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Abstract. Several national statistical agencies are now releasing partially synthetic, public use mi-
crodata. These comprise the units in the original database with sensitive or identifying values re-
placed with values simulated from statistical models. Specifying synthesis models can be daunting
in databases that include many variables of diverse types. These variables may be related in ways that
can be difficult to capture with standard parametric tools. In this article, we describe how random
forests can be adapted to generate partially synthetic data for categorical variables. Using an empiri-
cal study, we illustrate that the random forest synthesizer can preserve relationships reasonably well
while providing low disclosure risks. The random forest synthesizer has some appealing features for
statistical agencies: it can be applied with minimal tuning, easily incorporates numerical, categori-
cal, and mixed variables as predictors, operates efficiently in high dimensions, and automatically fits
non-linear relationships.
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1 Introduction

Many national statistical agencies, survey organizations, and researchers—henceforth all
called agencies—disseminate microdata, i.e. data on individual units, to the public. Wide
dissemination of data facilitates advances in science and public policy, enables students to
develop skills at data analysis, and helps ordinary citizens learn about their communities.
Often, however, agencies cannot release microdata as collected, because doing so could
reveal survey respondents’ identities or values of sensitive attributes. Stripping unique
identifiers like names, tax identification numbers, and exact addresses before releasing data
may not suffice to protect confidentiality when quasi-identifiers, such as demographic vari-
ables, employment/education histories, or establishment sizes, remain on the file. These
quasi-identifiers can be used to match units in the released data to other databases.
Agencies therefore further limit what they release, typically by altering the collected data.

Common strategies include recoding variables, such as releasing ages or geographical vari-
ables in aggregated categories; reporting exact values only above or below certain thresh-
olds, for example reporting all incomes above 100,000 as “100,000 or more”; swapping data
values for selected records, e.g., switch the quasi-identifiers for at-risk records with those
for other records to discourage users from matching, since matches may be based on in-
correct data; and, adding noise to numerical data values to reduce the possibilities of exact
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matching on key variables or to distort the values of sensitive variables. See [28] for a
general overview of common statistical disclosure limitation methods.
These methods can be applied with varying intensities. Generally, increasing the amount

of alteration decreases the risks of disclosures; but, it also decreases the accuracy of infer-
ences obtained from the released data, since these methods distort relationships among the
variables. For example, intensive data swapping severely attenuates correlations between
the swapped and unswapped variables. These methods also make it difficult for secondary
data users to obtain valid inferences that account for the impacts of the disclosure limita-
tion. For example, to analyze properly data that have been perturbed by additive random
noise, users should apply measurement error models [12], which are difficult to use for
non-standard estimands.
Motivated by these drawbacks of standard disclosure limitation strategies, and particu-

larly when data need to be significantly altered to protect confidentiality, several national
statistical agencies have started to use adaptations of multiple imputation—now called syn-
thetic data—to release confidential data, as first suggested by [26] and [17]. In particular,
agencies are releasing data comprising the units originally surveyed with some collected
values replaced with multiple imputations; these are known as partially synthetic datasets
[20]. For example, the U.S. Federal Reserve Board in the Survey of Consumer Finances re-
places monetary values at high disclosure risk with multiple imputations, releasing a mix-
ture of these imputed values and the unreplaced, collected values [15]. The U.S. Bureau
of the Census has released a partially synthetic, public use file for the Survey of Income
and Program Participation that includes imputed values of Social Security benefits infor-
mation and dozens of other highly sensitive variables [1]. The Census Bureau protects the
identities of people in group quarters (e.g., prisons, shelters) in the American Community
Survey by replacing quasi-identifiers for records at high disclosure risk with imputations
[14]. The Census Bureau also has developed synthesized origin-destination matrices, i.e.
where people live and work, available to the public as maps via the web (On The Map,
http://lehdmap.did.census.gov/). In the U.S., partially synthetic, public use datasets are
in the development stage for the Longitudinal Business Database [16], the Longitudinal
Employer-Household Dynamics database, and the American Community Survey veterans
and full sample data. Statistical agencies in Germany [8, 7] and New Zealand [13] also are
developing synthetic data products. Other examples of partially synthetic data are in [2],
[3], and [18].
The key to the success of synthetic data approaches, especially when replacing many val-

ues, is the data generation model. Current practice for generating synthetic data typically
employs sequential modeling strategies based on parametric or semi-parametric models
similar to those for imputation of missing data in [19]. The basic idea is to impute Y1 from a
regression of Y1 on (Y2, Y3, etc.), impute Y2 from a regression of Y2 on (Y1, Y3, etc.), impute
Y3 from a regression of Y3 on (Y1, Y2, etc.), and so on. An advantage of this strategy is that
it is generally easier to specify plausible conditional models than plausible joint distribu-
tions. A disadvantage is that the collection of conditional distributions is not guaranteed
to correspond to a proper joint distribution, particularly when the models use different
conditioning sets.
Specifying these conditional imputation models can be daunting in surveys with many

variables available for conditioning. The data frequently include numerical, categorical,
and mixed variables, some of which may not be easy to model with standard parametric
tools. The relationships among these variables may be non-linear and interactive. There-
fore, it may be advantageous to use non-parametric methods to generate imputations.
In this article, we investigate the effectiveness of random forests [5] for data synthesis.
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Random forests can capture complex relationships that might not be easily found or esti-
mated with standard parametric techniques, and they avoid stringent parametric assump-
tions. They can handle diverse data types in high dimensional data. They are computa-
tionally fast and easy to implement, with little tuning required by the user. These features
suggest that, suitably adapted, random forests have potential as a method for generating
model-free synthetic data with high analytic validity. We focus explicitly on models for
categorical variables, although we discuss extensions of the random forest synthesizer to
continuous variables in the concluding remarks.
The remainder of the article is as follows. In Section 2, we review partially synthetic data

approaches. In Section 3, we review random forests and present adaptations for generating
synthetic data. In Section 4, we apply the random forest synthesizer on data from the U.S.
Current Population Survey. We include discussions of data utility and disclosure risk for
the resulting partially synthetic datasets. In Section 5, we conclude with a discussion of
implementation issues for the random forest synthesizer.

2 Review of Partially Synthetic Data

To illustrate how partially synthetic data might work in practice, we modify the setting
described by [21]. Suppose the agency has collected data on a random sample of 10,000
people. The data comprise each person’s race, sex, income, and years of education. Sup-
pose the agency wants to replace race and sex for all people in the sample—or possibly just
for a subset, such as all people whose income exceeds 100,000—to disguise their identities.
The agency generates values of race and sex for these people by randomly simulating val-
ues from the joint distribution of race and sex, conditional on their education and income
values. These distributions are estimated using the collected data and possibly other rel-
evant information. The result is one partially synthetic data set. The agency repeats this
process say ten times, and these ten data sets are released to the public.
To illustrate how a secondary data analyst might utilize these released datasets, suppose

that the analyst seeks to fit a regression of income on education and indicator variables for
the person’s sex and race. The analyst first estimates the regression coefficients and their
variances separately in each simulated dataset using standard likelihood-based estimates
and standard software. Then, the analyst averages the estimated coefficients and variances
across the simulated datasets. These averages are used to form 95% confidence intervals
based on the simple formulas developed by [20], described below.
Let Dsyn = (D1, . . . , Dm) be the m partially synthetic datasets created by the agency for

sharing with the public. Let Q be the secondary analyst’s estimand of interest, such as a
regression coefficient or population average. For l = 1, . . . , m, let ql and ul be respectively
the estimate of Q and the estimate of the variance of ql in synthetic dataset Dl. Secondary
analysts use q̄m =

∑m

l=1 ql/m to estimate Q and Tm = ūm + bm/m to estimate var(q̄m),
where bm =

∑m

l=1(ql − q̄m)2/(m − 1) and ūm =
∑m

l=1 ul/m. For large samples, inferences
for Q are obtained from the t-distribution, (q̄m − Q) ∼ tνm

(0, Tm), where the degrees of

freedom νm = (m−1) [1 + mūm/bm]
2. Derivations of this inferential method are presented

in [20] and [25].
When the race and sex values are simulated from their true probability distribution, the

synthetic data should have similar characteristics on average as the collected data. There
is an analogy here to random sampling. Some true distribution of the variables exists in
the population. The collected data are just a random sample from that population distribu-
tion. If the agency generates partially synthetic data from that same distribution—which
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is guaranteed for income and education in this example, since they remain unchanged—it
essentially creates different random samples from the population. Hence, the analyst using
these synthetic samples essentially analyzes alternative samples from the population.
The on average caveat is important: parameter estimates from any one simulated data

set are unlikely to equal exactly those from the collected data. The synthetic parameter
estimates are subject to two sources of variation, namely (i) sampling the collected data
and (ii) generating synthetic values. It is not possible to estimate both sources of variation
from only one released synthetic data set. However, it is possible to do so from multiple
synthetic data sets, which explains why the multiple imputation framework applies.
The protection afforded by partially synthetic data depends on the nature of the synthesis.

Replacing quasi-identifiers with imputations makes it difficult for users to know the origi-
nal values of those variables, which reduces the chance of identifications. Replacing values
of sensitive attributes makes it difficult for users to learn the exact values of those variables,
which can prevent attribute disclosures. Releasing partially synthetic data is subject to in-
ferential disclosure risk when the models used to simulate attributes are “too accurate.”
For example, when data are simulated from a regression model with a very small mean
square error, intruders may be able to estimate outcomes precisely using the model. Or, if
all people in a certain demographic group have the same, or even nearly the same, value of
an outcome variable, the imputation models likely will generate that value. Agencies can
reduce these types of risks by using less precise models when necessary. Nonetheless, there
remain disclosure risks in partially synthetic data no matter which values are replaced, be-
cause the original records are released on the public use file. Analysts could utilize the
released, unaltered values to facilitate disclosure attacks, for example via matching to ex-
ternal databases, or they may be able to estimate genuine values from the synthetic data
with reasonable accuracy.
Partially synthetic data sets can have positive data utility features. When the data are

simulated from distributions that reflect the distributions of the collected data, frequency-
valid inferences can be obtained for wide classes of estimands. This is true even for high
fractions of replacement, whereas swapping high percentages of values or adding noise
with large variance produces worthless data. The inferences are determined by combining
standard likelihood-based or survey-weighted estimates; the analyst need not learn new
statistical methods or software to adjust for the effects of the disclosure limitation. The
released data can include simulated values in the tails of distributions (no top-coding).
Finally, because many quasi-identifiers can be simulated, finer details of geography can be
released, facilitating small area estimation.
There is a cost to these benefits: the validity of synthetic data inferences depends on the

validity of the models used to generate the synthetic data. The extent of this dependence
is driven by the nature of the synthesis. For example, when all of race and sex are synthe-
sized, analyses involving those variables reflect only the relationships included in the data
generation models. When the models fail to reflect certain relationships accurately, ana-
lysts’ inferences also will not reflect those relationships. Similarly, incorrect distributional
assumptions built into the models will be passed on to the users’ analyses. On the other
hand, when replacing only a select fraction of race and sex and leaving many original val-
ues on the file, inferences may be relatively insensitive to the assumptions of the synthetic
data models. In practice, this dependence means that agencies should release information
that helps analysts decide whether or not the synthetic data are reliable for their analy-
ses. For example, agencies might include the code used to generate the synthetic values
as attachments to public releases of data. Or, they might include generic statements that
describe the imputation models, such as “Main effects and interactions for income, educa-
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tion, and sex are included in the imputation models for race.” Another possibility is for the
agency to build a verification server, as suggested by [24], that provides data analysts with
feedback on the quality of the analysis done on the synthetic data. Analysts who desire
finer detail than afforded by the synthetic data may have to apply for restricted access to
the collected data.
Given the synthesis model and estimates of its parameters, sophisticated analysts could

generate their own synthetic values. However, as shown by [23], releasing that much infor-
mation about the synthesis models increases disclosure risks. Furthermore, some analysts
are not able to generate synthetic data given the models and parameter estimates; they
need agencies to do it for them. Thus, describing the imputation models is necessary, but it
is not sufficient. Agencies also should release synthetic data generated from the models.

3 Random Forests for Synthetic Data

The ideal data synthesizer has at least the following properties. First, it preserves as many
relationships as possible while protecting confidentiality. Second, it can handle diverse
data types. Third, it is computationally feasible for large datasets. And fourth, it is easy
for agencies to implement with little tuning required. Random forests have the potential to
satisfy these desiderata, as we now explain.

3.1 Background on random forests

Random forests extend the ideas of classification and regression trees (CART), as developed
in [6]. Hence, we begin this review of random forests with a discussion of CART.
CART models seek to approximate the conditional distribution of a univariate outcome

from multiple predictors. The CART algorithm partitions the predictor space so that sub-
sets of units formed by the partitions have relatively homogeneous outcomes. The parti-
tions are found by recursive binary splits of the predictors. The series of splits can be ef-
fectively represented by a tree structure, with leaves corresponding to the subsets of units.
The values in each leaf represent the conditional distribution of the outcome for units in
the data with predictors that satisfy the partitioning criteria that define the leaf.
CART models have potential advantages over parametric models for approximating con-

ditional distributions. First, CART modeling may be more easily applied than parametric
modeling, particularly for data with irregular distributions. Second, CART models can
capture non-linear relationships and interaction effects that may not be easily revealed in
the process of fitting parametric models. Third, CART provides a semi-automatic way
to fit the most important relationships in the data, which can be a substantial advantage
when there are many potential predictors. Primary disadvantages of CART models rel-
ative to parametric models include difficulty of interpretation, discontinuity at partition
boundaries, and decreased effectiveness when relationships are accurately described by
parametric models [11].
CART models have been adapted for generating partially synthetic data [22]. After fit-

ting a large tree, the agency prunes the tree to satisfy confidentiality criteria, e.g., values
in leaves must be sufficiently diverse. Then, the agency generates synthetic data by sam-
pling from the leaves using a Bayesian bootstrap [27]. If it is desired to avoid releasing
genuine values from some leaf, as may be the case for sensitive numerical data, the agency
approximates a smooth density to the bootstrapped values using a Gaussian kernel den-
sity estimator with support over the smallest to the largest value of the outcome in the leaf.
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Then, for each unit, the agency samples randomly from the estimated density in that unit’s
leaf using an inverse-cdf method.

Random forests are collections of CARTs, i.e., usually 500 or more trees grown on the
same data. Each tree is based on a different random subset of the original data; usually,
the subsets include around 2/3 of the full sample. Each tree is grown using a different
random subset of the predictor variables to determine the binary splits; usually, roughly√

p variables are selected for each tree, where p is the total number of predictors. Typically
each tree is grown to the maximum size, so that each terminal leaf contains one observation.
There is no pruning of leaves for random forests. It is possible to force leaves to contain
more than one observation, which speeds up the algorithm.

Data analysts can use the forest for a variety of purposes, including determining vari-
able importance, clustering, outlier detection, and prediction of outcomes for new cases.
Random forests maintain many of the benefits of CARTs but have some potential advan-
tages. By randomly sampling predictors to grow each tree, the random forest allows more
variables to contribute to predictions than CART does. This is potentially beneficial for
synthetic data generation when the dimension of the predictor space is large compared to
the sample size. Additionally, by randomly sampling observations and predictors, random
forests effectively average over many small nearly independent trees, which can reduce
bias and variance compared to one large tree. See [4] for further comparisons of random
forests and CARTs.

For partial synthesis of categorical data, we use the forest to generate replacement values
for the units in the original dataset, as described in the next section.

3.2 Random forest synthesizer for categorical data

Let the observed data D comprise p + 1 variables, (Y1, . . . , Yp+1), measured on n observa-
tions. To describe the random forest synthesizer, we first presume that the agency seeks to
replace values of only one categorical variable, Yj , given values of all other variables, Y

−j .
We then extend to multiple variables. For i = 1, . . . , n, let Zi = 1 when record i has its
value of Yj replaced, and let Zi = 0 otherwise.

We initiate the synthesizer by fitting a random forest of Yj on Y
−j using the original data

(before any synthesis) for only those records with Zi = 1. The latter restriction is to ensure
that the forest is tailored to the data that will be replaced. For example, if Yj is a binary
variable such that p(Yij = 1) = .60 in the entire dataset and p(Yij = 1) = .20 for cases
with Zi = 1, restricting the synthesis model to cases with Zi = 1 appropriately ensures
that around 20% of replacements equal one rather than possibly 60% of replacements. We
create 500 trees such that each terminal leaf contains only one value of Yij . We use the
standard defaults for the tuning parameters in random forests: random samples of around
(2/3)n records and random selection of roughly

√
p predictors. We use the Gini index as the

criteria used to determine the binary splits, which is a default criteria for many applications
of random forests for categorical outcomes.

For any record i with values of predictors Yi,−j , we run it down each tree in the forest to
obtain a predicted value of Yj . That is, we follow the sequence of partitioning for record i
until we reach the terminal leaf in the tree. We tabulate the predictions for Yij to form the
data for a multinomial distribution. For example, if the forest generates 500 predictions for
a particular Yij such that 300 predict a race of white, 100 predict a race of black, 75 predict a
race of Asian, and 25 predict a race of American Indian, we form a multinomial distribution
with p(white) = .6, p(black) = .2, p(Asian) = .15, and p(Amer.Ind.) = .05. To generate the
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synthetic Yi,j , we randomly sample one value from the implied multinomial distribution.
We repeat this process for each record i with Zi = 1. The result is one synthetic copy of Yj .
Typically the agency will simulate several categorical variables, for example race, sex, and

marital status, to protect confidentiality. The random forest synthesizer can be utilized
sequentially in a manner akin to chained regressions for multiple imputation of missing
data [19]. To illustrate, suppose that the agency seeks to replace s < (p + 1) categorical
variables with imputations. For each of these variables, the agency fits a random forest of
Yj on Y

−j , resulting in s random forests. Each random forest is fit using only the records
that have values of Yj replaced. Let Y(1) be the variable with the most values to be replaced;
let Y(2) be the variable with the second most values to be replaced, and so on until Y(s). For
now, we presume that each variable has a distinct number of records to be replaced; we
consider ties shortly. The agency then proceeds as follows.

3.1 Replace Y(1) with synthetic replacements using the random forest synthesizer for Y(1).
Let Y rep

(1) be the replaced values of Y(1).

3.2 Replace Y(2) with synthetic replacements using the random forest synthesizer for Y(2).
Use the values of Y rep

(1) along with all other data when running observations down

trees. Let Y rep

(2) be the replaced values of Y(2).

3.3 Replace each Y(j) where j = 3, . . . , s using the appropriate random forests and the
values of previously synthesized variables, (Y rep

(1) , Y rep

(2) , . . . , Y rep

(j−1)), along with all

other data when running observations down the trees.

The result is one synthetic dataset. These three steps are repeated for each of the m synthetic
datasets, and these datasets are released to the public.
As with other sequential imputation strategies, there is no mathematical theory underpin-

ning the ordering of variables for synthesis. It is possible that different orderings produce
different risk and utility profiles. By ordering the variables by decreasing amount of syn-
thesis, we base the largest number of synthetic imputations on the most genuine predictor
values. Presumably, this affords the highest data quality for the variable with the largest
synthesis. Alternatively, one could order the variables in increasing amount of synthesis,
which could result in lower disclosure risks since the protection from synthesizing propa-
gates down the chain.
When two or more variables have the same amount of synthesis, one approach is to se-

lect the ordering at random. A second approach, driven by computational concerns, is to
impute categorical variables with small numbers of categories early in the sequence and
those with large numbers of categories later in the sequence. Saving the variables with
many levels until the end can speed up computation, since splitting a categorical variable
with many levels is time consuming. A third approach is to experiment with several or-
derings to determine which produces datasets with the most desirable risk-utility profile.
When practical, this is the optimal approach.
Each forest in the sequence is always grown on the genuine data; previously synthesized

values are used only when determining each record’s appropriate leaves in the trees. Grow-
ing trees with the genuine data ensures that the synthesis models capture relationships in
the genuine data, and using previously generated synthetic values to determine leaves
ensures that synthetic replacements are consistent with those relationships. This process
differs slightly from sequential regression imputation for missing data, for which the pre-
viously imputed data are used both to estimate the imputation models and to generate
imputed values [19]. We also note that, unlike in missing data contexts, there is only one
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cycle of the synthesis steps. This again stems from using the original data to build the
models: there is no need to run several iterations to get away from starting values, i.e., the
initial completions of missing data.

We use all trees when forming the multinomial distributions to synthesize each Yij . When
variables that are not synthesized are strong predictors of Yij and synthesized variables
are weak predictors of Yij , the trees that contain i in the training samples typically will
terminate in leaves that contain unit i’s original value. Thus, the data for the multino-
mial distributions can be highly peaked around the original value of Yij . High likelihoods
of synthesizing the original values could represent an increased risk to confidentiality. If
disclosure risk evaluations determine that this risk is too high, an alternative is to base
the data for the multinomial distribution only on trees for which i does not appear in the
training sample. This approach requires additional trees to ensure large samples for the
multinomial distributions, which slows down the algorithm.

The algorithm can include prior distributions on the probabilities of the multinomial dis-
tribution within the leaves; for example, Dirichlet distributions are convenient, conjugate
prior distributions. Including informative prior distributions can be useful for improv-
ing confidentiality protection. The prior distributions could ensure that there are non-zero
probabilities of generating any supported outcome value in the leaves. This ensures that
the random forest synthesizer meets the conditions of finite differential privacy [10], so
that no exact disclosures of sensitive data exist. We note that with a large number of trees,
noninformative prior distributions are unlikely to impact the results of the synthesis sub-
stantially.

A special case arises when all of the variables to be replaced undergo the same amount of
synthesis. This includes synthesizing all values of the categorical variables to be replaced.
In such cases, for an arbitrary ordering of the variables, the agencies can use 3.1 – 3.3, or
they can proceed as follows. Let Y(0) be all variables that are not replaced.

3.1a Fit the random forest of Y(1) on Y(0) only. Replace Y(1) using the random forest syn-
thesizer for Y(1). Let Y rep

(1) be the replaced values of Y(1).

3.2a Fit the random forest of Y(2) on (Y(0), Y(1)) only. Replace Y(2) with synthetic replace-
ments using the random forest synthesizer for Y(2). Use the values of Y rep

(1) and Y(0)

when running observations down trees. Let Y rep

(2) be the replaced values of Y(2).

3.3a For each j where j = 3, . . . , s, fit the random forest of Y(j) on (Y(0), Y(1), . . . , Y(j−1)).
Replace each Y(j) using the appropriate random forests based on the values of pre-
viously synthesized variables, (Y rep

(1) , Y rep

(2) , . . . , Y rep

(j−1)) and Y(0), when running obser-

vations down the trees.

The result is one synthetic dataset. These three steps are repeated for each of the m synthetic
datasets, and these datasets are released to the public. Steps 3.1a – 3.3a utilize the fact that a
joint distribution is the product of conditional distributions. This can reduce the amount of
computation in high dimensional problems, since fewer variables are in the predictor space
for all forests except the one for Y(s). We note that f(Y(j)|Y(0), . . . , Y(j−1)), for any j > 0, is
generally not the true distribution for Y(j) given all other variables in the dataset. However,
the goal of the synthesis models is not to capture each true conditional distribution; rather,
it is to simulate effectively from the entire joint distribution.
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Table 1: Description of variables used in the empirical studies

Variable Label Range

Sex X male, female
Race R white, black, American Indian, Asian
Marital status M 7 categories, coded 1–7
Age (years) G 0 – 90
Household income ($) I -21,010 – 768,700
Social security payments ($) S 0, 1 – 50,000
Child support payments ($) C 0, 1 – 23,917
Highest attained education level E 16 categories, coded 31–46
Number of people in household N 1 – 16
Number of people in household under age 18 Y 0, 1 – 11
Household property taxes ($) P 0, 1 – 100,000
Household alimony payments ($) A 0, 1 – 54,008

4 Empirical Illustration

We now illustrate the random forest synthesizer for categorical variables with a subset of
public release data from the March 2000 U.S. Current Population Survey. The data comprise
twelve variables measured on 10,000 heads of households; see Table 1.

We consider age, race, marital status, and sex to be quasi-identifiers that intruders can
know precisely. To reduce the risk of identifications, we simulate all records’ values of
sex, race, and marital status; we do not replace age as this has too many values to treat as
a categorical outcome in a random forest. Simulating all data is arguably more synthesis
than necessary. There are 484 records with unique combinations of age, race, marital status,
and sex; and, there are 394 combinations of the four variables with two cases. To protect
confidentiality it may be sufficient for the agency to simulate the quasi-identifiers for only
these subsets of the full sample. Nonetheless, we simulate all values to illustrate heavy
synthesis. We use the software package “randomForest” in R to fit the random forests with
the default specifications of tuning parameters, i.e., 500 trees, 2/3n sampled records per
tree,

√
p predictors per tree, and the Gini index for the splitting criterion.

4.1 Analytic usefulness

We first illustrate the analytic usefulness of the resulting synthetic datasets by comparing
the synthetic and original data inferences for the coefficients in three regressions: a regres-
sion of the logarithm of income on a function of all the predictors, including non-linear
effects in age and interactions among marital status and sex; a regression of the square root
of positive social security payments on several predictors for a subset of individuals; and, a
regression of the square root of positive child support payments on a small number of pre-
dictors. The first regression is based on 9938 people; the second is based on 2725 people;
and, the third is based on 331 people. The regressions examined here are not necessarily
the best possible for these variables. However, they do illustrate the performance of the
random forest synthesizer for a variety of analyses.

We use the synthesizer in steps 3.1 – 3.3 to generate two independent sets of m = 5 syn-
thetic datasets. Of course, in genuine contexts, only one set of m datasets would be released
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to the public for analysis. We create two sets to give a sense of the variability that can arise
from the entire synthesis process with m = 5. We present results based on a synthesis
ordering of marital status, race, and sex. Table 2 summarizes the inferences for the coeffi-
cients when fitting the models on the observed data and on the two sets of m = 5 synthetic
datasets. In general, the estimated coefficients and 95% confidence intervals are similar
across all three sources of data, even for the interactions and non-linear effects. Every one
of the observed data coefficients is covered by the synthetic data confidence intervals. The
least accurate synthetic coefficients involve people who are married in the armed forces
and, for the regression of child support, people who are non-white. The numbers in these
categories are relatively small: there are only 63 men and 57 women who are married in
the armed forces, and there are only 53 non-whites who receive positive child support pay-
ments.

To examine the effect of ordering, we also evaluated results when reversing the order of
synthesis, i.e., using the order X − R− M . The resulting synthetic datasets provided more
accurate point estimates (in the sense of being close to the observed data point estimate) for
some the coefficients and less accurate for others, but on the whole the differences were mi-
nor. Compared to the point estimates in the first replication in Table 2, the point estimates
for two runs of the X − R − M strategy were closer to the observed data point estimates
for about half of the estimands.

We also examined using steps 3.1a – 3.3a to generate the synthetic datasets for the ordering
M −R−X . On the whole, the results had slightly lower analytic validity than when using
steps 3.1 – 3.3. Compared to the point estimates in the first replication in Table 2, the point
estimates for two runs of the strategy based on steps 3.1a – 3.3a were closer to the observed
data point estimates for about 40% of the estimands. Similar results are obtained when we
used the point estimates in the second replication in Table 2 as the basis of comparison; this
is also true for the the effect of ordering.

Finally, we compared the performance of the random forest synthesizer to an analogous
CART synthesizer. We require a minimum of five records in each leaf of the trees and
do not otherwise prune the trees; see [22] for discussion of specifying tree parameters.
All CART models are fit in R using the “tree” function. We created ten replications of
the partial synthesis for both random forests and CART. We averaged the point estimates
across the ten replicates and compared these averages to the observed data point estimates.
We were not able to distinguish the two procedures: for some coefficients the forest was
more reliable, and for others the CART was more reliable. The CART resulted in smaller
differences between synthetic and observed point estimates in slightly more than half of
the replicates. Although this is a crude method of comparison, it suggests that there is
not a clear winner between random forests and CART for these data. This result could be
due to the modest number of variables in the dataset, since random forests tend to have
comparative advantages over CART for prediction in high dimensions.

4.2 Evaluating disclosure risks

To evaluate disclosure risks associated with the random forest synthesizer, we compute
probabilities of identification using methods developed by [23] for partially synthetic data.
We summarize these methods below when the intruder knows that particular target records
are in the sample; see [9] for modifications when this is not the case.

Suppose the intruder has a vector of information, t, on a particular target unit in the sam-
ple, D. Let t0 be the unique identifier of the target, and let Di0 be the (not released) unique

TRANSACTIONS ON DATA PRIVACY 3 (2010)



Random Forests for Synthesis 37

identifier for record i in Dsyn, where i = 1, . . . , n. Let K be any information released about
the synthesis models.

The intruder’s goal is to match unit i in Dsyn to the target when Di0 = t0. Let I be a
random variable that equals i when Di0 = t0 for i ∈ Dsyn. The intruder thus seeks to
calculate Pr(I = i|t, Dsyn, K) for i = 1, . . . , n. Because the intruder does not know the
actual values in Y rep, he or she should integrate over its possible values when computing
the match probabilities. Hence, for each record we compute

Pr(I = i|t, Dsyn, K) =

∫
Pr(I = i|t, Dsyn, Y rep, K)Pr(Y rep|t, Dsyn, K)dY rep. (1)

This construction suggests a Monte Carlo approach to estimating each Pr(I = i|t, Dsyn, K).
First, sample a value of Y rep from Pr(Y rep|t, Dsyn, K). Let Y new represent one set of sim-
ulated values. Second, compute Pr(I = i|t, Dsyn, Y rep = Y new, K) using exact matching
assuming Y new are collected values. This two-step process is iterated h times, where ide-
ally h is large, and (1) is estimated as the average of the resultant h values of Pr(I =
i|t, Dsyn, Y rep = Y new, K). When K has no information, the intruder treats the simulated
values as plausible draws of Y rep, so that h = m. In the disclosure risk evaluations below,
we assume that K is empty.

Following [9], we quantify disclosure risk with summaries of these identification proba-
bilities. It is reasonable to assume that the intruder selects as a match for t the record i with
the highest value of Pr(I = i|t, Dsyn, K), if a unique maximum exists. We consider two
risk measures: the true match rate and the false match rate. Let ci be the number of records
with the highest match probability for the target ti where i = 1, ..., n; let di = 1 if the true
match is among the ci units and di = 0 otherwise. Let ki = 1 when cidi = 1 and ki = 0
otherwise. The true match rate equals

∑
ki/n. Let fi = 1 when ci(1 − di) = 1 and fi = 0

otherwise; and, let g equal the number of records with ci = 1. The false match rate equals∑
fi/g. We note that the true match rate is computed over all n records, and the false match

rate is computed only for records for which a unique match exists.

We assume that the intruder knows each target’s age, marital status, race, and sex; the
intruder does not know the other variables. The latter assumption is convenient for the
empirical illustration, since we focus on synthesis of categorical variables. In general, how-
ever, intruders might know some of the numerical values, in which case agencies should
synthesize or otherwise perturb those values. We also assume that the intruder knows who
participated in the sample.

Under these assumptions, the true match rate among the 10,000 records in both runs
of synthetic data used in Table 2 is around 3.0%. The false match rate is around 91%.
Hence, intruders are not likely to make correct matches and are very likely to make mis-
takes when they find unique matches. Out of the 484 records with unique combinations of
(M, R, X, G), approximately 16% can be correctly identified using the synthetic data. How-
ever, 68% of all apparent matches in this set are incorrect. There are no obvious patterns
distinguishing the incorrect and correct matches; it would be difficult for intruders to de-
termine when their matches are correct based on the synthetic data. Based on these risk
measures, the random forest synthesizer has reduced disclosure risks.

When using synthesis based on the ordering X − R − M , the true match rate for the two
runs is around 4%, and the false match rate is around 89%. Approximately 30% of the
484 cases are correctly identified, and approximately 45% of matches are incorrect. Hence,
the synthesis based on the ordering X − R − M results in higher disclosure risks than the
synthesis based on the ordering M −R−X . Given that the analytic validity results for the
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two orderings were not much different, the agency should prefer the datasets based on the
ordering marital status, race, and sex.
When using synthesis based on steps 3.1a – 3.3a for the ordering M−R−X , the true match

rate is around 2.8% and the false match rate is around 91%. Hence, the confidentiality risks
are slightly lower when using steps 3.1a – 3.3a as compared to using steps 3.1 – 3.3.

5 Concluding Remarks

The random forest synthesizer did reasonably well at preserving inferences—even for non-
linear relationships, interactions, and sub-group analyses—under an intense synthesis set-
ting of 100% replacement of three categorical variables. The synthesis was done with min-
imal tuning: we only selected the order of synthesis and used default specifications for the
random forest algorithms. Disclosure risk assessments indicate that the data are altered
sufficiently to reduce probabilities of correct identifications. Thus, it appears that random
forests have potential to serve as convenient and effective data synthesizers.
The empirical illustration highlights some key issues in implementing the random forest

synthesizer. First, agencies should evaluate different orderings for sequential synthesis,
since analytic validity and disclosure risks may differ depending on the ordering. The role
of ordering in sequential imputation strategies is not well understood even in missing data
contexts, where sequential strategies have been widely used for almost a decade. Fortu-
nately, it is easier to evaluate the impact of different orderings for synthetic data generation
than for missing data imputation, because the real data provide a gold standard by which
to judge the orderings. The agency can compare analytic validity and disclosure risk results
for different orderings, and select the one that provides the most desirable balance. Global
measures of data utility are particularly appropriate for analytic validity comparisons; for
example, agencies can apply the propensity score approach described by [29] on each syn-
thetic replicate and average the resulting measures. It is conceivable that releasing a set of
synthetic replicates generated from several orderings provides an optimal risk and utility
balance; this is an area for future research.
Second, it appears that relationships in small groups are more likely to be distorted by

the synthesizer than relationships in large groups. It may be possible to improve analytic
validity by synthesizing within groups rather than using only one model for each variable.
For example, when synthesizing sex (or race), the agency can fit and synthesize from sepa-
rate forests for each martial status category. This could preserve the relationships involving
interactions between marital status and sex more effectively than a single model. Or, the
agency can separate records by zero and non-zero child support payments and synthesize
within these two groups. This could preserve the relationships between the synthesized
variables and child support payments more effectively. A disadvantage of synthesizing
within groups is that it requires additional effort by the agency.
Third, we built the synthesizer with the randomForest package in R, primarily because it is

simple to use and freely available. Using a standard desk top computer, it took roughly ten
minutes of computer time to generate the five synthetic datasets. However, using the ran-
domForest package for synthesis has a drawback: we had to store the terminal leaves from
all 500 trees to obtain the data for the multinomial distributions. With large datasets, stor-
ing all the terminal leaves from large trees can cause memory problems in R. For example,
in experiments with a dataset comprising 50,000 records and twelve variables, R ran out
of memory when implementing the random forest synthesizer. Thus, agencies that wish
to use the randomForest package for large amounts of synthesis may need to synthesize
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in smaller groups. Undoubtedly, memory problems can be avoided by more clever coding
than we implemented, for example modifications of Breiman’s random forest programs in
Fortran; we leave that to future research.

The random forest synthesizer can be used for more (or less) intense synthesis settings
than the one illustrated in the empirical study. Increasing the number of variables to be
synthesized increases computing time at a roughly linear rate. The synthesizer can be used
on categorical variables with more than seven levels; for example, in separate investiga-
tions, synthesizing all 10,000 values of the sixteen-category education variable took less
than one minute of running time on a standard desktop computer. Undoubtedly, there is a
level at which the algorithm operates too slowly on the machine used for synthesis; how-
ever, our experience suggests that the synthesizer will run in reasonable time for categorical
variables with typical numbers of levels.

An important research topic is to develop random forest synthesizers for numerical data.
One possibility is to fit random forest regressions, run observations down the trees to get
terminal values, and sample from these terminal values (perhaps after a Bayesian boot-
strap) to get a synthetic dataset. Here, the agency may want to fit a smooth to the values
in the terminal leaves to avoid releasing exact numerical data, as described in Section 2
for CART. The agency also may want to require a minimum terminal leaf size greater than
one to provide more data to estimate the smooth. Selecting the optimal size involves some
trade offs in bias and variance, as well as confidentiality risks.
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Table 2: Point estimates and 95% confidence intervals for coefficients in several regressions
using observed data and two independent runs of random forest algorithm, each with
m = 5 synthetic datasets. Synthesized values include marital status, sex, and race. Income
regression uses only people with positive incomes. Social security regression uses only
people with positive social security and age greater than 54. Child support regression uses
only people with positive child support payments.

Synthetic Data Synthetic Data
Estimand Observed Data Run 1 Run 2
Regression of log(I) on
Intercept 4.9 (4.6, 5.1) 5.0 (4.7, 5.2) 5.0 (4.8, 5.3)
Black -.19 (-.24, -.14) -.20 (-.26, -.13) -.21 (-.27, -.15)
American Indian -.36 (-.53, -.19) -.30 (-.51, -.09) -.37 (-.60, -.15)
Asian -.06 (-.17, .04) -.01 (-.14, .11) -.01 (-.14, .12)
Female -.02 (-.07, .02) -.04 (-.09, .01) -.18 (-.07, .03)
Married in armed forces .05 (-.14, .23) -.10 (-.50, .30) -.05 (-.31, .21)
Widowed .04 (-.07, .15) -.08 (-.21, .05) -.06 (-.18, .07)
Divorced -.19 (-.26, -.11) -.22 (-.30, -.14) -.24 (-.32, -.15)
Separated -.32 (-.49, -.16) -.42 (-.69, -.15) -.36 (-.58, -.15)
Single -.17 (-.23, -.09) -.20 (-.27, -.12) -.21 (-.28, -.13)
Education .11 (.108, .120) .11 (.103, .119) .11 (.107, .118)
Household size > 1 .49 (.45, .54) .46 (.41, .51) .45 (.40, .50)
Fem., marr. in arm. forces -.61 (-.89, -.34) -.46 (-.96, .04) -.38 (-.71, -.05)
Widowed females -.34 (-.46, -.23) -.28 (-.42, -.15) -.33 (-.46, -.20)
Divorced females -.29 (-.39, -.20) -.27 (-.37, -.17) -.27 (-.37, -.17)
Separated females -.38 (-.58, -.18) -.31 (-.60, -.14) -.43 (-.68, -.18)
Single females -.28 (-.37, -.20) -.25 (-.34, -.16) -.27 (-.37, -.18)
Age ×10 .41 (.41, .46) .38 (.33, .44) .38 (.32, .43)
Age2 ×1000 -.42 (-.47, -.42) -.39 (-.44, -.34) -.39 (-.44, -.34)
Property tax ×10000 .41 (.34, .40) .42 (.36, .49) .43 (.36, .49)

Regression of
√

S on
Intercept 79.2 ( 71.4, 87.1) 77.2 (69.2, 85.1) 76.8 (68.8, 84.8)
Black -4.7 (-7.4, -2.0) -5.5 (-8.5, -2.5) -5.2 (-8.2, -2.2)
Native American -20.3 (-30.0, -10.6) -17.4 (-29.2, -5.6) -15.8 (-27.8, -3.9)
Asian -21.2 (-30.6, -11.7) -18.6 (-30.7, -6.5) -16.0 (-27.8, -4.2)
Female -13.5 (-15.3, -11.6) -12.9 (-15.0, -10.8) -13.1 (-15.4, -10.9)
Widowed 8.3 (6.3, 10.4) 7.8 (5.5, 10.1) 7.7 (5.2, 10.1)
Divorced -.57 (-3.4, 2.3) -.92 (-4.0, 2.2) -.10 (-3.3, 3.1)
Single -2.3 (-6.0, 1.4) -2.8 (-7.3, 1.6) -3.1 (-7.2, 10.1)
High school 6.0 (4.1, 7.9) 5.6 (3.7, 7.5) 5.6 (3.7, 7.5)
Some college 6.6 (4.4, 8.8) 6.2 (4.0, 8.4) 6.3 (4.1, 8.5)
Completed college 8.7 (5.6, 11.6) 8.1 (5.1, 11.2) 7.5 (4.4, 10.5)
Post-college 10.8 (7.1, 14.4) 10.2 (6.3, 13.7) 10.1 (6.4, 13.7)
Age .22 (.11, .32) .25 (.14, .36) .26 (.15, .36)

Regression of
√

C on
Intercept -105 (-164, -46) -102 (-162, -43) -97 (-156, -39)
Non-white -9.6 (-18.5, -.62) -4.7 (-13.7, 4.4) -5.2 (-15.4, 5.1)
Female 14.8 (2.8, 26.8) 13.5 (.23, 26.8) 12.7 (.87, 24.6)
Education 3.7 (2.3, 5.1) 3.7 (2.2, 5.1) 3.6 (2.2, 5.0)
Number w/age < 18 1.1 (-2.1, 4.4) .95 (-2.3, 4.2) .72 (-2.5, 3.9)
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