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Abstract. Randomized Response techniques have been investigatet/acyppreserving categorical data
analysis. However, the released distortion parameterdeaxploited by attackers to breach privacy. In this
paper, we investigate whether data mining or statisticallyais tasks can still be conducted on randomized data
when distortion parameters are not disclosed to data mikiégdirst examine how various objective association
measures between two variables may be affected by randibomzaVe then extend to multiple variables by
examining the feasibility of hierarchical loglinear madegl. Finally we show some classic data mining tasks
that cannot be applied on the randomized data directly.

1 Introduction

Privacy is becoming an increasingly important issue in mdata mining applications. A con-
siderable amount of work on randomization based privacggreng data mining (for numerical
data [1, 3, 23, 24], categorical data [4, 22], market baské#d {119, 31], and linked data [21, 27, 37])
has been investigated recently.

Randomization still runs certain risk of disclosures. Akiers may exploit the released distortion
parameters to calculate the posterior probabilities ofttiginal value based on the distorted data.
Itis considered to be jeopardizing with respect to the aagalue if the posterior probabilities are
significantly greater than the a-priori probabilities. histpaper, we consider the scenario where the
distortion parameters are not released in order to prevtdkars from exploiting those distortion
parameters to recover individual data.

In the first part of our paper, we investigate how various cifdje measures used for association
analysis between two variables may be affected by randdimizaNe demonstrate that some mea-
sures (e.g., Correlation, Mutual Information, LikelihoBdtio, Pearson Statistics) have a vertical
monotonic property , i.e., the values calculated direathyrf the randomized data are always less
than or equal to those original ones. Hence, some data a&pks (e.g., independence testing)
can be executed on the randomized data directly even wittrmwing distortion parameters. We
then investigate how the relative order of two associatattgpns is affected when the same random-
ization is conducted. We show that some measures (e.getskdgtShapiro) have relative horizontal
order invariant properties, i.e, if one pattern is strortpan another in the original data, we have
that the first one is still stronger than the second one inahdomized data.

In the second part of our paper, we extend association asdhpsn two variables to multiple
variables. We investigate the feasibility of loglinear retidg, which is well adopted to analyze
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associations among three or more variables, and examireitegon on determining which hierar-
chical loglinear models are preserved in the randomizeal ¢ also show that several multi-variate
association measures studied in the data mining communeitypecial cases of loglinear modeling.

Finally, we demonstrate the infeasibility of some classatadmining tasks (e.g., association rule
mining, decision tree learning, naive Bayesian clasgiiarrandomized data by showing the non-
monotonic properties of measures (e.g.,support/confelgmai) adopted in those data mining tasks.
Our motivation is to provide a reference to data miners akdt they can do and what they can
not do with certainty upon the randomized data directly withdistortion parameters. To the best
of our knowledge, this is the first such formal analysis of ¢ffects of Randomized Response for
privacy preserving categorical data analysis with unkndigtortion parameters.

2 Related Work

Privacy is becoming an increasingly important issue in ndaty mining applications. A consider-
able amount of work on privacy preserving data mining, stchdtlitive randomization based [1, 3]
has been proposed. Recently, a lot of research has focusth@ qmivacy aspect of the above ap-
proaches and various point-wise reconstruction meth@|2f have been investigated.

The issue of maintaining privacy in association rule miramgl categorical data analysis has also
attracted considerable studies [4,11,14,15, 31]. Mostdiniques are based on a data perturbation
or Randomized Response (RR) approach [7]. In [31], the asihr@posed the MASK technique to
preserve privacy for frequent itemset mining and extendegbheral categorical attributes in [4]. In
[11], the authors studied the use of randomized responbaitgee to build decision tree classifiers.
In [19, 20], the authors focused on the issue of providingieaxy in terms of various reconstructed
measures (e.g., support, confidence, correlation, Iift) e privacy preserving market basket data
analysis when the distortion parameters are availableefBgthe authors in [22] studied the search
of optimal distortion parameters to balance privacy anlityti

Most of previous work except [19] investigated the scenthat distortion parameters are fully
or partially known by data miners. For example, the authofd 8] focused on measuring privacy
from attackers view when the distorted records of individuand distortion parameters (e.¢fy
and P) are available. In [19], the authors very briefly showed t@ine measures have vertical
monotonic property on the market basket data. In this papepresent a complete framework on
privacy preserving categorical data analysis withoutadigin parameters. We extend studies on
association measures between two binary variables to thoseultiple polychotomous variables.
More importantly, we also propose a new type of monotonigprty, horizontal associationi.e.,
according to some measures, if the association betweensanaf pariables is stronger than another
in the original data, the same order will still be kept in taeadomized data when the same level of
randomization is applied.

Randomized Response (RR) techniques have also been grtgrisvestigated in statistics (e.g.,
see a book [7]). The Post RAndomization Method (PRAM) hasiipeeposed to prevent disclosure
in publishing micro data [9, 17, 18, 35, 36]. Specificallygytstudied how to choose transition prob-
abilities (a.k.a. distortion parameters) such that certhosen marginal distributions in the original
data are left invariant in expectation of the randomizedddhere are some other noise-addition
methods have been investigated in the literature, see dwlent survey [6]. Authors in [25] pro-
posed a method by additional transformations that guagarites covariance matrix of the distorted
variables is an unbiased estimate for the one of the origmahbles. The method works well for
numerical variables, but it is difficult to be applied to @aigcal variables due to the structure of the
transformations.

Recently, the role of background knowledge in privacy pndgsg data mining has been studied
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Table 1: COIL significant attributes used in example. Thaiool “Mapping” shows how to map
each original variable to a binary variable.

attribute | i—th attribute Name Description| Mapping
A 18 | MOPLLAAG Lower level education] >4 — 1
B 37 MINKM30 Income< 30K | >4 — 1
C 42 MINKGEM Average income >4 — 1
D 43 | MKOOPKLA Purchasing power clags> 3 — 1
E 44 PWAPART | Contribution private third party insurange> 0 — 1
F a7 PPERSAUT Contribution car policieg >0 — 1
G 59 PBRAND Contribution fire policies| > 0 — 1
H 65 AWAPART Number of private third party insurange> 0 — 1
1 68 | APERSAUT Number of car policie§ >0 — 1
J 86 CARAVAN Number of mobile home policies > 0 — 1

[10,28]. Their focus was on disclosure risk due to the efféetarious background knowledge. The
focus of our work is on data utility when the distortion paeters are not available. We consider
the extreme scenario about what data miners can do and cdo méth certainty upon randomized
data directly without any other background knowledge. &wanalysis is beyond the scope of this
paper and will be addressed in our future work.

3 Preliminaries

Throughout this paper, we use the COIL Challenge 2000 whichiges data from a real insurance
business. Information about customers consists of 8®até$ and includes product usage data and
socio-demographic data derived from zip area codes. Oarypuiata is formed by collapsing non-
binary categorical attributes into binary form, wiil22 records and6 binary attributes. We use
ten attributes (denote asto J) as shown in Table 1 to illustrate our results.

3.1 Notations

To be consistent with notations, we denote the set of recordse databas® by 7 = {Tj,
-+, Tnx—_1} and the set of variables ly= { Ay, - - , Ayu—1, Bo, - -+ , Bn—1}. Note that, for ease of
presentation, we use the terms “attribute” and “variabtégichangeably. Let there be sensitive
variablesAy, - -- , A,,_1 andn non-sensitive variableB, - -- , B,,_1. Each variable4, hasd,
mutually exclusive and exhaustive categories. Weiyse 0, --- ,d, — 1 to denote the index of
its categories. For each record, we apply the RandomizegddRes model independently on each
sensitive variabled,, using different settings of distortion, while keeping thenrsensitive ones
unchanged.

To express the relationship among variables, we can magaratal data sets to contingency tables.
Table 2(a) shows one contingency table for a pair of two Wéem GenderandRace(d; = 2 and
dy = 3). The vectorr = (w9, 701, 02,710, 7r11,7r12)' corresponds to a fixed order of cell entries
m;; in the2 x 3 contingency tablery; denotes the proportion of records whtale andWhite The
row sumrmg. represents the proportion of records willale across all races.
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Table 2:2 x 3 contingency tables for two variables Gender, Race

(a) Original (b) After randomization
Black White  Asian Black White Asian
Male | 7o o1 02 o+ Male | Moo Aot Ao2 Ao+
Female mT10 T11 mT12 T4+ Female )\10 A1 A2 /\1+
T40 41 Ti2 Ty Ato A1 Ti2 Akt

Table 3: Notation

Symbol Definition
Ay thewth variable which is sensitive
B thelth variable which is not sensitive
P, distortion matrix ofA,,
1) distortion parameter ofl,,
A, variable A,, after randomization
X2 x? calculated from original data
XZan x? calculated from randomized data
Tio,- i, | Cell value of original contingency table
Xig,-,ix_, | Cell value of randomized contingency table

Formally, letr;, ... ;,_, denotes the true proportion corresponding to the categj@anbination of
k variableg Ao;,, - - - , A(k—1)i,_, ) Inthe original data, wherg, = 0,--- ,d,—1,u=0,--- ,k—1,
and Ay;, denotes theyth category of attributedy. Let 7 be a vector with elements;, ... ;, ,
arranged in a fixed order. The combination vector correspénch fixed order of cell entries in
the contingency table formed by theseariables. Similarly, we denotg, ... ;. , as the expected
proportion in the randomized data. Table 3 summarizes ctatioos.

3.2 Distortion Procedure

The first Randomized Response model proposed by Warner Bdedt with one dichotomous at-
tribute, i.e, every person in the population belongs tosgithsensitive groug, or to its complement

A. The problem is to estimate the,, the unknown proportion of population members in group
Each respondent is provided with a randomization device higlvthe respondent chooses one of
the following two question®o you belong to A®r Do you belong tod? with respective probabili-
tiesp and1 — p and then repliegesor noto the question chosen. Since no one but the respondent
knows to which question the answer pertains, the technigoxges response confidentiality and
increases respondents’ willingness to answer sensitiestouns. In general, we can consider this
dichotomous attribute as or@, 1} variable, e.g., with 0 = absence, 1= presence. Each record is
independently randomized using the probability matrix

(e 1-0
P—(1—90 0, ) @

If the original record is in th@bsenc@resencgcategory, it will be kept in such category with a
probability 6, (6,) and changed tpresencéabsencgcategory with a probability — 6y (1 — 64).
The original Warner RR model simply séig = 61 = p.

We extend RR to the scenario of multi-variables with muétiegories in our distortion framework.
For one sensitive variabld,, with d,, categories, the randomization process is such that a record
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belong to thejth category { = 0,...,d, — 1) is distorted to O, 1, ... o#, — 1th category with
respective probabilities;’, 01, ..., 6¢) _ |, where>"% ' 9\ = 1. The distortion matrix, for

A, is shown as below.

G

901 6)11 T edu—l 1
Pu: .

L R N

Parameters in each columnBf sum tol, but are independent to parameters in other columns. The

sum of parameters in each row is not necessarily equaltbe true proportiomwr = (7o, -+ , T4, —1)
is changed to\ = (\g, - - , \q,—1) after randomization. We have
A= P,m.

For the case ok multi-variables, we denotg,, ... ., , as the expected probability of getting a
response Ao, - s Ak—1)p,_,) @and X the vector with elements,, ... ., , arranged in a fixed
order (e.g., the vectoh = (oo, A1, Aoz, A10, A1, A12)” corresponds to cell entries;; in the
randomized contingency table as shown in Table 2(b) ).L.et Py x - -- x P,_1, we can obtain

)\:P’]T:(PQX---XPkfl)ﬂ' (2)

wherex stands for the Kronecker proddict
The original databasP is changed t®,.,,, after randomization. An unbiased estimaterdfased
on one given realizatio®,.,,, follows as

=P A= (B x---x P)A 3)

wherel is the vector of proportions calculated fraf.,,, corresponding t and P, ' denotes the
inverse of the matrix,.

Previous work using RR model either focused on evaluatiagride-off between privacy preserva-
tion and utility loss of the reconstructed data with theask distortion parameters (e.g., [4,19,31])
or determining the optimal distortion parameters to aahigwod performance (e.g., [22]). Data
mining tasks were conducted on the reconstructed disimibdt calculated from Equation 3. In
this paper, we investigate the problem whether data minirggatistical analysis tasks can still be
conducted with unknown distortion parameters, which hdasaen studied in the literature.

In Lemma 1, we show that no monotonic relation exists for estties of contingency tables due
to randomization.

Lemma 1. No monotonic relation exists betweey, ... ;, , andm;, ... i, ;-

Proof. We use two binary variabled,, A, as an example. The proof of multiple variables with
multi-categories is immediate. The distortion matricesdefined as:

P B B W R B
w 1 9(“) 9(“) v 1 9(”) 9(”)
0 1 0 1

1itis an operation on two matrices, amn-by-n matrix A and ap-by-¢ matrix B, resulting in themp-by-nq block matrix
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We have:
Moy = (0840 — 1)y — 0 +1

We can see thaty, — mo is a function ofrg ,9(()“), 95“), and its value may be greater or less than
0 with varying distortion parameters. Similarly,

oo = (9(()“)9((;))71'00 + 9(()“)(1 — 95”))7701
+ (1608 T + (1 — 608 (1 - 6)m,

Aoo — Too is @ function ofr;; ,66“), 65“), 6(()”) andeg”), no monotonic relation exists.

4 Associations Between Two Variables

In this section, we investigate how associations betweervasiables are affected by randomization.
Specifically, we consider two cases:

e Case 1 A4, andA,, association between two sensitive variables.

e Case 2 A, andB;, association between a sensitive variable and a non-sensitriable.

Case 2 is a special case of case 1 whilés an identity matrix, so any results for case 1 will satisfy
case 2. However, it is not necessarily true vice versa.

4.1 Associations Between Two Binary Variables

Table 4 shows various association measures for two binaighlas (Refer to [34] for a survey). We
can observe that all measures can be expressed as funciibpavameters as cell entries;{) and
their margin totals«; + or w;) in the 2-dimensional contingency table.

Randomization SettingFor a binary variabled,,, which only has two categories (0 = absence, 1 =
presence), the distortion parameters are the same as thegeation 1.

In Section 4.1.1, we focus on the problem of vertical assimriavariation, i.e., how association
values of one pair of variables based on given measures areget due to randomization. In
Section 4.1.2, we focus on the problem of horizontal associavariation, i.e., how the relative
order of two association patterns is changed due to randaioiz

4.1.1 \Vertical Association Variation

We use subscriptsr: andran to denote measures calculated from the original data artbran
ized data (without knowing the distortion parameters) eetipely. For exampley?,; denotes the
Pearson Statistics calculated from the original datahile x2,,, corresponds to the one calculated
directly from the randomized dafa,.,,.

There exist many different realizatio.,,, for one original data seb. When the data size is
large, the distributiom\ calculated from one realizatidR,..,, approaches its expectation which
can be calculated from the distributi@anof the original data set through Equation 2. This is because

cov(A) = N7H(A% — AN),

as shown in [7].cov(\) approaches zero wheM is large. Here\’ is a diagonal matrix with the
same diagonal elements as thos@@irranged in the same order. All our following results andrthe
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Table 4: Objective association measures for two binaratées

Measure Expression
Support §) 11
Confidence() o
Correlation ¢) Wi sas ey e v
Cosine (IS) wﬁlwﬂ
Odds ratio () Tioms
Interest (1) mTwlﬂ
T
Jaccard() T T
Piatetsky-Shapiro’'s(PS) T — 771+7T+1
> Z Tijlog ——0sr
Mutual Info(M) —~ ﬂ7+log;++ﬂ
T14+7T40

Conviction (V)

10

- 10
J-measure (J 7mlogm+7T+1 + Wlologf‘l'l-%—ﬂ'-%—()
. T T+
o
Certainty (F) T
Standard residues(e) N T Tt T

Likelihood (G?)

2N 71'1]log771+7r+7

Pearsony?) NY, Y, %
Added Value(AV) oL
Risk Difference D) Zoo — Au
Laplace () ]A/VV;rllJlrilQ

Kappa @) T11T700 M1+ T+1—T0+T+0

17771+7T+1771'0+7T+0

Concentration Coefficientr]

i3 /i =3 T

1-3; ™4
i i1t T—T14T41—=T0+T+0
Collective Strengthg) e X Ty
E 2 mialogmin 7+7'+7

Uncertainty Coefficient(()

E mjlogmy;
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proofs are based on the expectatirrather than a given realization Since data sets are usually
large in most data mining scenarios, we do not consider tleetedue to small samples. In other
words, our results are expected to hold for most realizatajrihe randomized data.

Result 1. For any pair of variablesl,, A, perturbed with any distortion matri®, and P, (9(()“),
0%“), 0(()”), 951})6 [0, 1]) respectively (Case 1), or any pair of variablés, B; whereA,, is perturbed
with P, (Case 2), the?, G2, M, ,U, ¢, D, PS values calculated from both original and random-
ized data satisfy:

X?‘an S Xim’v G%an S G2

ori

Mran S Mom’a Tran < Tori

Uran S Uori7 |¢Tan| S |¢ori|
|Dran| S |Dori|7 |PSran| S |PSori|

No other measures shown in Table 4 holds monotonic property.

For randomization, we know that the distortion is 1) higheish ¢ = 0.5 which imparts the max-
imum randomness to the distorted values; 2) symmetric aéus 0.5 and makes no difference,
reconstruction-wise, between choosing a valwe its counterpart — 6. In practice, the distortion
is usually conducted witld greater than 0.5. The following results show the verticabamtion

variations whers",6{" 6{") and6'") are greater than 0.5.

Result 2. In addition to monotonic relations shown in Result 1, whgh, 61, 6{"), 6{" < [0.5, 1],
we have

| Fran| < |Foril, |AVzan| < [AVori]

|ran| < |Korils  [0ran — 1| < |aori — 1]
Hran — 1] < [Lori = 1|, [Vian — 1| < [Vors — 1
|Sran — 1] < [Sori — 1]

We include the proof of Added ValugaV' in Appendix. For all other measures in the above two
results, we can prove similarly. We skip their proofs duepace limits. We can see that four
measures ( Odds Ratig Collective Strengtlb, InterestPS, and Convictiori”) are compared with
“1” since values of these measures with “1” indicate the taoables are independent. Next we
illustrate this monotonic property using an example.

Example 1. Figure 1(a) and 1(b) show how the Cosine and Pearson Statcsticulated from the
randomized data (attribute$ and D from COIL data ¢4”=(0.1374, 0.3332, 0.2982, 0.2312)")
vary with distortion parametef$4) andd(”) (In all examples, we follow the original Warner model
by settingd\" = 6{") = 6() ). It can be easily observed thet,,, < x2,, forall 64, 6P ¢ [0, 1]
andIS,,, > IS,,; for somed () values.

One interesting question here is how to characterize thesesunes that have this monotonic prop-
erty. The problem of analyzing objective measures used kg éning algorithms has attracted
much attention in recent years [16, 33]. Depending on theipgroperties of it, every measure
is meaningful from some perspective and useful for someiegtn, but not for others. Piatetsky-
Shapiro [29] proposed three principles that should befgadiby any good objective measuté for
variablesX, Y
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Cosine (IS)

(a) Cosine (b) ChiSquare

Figure 1: statistics calculated from original dataD (flat surface) vs. statistics calculated from
randomized data (varied surface) with varyi#d) andg(”)

e C1: M =0if X andY are statistically independent, that 3;(XY) = Pr(X)Pr(Y).
e ('2: M monotonically increases witRr(XY') whenPr(X) and Pr(Y") remain the same.

e ('3: M monotonically decreases witRr(X) (or Pr(Y)) when Pr(XY) and Pr(Y") (or
Pr(X)) remain the same.

We can observe that all measures which obdyand C2 principles have monotonic properties
after randomization by examining measures shown in Table 4.

4.1.2 Horizontal Association Variation

In this section, we investigate the horizontal associatiaration problem, i.e., if the association
based on a given association measure between one pair ablegris stronger than another in the
original data, whether the same order will still be kept ia tandomized data when the same level
of randomization is applied.

We first illustrate this horizontal property using an exaengehd then present our results.

Example 2. Figure 2(a) and 2(b) show how the Piatetsky-Shapiro’s measud Odds Ratio 4,58
(w45=(0.4222, 0.0484, 0.3861, 0.1432)") and1,J (w!/=(0.4763, 0.0124, 0.4639, 0.0474)")) cal-
culated from the randomized data vary with distortion pagrsé(*) andd(*). It can be easily
observed from Figure 2(a) that the blue surfaB&.?) is above the brown surfac&6?;7), which

means thaP S4B > PSL7 forall 0, 00 e [0.5,1] with PS2P > psl7 (psA-B andps?/

ori ori

are the points whef,, = 6,, = 1). Figure 2(b) shows although’>? < o’/ (a/2F = 3.23,a7 =

ort ort ort

3.94), a8 > o6.J for some distortion parameteés®) and6(”). For examplep? = 1.32,

ran ran ran

al;) = 1.14whend™ = 9 = 0.8.

ran

Result 3. For any two sets of binary variabldsi,,, A,} and{A;, A;}, 4, and A, are perturbed
with the same distortion matri®, while A, and A; are perturbed with the same distortion matrix
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Odds Ratio (a)
o w
o w o S

Piatetsky—Shapiro (PS)
o

(a) PS (b) OddsRatio

Figure 2: statistics from randomized data of (A,B) (showhblag surface) and (1,J) (shown as brown
surface) with varying™ and6(®)

P, respectively&é“), 0§“), 0(()”), 0§”) € [0,1]) (Case 1), we have

|PS’LL,U| Z |PSS,t

ori ori

| = [PSian| > [PSY
wherePS™:", PS*" denote Piatetsky-Shapiro’s measure calculated from igimat datasef A, A, }
and{A;, A;} respectively and’>S? PS:! correspond to measures calculated directly from the

randomized data without knowirg", 05”), 0(()”) , 0%”).

Result 4. For any two pairs of variableg4,,, B} and{4,, B, }, A, andA, are perturbed with the
same distortion matri®, (0(()“),0§“) € [0,1]) while B, and B; are unchanged (Case 2), we have

|Du,5| 2 |Dv,t

ori ori

|AV,| > |AVyrf| <= |AVSs) > |AVSE |

ori ori ran

| = Dt > DY

ran ran

We include our proofs in Appendix. Through evaluation, nbestmeasure in Table 4 except
Piatetsky-Shapiros, Risk Difference, and Added Valuessuiess has this property. Intuitively, if the
same randomness is added to the two pairs of variables selyattae relative order of the association
patterns should be kept after randomization. PiatetslgpBb measure can be considered as a better
measure than others to preserve such property.

4.2 Extension to Two Polychotomous Variables

There are five association measurgs, (G2, M, 7, U) that can be extended to two variables with
multiple categories as shown in Table 5.
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Table 5: Objective measures for two polychotomous varable

Measure Expression

%, miglog
Mutual Info (M) e

Likelihood (G?) | 23,3, mijlog—=

Tt Tt

Pearsony?) | N Y, ij EEow :
Concentration Coefficient Zixy - ijg”? 2 Ty
2T

= ™77
220 225 miglog w
>0 mjlogmy

Uncertainty Coefficient(() —

4.2.1 \Vertical Variation

Result 5. For any pair of variablesi,,, A, perturbed with any distortion matri®, and P,, the
x2, G2, M, r,U values calculated from both original and randomized datiafga

2 2 2 2
Xran S Xori Grun S Gori
Mran S ]\/-[O’r‘i7 Tran S Tori
Uran < Uori

We omit the proofs from this paper. We would emphasize thiat réssult is important for data
analysis tasks such as hypothesis testing. According talibge result, associations between two
sensitive variables or associations between one sensiiiable with non-sensitive one will be
attenuated by randomization. An important consequendasodttenuation results is that if there is
no association betwees, , A, or A,, B; in the original data, there will also be no association in
randomized data.

Result 6. The? test for independence on the randomizedwith A, or on A, with B; is a correct
a-level test for independence oh, with A, or A,, with B; while with reduced power.

This result shows testing pairwise independence betwemmriiginal variables is equivalent to
testing pairwise independence between the corresponditayted variables. That is, the test can
be conducted on distorted data directly when variableserotiiginal data are independent. How-
ever, the testing power to reject the independence hypethraay be reduced when variables in the
original data are not independent. For independence ¢gstie have two hypotheses:

e Hy: Tij = Tt T 45, fori = O, ...,dl —1 andj = 0, ...,dQ — 1.
e H;: the hypotheses dffj is not true.

The test procedure is to rejeffy with significance level if x? > C. In other wordsPr(y? >
C|Hy) < a. The probability of making Type | error is defined & (x? > C|Hy) while 1 —
Pr(x? > C|H;) denotes the probability of making Type Il error. To maximike power of the
test,C is set asy?, i.e., thel — a quantile of they? distribution with(d; — 1)(d2 — 1) degrees of
freedom.

If two variables are independent in original data, i&,,; < x%, when testing independence on the
randomized data, we havg,,,, < x2,; < x2. We can observe that randomization does not affect
the validity of the significance test with level The risk of making Type | error is not increased.
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If two variables are dependentin original data, ixg,,, > 2. The power to rejectly (Pr(x>2,; >
X2 |H1)) will be reduced toPr(x2,,, > x2|H1) when testing on randomized data. Thaty$,,,
may be decreased to be less thgh Hence we may incorrectly accept,. The probability of

making Type Il error is increased.

4.2.2 Horizontal Variation

Since none of Risk Difference, Added Value, and PiatetshgpBo can be extended to polychoto-
mous variables, no measure has the monotonic propertyrirstef horizontal association variation
for a pair of variables with multi categories.

5 High Order Association based on Loglinear Modeling

Loglinear modeling has been commonly used to evaluate +walfi contingency tables that involve
three or more variables [5]. It is an extension of the two-waptingency table where the condi-
tional relationship between two or more categorical vdesls analyzed. When applying loglinear
modeling on randomized data, we are interested in the faligwroblems. First, is the fitted model
learned from the randomized data equivalent to that leafreed the original data? Second, do
parameters of loglinear models have monotonic propertias3ection 5.1, we first revisit loglin-
ear modeling and focus on the hierarchical loglinear modkahdi. In Section 5.2, we present the
criterion to determine which hierarchical loglinear madedn be preserved after randomization. In
Section 5.3, we investigate how parameters of loglineareisoare affected by randomization.

5.1 Loglinear Model Revisited

Loglinear modeling is a methodology for approximating déte multidimensional probability dis-
tributions. The multi-way table of joint probabilities ipjroximated by a product of lower-order
tables. For a valug;o;i...;(,—1) at positioni,. of therth dimensiond,. (0 < r < n — 1), we define
the log of anticipated valug;y;;....(»—1) as a linear additive function of contributions from various
higher level group-bys as:

ZiOil»»»i(nfl) =108 Jivi1---i(n—1) = Z ’Y(gl-r‘dTeg)
Jevs
We refer to they terms as the coefficients of the model. For instance, in ar®dsional table with
dimensionsA, B, C, Equation 4 shows the saturated loglinear model. It coatdia 3-factor effect
742, all the possible 2-factor effects (exg;”), and so on up to the 1-factor effects (e-g*) and
the meany.

log Jiji = v+ 7 + 97 + 95 + 757 + 0 + 8¢ +5eC 4

As the saturated model has the same amount of cells in thangenty table as its parameters, the
expected cell frequencies will always exactly match thesolesd ones with no degree of freedom.
Thus, in order to find a more parsimonious model that willagethe effects best demonstrating the
data patterns, a non-saturated model must be sought.

Fitting hierarchical loglinear models Hierarchical models are nested models in which when an
interaction ofd factors is present, all the interactions of lower order laetwthe variables of that
interaction are also present. Such a model can be speciftechirs of the configuration of highest-
order interactions. For example, a hierarchical model thas(ABC, DE) for five variables
(A-E) has two highest factorsy(*2¢ and?¥). The model also includes all the interactions of
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Table 6: Goodness-of-Fit tests for loglinear modelshm, G

Model x? | df | p-Value
A, D.G | 435.70| 4 | <0.001
AD,G 160| 3 0.66
AG,D | 434.40| 3| <0.001
DG,A | 435.71| 3| <0.001

lower order factors such as two factor effects$ €, v4¢, 45¢), one factor effectsy®, 42, v¢, ~ P,
~F) and the mean.

To fit a hierarchical loglinear model, we can either startwiite saturated model and delete higher
order interaction terms or start with the simplest model¢jpendence model) and add more complex
interaction terms. The Pearson statistic can be used ttheestverall goodness-of-fit of a model by
comparing the expected frequencies to the observed cqliémcies for each model. Based on the
Pearson statistic value and degree of freedom of each ntbdekvalue is calculated to denote the
probability of observing the results from data assumingrihk hypothesis is true. Large p-value
means little or no evidence against the null hypothesis.

Example 3. For variablesd, D, G in COIL data r4”%=(0.0610, 0.0764, 0.1506, 0.1826, 0.1384,
0.1597,0.1079, 0.1233)") in COIL data, Table 6 shows Pearson andalue of Hypothesis Test for
different models. We can see modédlD, ) has the smalles¢? value (1.60) and the largestvalue
(0.66). Hence the best fitted mode(i$D, G), i.e.,

logije = Y+ +97 +9% +75° (5)

5.2 Equivalent Loglinear Model

Chen [8] first studied equivalent loglinear models undeeppehdent misclassification in statistics.
Korn [26] extended his work and proposed Theorem 1 as aionitéor obtaining hierarchical log-
linear models from misclassified data directly if the missification is non-differential and inde-
pendent.

Theorem 1. A hierarchical model is preserved by misclassification ifisclassified variable ap-

pears more than once in the specification in terms of the btgireler interactions of the model. A
model is said to be preserved if the misclassified data fitsdin@e model as the original data (i.e.,
the misclassification induces no spurious associationgdset the variables).

Since the Randomized Response in our framework is one kisdaf non-differential and inde-
pendent misclassification, we can apply the same criteo@héck whether a hierarchical loglinear
model is preserved in the randomized data. Theorem 1 clspelgifies the criterion of the preserved
models, i.e., any randomized variable cannot appear mareahce in the highest order interactions
of the model specification. We first illustrate this criteriosing examples and then examine the
feasibility of several widely adopted models on the randmdidata.

Example 4. The loglinear mode{AD, G) as shown in Equation 5 is preserved on all randomized
data with different distortion parameters as shown in Tabl/e can see that thevalue of model
(AD, G) is always prominent no matter how we change the distorticarpatergd("), () (&),

On the contrary, the loglinear moded B, AF) that best fits the original data with attributes A,B,E
(wABE=(0.2429, 0.1793, 0.0258, 0.0227, 0.2391, 0.1470, 0.0903, 0.0529)’) cannot be preserved
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Table 7: Goodness-of-Fit tests for loglinear models onlattesA, D, G after Randomization with
different(9(4), 9(P) 9(C))

Model Original (0.9.09,09) (0.70.7,07) [ (0.7.0809)
x? | P-value x? | P-value x? | P-value x? | P-value
A, D,G | 435.70| <0.001| 177.16| <0.001| 10.97 0.03| 24.82| <0.001
AD,G 1.60 0.66 0.61 0.89| 0.04 0.99| 0.15 0.98
AG,D | 434.40| <0.001| 176.60| <0.001| 10.93 0.01| 24.68| <0.001
DG, A | 435.71| <0.001| 177.17| <0.001| 10.97 0.01| 24.83| <0.001

Table 8: Goodness-of-Fit tests for loglinear models ontaites A, B, E after Randomization with
different(9(4), 9(5) 9(E))

Model Original (o 9,0.9,0.9) (o 7,0.7,0.7) (o 55,0.9,0.9)
2 | P-value 2 | P-value| x? | P-value| x? | P-value
A B,E | 280.87| <0.001| 95.05| <0.001| 4.84 0.30| 1.59 0.81
AB,E | 18.33| <0.001| 6.78 0.08 | 0.40 0.94] 0.21 0.98
AFE,B | 264.81| <0.001| 88.51| <0.001| 4.44 0.22] 1.49 0.69
BE,A | 279.18| <0.001| 94.68| <0.001| 4.83 0.19| 1.48 0.69
AB,AFE 2.28 0.32| 0.32 0.85| 0.01 0.99] 0.11 0.95
AB,BE 18.03| <0.001| 6.67 0.04| 0.40 0.82| 0.10 0.95
AFE,BE | 264.07| <0.001| 88.35| <0.001| 4.44 0.11] 1.38 0.50

on all the randomized data with different distortion paréangas shown in Table 8. We can observe
whend() = 0.55, (F) = 0.9 andg®) = 0.9, thep-value of model A B, E) is greater than that of
model AB, AFE). Hence, the fitted model on randomized data is changed & £).

Independence model and all-two-factor modelin [32], the authors proposed the use of the com-
plete independence model (all 1-factor effects and the mg¢dn measure significance of depen-
dence. In [12], the authors proposed the use of all-twosfagffects model to distinguish between
multi-item associations that can be explained by all paienassociations, and item sets that are
significantly more frequent than their pairwise assocraiovould suggest.

For a 3-dimensional table, the complete independence nmiedes, C) is shown in Equation 6
while the all-two-factor modelAB, AC, BC') is shown in Equation 7.

log fijk =¥+ v + 77 + 7% (6)
log Gijk =Y+ +77 + 7% + 750 + vl e (7)

According to the criterion, we can conclude that the indejeeice model can be applied on ran-
domized data to test complete independence among variatdeiginal data. However, we cannot
test the all-two-factor model on randomized data diredthge the all-two-factor model cannot be
preserved after randomization.

Conditional independence testingFor a 3-dimensional case, testing conditional indepenelenc
two variables A and B, given the third variabl€” is equivalent to the fitting of the loglinear model
(AC, BC). Based on the criterion, we can easily derive that the madél, BC) is not preserved
after randomization when variableis randomized.
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In practice, theartial correlations often adopted to measure the correlation between twalvias
after the common effects of all other variables in the dataseremoved.

TAB — TACTBC ®)
(I =r%c)1 = 75¢)

Equation 8 shows the form for the partial correlation of tvesiables,A and B, while controlling
for a third variableC, wherer 4, 5 denotes Pearson'’s correlation coefficient. If there is fferdince
betweempr p.c andr g, we can infer that the control variablé has no effect. If the partial
correlation approaches zero, the inference is that thénatigorrelation is spurious (i.e., there is
no direct causal link between the two original variablesause the control variable is either the
common anteceding cause, or the intervening variable).

According to the criterion, we have the following results.

prap.c =
\/

Result 7. They? test of the independence on two randomized variaBlewith A, (or on A, with
B;) conditional on a set of variabl€s(G C 7) is a correcty-level test for independence oh, with
A, (or A, with B;) conditional ong while with reduced power if and only if no distorted sengtiv
variable is contained ig.

Result 8. The partial correlation of two sensitive variables or thetiphcorrelation of one sensitive
variable and one non-sensitive variable conditional onta®&eariablesi (G C 7Z) has monotonic
property|prran| < |prori| if and only if no distorted sensitive variable is containedi

Other association measures for multi variablesThere are five measuresq, I, P.S, G2, x?) that
can be extended to multiple variables. Association meadoranultiple variables need an assumed
model (usually the complete independence model). We hawmgrsthatG? andy? on the indepen-
dence model have monotonic relations. However, we canyegsiick that/ .S, I, P.S do not have
monotonic properties since they are determined by therdifiee between one cell entry value and
its estimate from the assumed model. On the cont(zafyandy? are aggregate measures which are
determined by differences across all cell entries.

5.3 \Variation of Loglinear Model Parameters

Parameters of loglinear models indicate the interacti@i®/den variables. For example, HagB
is two-factor effect which shows the dependency within tistrihutions of the associated variables
A, B. We present our result below and leave detailed proof in Agpe

Result 9. For anyk-factor coefﬁcienty(gi’“ld €Gr) in hierarchical loglinear model, no vertical mono-

tonic property or horizontal relative order invariant peoty is held after randomization.

6 Effects on Other Data Mining Applications

In this section, we examine whether some classic data mtasig can be conducted on randomized
data directly.

6.1 Association Rule Mining

Association rule learning is a widely used method for diszong interesting relations between items
in data mining [2]. An association rul® = ), whereX, ) C Z andX' NY = ¢, has two measures:
the supports defined as;(100%) of the transactions ifi” that containt’ U ), and the confidence
cis defined ag(100%) of the transactions iff” that containt” also contair). From Result 1 and
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Result 2, we can easily learn that neither support nor comdieleneasures of association rule mining
holds monotonic relations. Hence, we cannot conduct asoeirule mining on randomized data
directly since values of support and confidence can becometayror less than the original ones
after randomization.

6.2 Decision Tree Learning

Decision tree learning is a procedure to determine the dfagyiven instance [30]. Several mea-
sures have been used in selecting attributes for clasgificadAmong them, gini function measures
the impurity of an attribute with respect to the classes. If a datalsebntains examples frorh
classes, given the probabilities for each clasy gini(D) is defined agini(D) = 1 — Zé:l p?.

When D is split into two subset®); and D, with sizesn, andn, respectively, the gini index of
the split data is:

ginispir(D) = ﬁgzm(Dl) + fgmz(Dg)
The attribute with the smallegtni,y;: (D) is chosen to split the data.

Result 10. The relative order of gini values can not be preserved adtedlomization. That is, there
is no guarantee that the same decision tree can be learmedHeorandomized data.

Example 5. For variablesA, B,C (w48¢=(0.2406, 0.1815, 0.0453, 0.0031, 0.3458, 0.0404, 0.1431,
0.0002)") in COIL data, we setd,B as two sensitive attributes arid as class attribute. Thgini
values ofA, B before randomization are:

ginisprit(A)ori = m7gini(Ay) + magini(As)
T3 T3 T TAC
— o1 —(Facy2 _ (T4c 2 1 — (TaCy2 _ 2
malt - (220 = (A2 g maft - (A2 - (A0,
= 0.30

Similarly, ginispiit(B)ori = 0.33.

After randomization with distortion parameteﬁigq) = 9§A) = 0.6 and GéB) = GEB) =09
(A1BY=(0.2629,0.1127, 0.1042, 0.0143, 0.2837, 0.0873, 0.1240, 0.0109)"), we get:

9iMisplit(A)ran = 0.35  ginispiit(B)ren = 0.34

The relative order ofiinispii+(A) andginisy:(B) can not be preserved after randomization.

6.3 Nave Bayes Classifier

A naive Bayes classifier is a probabilistic classifier todprethe class label for a given instance
with attributes seft’. It is based on applying Bayes’ theorem (from Bayesiansttesi) with strong
assumptions that the attributes are conditional indeperelgiven class labél .
Given an instance with feature vectorthe naive Bayes classifier to determine its class labisl
defined as:
PX =z|C=i0)P(C=1)
P(X =x)

h*(x) = argmax;

It chooses the maximum a posteriori probability (MAP) hypedis to classify the example.
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Result 11. The relative order of posteriori probabilities can not besgrved after randomization.
That is, instances can not be classified correctly basedei#ive Bayes classifier derived from
randomized data directly.

Example 6. For variablesA, G, H (m4%H7=(0.1884, 0.0232,0.0802, 0.1788, 0.2264,0.0199, 0.1031,
0.1800)") in COIL data, we setd,G as two sensitive attributes arté as class attribute. For an in-
stance with attributest = 0,G = 1, the probability of its clas§gf = 0 before randomization
is:

P(H[AG)o; = P(AH) x P(G|H) x P(H)/P(AG)

T3 T ~77
_ Tam GH _
= X X T/ TaG

TH 7]
TagT  ~17

AA"GH /.
- /WAG

= 0.31
Similarly, the probability of its clas&l = 1 is:

P(H|AG)ori = % 740 = 0.69

After randomization with distortion parametefs’=6'*)=6{%=6{“) = 0.6 (AAGH=(0.1579,0.0848,
0.1351,0.1163, 0.1643, 0.0845, 0.1408,0.1162)"), we get:

P(H[AG)rqn =054  P(H[AG),qn = 0.46

As none ofr sz, T3z, T1 5, Tem has monotonic properties after randomization, the redaider
of the two probabilitiesP(H|AG) andP(H|AG) cannot be kept.

7 Conclusion

The trade-off between privacy preservation and utilityslbas been extensively studied in privacy
preserving data mining. However, data owners are stillctalut to release their (perturbed or trans-
formed) data due to privacy concerns. In this paper, we fatuthe scenario where distortion
parameters are not disclosed to data miners and investidgegiher data mining or statistical anal-
ysis tasks can still be conducted on randomized categatatal We have examined how various
objective association measures between two variables mayfécted by randomization. We then
extended to multiple variables by examining the feasipiit hierarchical loglinear modeling. We
have shown that some classic data mining tasks (e.g., atisoaiule mining, decision tree learning,
naive Bayes classifier) cannot be applied on the randondiasdwith unknown distortion param-
eters. We provided a reference to data miners about whatctieylo and what they can not do
with certainty upon randomized data directly without th@kiedge about the original distribution
of data and distortion information.

In our future work, we will comprehensively examine variaiada mining tasks (e.g., causal learn-
ing) as well as their associated measures in detail. We wiltlact experiments on large data sets to
evaluate how strong our theoretical results may hold intm@cWe are also interested in extending
this study to numerical data or networked data.
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A Proof of Results

Proof of Result 1 and Result 2
The Added Value calculated directly from the randomize@déthout knowingP,,, P, is

The original Added Value can be expressed as

11 — 4171+
AV = ————+
14
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Asm = (P! x P 1), we have:

u

0% — 14+ (1460 — 0"y
") + 6" — 1

o — 1+ (146 — 6N
o + 6" —1
A1l — Ay

65 + 0 — 1) + 6 — 1)

T+ =

T+1 =

Tl — T41T1+

Through deductiondV,,.; is expressed as:

A1 — Ay

A‘/OT,L: v v u u u
08 + 6 — 1[0 — 1+ (1+ 65 — 61" )A14]

Let £(65", 08,657, 65), xs) = (65" + 687 — 1) — 1+ (1 + 65 — 65| — Aaes

(u) (u) (u)
1) Whenag“>,9§“>,eg”>,9§”> € [0.5,1], sincer;+ = b ’1;(()(,})19;@:911 JLSERE) thenegu) —1+

(14 68" = 6{)A1, > 0, we have

067,65 667 .61 Aue) = (667 + 617 = 1)IBF) — 1+ (1465 = 67)h] = A
= 05 6 — )6 — 1)1 = M) + [(65 + 6 — )65 — 1]y
< 0
Hence,
[AVoril = 1=y A<1ul>_A+1Al+ @ _ g |
(0" + 07 =167 =1+ (146" — 617 )4
> |)\11 —)\/\+1/\1+|
1+
Z |A‘/ran|

endy,”, 0\, 6,", € 10,0.5], sinced;"” — 1+ (1 + — 14+ > 0, we have
2) Wheng{"), 01, 05”61 € [0,0.5], sinced(") — 1+ (1+ 65" — 6{" )\ > 0, weh

F659,6.65,6%7 M) = (6587 + 657 —1)(6") — 1)1 — Ax) + [0 + 61 — 1)65 — 1]

(08”46 —1) (65" —1)

When)\1+ > 17(9(()70+9§v)*1)(1+9(()u)*9§u))
F(05,07,067,017 M) O, |AVori| = | AVl
(v) (v) (u)

when);, < —tos 6~ 1)

1—(057 40 —1) (1400 —0()
F65,68,687, 6 Aiy) > 0,[AVipi| < [AVian]
Similarly, we can prove thatAV,,.;| > |AV,.,| is not always held wheﬁé“),eg“),eé”),agv) ¢

[0.5,1].
Proof of Result 3 and Result 4
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For any pair of variables, Piatetsky-Shapiro’s measureutatied directly from the randomized data
without knowingd™, 6{*), ("), 9" is:
PSran = A1 — M+ A 41 = AooA1 — Ao1Aio
The original Piatetsky-Shapiro’s measure is:
PSran
05 + 08" — 1)(0{”) + 6 — 1)

PSyri =1 — Ti4741 =

|PSranl = [PSya

anl —

657 + 61— 1)(6” + 617 1)

|PSGi| = PS5 =

ort

> 1. Result 3 is proved.

(u) plu) p(v) Hv) 1
SOVGO 791 790 ’01 € [07 1]' ‘(Géu)+9§u)71)(0[()17)4»9511)71)'

Since
D _ 2o Aot Acodu — AorAio
S U W Nohis
D To0mi1 — T1mi0 AooA11 — Ao1Aio
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We can showAV also holds. Result 4 is proved.
Proof of Result 9

The proof is given for three binary variables with the satedamodel; the extension to higher di-
mensions is immediate. Equation 9 shows how to compute #ificents for the model of variables
A, B, C, where a dot “.” means that the parameter has been summetheviedex.
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From randomized data we get:
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Similarly, we have:
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There is no monotonic relation betwegy),, andr; . (i, j, k = 0, 1). ¥4 can be greater or less than
the original value after randomization. Same results caprbeed for othery parameters. Result 9
is proved.
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