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Abstract. The ability to store vast quantities of data and the emergence of high speed networking
have led to intense interest in distributed data mining. However, privacy concerns, as well as reg-
ulations, often prevent the sharing of data between multiple parties. Privacy-preserving distributed
data mining allows the cooperative computation of data mining algorithms without requiring the
participating organizations to reveal their individual data items to each other.

This paper makes several contributions. First, we present a simple, deterministic, I/O-efficient k-
clustering algorithm that was designed with the goal of enabling an efficient privacy-preserving ver-
sion of the algorithm. Our algorithm examines each item in the database only once and uses only
sequential access to the data. Our experiments show that this algorithm produces cluster centers
that are, on average, more accurate than the ones produced by the well known iterative k-means
algorithm, and compares well against BIRCH.

Second, we present a distributed privacy-preserving protocol for k-clustering based on our new clus-
tering algorithm. The protocol applies to databases that are horizontally partitioned between two
parties. The participants of the protocol learn only the final cluster centers on completion of the pro-
tocol. Unlike most of the earlier results in privacy-preserving clustering, our protocol does not reveal
intermediate candidate cluster centers. The protocol is also efficient in terms of communication and
does not depend on the size of the database. Although there have been other clustering algorithms
that improve on the k-means algorithm, ours is the first for which a communication efficient crypto-
graphic privacy-preserving protocol has been demonstrated.

Keywords. Secure computation, distributed data mining, privacy preservation, clustering.

1 Introduction

The rapid growth of storage capacity, coupled with the development of tools for data re-
porting and analysis led to the development of data warehousing [26]. A data warehouse

∗Preliminary versions of parts of this work were published in [28] and [27].
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allows for the analysis of operational or transactional data, such as from retail transactions
or web server logs, for organizations. Decision support systems allow for data to be sum-
marized and viewed along various dimensions by managers of such organizations. With
advances in artificial intelligence and statistics, it then became possible to “mine” these
data sources for hidden patterns and knowledge. Data mining has been successfully ap-
plied in a wide range of domains extending from DNA data analysis [22] to financial data
analysis [5] to fraud detection [37]. Of the many issues that data mining raises, we consider
two in this paper:

• Private distributed data mining: Data may be distributed among multiple databases
owned by different entities. Distributed data mining is the acquisition of knowledge
from multiple databases, each of which may be owned by a different organization.
While distributed data mining has the potential to yield more precise knowledge or
knowledge that has wider applicability than the use of data owned by a single en-
tity, legal requirements of privacy (for example, in the case of medical records) or
corporate secrecy can prevent such collaborative data mining. The field of privacy-
preserving data mining [3, 35] concerns itself with algorithms and protocols that al-
low data owners to collaborate in such endeavors without any of the collaborators
being required to reveal any items from their databases. The two goals to achieve in
this setting are privacy (no “leakage” of original data) and communication efficiency
(minimizing the amount of data to be exchanged between the participants).

• Large databases and data streams: Algorithms that work on large databases and
data streams must be efficient in terms of I/O access. Since secondary-storage access
can be significantly more expensive than main-memory access, an algorithm should
make a small number of passes over the data, ideally no more than one pass. Also,
since main memory capacity typically lags significantly behind secondary storage,
these algorithms should have sublinear space complexity. Although the notion of
data streams has been formalized relatively recently, a surprisingly large body of re-
sults already exists for stream data mining [10, 1, 2, 8, 13, 18].

Most of the privacy-preserving protocols available in the literature convert existing data
mining algorithms or distributed data mining algorithms into privacy-preserving proto-
cols. The resulting protocols can sometimes leak additional information. For example, in
the privacy-preserving clustering protocols of [43, 31], the two collaborating parties learn
the candidate cluster centers at the end of each iteration. As explained in [29], this interme-
diate information can sometimes reveal some of the parties’ original data, thus breaching
privacy. While it is possible to modify these protocols to avoid revealing the candidate clus-
ter centers [7], the resulting protocols have very high communication complexity. In this
paper, we describe a k-clustering algorithm that we specifically designed to be converted
into a communication-efficient protocol for private clustering. The resulting protocol does
not leak any information about the original data. Our algorithm is also I/O-efficient in that
each data item is examined only once, and it only uses sequential access to the data. We
also present a modified form of our k-clustering algorithm that works for data streams. We
first overview related work and then describe our contribution in more detail.

1.1 Related Work

PRIVACY-PRESERVING DATA MINING Privacy-preserving data mining was introduced
by Agarwal and Srikant [3] and Lindell and Pinkas [35]. Both papers were for the se-
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cure construction of decision trees, albeit using completely different approaches. The for-
mer uses randomness to “perturb” the original data. Reconstruction algorithms are then
used to extract summary information for creating decision trees. The latter paper uses tech-
niques from cryptography and secure multiparty computation (SMC) [17], as do the results
presented here.
Theoretically, Yao’s general purpose secure circuit-evaluation protocol [47] solves any dis-

tributed two-party privacy-preserving data mining problem. As a practical matter, how-
ever, the circuits for even megabyte-sized databases would be intractably large. The alter-
native has been to find secure special-purpose protocols for specific data mining problems.
These protocols typically use Yao’s protocol for evaluating very small circuits in interme-
diate stages, but use other, more efficient, methods when examining the actual data.
Most results in privacy-preserving data mining assume that the data is either horizontally

partitioned (that is, each party to the protocol has some subset of the rows of an imaginary
“global database”), or vertically partitioned (that is, each party has some subset of the
columns of the “global database”) (e.g.,[12, 44, 32, 46]).
Privacy-preserving clustering has been previously addressed by Oliviera and Zaı̈ane [41],

Vaidya and Clifton [43], Jagannathan and Wright [29], Jha, Kruger, and McDaniel [31] and
Bunn and Ostrovsky [7]. Oliviera and Zaı̈ane’s work [41] uses data transformation in con-
junction with partition-based and hierarchical clustering algorithms, while the others use
cryptographic techniques to give privacy-preserving versions of the k-means clustering
algorithm. Vaidya and Clifton’s result [43] addresses privacy-preserving k-means cluster-
ing for vertically partitioned data, Jha, Kruger, and McDaniel’s [31] addresses horizontally
partitioned data, and Jagannathan and Wright [29] and Bunn and Ostrovsky [7] address
arbitrarily-partitioned data.
This paper presents a protocol for privacy-preserving clustering, based on a new algo-

rithm for k-clustering. The new privacy-preserving protocol leaks no information, has bet-
ter error in some cases, and is more input/output-efficient.

CLUSTERING Clustering is a well-studied combinatorial problem [24, 30, 23], and there
have been a large number of algorithms developed to solve the various formulations of the
problem. The task is to group similar items in a given data set into clusters. The goal is to
obtain a clustering that minimizes an objective function mapping a given clustering into a
numerical value.
The error-sum-of-squares (ESS) objective function is defined as the sum of the squares

of the distances between points in the database to their nearest cluster centers. The k-
clustering problem requires the partitioning of the data into k clusters with the objective
of minimizing the ESS. Lloyd’s algorithm [36] (more popularly known as the k-means al-
gorithm) is a popular clustering tool for the problem. This algorithm converges to a local
minimum for the ESS in a finite number of iterations. Ward’s algorithm [45] for hierarchical
agglomerative clustering also makes use of the notion of ESS. Although Ward’s algorithm
has been observed to work well in practice, it is rather slow (O(n3)) and does not scale well
to large databases.

STREAM DATA MINING ALGORITHMS Recently there have been a number of data mining
algorithms designed for scalability. A key constraint on these algorithms is that the input
is too large to fit in its entirety in main memory. Further, since secondary storage access is
very expensive in terms of time, it is preferable that the number of scans of the database
be limited. These constraints were formalized as the notion of a data stream by Henzinger,
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Raghavan and Rajagopalan [25], although prior results such as [4, 38] had been published
in this model. The well known clustering algorithm BIRCH [48], although not originally
defined as a data stream algorithm, fits this definition of data stream clustering.
Among the earliest results for data mining in the data stream model are the works by

Guha et al. [19, 18] for clustering. Another early work is by Domingoes and Hulten [10]
for decision trees. Charikar, O’Callaghan and Panigrahy have presented a constant factor
approximation algorithm for the k-medians problem for data streams [8]. Aggarwal et al.
have given algorithms for clustering data streams in which the clusters drift over time [1]
and for clustering in high dimensional data [2]. Drifting clusters have also been studied by
Fan [13].

1.2 Our Contributions

In this paper, we present a simple deterministic algorithm called ReCluster for I/O-efficient
k-clustering. This algorithm examines each data item only once and uses only sequential
access to the data. For fixed k, the time complexity of the algorithm is linear in the number
n of items in the database and the space complexity is O(log n). We present results from
the application of the algorithm to synthetic data and realistic data, and compare our re-
sults with the well-known iterative k-means clustering algorithm and BIRCH. Our results
show that ReCluster, on average, is more accurate in identifying cluster centers than the
k-means clustering algorithm and compares well against BIRCH. We note that although
there have been other clustering algorithms that improve on the k-means clustering algo-
rithm, this is the first for which an efficient cryptographic privacy-preserving version has
been demonstrated. ReCluster works only on numeric data. We also present a modified
form of the ReCluster algorithm called StreamCluster which is intended to work on data
stream inputs.
We also demonstrate that the ReCluster algorithm lends itself well to privacy-preserving

computation. Specifically, we present a privacy-preserving version of the ReCluster algo-
rithm, for two-party horizontally-partitioned databases. This protocol is communication-
efficient and it reveals only the final cluster centers (or the cluster assignments to data)
to both parties at the end of the protocol. This protocol does not reveal the intermediate
candidate cluster centers or intermediate cluster assignments.
Although an interesting clustering algorithm in its own right, ReCluster was explicitly de-

signed to be converted into a privacy-preserving protocol. This was motivated by the fact
that most of the existing efficient protocols for private k-clustering are based on Lloyd’s
k-means algorithm, with the same resulting clusters. All of them except [7] leak interme-
diate information that could potentially result in a breach of privacy. These protocols can
be made more secure but only at the cost of higher communication complexity. In [7],
Bunn and Ostrovsky describe a 2-party k-means clustering protocol that guarantees full
privacy. However, the communication complexity of this protocol is linear in the size of
the database, which is high when the size of the database is large.
An alternate way of solving this problem would be to develop privacy-preserving ver-

sion of other k-clustering algorithms. Many of them, however, have their own disadvan-
tages. Other well known k-clustering algorithms include CLARANS [40], BIRCH [48], and
STREAMLS [18]. CLARANS is an in-memory algorithm, and hence does not scale well
to large databases. Prasad and Rangan [34] presented a privacy-preserving protocol for
BIRCH on arbitrarily-partitioned databases. This algorithm, when reduced to the case of
horizontally-partitioned databases, results in a communication complexity of O(n), where
n is the size of the database. This can be rather high for large databases. Also, the amount
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of memory used for BIRCH is much higher than ReCluster (see Table 3). The STREAMLS
algorithm depends on repeatedly solving a facility-location problem using a local search
algorithm, and then finally applying a linear programming based clustering algorithm.
Each of these subroutines (local search and linear programming) can be complicated to
perform privately. In comparison, our privacy-preserving version of ReCluster is simple
and communication-efficient, and produces good clusters.

We start in Section 2 by introducing some cryptographic primitives we use in our privacy
preserving protocols. We present our k-clustering algorithm in Section 3. In Section 4, we
present experimental results comparing our algorithm with the k-means clustering algo-
rithm and BIRCH. We present the privacy-preserving clustering protocol with performance
analysis and comparison to other private clustering algorithms in Section 5.

2 Cryptographic Primitives

We now introduce some cryptographic primitives used in later sections.

Random Shares According to our privacy requirements, both parties should receive the
cluster centers at the end of the protocol, but all of the values computed in the intermedi-
ate steps of the algorithm should be unknown to either party. In our protocol, each com-
puted intermediate value in the communication phase, such as a candidate cluster center, is
shared as two uniformly distributed random values, with each party holding one of these
two values. Their sum is the actual intermediate value.

More formally, we say that Alice and Bob have random shares of a value x drawn from a field
F of size N (usually abbreviated to Alice and Bob have random shares of x) to mean that Alice
knows a value a ∈ F and Bob knows a value b ∈ F such that (a + b) mod N = x, where a
and b are uniformly random in field F .

Throughout the paper, we assume that a finite field F of suitable size N is chosen such that
all computations can be done in that field, and all computations throughout the remainder
of the paper take place in F .

Homomorphic Encryption Homomorphic encryption schemes [14] allow certain com-
putations on encrypted values. In particular, an encryption scheme is additively homomor-
phic if there is some operation ⊗ on encryptions such that for all cleartext values a and
b, E(a) ⊗ E(b) = E(a + b). Our solutions make use of a semantically secure additively
homomorphic encryption scheme. Examples, under suitable cryptographic hardness as-
sumptions, include [42, 9]. Other homomorphic encryption schemes include Boneh-Goh-
Nissim cryptosystem [6] that supports arbitrary addition and one multiplication and the
fully homomorphic encryption scheme [15] that supports evaluation of arbitrary circuits
over encrypted data without having to decrypt.

Secure Scalar Product Protocol One of the steps in the private clustering protocol re-
quires the secure computation of the scalar product of vector X = (x1, . . . , xn), held by
Alice, and Y = (y1, . . . , yn), held by Bob. They need to securely compute the scalar product
as sA +sB = X ·Y , where sA and sB are the random shares of Alice and Bob. Recall that all
computations in the paper are carried out modulo N . Our solution makes use of a secure
scalar product protocol that computes such shares, such as [16].
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Algorithm 1 ReCluster

Input: Database D, Integer k
Output: Cluster centers S

1. S′ = RecursiveCluster(D, 2k) // Produce 2k clusters

2. S = MergeCenters(S′, k) // Compress to k clusters

3. Output S

Algorithm 2 RecursiveCluster

Input: Database D, Integer k
Output: Cluster centers S

If ( |D| ≤ k ) then S = D
Else

1. D1 = First half of D

2. D2 = Second half of D

3. S1 = RecursiveCluster(D1, k)

4. S2 = RecursiveCluster(D2, k)

5. S = MergeCenters(S1 ∪ S2, k)

End If
Output S

Yao’s Circuit Evaluation Protocol When Alice has a vector X = (x1, ..., xn) and Bob has
Y = (y1, ..., yn), we use Yao’s protocol [47] to securely compute the index j such that xj +yj

is minimum.

3 The k-Clustering Algorithm

In this section we present our new algorithm, ReCluster, for k-clustering. We also present
an extension of the algorithm to data streams and a distributed (non-private) version of
ReCluster. Experimental results are given in Section 4.

3.1 The Basic ReCluster Algorithm

ReCluster makes the assumption that the size of the data set is known before running
the algorithm. Our algorithm runs in the typical “divide, conquer and combine” fashion
used in algorithms such as MergeSort. Strictly speaking, this strategy would require us
to divide the database into two equal halves, recursively produce k cluster centers from
each of the halves, and then “merge” these 2k centers into the k final centers. However,
we take a slightly different approach, similar to that used by Guha et al. in [19]. Instead
of generating k centers from each recursive call, we produce 2k cluster centers from each
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recursive call, and then merge the total of 4k centers thus received into 2k centers1. (That
is, the RecursiveCluster algorithm is initially invoked with the second input parameter
being set to 2k, where k is the desired number of clusters.) A final post-processing step
uses the same merge technique to produce the k final centers from the 2k clusters returned
from the top-most level of the recursion tree. The top level of ReCluster is presented in
Algorithms 1 and 2. The subroutine for merging clusters is described in Algorithm 3. This
latter algorithm depends on a notion of merge error which is described in Section 3.1.1. For
a data set of n elements, the overall time complexity of the algorithm is O(nk2).

3.1.1 Error Measure.

The key step in ReCluster is the merging of 4k centers into 2k centers after the two recursive
calls. For this step, we use a variation of the notion of error defined in Ward’s algorithm for
bottom-up hierarchical clustering [45]. Let C1 and C2 be two clusters being considered for a
merge at some stage. Associated with each cluster center C is a weight (denoted C.weight),
which is the number of objects that are assigned to that cluster. In Ward’s algorithm the
error of C1 ∪ C2 is defined as

errorw(C1 ∪ C2) =
C1.weight ∗ C2.weight ∗ dist2(C1, C2)

C1.weight + C2.weight
,

where dist(C1, C2) is defined as the Euclidean distance between the center of C1 and the
center of C2. ReCluster defines the error of the union as

errorr(C1 ∪ C2) = C1.weight ∗ C2.weight ∗ dist2(C1, C2).

In most situations, the pair of clusters that is chosen for merging is the same whether
we define error of the union as errorw or as errorr. However, there are conditions where
the choices made using the two error measures are different. Consider two cluster pairs
(Cp, Cq) and (Cs, Ct) such that dist(Cp, Cq) ≈ dist(Cs, Ct) and Cp.weight ∗ Cq.weight ≈
Cs.weight ∗ Ct.weight, but Cp.weight ≫ Cq.weight and Cs.weight ≈ Ct.weight. That is, the
distance between the cluster centers of the first pair is the same as the distance between the
cluster centers of the second pair, but cluster Cp has many more objects in it compared to
Cq , while clusters Cs and Ct have about the same number of objects.
If we use errorw to decide which of the two pairs gets merged, we would merge the pair

(Cp, Cq), while errorr would favor the merger of (Cs, Ct). See Figure 1. Our experiments in-
dicate that using errorr in ReCluster makes the algorithm less susceptible to noise, because
noise objects (which do not clearly belong to any cluster) resemble low-weight clusters.
Given this definition of error, the compression of a set S of 4k clusters into 2k clusters is

obtained by repeatedly:

1. choosing a pair of clusters Ci and Cj such that the error of their union is minimum
among all such pairs,

2. deleting from S the clusters Ci and Cj , and

3. inserting into S the new cluster Ci ∪ Cj .

The weight of this new cluster is Ci.weight + Cj .weight. See Algorithm 3.

1When the number of items in the database cannot be expressed in the form k2
x for some integer x, the

base case of the recursive function may end up producing clusters with fewer than k centers. This has been
experimentally seen to sometimes produce poor clusterings.
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Algorithm 3 MergeCenters

Input: Cluster centers S, Integer k
Output: Cluster centers S, such that |S| = k

1. While ( |S| > k )

(a) Compute the merge error for all pairs of centers in S.

(b) Remove from S the pair with the lowest merge error, and insert the center of the
merged cluster, with its weight as the sum of the weights of the pair.

End While

2. Output S

weight = 100

Cp Cq Cs Ct

weight = 2 weight = 14 weight = 14

Figure 1: The effect of choosing errorr over errorw. ReCluster prefers to merge Cs and Ct,
Ward’s algorithm would prefer to merge Cp and Cq .

3.2 Extension to Data Streams

In this section we modify the ReCluster algorithm to work on data streams. The main idea
is to eliminate recursion since the number of data items to be clustered is not known ahead
of time.

The algorithm (see Algorithm 4) can be said to be “incrementally agglomerative.” That
is, the algorithm merges intermediate clusters without waiting for all the data to be avail-
able. At the beginning of each iteration, the algorithm holds a number of intermediate
k-clusterings. We associate with each such k-clustering a level, a concept similar to the one
in [18]. When two k-clusterings at level-i are “merged” to form a new k-clustering, this
new clustering is said to be at level (i + 1). We also associate with each cluster a weight,
which is the number of data points in that cluster. Each cluster is represented by its center,
which is the mean of all points in it.

In each iteration, the algorithm adds the next k data points as a level-0 intermediate k-
clustering. If the algorithm detects two k-clusterings at level i in the list, these are “merged”
(using the MergeCenters routine, see Algorithm 3) into a k-clustering at level (i + 1).

When a k-clustering needs to be output after some points have been read from the data
stream, all intermediate k-clusterings at all levels are “merged” using MergeCenters into a
single k-clustering.

For a data stream of n elements, the overall time complexity of the algorithm is O(nk2).
The amount of memory required to store the O(log n

k
) intermediate k-clusterings is O(k log n

k
).
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Algorithm 4 StreamCluster

Input: Database D, Integer k
Output: Cluster centers S

Repeat as long as data remains:

1. Read the next k items from D as a level-0 k-clustering.

2. Add the level 0 clustering to the vector V of intermediate clusterings.

3. While V [last ].level = V [last − 1].level

(a) V [last − 1] = MergeCenters(V [last − 1] ∪ V [last ], k)

(b) V [last − 1].level = V [last − 1].level + 1

(c) Remove V [last ] from V .

4. If an output is needed, union all intermediate clusterings in V and return output from
MergeCenters.

3.3 Distributed k-Clustering Protocol for Two Parties

Following convention, we designate the two parties who wish to jointly compute the clus-
ter centers using their data as Alice and Bob. This distributed protocol forms the basis for
the privacy-preserving clustering protocol to be presented in Section 5. We will assume
that Alice holds the data set D1 and Bob holds D2. The protocol runs as follows:

1. Alice uses the ReCluster algorithm on the data set D1 to compute 2k intermediate
cluster centers.

2. Bob computes 2k cluster centers using his data set D2.

3. Alice sends her intermediate cluster centers to Bob.

4. Bob takes the union of all the intermediate clusters and uses the MergeCenters rou-
tine to obtain the k final cluster centers.

4 Experimental Results

In this section we present our experimental results that show the ability of ReCluster and its
extensions to accurately identify clusters, as measured by the error sum of squares. We ran
our experiments on a large number of synthetic and realistic data sets. All algorithms were
implemented in C++ and experiments were run on a Windows-based personal computer
with an AMD 3500+ CPU and 3 GB of main memory. We first describe in Sections 4.1
and 4.2 the datasets that we use. Results are given in Section 4.3 for the basic algorithm
and in Section 4.4 for the distributed algorithm.

4.1 Synthetic Data Generator

To test ReCluster’s ability to accurately identify clusters, we generated three types of syn-
thetic data sets, namely Random Centers, Grid data sets, and Offset Grid data sets. We de-
scribe these data sets below. These data sets are similar to the ones used in [48, 20, 21, 39].
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Parameter Value
Number of clusters, k 5
Min. number of points per cluster, nl 900
Max. number of points per cluster, nu 1100
Min. major radius of cluster, ral 30
Max. major radius of cluster, rau 50
Min. minor radius of cluster, rbl 30
Max. minor radius of cluster, rbu 50
Max. X-axis value, sw 500
Max. Y-axis value, sh 500
Add noise y

Table 1: Sample parameters for our synthetic data set generator while generating a Random
Centers data set

Each data set consists of points distributed in 2D space. Our synthetic data set generator
takes a number of parameters:

• The number k of clusters.

• The range [nl, nu] of the desired number of points in each cluster.

• The parameters sw and sh which denote the width and the height, respectively, of the
space in which data points are generated.

In one collection of data sets that we call Random Centers the clusters are chosen as el-
lipses with major radius ra chosen in the defined range [ral, rau] and minor radius rb chosen
in the defined range [rbl, rbu]. (When ra = rb we get circular clusters.) The cluster centers
are positioned randomly in the space within which points are generated. In grid data sets
and in offset grid data sets, circular clusters are chosen with radius r, with all clusters hav-

ing the same radius. The cluster centers are placed on a
√

k ×
√

k grid. In the case of the
offset grid, the cluster centers are then randomly perturbed with small values in the x and y
directions. After the center and radius of each cluster is finalized, the synthetic data gener-
ator then generates nc ∈ [nl, nu] points at random within the cluster. In all cases, in addition
to the points generated by the procedure above, we add 5% noise in the form of data points
uniformly distributed throughout the data set in order to explore how the algorithm per-
forms with noisy data. Table 1 illustrates a set of sample parameters for these data sets. For
each data set we ran the k-means algorithm 10 times, each run with a different randomly
chosen set of initial cluster centers. We compared the performance of ReCluster against
the average performance of the k-means algorithm.
Each synthetic data set used either uniform distributions over some intervals or normal

distributions for generating clusters. Our figures do not include any of the normally dis-
tributed data since the results were essentially the same as for uniform distributions. Our
experiments show that data ordering has a low effect on the output of our algorithm. This
is possibly because the MergeCenters routine acts as a global optimizer.

4.2 Realistic Data

We compared the error sum of squares (ESS) of ReCluster against BIRCH for the network
intrusion data set used in the 1999 KDD Cup [33]. This data set contains information about
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True centers ×107 Recluster centers ×107 Average for k-means centers ×107

5.52 5.71 7.25
8.14 8.87 11.99
8.77 9.31 14.1
5.68 5.71 7.42
6.13 6.34 7.68
6.59 6.85 8.88
7.48 7.52 13.35

10.04 10.69 14.84
5.65 5.64 11.91
6.55 7.02 8.60

Table 2: The error sum of squares for a subset of the Random Centers data sets. In each
case the number of clusters was 5, with approximately 10,000 points in each cluster. Noise
was added at the rate of 5%.

five million network connections. The vast majority of these data points are about benign
network connections. A small fraction of these connections represent four different kinds
of network intrusion attacks. We selected the 10% subset to run our experiments. Each
connection record is described in terms of 41 attributes, of which 34 are continuous. We
projected out the 7 symbolic attributes for our experiments. Also, we eliminated one outlier
record. We set k to 5 in our runs of ReCluster and BIRCH.

4.3 Results for ReCluster

We present below the results of our experiments on synthetic data sets and on the network
intrusion data set. In order to show the ability of ReCluster to accurately identify clusters
we compute the error sum of squares for the centers detected by ReCluster. For some of the
data sets we also visually present the clusters and the detected centers as a demonstration
of the clustering algorithm.
In Figure 2, we present the results from a typical experiment on a Random Centers data

set, which is a synthetically generated data set with randomly positioned cluster centers.
We created 50 such data sets. In 25 of the 50 cases we distributed data points using a
uniform distribution within each cluster, and the remaining data sets used Gaussian distri-
butions. Figure 2 shows a data set in which the points were distributed using the uniform
distribution. ReCluster does very well in identifying cluster centers, even in the presence
of noise. However, in four out of these 25 data sets ReCluster placed the center of a cluster
outside the cluster, albeit close to the cluster itself. See Figure 3 for such a data set. Also
shown in Figure 3 are the centers identified in the best run of k-means algorithm. On this
particular data set the k-means algorithm failed to identify all cluster centers on four of the
10 runs. In Table 2 we present the error sum of squares for ReCluster and k-means on 10 of
these Random Centers data sets.

The average running time for ReCluster over all the uniform distribution data sets, which
had about 51,000 points on average, was 1.06 seconds, and the average running time for
the k-means algorithm was 8.09 seconds.

In Figure 4, we present the results from experiments on a Grid data set, which is a synthet-
ically generated data set with cluster centers positioned on a grid. We ran our experiments

TRANSACTIONS ON DATA PRIVACY 3 (2010)



12 Geetha Jagannathan, Krishnan Pillaipakkamnatt, Rebecca N. Wright, Daryl Umano

X

XX

X
X

(a)

X

X
X

X

X

X

X

X

X

X

(b) (c)

Figure 2: The data set consists of about 10,000 points concentrated around each cluster
center plus 5% “noise” points occurring elsewhere. The points concentrated at each cluster
center are illustrated by a large open ellipse around each center. The noise points are shown
as points. Cluster centers as identified by (a) ReCluster (ESS = 5.71 × 107) , (b) the worst
run of k-means algorithm (ESS = 8.49× 107) and (c) the best run of k-means algorithm (ESS
= 5.48 × 107).
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Figure 3: An example data set in which ReCluster did not accurately identify all cluster
centers. The data set consists of about 10,000 points concentrated around each cluster center
plus 5% “noise” points occurring elsewhere. The points concentrated at each cluster center
are illustrated by a large open ellipse around each center. The noise points are shown as
points. Also shown are the centers identified by the best run of the k-means algorithm.

on two such data sets and Figure 4 represents one of them. As can be seen, ReCluster ac-
curately identifies the centers of all clusters. On the other hand, for this data set not even
the best run of the k-means algorithm identified all 25 cluster centers. The worst run of
k-means did not identify even half of the cluster centers. In Figure 5 we present the results
on an Offset Grid data set. ReCluster was quite successful in identifying all cluster centers,
which k-means did not even on its best run.
In Table 3 we present the result of our experiment on the Network Intrusion data. As our

results indicate, ReCluster does extremely well relative to BIRCH in this data set. BIRCH
needs more than 32 times as much memory as used by ReCluster, to find five clusters. Even
when given 128 times as much memory as ReCluster, BIRCH does not perform nearly as
well as. Perhaps with much more memory BIRCH could perform better.

4.4 Results for Distributed ReCluster

The synthetic data set generator can also generate data sets for the two party distributed
k-clustering problem. In addition to the parameters mentioned in Section 4.1, the user can
input how the clusters are to be apportioned between the two parties, and how much data
about one party’s clusters are also known to the other party.

Although similar in its essentials to ReCluster, the distributed clustering protocol in Sec-
tion 3.3 is not identical to ReCluster. The ReCluster algorithm splits the data set into two
equal halves, then recursively clusters each half, following which it merges the clusters
from both halves. The distributed algorithm makes no assumptions about the relative sizes
of the data sets held by the two parties and one party could have far more data than the
other. Given this distinction, it is not immediately obvious that the distributed clustering
algorithm would have properties similar to that of ReCluster. To test the effectiveness of
this distributed algorithm, we ran experiments where the parties had different proportions
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Figure 4: Cluster centers identified in a grid data set. The data set consists of about 1000
points concentrated around each grid point plus 5% “noise” points occurring elsewhere.
The points concentrated at each grid point are illustrated by a large open circle around
each grid point. The noise points are shown as points. On the left are cluster centers
identified by ReCluster. On the right are the best (identified by small filled circles) and
worst (identified by small open circles) runs of the k-means algorithm.
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Recluster ESS = 3.37 × 107 Average k-means ESS = 1.01 × 108

Figure 5: Cluster centers identified in an offset grid data set. The data set consists of about
1000 points concentrated around each grid point plus 5% “noise” points occurring else-
where. The points concentrated at each grid point are illustrated by a large open circle
around each grid point. The noise points are shown as points. On the left are cluster cen-
ters identified by ReCluster. On the right are the best (identified by small filled circles) and
worst (identified by small open circles) runs of the k-means algorithm.
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Algorithm Mem. Allowed ESS
(× 24000 bytes)

ReCluster 1 4.11259E14
BIRCH 1 *
BIRCH 2 *
BIRCH 4 *
BIRCH 32 *
BIRCH 64 4.83018E17
BIRCH 128 4.8299E17

Table 3: Comparison of the error sum of squares for the network intrusion 10% data set.
An asterisk indicates that BIRCH failed to find five clusters due to insufficient memory.

of the total data. In one set of experiments, the first party had twice as many data points
per cluster as the second. In the second set, the first party had five times as many data
points as the second. Within each set, we also varied the “separation” between the two
parties so that in some cases, the two parties had knowledge of no clusters in common.
That is, some clusters were entirely “owned” by the first party and the others were entirely
“owned” by the second. In other cases, each party had some fraction of the data points that
belong to clusters that were primarily owned by the other party. In all cases, we compared
the results to the k-means clustering algorithm on the combined data. Some typical runs
are presented in Figures 6 and 7. As can be seen, the distributed clustering protocol has
performance close to that of k-means.

5 Privacy-Preserving k-Clustering Protocol

We now describe our privacy-preserving protocol for k-clustering based on the distributed
ReCluster algorithm presented in Section 3. We begin with a description of the privacy
model under which our protocol operates.

5.1 Our Model

Following convention, we designate the two parties who wish to collaborate as Alice and
Bob who own databases D1 = {d1, . . . , dm} and D2 = {dm+1, . . . , dn}, respectively. They
wish to jointly compute a k-clustering of D1 ∪ D2. At the end of the protocol both parties
learn the final k cluster centers. The parties learn nothing else.

Suppose there were a trusted third party to whom Alice and Bob could send their data.
The trusted third party would then compute the clustering and send the cluster centers to
Alice and Bob. However, in many settings, there is no such trusted party. Secure multiparty
computation seeks protocols that can carry out the required computation without requiring
a trusted third party and without any party learning anything about the data other than
their output (and what is implied by it). In this paper, we assume that Alice and Bob are
semi-honest, meaning that they follow their protocol as specified, but may try to use the
information they have learned (such as messages they receive in order to learn more than
they are supposed to).
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Figure 6: Some typical runs of the distributed clustering algorithm. The data sets consists
of about 20,000 points concentrated around each cluster center owned by the first party,
10,000 points concentrated around each cluster center owned by the second party, plus
5% “noise” points occurring elsewhere. The points concentrated at each cluster center are
illustrated by a large open ellipse around each center. The noise points are shown as points.
Figures (a) and (b) are example data sets in which the first party “owns” the data for three
of the clusters and the second party has data for the two remaining clusters. Figures (c) and
(d) are example data sets in which the first party has data for four of the clusters and the
second party has data for only one cluster. In Figures (a) and (c) each party has 25% of the
data from the other party’s clusters. In Figures (c) and (d) each party has no information
regarding the clusters of the other party. In all cases the letter X marks the centers detected
by the distributed clustering protocol. Also shown are the error sum of squares value for
distributed ReCluster and the average error sum of squares for k-means.

TRANSACTIONS ON DATA PRIVACY 3 (2010)



Communication-Efficient Privacy-Preserving Clustering 17

1

1

1

2

2

X

X

X

X

X 1

1

1

2

2 X

X

X

X

X

Recluster ESS = 2.30 × 107 Recluster ESS = 2.54 × 107

k-means ESS = 3.97 × 107 k-means ESS = 2.56 × 107

Figure 7: Typical runs of the distributed clustering algorithm on more “skewed” data. Clus-
ters owned by the first party have five times as many points as clusters owned by the sec-
ond party (5000 points on average versus 1000 points on average). Each party has no data
about the clusters owned by the other party. In all cases the letter X marks the centers
detected by the distributed ReCluster protocol. Also shown are the error sum of squares
value for distributed ReCluster and the average error sum of squares for k-means.

5.2 Overview of the Private Clustering Protocol

We now describe the private protocol. Alice and Bob separately use the ReCluster algo-
rithm to compute 2k clusters each from their own shares of the data. Next, they randomly
share their cluster centers with each other using the permute share protocol described in
detail in Section 5.3. At this point, Alice and Bob have random shares of 4k cluster cen-
ters. They again use the permute share protocol to prevent each party keeping track of the
cluster centers across iterations.
The two parties use the secure merge clusters protocol, described in detail in Section 5.4,

to iteratively merge the 4k clusters into k clusters. If the input to the merge clusters proto-
col is j cluster centers, then at the end of the protocol, Alice and Bob obtain as output a ran-
dom sharing of j−1 cluster centers. At the end of 3k joint executions of the merge clusters
protocol, they obtain a random sharing of k cluster centers. The parties may send each
other their cluster center shares so that they obtain the actual cluster centers of the joint
data.2 This privacy-preserving ReCluster protocol does not leak any intermediate informa-
tion.
Algorithm 5 illustrates the overall privacy-preserving ReCluster protocol. In the rest of

this section, we describe in detail the subprotocols used. In Section 5.3, we describe the
protocol that securely permutes and shares data between two parties. In Section 5.4, we
present a secure protocol that merges clusters.

5.3 Secure Protocol to Share Data

When Alice has a vector of clusters C of the form ((c1, w1), . . . , (ck, wk)), this protocol helps
Bob to obtain a permuted random share of the vector C. (Here each ci is a cluster center,

2If they wish to learn the assignment of the cluster numbers to the objects they own, they can securely compute
the cluster numbers using the shared cluster centers without revealing the cluster centers.
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Algorithm 5 Privacy-preserving k-clustering protocol

Protocol Private K Clustering

Input: Database D consisting of n objects, where Alice owns D1 = (d1, . . . , dm)
and Bob owns D2 = (dm+1, . . . , dn),
and an integer k denoting the number of clusters.

Output: Assignment of cluster numbers to objects

1. Alice computes using the ReCluster algorithm 2k cluster centers from her data objects
{d1, . . . , dm} and Bob computes using the ReCluster algorithm 2k cluster centers from
his data objects {dm+1, . . . , dn}.

2. Alice and Bob jointly share the cluster centers computed in Step 1 with each other.

(a) Let (c1, w1), . . . , (c2k, w2k) denote Alice’s cluster centers. Here ci denote
the ith center and wi denotes its corresponding weight. Similarly let
(c2k+1, w2k+1), . . . , (c4k, w4k) denote Bob’s cluster centers.

(b) Bob chooses a random permutation φ1 and random values r1, . . . , r2k,
s1, . . . , s2k. They engage in a secure permute share protocol and obtain random
shares of Alice’s 2k cluster centers.

(c) Alice chooses a random permutation φ2 and random values p1, . . . , p2k,
q1, . . . , q2k. They engage in a secure permute share protocol and obtain random
shares of Bob’s 2k cluster centers.

(d) Now Alice has (cA
1 , wA

1 ), . . . , (cA
4k, wA

4k) and Bob has (cB
1 , wB

1 ), . . . , (cB
4k, wB

4k). Bob
chooses a random permutation φ3 and random values α1, . . . , α4k, β1, . . . , β4k.
They engage in a secure permute share protocol and obtain random shares of
Alice’s data.

(e) Bob adds the shares he obtains from Step 2d to his data. Alice chooses a random
permutation φ4 and random values γ1, . . . , γ4k, δ1, . . . , δ4k. They engage in a
secure permute share protocol and obtain random shares of Bob’s data. Alice
adds the shares she obtains from Step 2e to her data.

At the end of Step 2, denote Alice’s share of 4k cluster centers by
(cA

1 , wA
1 ), . . . , (cA

4k, wA
4k) and Bob’s share by (cB

1 , wB
1 ), . . . , (cB

4k, wB
4k).

3. Repeat the protocol merge clusters 3k times to merge 4k clusters into k clusters.
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and wi is its weight.) At the beginning of the protocol, Alice and Bob agree on a homo-
morphic encryption scheme. Bob chooses a random permutation φ and a random vector
R = ((r1, s1), . . . , (rk, sk)). At the end of the protocol Bob holds φ(R) and Alice receives
φ(C + R). This protocol is similar to the permutation protocol introduced by Du and Atta-
lah [11]. We briefly describe the protocol in Algorithm 6.

COMMUNICATION AND COMPUTATIONAL COMPLEXITY Alice and Bob send k encrypted
pairs to each other. If we assume that it takes c bits to represent each encryption then the
total communication complexity is O(kc). The estimation of the computational complexity
involves the counting the number of encryptions, decryptions and exponentiations. Alice
performs O(k) encryptions and O(k) decryptions, while Bob performs O(k) encryptions.
The number of exponentiations required by both Alice and Bob is O(k).

PRIVACY If Alice and Bob were to use a trusted third party, then at the end of the protocol,
Alice learns φ(C + R) and Bob learns φ(R). In our privacy-preserving protocol, Alice and
Bob communicate using a semantically secure encryption scheme. Thus, Alice learns only
her output and nothing else.

Algorithm 6 Secure protocol to share data

Protocol permute share

Input: Alice has a vector of cluster centers C of the form ((c1, w1), . . . , (ck, wk)),
Bob has a random permutation φ and a random vector R = ((r1, s1), . . . , (rk, sk)).

Output: Alice obtains φ(C + R) as output.

1. Alice chooses a key pair (pk, sk) and sends the public key pk to Bob.

2. Alice computes the encryption of the vector C as ((E(c1), E(w1)), . . . , (E(ck), E(wk)))
and sends to Bob.

3. Bob uses the property of the homomorphic encryption scheme to compute φ((E(c1 +
r1), E(w1 + s1)), . . . , (E(ck + rk), E(wk + sk))) and sends to Alice.

4. Alice decrypts to obtain her share φ((c1 +r1, w1 +s1), . . . , (ck +rk, wk +sk)) and Bob’s
share is φ((−r1,−s1), . . . , (−rk,−sk)).

5.4 Secure Protocol to Merge Clusters.

We now describe a protocol that securely merges m clusters into m − 1 clusters where the
cluster centers are shared between Alice and Bob. Let {(cA

1 , wA
1 ), . . . , (cA

m, wA
m)} denote Al-

ice’s share of the cluster centers and {(cB
1 , wB

1 ), . . . , (cB
m, wB

m)} denote Bob’s share of the
cluster centers. Here c’s denote the cluster centers and w’s denote the weight of the corre-
sponding clusters, where cA

i = (aA
i1, . . . , a

A
iℓ), cB

i = (aB
i1, . . . , a

B
iℓ) for 1 ≤ i ≤ m and ℓ denotes

the number of attributes.
Alice and Bob jointly compute the merge error for all pairs of clusters. For two clusters Ci

and Cj , for 1 ≤ i < j ≤ m, the merge error is given by

error(Ci ∪ Cj) = Ci.weight ∗ Cj .weight ∗ (dist(Ci, Cj))
2
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= (wA
i + wB

i ) ∗ (wA
j + wB

j ) ∗ (dist(Ci, Cj))
2

= (wA
i ∗ wA

j + wB
i ∗ wB

j + (wB
i ∗ wA

j + wA
i ∗ wB

j )) + (dist(Ci, Cj))
2

where
(dist(Ci, Cj))

2 =

(dist((aA
i1 + aB

i1, . . . , a
A
iℓ + aB

iℓ), (a
A
j1 + aB

j1, . . . , a
A
jℓ + aB

jℓ))
2

=

ℓ∑

k=1

((aA
ik + aB

ik) − (aA
jk + aB

jk))2

=
ℓ∑

k=1

(aA
ik − aA

jk)2 +
ℓ∑

k=1

(aB
ik − aB

jk)2 + 2
ℓ∑

k=1

(aA
ik − aA

jk)(aB
ik − aB

jk)

The first term of the distance function is computed by Alice and the second term is com-
puted by Bob. Alice and Bob use a secure scalar product protocol to compute the random
shares of the third term. Similarly the scalar product protocol can be used to compute the
random shares of (wB

i ∗ wA
j + wA

i ∗ wB
j ). We have

error(Ci ∪ Cj) = eA
ij + eB

ij .

where eA
ij is the random share of the error known to Alice and eB

ij is the random share of
the error known to Bob, and

eA
ij = (wA

i ∗ wA
j ) + αij +

ℓ∑

k=1

(aA
ik − aA

jk)2 + γij

eB
ij = (wB

i ∗ wB
j ) + βij +

ℓ∑

k=1

(aB
ik − aB

jk)2 + δij

αij + βij = (wB
i ∗ wA

j + wA
i ∗ wB

j ))

γij + δij = 2

ℓ∑

k=1

(aA
ik − aA

jk)(aB
ik − aB

jk).

All of these computations are done in a finite field of size N .

Alice and Bob have m(m−1)
2 -length vectors (eA

ij) and (eB
ij), respectively, where 1 ≤ i < j ≤

m, with m being the number of clusters. They securely compute the indices i and j such
that (eA

ij) + (eB
ij) is minimum using Yao’s circuit evaluation protocol [47]. Both Alice and

Bob learns the indices i and j. Since m2 is typically quite small, particularly in comparison
to the number of data items, the overhead this requires should be fairly small.
The next step is to eliminate the ith and the jth cluster centers and jointly compute the

new cluster center and the corresponding weight as random shares. The pth coordinate of
the new cluster center is given by

wi ∗ aip + wj ∗ ajp

wi + wj

=
(wA

i + wB
i ) ∗ (aA

ip + aB
ip) + (wA

j + wB
j ) ∗ (aA

jp + aB
jp)

wA
i + wB

i + wA
j + wB

j

This can be computed as random shares using a secure scalar protocol [16] and a weighted-
mean protocol [31].
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COMMUNICATION AND COMPUTATIONAL COMPLEXITY For each pair of clusters this
protocol computes the merge error, finds the indices for which the error is minimum and
recomputes the new cluster center and weight for the merged pair of clusters. Each ob-
ject has ℓ components. Communication is involved when the two parties engage in the
secure scalar product protocol to compute the merge error of each pair of clusters. The
scalar product protocol is invoked once between two vectors of length ℓ. The communica-
tion complexity for one invocation of the scalar product protocol is O(cℓ). Hence, O(m2)
pairs of error computations involve a communication complexity of O(m2cℓ), where c is
the maximum number of bits required to represent each encryption.

Yao’s circuit evaluation protocol [47] is invoked once per comparison and it takes O(d) bits
of communication, where d is the number of bits required to represent each component.
The total communication for finding the minimum of m2 elements is O(m2cd). Recom-
puting the cluster centers and the corresponding weights for the merged clusters involve
constant bits of communication. The total communication complexity for one invocation
of secure merge clusters protocol is O(m2cd) + O(m2cℓ) = O(m2c(d + ℓ)).

For the merge clusters protocol, a secure scalar product protocol between vectors of length
ℓ is executed for each pair of clusters. For each execution of the scalar product, Alice per-
forms ℓ encryptions and one decryption and Bob performs ℓ exponentiations and one en-
cryption. So, the overall computational complexity for an invocation of the merge clusters
protocol is O(m2ℓ) encryptions and O(m2) decryptions for Alice, and O(m2ℓ) exponentia-
tions and O(m2) encryptions for Bob.

PRIVACY The merge clusters protocol securely merges m clusters into m−1 clusters with-
out revealing any information. At the beginning of the protocol, the initial cluster centers
and the weights are randomly shared between Alice and Bob. The merge error of the cluster
pairs are calculated as random shares between Alice and Bob using the scalar product pro-
tocol. The scalar product protocol leaks no information and returns only random shares.
Yao’s circuit evaluation protocol securely computes the cluster pairs that gives a minimum
error. The output of the protocol is a random share of the merged m − 1 cluster centers.

5.5 Overall Privacy and Performance of the Private ReCluster Protocol

PRIVACY For privacy requirements, we compare this protocol with the one that uses the
trusted third party (TTP). When a TTP is used the two parties send the data objects owned
by them to the TTP. The TTP computes the cluster centers and send them to both parties.
Both parties do not receive any other additional information other than the k cluster cen-
ters.

In our privacy-preserving clustering protocol, both parties compute 2k clusters each inde-
pendently from the data objects owned by them. They communicate with each other when
they merge the 4k clusters into k clusters. The merge clusters protocol does the merging
using secure permute share protocol, the scalar product protocol, and the Yao’s protocol.
These protocols are secure. They do not leak any information. The cluster centers at the
end of the merge clusters protocol are obtained as random shares between the two par-
ties. When the parties need to compute the cluster centers they exchange their shares to
each other. All the intermediate results are also available as random shares between the
two parties. Neither party can learn any information from the encrypted messages that
are communicated since the encryption scheme chosen is semantically secure. Hence the
privacy-preserving ReCluster protocol is secure and does not leak any information.
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COMMUNICATION AND COMPUTATIONAL COMPLEXITY Alice and Bob initially compute
2k clusters each from their own data. They invoke the permute share protocol four times
to obtain a share of each others data. This requires a communication of O(kc) bits where
c is the maximum number of bits required to represent each encryption. Alice and Bob
jointly invoke the merge clusters protocol 3k times to compute k cluster centers from 4k
cluster centers. Each invocation of the merge clusters protocol involves a communication
of O(k2c(d + ℓ)) bits, where ℓ is the number of attributes in each row of the table, and d
is the maximum number of bits required to represent a database entry. Hence the overall
communication complexity is O(k3c(d + ℓ)) bits.

In Step 1 of Algorithm 5, Alice and Bob independently compute 2k clusters from their
own data. This involves a time complexity of O(nk2). The sharing of the data between Al-
ice and Bob in Step 2 requires O(k) encryptions and O(k) decryptions for Alice, and O(k)
encryptions and O(k) decryptions for Bob. They also perform O(k) exponentiations. The
merge clusters protocol is invoked 3k times. The computational complexity is O(k3ℓ) en-
cryptions, O(k3) decryptions for Alice, and O(k3ℓ) exponentiations and O(k3) encryptions
for Bob.

We next compare the performance of our new privacy-preserving protocol with earlier
protocols for k-clustering [43, 31, 29, 7, 34]. All of these results, except [34], were based on
the distributed k-means clustering algorithm. The k-means algorithm computes candidate
cluster centers in an iterative fashion. The first three of these protocols reveal the candi-
date cluster to which each object has been assigned. As explained in [29], this intermediate
information can sometimes reveal some of the parties’ original data, thus breaching pri-
vacy. This leak can be prevented by having the cluster assignments shared between the
two parties. Bunn and Ostrovsky give a secure protocol that does not leak this informa-
tion [7]. However, this protocol has a large communication complexity of O((n + k)t) for
horizontally partitioned data, where t is the number of iterations of the k-means algorithm.
In the expected setting, where n is very large, this has a substantial impact. Prasad and
Rangan [34] presented a privacy-preserving protocol for BIRCH on arbitrarily-partitioned
databases. This algorithm, when reduced to the case of horizontally-partitioned databases,
results in a communication complexity of O(n), where n is the size of the database. This is
can be rather high for large databases.

Our protocol suffers from neither of these drawbacks. Specifically, the communication
complexity does not depend on n. Although, the complexity is cubic in k, for large n and
small k, our protocol is not significantly slower than the k-means protocol for horizontally
partitioned data [31]. Further, it does not leak any intermediate information. We note
that hierarchical agglomerative clustering algorithms, such as Ward’s, can be made private
using the same techniques used in this paper. However, the resulting private protocol
would have a communication complexity of Θ(n3).

6 Conclusions

This paper makes two major contributions. First, we present a simple deterministic algo-
rithm for I/O-efficient k-clustering. This algorithm examines each data item only once and
uses only sequential access to data. We present extensions of the algorithm to data streams.
Second, we present a privacy-preserving protocol for k-clustering based on our clustering
algorithm. This protocol is communication efficient and does not reveal the intermediate
candidate centers or cluster assignments.
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