to a predefined set (as in the constraints on the possible values), but the values
should really exist in the domain. For example, although we can consider that the
variable age might have a range of [0, 120], we require that the published data con-
tains only records with ages really existing in the population or the sample.

In the case of considering this constraint with a perturbative approach, it means that if
the original data includes only records about young people (e.g., age < 30), we cannot
introduce error in the data and cause a record to have its age = 50.

Although this constraint is specially appropriate when perturbative methods are un-
der consideration, it is also applicable when data editing is to be used on a file con-
strained by the data in another file [5, 23] (e.g. when linked files are edited). For
example, the edition of a file with data from a school typically should be in agree-
ment with the population data from the same town or neighborhood.

We give below an example that illustrates some edit constraints.

Example 1. Table 1 represents a file with data from 12 individuals that satisfies some edit
constraints. The file is described in terms of variables V1, . . . , V7, which stand for Expendi-
ture at 16%, Expenditure at 7%, Total Expenditure, Hours paid for, Wage rate, Wage sum, Total
hours.
The data is required to satisfy three edit constraints. First, the variables V1, V2, and V3 are

such that V3 = α1V1 +α2V2. So, V1, V2, and V3 define a linear constraint. Then, variables V4,
V5, and V6 satisfy the multiplicative constraint V6 = V4 ∗ V5, and, finally, V4 and V7 satisfy
the inequality V4 ≤ V7.

2.2 Microaggregation: An Overview

Microaggregation is a perturbative method. From an operational point of view, microag-
gregation applies first (i) a clustering algorithm to a set of data obtaining a set of clusters.
Formally, the algorithm determines a partition of the original data. Then, microaggrega-
tion proceeds by calculating (ii) a cluster representative for each cluster (formally, a cluster
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Exp 16% Exp 7% Total Hours paid for Wage rate Wage sum Total hours
V1 V2 V3 V4 V5 V6 V7

15 23 42.01 23 50 1150 37
12 43 59.93 28 70 1960 37
64 229 319.27 12 84 1008 25
12 45 62.07 29 73 2117 30
28 39 74.21 9 30 270 40
71 102 191.5 10 63 630 20
23 64 95.16 9 74 666 10
25 102 138.14 72 30 2160 80
48 230 301.78 26 30 780 35
32 50 90.62 6 45 270 15
90 200 318.4 8 45 360 15
16 100 125.56 34 55 1870 45

Table 1: A data file with three edit constraint.

representative for each partition element). Finally, (iii) each original datum is replaced by
the corresponding cluster representative.

Microaggregation is said to satisfy the requirements of privacy because each cluster is
required to contain at least k records (where k is a parameter of the method). Then, each
cluster representative aggregates (or summarizes) the information of at least k records. Due
to this, in some sense, a microaggregated file satisfies k-anonymity [21, 27, 26].
In microaggregation, the parameter k also controls the level of perturbation. The larger

the k, the larger the perturbation. This is so because for larger k the degree of summarization
is larger. Naturally, the maximal summarization is when k corresponds to the size of the
file and the protected file is useless.
It is said that microaggregation satisfies, in some sense, k-anonymity. Nevertheless, this

is only partially true. There exist a few variations of microaggregation when a file contains
several variables. E.g. univariate microaggregation and multivariate microaggregation.
The former applies microaggregation to each variable in an independent manner. In this
case, k-anonymity is not ensured because it might happen that all records in the protected
file are different. Nevertheless, data is still perturbated because cluster representatives are
computed for each variable and data is replaced by such cluster representatives. Multi-
variate microaggregation applies the clustering process to sets of variables. In this case,
when all the variables are microaggregated together, k-anonymity will be satisfied. In this
case, however, the perturbation suffered in the file might be large. Microaggregation for
k-anonymity was studied in [12].
At present there exist several algorithms for microaggregation. See, for example [9, 18, 28]

for details. The example below illustrates the application of microaggregation.

Example 2. Let us consider the data in Example 1. Table 2 illustrates the application of PCA
microaggregation to this data file. In this example, we have applied microaggregation par-
titioning the data set into two sets of variables. One defined with variables {V1, V2, V3} and
the other with variables {V4, V5, V6, V7}. In this example we can observe that the resulting
file does not satisfy the multiplicative edit constraints for variables V4, V5, and V6.
Computations have been done using the sdcMicro package [28] in R. The following com-

mands were used (zz corresponds to the original file, and zzNew is the protected one):
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Exp 16% Exp 7% Total Hours paid for Wage rate Wage sum Total hours
V1 V2 V3 V4 V5 V6 V7

13.000 37.00 54.670 26.0000 51.000 1349.00 34.000
13.000 37.00 54.670 44.6667 51.667 1996.67 54.000
67.333 219.67 313.150 10.3333 59.000 636.00 28.333
13.000 37.00 54.670 26.0000 51.000 1349.00 34.000
27.667 51.00 86.663 10.3333 59.000 636.00 28.333
37.333 101.33 151.733 10.3333 59.000 636.00 28.333
27.667 51.00 86.663 7.6667 54.667 432.00 13.333
37.333 101.33 151.733 44.6667 51.667 1996.67 54.000
67.333 219.67 313.150 26.0000 51.000 1349.00 34.000
27.667 51.00 86.663 7.6667 54.667 432.00 13.333
67.333 219.67 313.150 7.6667 54.667 432.00 13.333
37.333 101.33 151.733 44.6667 51.667 1996.67 54.000

Table 2: The protected data file using PCA microaggregation.

res <- microaggregation(zz[,1:3], aggr=3, method="pca", measure="mean")
zzNew[,1:3] <- res$blowxm
res <- microaggregation(zz[,4:7], aggr=3, method="pca", measure="mean")
zzNew[,4:7] <- res$blowxm

As microaggregation does not satisfy k-anonymity (see e.g. the protected data file of Ex-
ample 1) it is of interest the study of its disclosure risk, as well as of its information loss.
Information loss and disclosure risk are two measures that give information about the ex-
tent in which the perturbated data is useful for the same purposes than the original one,
and about the extent in which the perturbated data can lead to disclosure of sensitive infor-
mation. In [10, 11], a large number of data protection methods were analysed with respect
to information loss and disclosure risk. Microaggregation and rank swapping were ranked
about the best of them.

In our opinion, microaggregation is specially suited when data has to satisfy constraints.
The fact that microaggregation has to be computed for sets of variables, permits us to divide
the set of variables according to the constraints, and then apply the microaggregation to
each set separately. Then, as we will show latter, we can force the microaggregation to
satisfy the given constraints. We detail in Section 3 how microaggregation can deal with
the constraints described in Section 2.1. In Section 3, we will also revisit Example 1 to show
how the results can be applied so that the protected file satisfies the constraints.

3 Microaggregation and the Edit Constraints

In this section we will show that microaggregation can cope easily with some of the con-
straints listed above. We will consider in successive sections the constraints included in
Section 2.1, although not necessarily in the same order.

In the rest of this section we will use the following notation. We consider a data file with n
records x1, . . . , xn that take values over a set of variables V1, . . . , Vm. We express the value
for record xi in variable Vj by xi,j .
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V V1 · · · VK

x1 x1,1 . . . x1,K

...
...

...
xN xN,1 . . . xN,K

C(x1, . . . , xN ) C(x1,1, . . . , xN,1) . . . C(x1,K , . . . , xN,K)

Table 3: Representation of the data to be microaggregated.

3.1 Linear Constraints

We will start our analysis with the linear constraints, presenting a few results that sup-
port our claim that microaggregation can be used effectively with such edit constraints.
Although in general, we might have any variable j expressed in terms of a linear combina-
tion of a set of k variables VK1

, . . . , VKk
(with VKi

∈ {V1, . . . , Vm}), for the sake of simplicity
we will use a variable V expressed in terms of a linear combination of variables V1, . . . , VK .
This is illustrated in Table 3 where the first variable (column) is pressumed to be a linear
combination of the other variables (column) in the same table. Naturally, V ∈ {V1, . . . , Vm}
and also Vi ∈ {V1, . . . , Vm}.
The suitability of microaggregation for dealing with linear constraints is based on the

assumption that all the variables in the linear model are microaggregated together. That is,
multivariate microaggregation is applied to a set of variables that includes {V, V1, . . . , VK}.
The results included in this section are based on this assumption. In addition, we will also
pressume that the steps (i), (ii), and (iii) described in Section 2.2 for microaggregation can
be separated and, thus, that we know the partition obtained by (i). Under this premise, the
goal is to obtain in (iii) a cluster representative for each cluster (or partition element) that
satisfies the linear constraint.
Table 3 represents the data of a single cluster. For the sake of simplicity, we only in-

clude here the variables with linear dependencies. Thus, the cluster is defined in terms
of variables V, V1, . . . , VK and N records (the whole file has n records, instead). We also
assume here that V is the dependent variable and that the linear constraint is of the form

V =
∑K

i=1 αiVi, for some values αi and variables Vi. Naturally, we pressume here that the
original data also satisfy the constraints (that is, the data were already edited). That is, the

linear equation holds on the original data (xj =
∑K

i=1 αixj,i for all j).
Now we consider which are the methods suitable for computing the cluster representa-

tives for this particular cluster. To do so, we need some notation first. We will assume that
the cluster representative is a function of the data in the cluster. That is, the representative
of the data in Table 3 is a function of such data. More specifically, we pressume that the
representative of the variable V in that table is a function of the values of the records for
V . Denoting the function by C, this means that the value for the representative of V is
C(x1, . . . , xN ). Similarly, the representative for variable Vi is C(x1,i, . . . , xN,i). The last row
of Table 3 includes these representatives.
Note that it would be possible to consider other functions not only depending on the val-

ues of the records in the cluster. E.g. we could consider the values in other clusters, or
consider the values for other variables Vj 6= Vi when computing the values for Vi. Due to
this restriction on the function C, C satisfies Arrow’s condition of independence of irrele-
vant alternatives [3].
Under these definitions, when the editing rule requires linear dependence, it means that
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the cluster center should satisfy the following equation:

C(x1, . . . , xN ) =

K∑

i=1

αiC(x1,i, . . . , xN,i)

In this equation, the values xj on the left hand side can be expressed in terms of the xj,i

on the right hand side. This is so because we have assumed that the original data is already

edited and satisfy the edit constraints. Formally, we have that xj =
∑N

i=1 αixj,i for all j in
{1, . . . , N}. Including this information in the previous equation, we have that the following
equality should hold:

C(

K∑

i=1

αix1,i, . . . ,

K∑

i=1

αixN,i) =

K∑

i=1

αiC(x1,i, . . . , xN,i)

In addition to this equality, we will require the function C to satisfy reflexivity. That is,
C(x, . . . , x) = x. We require this property because it means that, when all the elements in
the cluster have the same value, the function returns this very value. This condition seems
natural in the context of microaggregation. Taking all this into account, we can establish
and proof the following proposition that gives shape to the function C. The proof, included
in the appendix, is based on functional equations [1, 2] (see also [6, 29]).

Proposition 3. Let C be a function satisfying

C(

K∑

i=1

αix1,i, . . . ,

K∑

i=1

αixN,i) =

K∑

i=1

αiC(x1,i, . . . , xN,i) (1)

for given values α1, . . . , αK (αi 6= 0) and arbitrary values xi,j for 1 ≤ i ≤ N and 1 ≤ j ≤ K , and
reflexivity

C(x, . . . , x) = x

Then, the most general solution for C is a function of the form

C(x1, . . . , xN ) =
N∑

i=1

κixi (2)

for κi such that
∑N

i=1 κi = 1 but otherwise arbitrary.

This proposition characterizes the function C. That is, this proposition implies that the
only functions that can be applied in microaggregation, when clusters are known, are the
ones described in Equation 2.
In the proposition above we have considered that the equation is only required for some

particular αi. Now we consider the case that the equation is valid for all arbitrary α1, . . . ,
αK . The next proposition shows that this consideration does not change the set of possible
functions C.

Proposition 4. The general solution for C when C satisfies reflexivity and Equation 1 for arbitrary
α1, . . . , αK 6= 0 is

C(x1, . . . , xN ) =
N∑

i=1

κixi

for κi such that
∑N

i=1 κi = 1 but otherwise arbitrary.
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Proof. Now the equations have to hold for all αi, therefore they also hold for particular αi.
E.g. it should hold for αi = 1 for all i. Then, applying Proposition 3 for such αi we obtain
the same solution above. As this result satisfies reflexivity and Equation 1, the proposition
is proven.

As stated above, in the step (i) of the microaggregation process, the application of the clus-
tering method onto a data set results into a partition of the set. It is important to underline
that the number of elements in each partition element is not (usually) known before hand,
and that it might be different from one partition element to another. Note that although k
is the minimum number of records possible, and most algorithms require the total number
to be less than 2k, nothing is said about the exact number of records in each cluster. Due
to this, although the propositions establish that C is a linear combination of the data with
respect to κ, it is difficult to define a priori which are the appropriate values of κ. Note that
when each cluster has a different number of elements, we need a different number of κi in
each cluster. In addition, it is clear that the order in which the records appear in the file (e.g.
the order of the records in Table 3) should not be relevant in the final value of the cluster
representative.

One way to solve these difficulties is to require the function C to be symmetric. This means
that there are no distinguished records in the set. With a symmetric C, any permutation of
the data will lead to the same result. When we add this constraint to Propositions 3 and 4,
we obtain that κi should be constant. This is stated in the next proposition.

Proposition 5. When C is required to satisfy reflexivity, Equation 1 and symmetry, i.e.

C(x1, . . . , xN ) = C(xπ(1), . . . , xπ(N))

for an arbitrary permutation π, then the most general solution for C is

C(x1, . . . , xN ) = (1/N)

N∑

i=1

xi (3)

Note that this function C is the one used in Example 2 when computing the cluster repre-
sentatives. As it can be observed in the protected data file in Table 2, variables V1, V2, and
V3 satisfy the linear constraints. Propositions 3, 4, and 5 prove that other functions different
from the weighted mean would not be suitable for this purpose as the protected data set
would not satisfy the linear constraints.

Another way to solve the difficulties described above is to define weights κi that depend
on the record x. So, two records x1 and x2 such that x1 = x2 should lead to the same κ. I.e.,

κi(x1) = κi(x2) for all x1, x2 ∈ X such that x1 = x2.

However, note that in this case, the κi should be the same for all variables. The procedure to
compute the centroid in the fuzzy c-means [4] and in most fuzzy clustering algorithms cor-
respond to this latter approach. The procedure in fuzzy c-means is as follows: given records

x1, . . . , xN with memberships to the cluster equal to µ1, . . . , µN , define κi = (µi)
m

P

n
k=1

(µk)m and

then use the function C of Propositions 3 and 4. As this construction satisfies the propo-
sitions, linear edit constraints will be satisfied. We do not go into details of this approach.
For details on fuzzy clustering see e.g. [4].
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3.2 Nonlinear Constraints

In the case of nonlinear constraints we can follow the same approach used above based on
functional equations. In this case, the equations will be different, and thus the resulting
functions C will be also different. We will consider below one case corresponding to multi-

plicative variables. Formally, we consider variables V , V1, . . . , VK satisfying V =
∏K

i=1 V αi

i

for some αi 6= 0. Using the same analysis used in Section 3.1, we can conclude that the
cluster representatives will satisfy:

C(x1, . . . , xN ) =

K∏

i=1

C(x1,i, . . . , xN,i)
αi

and, naturally, if the original data also satisfy this constraint (i.e., xj =
∏N

i=1 xαi

j,i), we have

C(
K∏

i=1

xαi

1,i, . . . ,
K∏

i=1

xαi

N,i) =
K∏

i=1

C(x1,i, . . . , xN,i)
αi

Note that the following example (presented in Section 2.1)

EC3-NLC1: price exc. VAT · (1.00 + applicable VAT Rate) = retail price

can be rewritten as a constraint of this type if we define a new variable V ATplus1 =
1.00 + applicableV ATRate, and we fix αi = 1. That is,

price exc. VAT · VATplus1 = retail price

In the case of multiplicative variables, the following result can be established. The proof
of this proposition is in the Appendix.

Proposition 6. Let C be a function satisfying

C(
K∏

i=1

xαi

1,i, . . . ,
K∏

i=1

xαi

N,i) =
K∏

i=1

C(x1,i, . . . , xN,i)
αi (4)

for given values α1, . . . , αK (αi 6= 0) and arbitrary values xi,j for 1 ≤ i ≤ N and 1 ≤ j ≤ K , and
reflexivity

C(x, . . . , x) = x

Then, the most general solution for C is a function of the form

C(x1, . . . , xN ) =

N∏

i=1

xκi

i

for κi such that
∑N

i=1 κi = 1 but otherwise arbitrary.

In the case of multiplicative values, we can also prove two propositions that are the coun-
terparts of Propositions 4 and 5. We state them below.

Proposition 7. The general solution for C when C satisfies reflexivity and Equation 4 for arbitrary
α1, . . . , αK is

C(x1, . . . , xN ) =

N∏

i=1

xκi

i

for κi such that
∑N

i=1 κi = 1 but otherwise arbitrary.
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Exp 16% Exp 7% Total Hours paid for Wage rate Wage sum Total hours
V1 V2 V3 V4 V5 V6 V7

13.000 37.00 54.670 25.8841 47.84149 1238.3339 33.869
13.000 37.00 54.670 40.9251 48.69982 1993.0452 51.070
67.333 219.67 313.150 10.2598 54.14774 555.5480 27.144
13.000 37.00 54.670 25.8841 47.84149 1238.3339 33.869
27.667 51.00 86.663 10.2598 54.14774 555.5480 27.144
37.333 101.33 151.733 10.2598 54.14774 555.5480 27.144
27.667 51.00 86.663 7.5595 53.11521 401.5258 13.104
37.333 101.33 151.733 40.9251 48.69982 1993.0452 51.070
67.333 219.67 313.150 25.8841 47.84149 1238.3339 33.869
27.667 51.00 86.663 7.5595 53.11521 401.5258 13.104
67.333 219.67 313.150 7.5595 53.11521 401.5258 13.104
37.333 101.33 151.733 40.9251 48.69982 1993.0452 51.070

Table 4: The protected data file using PCA with constrained microaggregation.

Proposition 8. When C is required to satisfy reflexivity, Equation 4 and symmetry, i.e.

C(x1, . . . , xN ) = C(xπ(1), . . . , xπ(N))

for an arbitrary permutation π, then the most general solution for C is

C(x1, . . . , xN ) =
N∏

i=1

x
1/N
i (5)

On the light of this proposition, we reconsider now Example 2.

Example 9. Let us reconsider the data in Example 1 with the edit constraints. Then, the
results of Proposition 5 and 8 imply that we should use Equation 3 for variables V1, V2, and
V3 involved in the linear constraints, and Equation 5 for variables V4, V5, and V6 involved
in the multiplicative constraints. Table 4 gives the results using these functions.

3.3 Constraints on the Possible Values.

When microaggregated data has to satisfy constraints on the values, and such constraints
correspond to lower and upper boundary conditions, we can add an additional constraint
in terms of the records in the set. We require the cluster representative to be in the interval
defined between the minimum and the maximum of the elements in the cluster. Formally,

min
i

xi ≤ C(x1, . . . , xN ) ≤ max
i

xi

This equation is known as internality. Note that if the constraint is that xi ∈ [a, b] for some
a and b, it is clear that for edited data, we have xi ∈ [a, b], and, thus, this constraint im-
plies that C(x1, . . . , xN ) ∈ [a, b]. The following result establishes which functions C satisfy
reflexivity, Equation 1, as well as internality.

TRANSACTIONS ON DATA PRIVACY 1 (2008)



On constrained microaggregation: combining microaggregation and data editing 97

Proposition 10. When C is required to satisfy reflexivity, Equation 1, and internality, i.e.

min
i

xi ≤ C(x1, . . . , xN ) ≤ max
i

xi;

then, the most general solution for C is

C(x1, . . . , xN ) =

N∑

i=1

κixi

for κi such that
∑N

i=1 κi = 1 and κi ≥ 0 but otherwise arbitrary.

Proof. Using Proposition 3 (or 4), we have that C(x1, . . . , xN ) =
∑N

i=1 κixi with
∑N

i=1 κi =
1. Now, as C(1, 0, . . . , 0) = κ1 should be between [0, 1], it is clear that κi ≥ 0. As the same
applies to all other κi, the proposition is proven.

This proposition is a refinement of Propositions 3 and 4. We consider below a refinement
of Propositions 6 and 7. We do not consider any refinement of Propositions 5 and 8 because
it can be easily seen that the functions C in such propositions already satisfy internality.

Proposition 11. When C is required to satisfy reflexivity, Equation 4, and internality, i.e.

min
i

xi ≤ C(x1, . . . , xN ) ≤ max
i

xi;

then, the most general solution for C is

C(x1, . . . , xN ) =
N∏

i=1

xκi

i

for κi such that
∑N

i=1 κi = 1 and κi ≥ 0 but otherwise arbitrary.

3.4 One Variable Governs the Possible Values of Another One

Microaggregation cannot deal easily with this type of constraints. They should be consid-
ered in a case by case basis. We analyze below each of the edit rules presented in Section 2.1
and we describe how to apply microaggregation so that the protected file satisfies such
rules.
In any case, note that, in general any monotonic function C permits us to generate a pro-

tected file with V1 < V2 for variables V1 and V2 if in the original file it also holds V1 < V2. In
fact, xi,j ≤ xi,k for all i and j 6= k implies C(x1,j , . . . , xN,j) ≤ C(x1,k, . . . , xN,k), corresponds
to the monotonicity of C. Note also that the functions in Propositions 5, 8, 10, and 11 are
monotonic. In fact, the properties of monotonicity and reflexivity imply internality. Due to
this, we might consider the replacement of internality by the properties of monotonicity in
such propositions. The resulting functions C would be the same in this alternative case.
When all this is taken into account, it is clear that the constraint

EC-GV3: harvested acres ≤ planted acres,

is satisfied if we use a monotonic function C.
In relation to Example 2, note that both functions C in Equations 3 and 5 are monotonic.

So, the constraint V4 ≤ V7 is satisfied in Examples 2 and 9.
In relation to the other two constraints

TRANSACTIONS ON DATA PRIVACY 1 (2008)



98 Vicenç Torra

EC-GV1: If sex=male THEN number of pregnacies = 0

and

EC-GV2: IF age < 17 THEN gross income < mean income,

the simplest way to ensure that the protected file satisfies them is to partition the data set
into subsets, according to the antecedent in the rule, and then applying microaggregation
separately to each subset (using monotonic functions C. In the first rule, this is to parti-
tion the data set into two sets one with the records satisfying sex=male and the other with
the records satisfying sex=female, and then to microaggregate the two sets separately. In
the same way, for the second rule, we will partition the data into one set with the records
with age < 17 and another with the records with age ≥ 17. Then, we will microaggregate
these two sets independently. If we use multivariate microaggregation with a set of vari-
ables including the variables gross income and mean income, and we use a monotonic C, the
constraint will be satisfied.
This approach of partitioning the file is similar to the one presented in [25].

3.5 Values are Restricted to Exist in the Domain.

The functions C determined above do not ensure, in general, that the cluster representative
is one of the data in the cluster. The only single case is in Proposition 3 and 4 when κi = 1
for a particular i and κj = 0 for all j 6= i. If we add this constraint to the conditions in the
other propositions, the problem is overconstrained and no function C exists.
Having said that, in general, and when no other constraints are under consideration, the

median is an appropriate operator for C as it satisfies this constraint. In fact, the median
has already been used for microaggregation in [22]. Other operators might also be used in
this setting. For example, order statistics and boolean max-min functions [29].
The median (as well as the order statistics) are monotonic functions. Due to this, they

could also be applied in the case of constraints where one variable governs the possible
values of another one. This monotonicity makes the median also suitable for constraints on
the possible values.

4 Conclusions and Future Work

In this paper we have described the edit constraints, and discussed how microaggregation
can cope with them. We have presented a few propositions that establish which are the
functions to be used when protected data should satisfy the edit constraints.
Other types of constraints and the analysis of information loss for these types of functions

C are left for future work. In relation to information loss and disclosure risk, once functions
C are mathematically characterized, the interest relies on the selection of the parameters κ.
Further work in this direction is needed.
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Appendix: Proofs

This appendix includes the proof of the two main propositions in this article: Propositions 3
and 6.

Proposition 3. Let C be a function satisfying

C(

K∑

i=1

αix1,i, . . . ,

K∑

i=1

αixN,i) =

K∑

i=1

αiC(x1,i, . . . , xN,i) (6)

for given values α1, . . . , αK (αi 6= 0) and arbitrary values xi,j for 1 ≤ i ≤ N and 1 ≤ j ≤ K , and
reflexivity

C(x, . . . , x) = x

Then, the most general solution for C is a function of the form

C(x1, . . . , xN ) =
N∑

i=1

κixi

for κi such that
∑N

i=1 κi = 1 but otherwise arbitrary.

Proof. To prove this proposition, we will apply a standard technique used in solving func-
tional equations [6, 29] that consists of considering several instantiations of Equation 6.
First, if the equation is valid for all xi,j it should also be valid for x1,1 = x and xi,j = 0 for

all (i, j) 6= (1, 1). In this case, Equation 6 corresponds to

C(α1x1,1, 0, . . . , 0) = α1C(x1,1, 0, . . . , 0) +

K∑

i=2

αiC(0, . . . , 0),

that, due to the reflexivity of C (i.e, C(0, . . . , 0) = 0), is equivalent to:

C(α1x1,1, 0, . . . , 0) = α1C(x1,1, 0, . . . , 0)

As this equation is true for all x1,1, it is also true when x1,1 is defined as x1,1 = x′

1,1/α1 for
the particular value αi of the edit constraint, and an arbitrary x′

1,1. Therefore, we have

C(α1x
′

1,1/α1, 0, . . . , 0) = α1C(x′

1,1/α1, 0, . . . , 0).

This equation, through simplification and a change of variable, corresponds to:

C(x, 0, . . . , 0) = α1C(x/α1, 0, . . . , 0). (7)

Note that this equation is true for all x because x′

1,1 is an arbitrary value.
In relation to this latter equation it should also be said that the selection of x1,1 was arbi-

trary and, therefore, any other xi,j could be selected. As a consequence, this equation holds
for all αi in the set of {α1, . . . , αK} and for all components (or arguments) of C. In a similar
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way, defining xi,1 = xi and xi,j = 0 for all j > 1 we obtain the following equation using a
similar development

C(x1, . . . , xN ) = α1C(x1/α1, . . . , xN/α1), (8)

As for Equation 7, this equation is also true for all αi in {α1, . . . , αK}.
Now, let us consider again Equation 6. As it is valid for all xi,j it is also valid for x1,1 =

x/α1, x1,2 = y/α2 and xi,j = 0 for all other (i, j) such that (i, j) 6= (1, 1) and (i, j) 6= (1, 2).
In this case, Equation 6 leads to

C(α1x/α1 + α2y/α2, 0, . . . , 0) = α1C(x/α1, 0, . . . , 0) + α2C(y/α2, 0, . . . , 0).

That, of course, is equivalent to,

C(x + y, 0, . . . , 0) = α1C(x/α1, 0, . . . , 0) + α2C(y/α2, 0, . . . , 0)

that, using Equation 7, can be rewritten as:

C(x + y, 0, . . . , 0) = C(x, 0, . . . , 0) + C(y, 0, . . . , 0).

Now, denoting C(x, 0, . . . , 0) by φ(x), we find that this equation corresponds to a Cauchy
equation. That is, φ(x+y) = φ(x)+φ(y). This Cauchy equation is well known in functional
equations and its solution is the function φ(x) = κx, for an arbitrary constant κ (see e.g. [1,
2, 29]).
The selection of x1,1 and x1,2 was arbitrary and any xi,1 and xi,2 could be selected as well.

In this case we would have obtained the same equation with the values x and y in the ith
component (instead of being in the first component as above). Therefore, in general, we
obtain

C(0, . . . , 0, x + y, 0, . . . , 0) = C(0, . . . , 0, x, 0, . . . , 0) + C(0, . . . , 0, y, 0, . . . , 0).

Let us define φi(x) the function equal to C(0, . . . , 0, x, 0, . . . , 0) when x is located in the ith
component (and zero for all the other components). Then, the equation above corresponds
to a Cauchy equation for φi. That is, φi(x + y) = φi(x) + φi(y). Naturally, we have for
each equation the same solution given above. Nevertheless, as independent equations are
formulated, the κ are not necessarily the same for all i. Thus, in general, κ is different for
each φi. If we use κi as the constant for φi, we have φi(x) = κix.
Now, we have an expression for C(0, . . . , 0, x + y, 0, . . . , 0) = φi(x) = κix. Nevertheless,

the expression for C(x1, . . . , xN ) is still not ready. To obtain such expression and finish the
proof we need to consider again C. In this case, the goal is to decompose C(x1, . . . , xN ) into
its different components. In particular, we need to show that

C(x1, . . . , xN ) = C(x1, 0, . . . , 0) + C(0, x2, 0, . . . , 0) + · · · + C(0, . . . , 0, xN )

holds.
Defining x1,1 = x1/α1, xi,1 = 0 for i > 1, x1,2 = 0 and xi,2 = xi/α2 for i > 1, and xi,j = 0

for all i and all j > 2, we can decompose the first component of C(x1, . . . , xN ). Formally,
we can rewrite Equation 6 obtaining

C(α1x1/α1, α2x2/α2, . . . , α2xN/α2) =

α1C(x1/α1, 0, . . . , 0) + α2C(0, x2/α2, . . . , xN/α2)
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This equation is rewritten using Equations 7 and 8 and simplifying its left hand side into:

C(x1, x2, . . . , xN ) = C(x1, 0, . . . , 0) + C(0, x2, . . . , xN )

Then, by induction, we obtain the desired decomposition of C. That is,

C(x1, . . . , xN ) = C(x1, 0, . . . , 0) + C(0, x2, 0, . . . , 0) + · · · + C(0, . . . , 0, xN )

Now, using the equivalence C(0, . . . , 0, x, 0, . . . , 0) = κix proven above, it follows that the
function C corresponds to

C(x1, . . . , xN ) =

K∑

i=1

κixi. (9)

Finally, we consider the requirement of reflexivity, C(x, . . . , x) = x. Formally, we have

x = C(x, . . . , x) =

K∑

i=1

κix

So,
∑K

i=1 κi = 1.

Taking all into account, we have that C is of the form C(x1, . . . , xN ) =
∑K

i=1 κixi with∑K
i=1 κi = 1, but otherwise arbitrary constants κi.

As this solution satisfies the conditions, this is the general solution of the problem and the
proposition is proven.

Proposition 6. Let C be a function satisfying

C(

K∏

i=1

xαi

1,i, . . . ,

K∏

i=1

xαi

N,i) =

K∏

i=1

C(x1,i, . . . , xN,i)
αi (10)

for given values α1, . . . , αK (αi 6= 0) and arbitrary values xi,j for 1 ≤ i ≤ N and 1 ≤ j ≤ K , and
reflexivity

C(x, . . . , x) = x

Then, the most general solution for C is a function of the form

C(x1, . . . , xN ) =

N∏

i=1

xκi

i

for κi such that
∑N

i=1 κi = 1 but otherwise arbitrary.

Proof. To prove this proposition, we start considering Equation 10. Naturally, this equation
holds for all xr,s. Defining zr,s = log xr,s, we can rewrite the equation in terms of zr,s. We
obtain

C(
K∏

i=1

(ez1,i)αi , . . . ,
K∏

i=1

(ezN,i)αi) =
K∏

i=1

C(ez1,i , . . . , ezN,i)αi .

This equation is equivalent to
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C(

K∏

i=1

(eαiz1,i), . . . ,

K∏

i=1

(eαizN,i)) =

K∏

i=1

C(ez1,i , . . . , ezN,i)αi ,

which can be rewritten as

C(e
P

K
i=1

αiz1,i , . . . , e
P

K
i=1

αizN,i) =

K∏

i=1

C(ez1,i , . . . , ezN,i)αi .

Applying log to both sides of the equation, we obtain:

log C(e
PK

i=1
αiz1,i , . . . , e

PK
i=1

αizN,i) = log
K∏

i=1

C(ez1,i , . . . , ezN,i)αi ,

which corresponds to

log C(e
P

K
i=1

αiz1,i , . . . , e
P

K
i=1

αizN,i) =

K∑

i=1

log C(ez1,i , . . . , ezN,i)αi .

So, as log ab = b log a, it is equivalent to

log C(e
P

K
i=1

αiz1,i , . . . , e
P

K
i=1

αizN,i) =

K∑

i=1

αi log C(ez1,i , . . . , ezN,i).

Now, defining C′(x1, . . . , xN ) = log C(ex1 , . . . , exN ), we can rewrite the previous equation
into the following one.

C
′(

K∑

i=1

αiz1,i, . . . ,

K∑

i=1

αizN,i) =

K∑

i=1

αiC
′(z1,i, . . . , zN,i).

Now, as this expression corresponds to Equation 1, Proposition 3 applies. Therefore, the

solution for C
′ is C

′(x1, . . . , xN ) =
∑K

i=1 κixi with
∑K

i=1 κi = 1 but otherwise κ arbitrary.

Now, from C′(x1, . . . , xN ) = log C(ex1 , . . . , exN ) with yi = exi we have that

eC
′(log y1,...,log yN ) = C(y1, . . . , yN ).

So, as C′(x1, . . . , xN ) =
∑K

i=1 κixi, the result corresponds to a function C as follows:

C(y1, . . . , yN) = e
PK

i=1
κi log yi =

K∏

i=1

xκi

i

As this expression for C satisfies the conditions, this is the general solution of the problem
and the proposition is proven.
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