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Abstract. In this paper, we propose a privacy-preserving variant of Bloom-filters. The Bloom-filter
has many applications such as hash-based IP-traceback systems and Web cache sharing. In some of
those applications, equipping the Bloom-filter with the privacy-preserving mechanism is crucial for
the deployment.

In this paper, we propose a cryptographically secure privacy-preserving Bloom-filter protocol. We pro-
pose such two protocols based on blind signatures and oblivious pseudorandom functions, respec-
tively. To show that the proposed protocols are secure, we provide a reasonable security definition
and prove the security.

1 Introduction

The Bloom filter provides us an efficient test for the group membership [4]. More precisely,
let S ⊆ U be a set and let x ∈ U be an element, where U is some universe set. Then by
utilizing the Bloom filter we can test whether or not x ∈ S in the space efficient way. The
Bloom filter has various applications in practice. For example, these applications include a
Web-cache sharing and a hash-based IP-traceback [6].
In this paper, we consider the privacy-preserving variant of the Bloom filters. Taking the

privacy into account is important in some of the applications of the Bloom filters. What
we need to solve in those applications can be simplified as follows. There are two parties,
named a server and a client, who have a set S and an element x, respectively. Here, we
assume S is stored in the Bloom filter, and denote it by BFS . The client wants to verify
whether or not x ∈ S while preserving BFS and x secret to each other. Ignoring the privacy,
this problem can be solved easily. (That is, the server simply sends the entire Bloom filter
BFS to the client.) Also if the server has S instead of the filter BFS then the problem can
be solved by the secure set-intersection protocol [10]. But this protocol does not utilize the
nice property of the Bloom filter. This is because, after transforming S into BFS , we can
not obtain S information theoretically. Therefore, the server needs to store the original S
instead of BFS in this case. There are some cryptographic protocols which uses the Bloom-
filters [1, 13]. Among those protocols, the one proposed by Bellovin and Cheswick [1] is the
closest to ours. In [1], the authors proposed the searching scheme based on “encrypted”
Bloom filters. We can regard their protocol as a privacy-preserving Bloom-filter protocol.
However, in their protocol, there is a semi-honest third party and he/she plays an important
role in protecting users’ privacy. A cryptographic primitive proposed in [13] has many
applications but obtaining the desired one without employing the trusted third party seems
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difficult because it is similar in construction to [1]. On the other hand, in this paper, we
avoid employing such a third party by using the cryptographic primitives known as the
blind signature schemes (e.g., [8]) and the oblivious pseudorandom functions [9].

1.1 Intuition of the Protocol

As noted above, we propose an efficient privacy-preserving Bloom filter protocol based
on the blind signature schemes and the oblivious pseudorandom functions. In the blind
signature scheme, the server has a signing key sk, and the client has a message m and a
verification key vk. The goal of the protocol is the client obtaining the digital signature of
m under the signing key sk while keeping m and sk secret to each other. The oblivious
pseudorandom function has similar aim. Let fk be a pseudorandom function keyed by
k. That is, there is no efficient algorithm which can distinguish fk and the truly random
function via black-box accessing. The oblivious pseudorandom function is a two-party (a
server and a client) protocol. The input to the server and the client are k and m, respectively,
and the goal of the protocol is the client obtaining fk(m) while k and m remain secret to
each other.
To provide the intuition behind our proposal, we first introduce the Chaum’s blind signa-

ture [8, 2], and then construct a secure matching protocol. Note that this protocol becomes
the fundamental tool in our proposal. In the secure matching protocol, there are two par-
ties, a sever and a client who have s and c, respectively. The goal of the protocol is the client
verifying whether or not c = s while keeping c and s secret to each other.
The Chaum’s blind signature is defined as follows. Let N := PQ be a large integer with

P, Q primes of the same length. Also let e, d be integers such that ed = 1 mod (P −1)(Q−1).
Suppose H : {0, 1}∗ → Z

∗

N be a one-way hash function. We define the signing-key sk as
sk := (d, N, H) and the verification-key as vk := (e, N, H). The signature of the message m
is defined by H(m)d mod N . So this is the FDH (Full Domain Hash) signature scheme [3].
To obtain the signature of the message m, the client chooses r ∈ Z

∗

N randomly, computes
and sends reH(m) mod N to the server. The server computes and sends (reH(m))d mod N
to the client. The client outputs

(reH(m))dr−1 = H(m)d mod N.

To construct the secure matching protocol, we need an additional hash function H ′ which
is defined by H ′ : {0, 1}∗ × Z

∗

N → {0, 1}κ. The server first computes H ′(s, H(s)d mod N)
and sends it to the client. The client obtains H(c)d mod N by the blind signature scheme
and checks

H ′(s, H(s)d mod N) = H ′(c, H(c)d mod N).

The protocol is summarized in Figure 1.
Intuitively, in [14, 7], this protocol is extended into the oblivious transfer and, in [12],

the blind signature is replaced by the oblivious pseudorandom function and then the set-
intersection protocol is obtained. In this paper, we extend this protocol to obtain the
privacy-preserving Bloom-filter protocol.

1.2 Organization of This Paper

In Section 2, we begin with what the Bloom-filter is and the security requirements to the
privacy-preserving Bloom-filter protocol are provided. In Section 3 and 4, we show our
proposed protocols based on the blind signature schemes and oblivious pseudorandom
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Server(s, (N, d)) Client(c, (N, e))

s′ := H ′(s, (H(s)d mod N))
-

Run Chaum on (d, N) and (c, (e, N))
� -

Obtain H(c)d mod N

Compute c′ := H ′(c, H(c)d mod N)

Output 1 iff [c′ = s′] is satisfied

Figure 1: Privacy-preserving matching protocol based on the blind signature

functions, respectively. In both sections, we briefly introduce the blind signature scheme
and the oblivious pseudorandom function. We conclude this paper with Section 5. This
section will include a simple comparison (due to the black-box use of the blind signature
scheme and the oblivious pseudorandom function) of two proposed protocols and our fu-
ture research direction.

2 Preliminary

We define [s] = 1 if the statement s is true and 0 otherwise.

2.1 Bloom Filters

A Bloom filter [4] provides us an efficient test for the group membership. In this method,
an m-bit array BF which represents a set S = {s1, . . . , sn} and l independent truly random
hash functions

H1, H2, . . . , Hl : {0, 1}∗ → {0, 1, . . . , m − 1}

are employed. Initially, all bits in the array BF are set to 0. When we need to insert a word
x to BF, we compute

i1 = H1(x), . . . , il = Hl(x)

and set
BF[i1] = 1, . . . ,BF[il] = 1,

where BF[i− 1] is an element of ith position in BF. Here if BF[i] is already set to 1, we do
nothing. We denote S embedded in Bloom filter by BFS .
To test, we just compute i1 = H1(x), . . . , il = Hl(x) and output 1 if and only if

[BF[i1] = 1] ∧ · · · ∧ [BF[il] = 1] .

Here we denote x ∈ BFS if

[BF[i1] = 1] ∧ · · · ∧ [BF[il] = 1]

is satisfied.
In this (randomized) data structure if the set S is stored and x ∈ S then x ∈ BFS . That

is, the probability of the false negatives is 0. However, the probability of false positives is
not 0. That is, there is a case that even if x ∈ BFS , x 6∈ S. However, mathematical analysis
shows that for every x 6∈ S the algorithm returning 1 is approximately (1− e−ln/m)l which
is small enough for the practical use.
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2.2 Security Definition

In this paper, we consider the privacy variant of the Bloom filter protocol. In this protocol,
there are two parties, a server and a client, who have (S ⊆ U, m, l) and (x ∈ U, n = |S|, m, l),
respectively, where U is the universe set. The server stores S in the Bloom filter BF of size
m with l hash functions, denoting BFS . And the goal is the client obtaining [x ∈ BFS ]
while x and BFS secret to each other.

We consider two security definitions. The one is indistinguishability of the client’s input
and the second one is simulatability of the malicious client. We provide a specific definition
here, but the interested readers can find the generic one in [11].

Definition 1 (Client’s privacy). Client’s privacy is defined through the following game.
First the server chooses S ⊆ U and (x0, x1) ∈ U2. b ∈ {0, 1} is randomly chosen and xb is
utilized as x according to the protocol on the client side. On the other hand, S is utilized
by the server. The goal of the semi-honest server is guessing b. We denote b′ for the guess.
We require to the protocol that for any semi-honest server, |Pr[b = b′] − 1/2| is negligible.

Let BF(S, x, l, m) be the following algorithm:

Input S, x, l, m

Output [x ∈ BFS ]

Algorithm Description

Step 1: Choose l hash functions H1, . . . , Hl.

Step 2: Store S in BF using Hi’s and then verifies whether x is in the Bloom filter BFS .

Step 3: If this is satisfied then output 1, and 0 otherwise.

With this algorithm, the server’s privacy is defined as follows: 1

Definition 2 (Server’s privacy). Server’s privacy is defined through the real/ideal imple-
mentation paradigm. In the ideal implementation, we assume that there is a third party
T . The server sends S and the malicious client sends x′ to T . Here, the input of the client
is x but x′ may be different from it. T computes BF(S, x′, l, m) and returns the result to
the client. Let ideal(S, x, l, m) be the output of the client in the ideal implementation. In
the real implementation, the honest server and the malicious client proceeds the protocol
without T . Let real(S, x, l, m) be the output of the client in the real implementation. We
say that the protocol is secure if, for every x, S, l, m and the client, there is a simulator in
the ideal world such that

real(S, x, l, m)
c
≡ ideal(S, x, l, m),

where A
c
≡ B means these two random variables A and B are indistinguishable by any

probabilistic polynomial-time algorithm.

1We only describe the situation that the client can send only one query to the server. However, extension to
multiple queries is simple by applying the definition for the adaptive oblivious transfer (e.g., [14]).
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3 Construction Based on Blind Signatures

3.1 Unique Blind Signature

The definition in this section is mainly extracted from [7].
A blind signature scheme BS is a tuple of algorithms (Kg, Sig, User, Vf).

• The signer generates a key pair (vk, sk) (a verification key and a signing key) via the
key generation algorithm Kg, where vk and sk are the verification and the signing
keys, respectively.

• To obtain a signature on a message m, a user and a signer engage in an interactive
signing protocol dictated by User(vk, m) and Sig(sk) algorithms. At the end of the
protocol, the User algorithm returns a signature or ⊥ which indicates rejection.

• The verification algorithm Vf(vk, m, s) returns 1 if the signature s on a message m is
deemed valid and 0 otherwise.

The correctness requires that Vf(vk, m, s) = 1 for all (vk, sk), for all m ∈ {0, 1}∗, and for all
signatures output by User(vk, m) after interacting with Sig(sk). We say that BS is unique if
for each verification-key vk ∈ {0, 1}∗ and each message m ∈ {0, 1}∗ there exists at most one
signature s ∈ {0, 1}∗ such that Vk(vk, m, s) = 1. There are only two unique blind signature
schemes appeared in the literature [5, 8]. There exist some common properties in these
schemes. For example, both of them are two messages schemes (one from the user to the
signer, and another from the signer to the user).

Definition 3 (One-more unforgeability). This property requires to the protocol that no ad-
versary can output n + 1 valid message-signature pairs after given the public keys as input
and after at most n interactions with a signing oracle. We say that BS is (t, qS , ǫ)-unforgeable
if there is no algorithm running in time at most t and making at most qS signing queries
has probability greater than ǫ of winning this game. We say that BS is unforgeable if, for
every polynomial t and polynomial qS , BS is (t, qS , ǫ)-unforgeable with ǫ negligible.

By assuming the chosen-target RSA problem and the chosen-target computational Diffie-Hellman
problem are hard2, the Chaum’s and Boldyreva’s blind signature schemes [8, 5] satisfy
above property.

Definition 4 (Blindness). A signature scheme is called blind if the server’s view and a
message-signature pair are statistically independent.

Both schemes also satisfy this property.

3.2 Construction

In this section, we construct the privacy preserving Bloom filter protocol from the unique
blind signature. In the protocol, each hash function Hi is defined by

Hi(x):=H(x, Sig(sk, x), i).

Note that, in the protocol, S is stored in the Bloom filter. By these functions and by the
unique blind signature, the protocol works as in Figure 2.

2If the client only sends one query to the server, then we can employ (standard) RSA and CDH problems.
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Server(S) Client(x ∈ U)

Run Kg to obtain (sk, vk)

Use Hi(·) to store S in BF vk,BF
-

Run Sig(sk) and User(vk, x)
� -

Verify [BF[H1(x)] = 1] ∧ · · · ∧ [BF[Hl(x)] = 1]

If it satisfies then output 1,

and otherwise output 0

Figure 2: Privacy-preserving Bloom-filter protocol based on the blind signatures

Proposition 5. The proposed protocol is secure against malicious clients.

Proof. To prove the security of the proposed protocol, we need to construct simulator C∗

who is the client in the ideal-implementation. Given C, C∗(x, n, m, l) works as follows:

• Given (x, n, m, l), C∗ generates (sk, vk) via Kg.

• C∗ generates BF of size m. And C∗ chooses nl random positions in BF and sets 1 to
those positions.

• C∗ runs C on BF, x, vk and runs Sig with C under a signing-key sk.

• If C∗ is given the query q := (q1, q2, q3) with 1 ≤ q3 ≤ l and q2 being the signature of
q1, then C∗ queries q2 to T to obtain d.

– If d = 1, C∗ randomly chooses l positions p1, . . . , pl until BF[pj ] = 1 for all
1 ≤ j ≤ l.

– If d = 0, the C∗ chooses randomly chooses l positions p1, . . . , pl until for some
1 ≤ j ≤ l BF[pj ] = 0.

• At the end, C∗ sets H(q1, q2, 1) := p1, . . ., H(q1, q2, l) := pl and uses these for the
input-output relation of the random oracle.

• C∗ outputs whatever C outputs.

Since the blind signature scheme satisfies one-more unforgeability, there is only negligi-
ble chance to query two different message/signature pairs. Thus the simulator perfectly
simulates the malicious client C.

Proposition 6. The proposed protocol is secure against malicious servers.

Proof. Let us denote the view of the server by V . And let X, S be random variables of the
message and the signature. Then, from the definition of the blind signature scheme, for
every x0, x1,

Pr[V | (X, S) = (x0, s0)] = Pr[V ]

and
Pr[V | (X, S) = (x1, s1)] = Pr[V ],

where si is a signature of xi under sk for i = 0, 1. Therefore, there is no algorithm which
can distinguish x0 from x1.
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Server(S) Client(x ∈ U)

Generate k for OPRF

Use Hi(·) to store S in BF

Run OPRF by k and x
� -

BF
-

Verify [BF[H1(x)] = 1] ∧ · · · ∧ [BF[Hl(x)] = 1]

If it satisfies then output 1,

and otherwise output 0

Figure 3: Privacy-preserving bloom-filter protocol based on the oblivious pseudorandom
function

4 Construction Based on Oblivious Pseudorandom Functions

4.1 Oblivious Pseudorandom Function

In the previous section, we show the construction from the blind signature in the random
oracle model. In this section, we show how to construct it without random oracles. The
construction relies on the oblivious pseudorandom function [9]. Similar to the blind sig-
nature, there are two parties, a server and a client, who have a key k and a message x,
respectively, and the goal of the protocol is the client obtaining fk(x) while keeping k and
x secret to each other, where fk : D → R is a pseudorandom function keyed by k.
We require the followings to the oblivious pseudorandom function. The one is indistin-

guishability of the client’s input and the second one is simulatability of the malicious client.

Definition 7 (Client’s privacy). The client’s privacy is defined through the following game.
First the server chooses x0, x1 ∈ D. b ∈ {0, 1} is randomly chosen and xb is utilized as x
according to the protocol on the client’s side. On the other hand, k is utilized by the server.
The goal of the semi-honest server is guessing b. We denote b′ for the guess. We require to
the protocol that for any semi-honest server, |Pr[b = b′] − 1/2| is negligible.

On the other hand, the following property is required for the server’s privacy.

Definition 8 (Server’s privacy). The server’s privacy is defined through the real/ideal im-
plementation paradigm. In the ideal implementation, we assume that there is a third party
TPRF. The server sends k and the malicious client sends x′ to TPRF. Here, the input of the
client is x but x′ may be different from it. TPRF computes fk(x′) and returns the result to
the client. Let ideal(k, x) be the output of the client in the real implementation. In the real
implementation, the honest server and the malicious client proceeds the protocol without
TPRF. Let real(k, x) be the output of the client in the real implementation. We say that
the protocol is secure if, for every k, x and the client, there is a simulator in the ideal world
such that

real(k, x)
c
≡ ideal(k, x).

4.2 Construction

The construction of the privacy-preserving Bloom-filter protocol is simply replacing the
blind signature and the OPRF. However, for the security proof, we change the order of the
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protocol: first running OPRF and then sending the Bloom filter.

We utilize the oblivious pseudorandom function defined by the pseudorandom function

f : U → R1 × . . . × Rl = [0, m − 1]l.

Then we define Hj(x) by the value map to Rj with f(x):

f(x) = (H1(x), . . . , Hl(x)).

The protocol is described in Figure 3.

Proposition 9. The proposed protocol is secure against semi-honest servers.

Proof. The requirement of the indistinguishability to the employed oblivious pseudoran-
dom function directly contributes to the security of the proposed protocol against semi-
honest servers.

Proposition 10. The proposed protocol is secure against malicious clients.

Proof Sketch. This proposition can be proven in the same way as [12]. That is, we can prove
this proposition in the hybrid model (see Theorem 7.4.3 in [11]). In this model, instead of
running the oblivious pseudorandom function, there is a trusted party TPRF who is given
a key k (from the server) and a message x′ (from the client). And it sends fk(x′) to the
client. Therefore, the simulator C∗ for the malicious client C receives C’s input x′. Then C∗

generates (p1, . . . , pl) ∈ [0, m−1]l randomly and sends it to C. Next C∗ gives x′ to the third
party T to obtain b ∈ {0, 1}. If b = 1 the simulator prepares BF such that BF[pj ] = 1 for
every j and randomly adds one to nl − l positions in BF. If b = 0 the simulator prepares
BF and randomly chooses nl positions and sets 1. If for every j BF[pj] = 1, then it does
the same operation (until for some j BF[pj] = 0) again. Then C∗ sends BF and outputs
whatever C outputs.

We can show that if there is a distinguisher D which can distinguish the real-implementation
from the random-implementation then f is not a pseudorandom function.

5 Concluding Remarks

In this paper, we propose two privacy-preserving Bloom filter protocols based on the blind
signature and the oblivious pseudorandom function, respectively. The comparison of these
two protocols is given in Table 1. Here, the time-complexity is counted during the transfer
phase between the client and the server. So we did not include the time-complexity of stor-
ing S in BF which is not important because the time-complexity in this phase is equivalent
in both protocols. In the OPRF proposed in [9], the oblivious transfer must be invoked
log |U | times and we count its time-complexity as O(1) for each.

The proposed protocols in this paper are efficient theoretically. But, in some applications
such as IP-traceback systems, a hash function constructed by the RSA-FDH is not suitable
for those purposes due to its computational overhead. To overcome this problem, our
future research direction lies in implementing the oblivious pseudorandom function based
on purely symmetric primitives such as DES and AES, which will become more suitable
for many applications.
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Table 1: Comparison of Two Protocols

Cryptographic Primitive Round-Complexity Time-Complexity
Protocol 1 Blind Signature of [8] O(1) O(1)
Protocol 2 OPRF of [9] O(1) O(log |U |)
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