
TRANSACTIONS ON DATA PRIVACY 2 (2009) 207–224

A Graphical User Interface for
Microdata Protection Which Provides
Reproducibility and Interactions:
the sdcMicro GUI
Matthias Templ∗,∗∗, Thomas Petelin∗

∗Department of Statistics and Probability Theory, Vienna University of Technology, Wieder Hauptstr. 8-10, 1040

Vienna, Austria. ∗∗Department of Methodology, Statistics Austria, Guglgasse 13, 1110 Vienna, Austria.

E-mail: templ@tuwien.ac.at

Abstract. The proposed graphical user interface (GUI) for microdata protection serves as an easy-
to-handle tool for users who want to use the sdcMicro package for statistical disclosure control but
are not familiar with the native R command line interface. In addition to that, interactions between
objects that result from the anonymization process are provided within this GUI. This allows an
automated recalculation and display of frequency counts, individual risk, information loss and data
utility after each anonymization step. Furthermore, the code of every anonymization step carried out
within the GUI is saved in a script, which can easily be modified and re-used.

The tool is open-source and can be downloaded for all platforms from the comprehensive R archive
network (CRAN). A detailed description of the design of this GUI is given, which allows researchers
and users to enhance or modify the tool.

Keywords. Official Statistics, Microdata Protection, R, Graphical User Interface.

1 Introduction

Microdata is information at the level of individual respondents. For instance, information
about the address, hometown, education level, employment status, age per person in a
survey. This kind of information is needed for research on various topics.

In fact, an increasing demand for microdata among researchers has been noted over the
last few years. However, microdata must keep up the required statistical privacy, for ex-
ample, when data is provided to researchers coming from other institutions as the data
holders.

Although data privacy is regulated differently in almost all countries, the privacy of any
statistical unit must be preserved in general, i.e. the risk of re-identification should be low.

To eliminate or at least minimize the risk of re-identification, perturbation methods for the
anonymization of microdata could be applied to the raw data. Perturbation methods can
be separated into two groups due to the distribution of the (key) variables.

207

208 Matthias Templ, Thomas Petelin

sdcMicro [10, 9] is a highly flexible package to generate anonymized microdata files [for
applications, see, e.g., 6]. It includes all methods of the popular closed-source µ-Argus soft-
ware [5] plus several new ones [see, e.g., 13, 9, 11, 12] and it is open source and distributed
via CRAN.

1.1 Categorical Variables

The main goal is to reach both a low re-identification risk and a minimum modification of
the data. The general approach to reach anonymity of categorical variables is an explana-
tory one [9], i.e. by trying out different recodings, considering limitations which may given
by subject matter specialists. To achieve this goal one can use the package sdcMicro [10]
and the easy-to-use GUI of this package.
At the end of such an anonymization process, some specific values may be suppressed in
an optimal way (minimizing a cost function, see the sdcMirco manual [10], for example).

1.2 Numerical Variables

In comparison to categorical variables, almost all numerical observations are unique. A set
of numerical variables could be used to match an observation to a specific individual. The
aim is to keep the structure of the dataset while minimizing the risk of re-identification by
applying perturbation to the data.

The outline of the paper is as follows: Section 2 reports all functions of sdcMicro which
are fully supported by the GUI. The advantages of this GUI are outlined as well as the main
features of the GUI are presented. Finally, in Section 4 details about the implementation
are provided. Since the software is an open-source project, it needs such accompanying
information to allow for enhancement or modification of the GUI by other institutions,
users and researchers.

2 Supported Functionality from sdcMicro

Although every function and command can be applied within the GUI script window (see
Figure 7), Figure 1 and the following list give an overview of the implemented sdcMicro
functions which are explicitly supported by the GUI.

• freqCalc(): Fast computation of frequency counts on unit level. One of the two
basic functions needed for this package to do further operations.

• indivRisk(): Estimation of the individual risk for each unit using the Benedetti-
Franconi model [see, e.g., 4]. After the risk is computed, the function localSupp()
could be used for the protection of values at high individual risk, for example.

• plot.indivRisk(): A plot of an interactive histogram or empirical cumulative
distribution function curve with interactive sliders. For objects of class “indivRisk”
only the command plot() is needed.

• localSupp(): A simple algorithm to perform local suppression. This function sup-
presses values with a high risk of re-identification.

TRANSACTIONS ON DATA PRIVACY 2 (2009)

The sdcMicro GUI 209

Figure 1: Functions which are supported by the GUI and their relationship.

• localSupp2Wrapper(): This is a wrapper for localSupp2() which is a more so-
phisticated version of localSupp(). It guarantees k-anonymity [7] and the impor-
tance of variables can be determined (the more important, the fewer suppressions).

• globalRecode(): A simple procedure to group and (re)label a variable.

• microaggregation(): Five methods (out of more than 10 in sdcMicro), namely
RMD ([8]), pca (see, e.g., [1]), clustppca [8], influence [8] are supported by the GUI.

• addNoise(): This function supports different methods to perform perturbation of
numerical variables (e.g., by correlated noise [2], [the implemented methods are listed
in 9]).

• Certain print and summary methods for specific objects.

Some of these functions are designed to work with categorical variables and others with
numerical variables. Figure 1 shows also which function is assigned to what kind of vari-
able type and the relations between the functions.

3 The sdcMicro GUI

3.1 Advantages of the GUI Compared to the CLI Version and to Other
GUI’s for Microdata Protection

It is well known that command-line interfaces imply a steep learning curve, especially
when using a object-oriented programming language as R. Often, a command-line in-
terface may allow for greater efficiency and productivity once the language and specific
commands are learnt, but reaching this level may take a long time. While experienced

TRANSACTIONS ON DATA PRIVACY 2 (2009)

210 Matthias Templ, Thomas Petelin

researchers may be able to work with the sdcMicro package using the command-line
interface of R, many users prefer and may need a software which provides a practical easy-
to-use tool to anonymize their data sets.

In fact, the popular software µ-Argus has provided a graphical user interface for many
years (but it does not allow access to a command-line interface). However, users may be
handicapped by restrictions of this graphical user interface because results are not repro-
ducible.

The proposed GUI provides full functionality of the main functions of sdcMicro and
offers some more features to the users, for example:

• comprehensive overview of the main functions and their output (see, e.g., Section 3.2)

• facilities to rename and regroup categories and to change values of a variable (see
Section 3.5.1)

• automated recalculation of frequencies and individual risk after each step (see Sec-
tion 3.5.1)

• display of the output of the frequency and risk estimation interactively within the
GUI (see Section 3.5.1)

• recording of the code and the selected values after each step (see Section 4.4)

• possibility to save/load/edit a script for later re-use (see Section 4.4)

• (R specific) no need to manually re-assign computed data to a data frame

• simplified load / save data option

In statistics, it is very important that graphical user interfaces allow to reproduce any re-
sult easily. This is very important during the process of data anonymization. If the data
has changed it is often necessary to undo the last few operations on the data without ap-
plying all the previous mouse clicks on the data set again. This is solved within the GUI by
recording all steps and parameters in a script.

Compared to the well-known µ-Argus software for microdata protection [5], the sdcMicro
GUI provides additionally flexibility due to the automated recalculation and display of the
most important estimations results, and the possibility to re-run all the previous mouse
clicks by loading a saved script (which can also be modified) without any repetition of
clicks.

The anonymization of data is a highly interactive process [see, e.g., 6, 9]; for example,
recodings are tried out but restored whenever the information loss is too high or the re-
identification risk is not reduced. Thus, the interactive features of the GUI are absolutely
necessary for an effective anonymization of microdata.

3.2 Main Window

The main window (see Figure 2) offers direct access to all available functions. It is designed
to give a brief summary of the frequency calculation and risk estimation and provides two
sets of buttons for operations to use with categorical and numerical variables.

TRANSACTIONS ON DATA PRIVACY 2 (2009)

The sdcMicro GUI 211

Figure 2: Main window of the sdcMicro GUI. Specific variables of the µ-Argus test data
set are already selected. This data set is accessible within the sdcMicro package but can
also be downloaded from the website of the CASC project (http://neon.vb.cbs.nl/casc/)

TRANSACTIONS ON DATA PRIVACY 2 (2009)

212 Matthias Templ, Thomas Petelin

Figure 3: Menu options

3.3 Menu

As mentioned before, by using the GUI a user does not have to use R commands to load,
choose and save a dataset. Also the possibility to load a script including the code is avail-
able via the menu. For a detailed description of this part, see 3.7.

3.4 Variable Selection

After choosing a dataset to work on, the variable selection functionality must be used to
determine those variables to be anonymized. This can be done by clicking on the Select
Variablesmenu. Whenever this button is clicked, another window pops up (Figure 4) for
variable selection. Most functions only apply to categorical or numerical variables; there-
fore a pre-selection is advantageous (the same concept is used by the µ-Argus software).
The user has to choose which variables belong to which groups of variables and if the data
provides sampling weights the user has to choose a weight variable as well.

3.5 Categorical Variables

3.5.1 Recoding

By clicking on the Global Recode button (see Figure 2) a window pops up (Figure 5) in
which the user is able to modify categorical variables. Whenever a recoding is done, the
two frames automatically refresh and a summary is displayed. Global Recode offers the
option to convert a categorical variable directly to the type factor or split it up, reassign
labels for the single groups and create a factor out of it.

By clicking on the Rename/-group factor vars1 button (see Figure 2), a window to
rename and group categories of a variable pops up (see Figure 6). For example, standard
recodings such as municipality ⇒ Länder can be easily made after clicking on the button
rename. In Figure 6 the category adult is replaced by age18plus. Even groupings can easily
be made when selecting categories and hitting the group button. The same window as in
Figure 6 (window at the right hand side) pops up and a new name of this group can be
assigned. These functionalities allow for convenient modification of categorical variables
without using the powerful R command-line interface.

The code window (see Figure 7, accessible by the “experts only” frame, see Figure 2)
gives users with R knowledge the possibility to use the GUI and additionally manipulate
and work with the data using the R command-line interface. The user can access the current

1A factor type vector contains a set of numeric codes with character-valued labels.

TRANSACTIONS ON DATA PRIVACY 2 (2009)

The sdcMicro GUI 213

modified dataset from the GUI in the code window, apply any R command (working in
an specific environment, see Section 4.2) and continue to use the GUI with the modified
dataset.

3.5.2 Local Suppression

Figure 8 is accessible by clicking on the button for Local suppression (picture on the
left-hand side of Figure 8) and Local Suppression 2 wrapper (picture on the right-
hand side) on the main window. Local suppression is designed to suppress values in one
variable in according to a chosen threshold of risk. The other function, localSupp2Wrapper(),
tries to achieve k-anonymity with all selected categorical variables by a certain importance.
The more important a variable, the lower the amount of suppressions it suffers. If the
importance for a variable is set to 1, no additional suppressions are carried out for this
variable.

3.6 Numerical Methods

The proposed GUI provides two functions (addNoise() for adding noise to variables and
microaggregation()) for perturbation and aggregation of numerical variables, but also
functionality to measure the disclosure risk [see, e.g., 11]. By clicking on the Add noise
and the Microaggregation button (see Figure 2), the information given in Figure 9 pops
up.

Both functions supply different methods and it is up to the user to select which variables
he wants to modify.

3.7 Script Window

This is one of the major improvements of the sdcMicro GUI in comparison to µ-Argus,
because every action the user performed in the GUI (with parameters) including code is
recorded and listed in the code window (see 3.5.1). To access the window, the user just has
to navigate to it through the menu. One has also the option to save the actual status or to
load an old script to reproduce output or modify some steps or alter the output. Another
possibility is that the user can delete single steps from the script or execute it to a certain
point to start his work from there.

4 Details About the Implementation

4.1 Software

gWidgetsRGtk2 [14] is used to generate the GUI. This package allows the gWidgets API
to use the RGtk2 package allowing the use of the GTK libraries within R. It provides a
lot of useful templates for dialogs. GTK is written in C and is a highly usable, feature-
rich toolkit for creating graphical user interfaces in cross platform compatibility manner.
The Gtk2 libraries usually come with a standard Linux installation, contrary to Windows.
This shortcoming for the Windows user, however, is not a serious problem, because the
gWidgetsRGtk2 R package for Windows comes with a very easy-to-use built-in install
routine if Gtk2 is not installed. After installation, R must be restarted once.

TRANSACTIONS ON DATA PRIVACY 2 (2009)

214 Matthias Templ, Thomas Petelin

Figure 4: Variable selection window

Figure 5: Global recode window. Information of variable AGE is presented in the two boxes
on the right. Modifications can be done in the left boxes whereas the information on the
right side is updated after a recoding.

TRANSACTIONS ON DATA PRIVACY 2 (2009)

The sdcMicro GUI 215

Figure 6: Left: Rename/-group factor window. Levels of categorical variables can be
grouped and/or renamed. Right: Renaming after the rename button was clicked.

The use of the Gtk tools is advantageous since other possible packages for GUI generation
in R (for example, rJava or the tcltk package) come with less pre-written functionality
and their documentation is limited.

4.2 Internal Object Handling

The function sdcGUI, which generates the GUI, creates its own environment when the
GUI is loading. All variables and parameters needed are saved in that environment, and
therefore, the global environment of R is not flooded with internal objects from the GUI. As
Figure 11 shows, sdcGUI() provides three functions (existd(), getd() and putd()) which ac-
cess the GUI environment sdcGUIenv. If an operation is applied to the data, e.g. addNoise,
it calls getd() with the appropriate argument of the needed stored variable to retrieve it.
When the calculation is finished, the function putd() writes the result back to the environ-
ment.

Important internal variables that can be accessed by getd() and putd() are presented in
Figure 11.

4.3 Operation Workflow

This subsection describes the workflow based on the sdcMicro function localSupp() (used
for local suppression). This pattern is applicable for all functions for categorical and nu-
merical variables.

4.3.1 Workflow for Implemented sdcMicro Functions

Based on the GUI every modification is applied to the dataset initialized by clicking on
a button. Assuming a user wants to perform local suppression on the loaded data set, he
must click on the Local suppression button. A function (ls1(), see Figure 12) is called which
asks for the parameters via a popup window (see Figure 8), validates and passes them
on to a worker function. This worker function (Figure 12, localSupp tmp()) manages

TRANSACTIONS ON DATA PRIVACY 2 (2009)

216 Matthias Templ, Thomas Petelin

Figure 7: Code window which supports the usual R command line interface in an specific
R environment.

all further operations. It assures that the operation name as well as all given parameters
are saved by calling script.add() (for a detailed description of the functionality of the
script see Section 4.4). After passing all the information needed to script.add() the ac-
tual sdcMicro function is called in order to modify the data (Figure 12, localSupp()) and
the return values are gathered by the worker function. When a sdcMicro function returns
the processed data, the activeDataSet environment variable needs to be updated. This
action is done by an update function (Figure 12, updateActiveDataSet()) which fur-
thermore initializes the recalculation of the frequencies and the individual risk (Figure 12,
freqCalcIndivRisk()). This function also updates all the displayed results in the main
window.

4.3.2 Workflow for Utility Functions

The operation workflow for utility functions is basically the same as for the implemented
sdcMicro functions with the exception of the sdcMicro function call and the collection of
the result done by the worker function (Figure 12, localSupp tmp() without doing operations
3. and 4.). In this case the worker function fulfills all the operations on the dataset.

TRANSACTIONS ON DATA PRIVACY 2 (2009)

The sdcMicro GUI 217

Figure 8: Local suppression (left) and Local suppression 2 wrapper (right) window. The
higher the importance of a key variable, the lower the amount of suppression in the vari-
able.

Figure 9: Add noise (left) and microaggregation (right) window for the anonymization of
continuous scaled variables.

TRANSACTIONS ON DATA PRIVACY 2 (2009)

218 Matthias Templ, Thomas Petelin

Figure 10: Script window which allows to delete, run or modify any steps.

Figure 11: Internal object handling

TRANSACTIONS ON DATA PRIVACY 2 (2009)

The sdcMicro GUI 219

Table 1: sdcGUIenv environment variables
Name Description
activeDataSet: The dataset chosen for anonymization
dataSetName: Name of the loaded dataset
oldCols: If an operations is performed on the dataset, the last

version is stored for risk estimation
freqCalc: The result of the latest frequency calculation is

saved because it is needed for some sdcMicro func-
tions

indivRisk: The result of the latest individual risk estimation is
also saved because it is needed for some sdcMicro
functions

keyVars: Variable names of selected categorical variables
keyIndex: Column index of selected categorical variables
numVars: Variable names of selected numerical variables
numIndex: Column index of selected numerical variables
wVars: Variable names of selected weight variable
wIndex: Column index of selected weight variable
activScript: All used functions are saved in this variable

4.4 Script Functionality and GUI Enhancement

This section shows how to include a new function and how to include a new method into
an existing class.

The script below simulates a user-made function call. Therefore, all modifications of the
dataset beginning with the selection of categorical and numerical variables as well as the
weight variable must be stored. As shown in Figure 12, for the selection and validation
of the parameters the worker function localSupp tmp() acts as the main part of the
workflow. To illustrate the record process take a look at the following code snippet from
localSupp1 tmp() (comments are given after the # sign):

localSupp1_tmp <- function(keyVar, threshold, redo=FALSE) {
if(!redo) {

Script.add(paste("localSupp1_tmp(", parseVarStr(keyVar), ", ",
parseVar(threshold), ", redo=TRUE)", sep=""))

stores the function call for later re-use
}
x <- getd("freqCalc")

get frequency calculation of active data set
keyVar <- getIndex(keyVar)

get index of categorical variables
indivRisk <- getd("indivRisk")$rk

get the needed value from the individual risk estimation
l1 <- localSupp(x, keyVar, indivRisk, threshold)

execute the sdcMicro function and get result
updateActiveDataSet(l1$freqCalc)

update active data set
}

TRANSACTIONS ON DATA PRIVACY 2 (2009)

220 Matthias Templ, Thomas Petelin

Figure 12: Operation workflow for implemented sdcMicro functions

The redo value is needed for every worker function and is usually set to FALSE to store the
function call. Nevertheless, often one part of the GUI is made in an iterative manner. For
such situations usually redo is set to FALSE for computational efficiency reasons (the code
window functionality serves as a typical example, see also Section 4.5).

The script is stored in a list in the sdcGUIenv environment which can be viewed via the
menu (see Figure 3). An option to save the script is provided as well. It is also possible to
load the script from a file to reproduce output or re-run the script on a dataset for which
more observations or variables are included.

Function ls1 (see Figure 12) includes commands from the gWidgetsRGtk2 package to
include the sdcMicro function localSupp in the GUI.

In order to give an impression how to enhance the graphical user interface by an ad-
ditional method that uses a pre-defined class structure, a simple example is given in the
following.

Suppose the aim is to include the popular microaggregation method MDAV ([3]) and sup-
pose that the code of this method is already included in function microaggregation()2.
The corresponding code snippet might look like as follows:

if (method == "mdav") {
#----
body
#----
res <- list(..., method = ’mdav’,

aggr = aggr, blowxm = blowxm, ...)
}

The calculation is done in the section denoted body. The output must be of class micro,
i.e. the method, the aggregation level and the microaggregation results must be provided
using pre-defined parameter names (method, aggr, blowxm). Others parameters might
be passed trough (with the ... argument).

2Also a new function can be written but, for simplicity, the output should be of class micro.

TRANSACTIONS ON DATA PRIVACY 2 (2009)

The sdcMicro GUI 221

Look for the following line in function sdcGUI.R3, which indicates that a window for
microaggregation is generated in the GUI.

nm2_window = gwindow("Microaggregation", width=230, parent=window)

To include MDAV in the GUI only a string with the name of the procedure ("mdav") must
be included in function sdcGUI.R. Adding the string "mdav" to the corresponding list (in
sdcGUI.R)

methodSel = gdroplist(c("rmd", "pca", "clustppca",
"influence", "mdav"))

enables the use of MDAV within the GUI.

Conceptual modifications of the GUI are possible with knowledge of the software envi-
ronment R and the gWidgetsRGtk2 R package.

4.5 Code Window

To use the Code window the user needs at least basic R knowledge to be able to work
with it. This functionality was implemented because experienced users may want to have
additional flexibility such as the standard R command-line interface version provides. The
concept of sdcGUI is that all variables which are needed to operate are stored in a separate
environment so that the global R environment stays “clean”. Assuming an experienced
user works with the GUI and wants to manipulate the dataset by hand he would have to
export the dataset to the global environment, modify it there and open it again to continue
to work with it in the GUI. Basically, that would work, but the actions done while using
the CLI version of R will not get recorded, so the output would not be reproducible. This
problem is solved by the Code window (see Figure 7).

By opening the Code window a new environment is created and the activeDataSet
is made available in there under the shortcut ads. A simple input line and an output box
equivalent to the standard R CLI is provided.
Every user’s command is evaluated and sent to R for processing and the output is captured.
The dataset in the sdcGUIenv environment is not changed because it is changed in the
code window environment and the executed command is stored in a separate list, until
the Save button of the window is pressed. Whenever this happens, the modified dataset
in the code window environment is stored in the sdcGUIenv environment and the saved
commands copied to the activeScript variable.

A sample input in the Code window to alter the following dataset

> ads
Num1 Key1 Num2 Key2 Key3 Key4 Num3 w

1 0.30 1 0.40 2 5 1 4 18.0
2 0.12 1 0.22 2 1 14 22 45.5
3 0.18 1 0.80 2 1 1 8 39.0
4 1.90 3 9.00 3 1 5 91 17.0
5 1.00 4 1.30 3 1 4 13 541.0
6 1.00 4 1.40 3 1 1 14 8.0
7 0.10 6 0.01 2 1 23 1 5.0
8 0.15 1 0.50 2 5 1 5 92.0

3This function can be found in the the /R directory of the installation path of the package.

TRANSACTIONS ON DATA PRIVACY 2 (2009)

222 Matthias Templ, Thomas Petelin

could look like this:

ads[2,4] <- 5
ads[,6] <- ifelse(ads[,6]>10,10,ads[,6])

The resulting dataset of the Code window is

> ads
Num1 Key1 Num2 Key2 Key3 Key4 Num3 w

1 0.30 1 0.40 2 5 1 4 18.0
2 0.12 1 0.22 5 1 10 22 45.5
3 0.18 1 0.80 2 1 1 8 39.0
4 1.90 3 9.00 3 1 5 91 17.0
5 1.00 4 1.30 3 1 4 13 541.0
6 1.00 4 1.40 3 1 1 14 8.0
7 0.10 6 0.01 2 1 10 1 5.0
8 0.15 1 0.50 2 5 1 5 92.0

The added entries in the activeScript variable look as follows:

[1] "confirmSelection_tmp(c(’Key1’,’Key2’,’Key3’,’Key4’), c(’Num3’
,’Num2’,’Num1’), c(’w’), redo=TRUE)"

[2] "localSupp3_tmp(c(2), c(0.7 , 0.9 , 0.4 , 0.9), redo=TRUE)"
[3] "localSupp1_tmp(c(’Key1’), c(0.15), redo=TRUE)"
[4] "ads <- activeDataSet()"
[5] "ads[2,4] <- 5"
[6] "ads[,6] <- ifelse(ads[,6]>10,10,ads[,6])"
[7] "updateActiveDataSet(ads)"

Usually the script just needs the commands previously used, with the redo parameter set
to TRUE, because every predefined function automatically operates on the activeDataSet.
If the Code window is used, every command executed uses the temporary code window
dataset. Therefore line 4 simulates the generation of the temporary dataset that the follow-
ing commands can be run on and line 7 updates the actual dataset activeDataSet in the
sdcGUIenv environment.

5 Conclusion

This GUI provides an extension to the package sdcMicro [10]. The developed GUI makes
sdcMicro accessible to a wider range of users including those not familiar with the R
command-line interface. The user can access all basic functions for microdata protection
by using this GUI.

Flexibility is provided by displaying the main results (e.g., the summary of frequency
counts and the estimated disclosure risk), which are updated after a user interaction au-
tomatically. Additional flexibility is provided by storing all the user operations with all
parameters in a script which can then be saved, modified and/or reloaded. Thus, full re-
producibility is provided also when using this GUI instead of the CLI version.

It is also possible to extend the GUI whenever new functions in the core sdcMicro pack-
age are included. With the help of the detailed description of internal object handling in
Section 4 it is possible that other researchers and users modify and enhance this GUI. How-
ever, basic knowledge of both R and the gWidgetsRGtk2 R package is required.

TRANSACTIONS ON DATA PRIVACY 2 (2009)

The sdcMicro GUI 223

References

[1] N. Anwar. Micro-aggregation - the small aggregates method. In Internal report. Lux-
embourg: Eurostat, 1993.

[2] R. Brand. Microdata protection through noise addition. In Privacy in Statistical
Databases. Lecture Notes in Computer Science. Springer, pages 347–359, 2004.

[3] J. Domingo-Ferrer and J.M. Mateo-Sanz. Practical data-oriented microaggregation for
statistical disclosure control. IEEE Trans. on Knowledge and Data Engineering, 14(1):189–
201, 2002.

[4] L. Franconi and S. Polettini. Individual risk estimation in µ-ARGUS: a review. In
Privacy in Statistical Databases. Lecture Notes in Computer Science. Springer, pages 262–
272, 2004.

[5] A. Hundepool, A. Van deWetering, Ramaswamy R., L. Franconi, A. Capobianchi, P-P.
DeWolf, J. Domingo-Ferrer, V. Torra, R. Brand, and S. Giessing. µ-ARGUS version 4.2
software and users manual, 2008. 〈http://neon.vb.cbs.nl/casc〉.

[6] B. Meindl and M. Templ. The anonymisation of the CVTS2 and income tax dataset.
an approach using R-package sdcMicro. In to appear in: Joint UNECE/Eurostat Work
Session on Statistical Data Confidentiality. Monographs of Official Statistics., 2007.

[7] P. Samarati and L. Sweeney. Protecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression. Technical
report, SRI Intl. Tech. Rep., 1998.

[8] M. Templ. Privacy in Statistical Databases, Lecture Notes in Computer Science, Vol. 4302,
chapter Software Development for SDC in R, pages 347 – 359. Springer, Berlin Heidel-
berg, 2006. ISBN: 978-3-540-49330-3.

[9] M. Templ. Statistical disclosure control for microdata using the R-package sdcMicro.
Transactions on Data Privacy, 1(2):67–85, 2008.

[10] M. Templ. sdcmicro: Statistical disclosure control methods for the generation of
public- and scientific-use files. version 2.6.0. software and users manual. published on-
line, 2009. 〈http://cran.r-project.org/web/packages/sdcMicro/index.
html〉.

[11] M. Templ and B. Meindl. Robust statistics meets SDC: New disclosure risk measures
for continuous microdata masking. Privacy in Statistical Databases. Lecture Notes in Com-
puter Science. Springer, 5262:113–126, 2008. ISBN 978-3-540-87470-6, DOI 10.1007/978-
3-540-87471-3 10.

[12] M. Templ and B. Meindl. Robustification of microdata masking methods and the com-
parison with existing methods. Privacy in Statistical Databases. Lecture Notes in Computer
Science. Springer, 5262:177–189, 2008. ISBN 978-3-540-87470-6, DOI 10.1007/978-3-540-
87471-3 15.

[13] D. Ting, S. Fienberg, and M. Trottini. Romm methodology for microdata release. In
Monographs of official statistics, Work session on statistical data confidentiality. Eurostat,
Luxembourg, 2005.

TRANSACTIONS ON DATA PRIVACY 2 (2009)

224 Matthias Templ, Thomas Petelin

[14] J. Verzani and M. Lawrence. gWidgetsRGtk2: Toolkit implementation of gWidgets for
RGtk2. published online, 2009. 〈http://cran.r-project.org/web/packages/
gWidgetsRGtk2/index.html〉.

TRANSACTIONS ON DATA PRIVACY 2 (2009)

