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Abstract. Statistical agencies have to ensure that respondents’ private information
cannot be revealed from the tables they release. A well-known protection method is
cell suppression, where values that provide too much information are left out from
the table to be published. In a first step, sensitive cell values are suppressed. This is
called primary suppression. In a second step, other values are suppressed as well to
exclude that primarily suppressed values can be re-calculated from the values pub-
lished in the table. This second step is called secondary cell suppression.

In this article we explain that the problem of checking whether a pattern of secon-
dary cell suppressions is safe for release or not is generally described in a slightly
inconsistent way in the literature. We illustrate with examples that the criteria that
are often applied to judge whether a table can be safely published or not do not al-
ways give satisfactory results. Furthermore, we present a new criterion and explore
some of its consequences. The new criterion is an extension of the well-known (p,q)-
prior-posterior rule. This extension is for aggregations of suppressed cells for which
a value can be derived from the table. Finally, we provide a method to apply the new
criterion in practice.

1 Introduction

Before publishing a magnitude table a statistical agency has to ensure that the
privacy of the individual contributors to the table is not endangered. The pri-
vacy of individual entities, such as persons or businesses, may be endangered if
data that are considered sensitive can be disclosed from the table to be released.
Suppose, for instance, that one wants to release a table containing the turnover
of enterprises cross-classified by branch of industry and region. If there is only
one enterprise in the population with a certain combination of branch of indus-
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try and region, the turnover of this enterprise can be disclosed, simply by look-
ing at the corresponding cell in the table. The turnover of enterprises is gener-
ally considered sensitive information, so this table cannot be released in its full
form.

The aim of statistical disclosure control (SDC) is to prevent sensitive informa-
tion on entities from being disclosed. Statistical disclosure control can be ap-
plied to both frequency count tables and magnitude tables. In this article we
focus on tabular magnitude data only.

The basis for most SDC techniques for tabular magnitude data is a sensitivity
measure for individual cells. Such a sensitivity measure determines whether a
cell is sensitive or not, and hence whether its value must be censored or may be
published. A table containing only non-sensitive cells is called safe; a table con-
taining at least one sensitive cell is called unsafe. The statement that a table is
safe cannot be seen in isolation from the sensitivity measure used; a table may
be considered safe according to one rule, but unsafe according to another rule.

An unsafe table has to be protected against statistical disclosure. A well-
known method to protect an unsafe table is cell suppression, where the value of
one or more cells is deleted. Instead of publishing the value of a cell, a special
character, such as a cross (x), is published.

This article deals with the problem of finding out whether a table with sup-
pressed cell values is safe to be released or not. In the literature, e.g. [5] and [10],
this problem is usually referred to as the disclosure auditing problem. This
problem is distinct from the problem of finding the cell values of a table that
have to be suppressed, although both problems are closely connected. Namely,
the problem of finding the cell values that have to be suppressed may be formu-
lated as: find suppressed cells that minimize a certain objective function, such as
the total suppressed value, the number of suppressed cell values, or the number
of contributions to the suppressed cells, subject to the condition that the result-
ing table is safe.

There are several classes of sensitivity measures. The best-known sensitivity
measures are the prior/posterior rule, where a cell is considered sensitive if one
of the contributions can be calculated to within a certain percentage of its value,
and the dominance rule, where a cell is considered sensitive if a substantial part
of its value is due to only a few contributors. Section 2 discusses sensitivity
measures for individual cells.

Once the sensitive cells have been determined, their values are suppressed.
This is referred to as primary cell suppression. In addition, usually a number of
non-sensitive cells have to be suppressed in order to prevent the possibility of
re-calculation of the suppressed sensitive cell values from the values published
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in the table. This phenomenon is called secondary cell suppression. The secon-
dary cell suppression problem amounts to finding a good set of secondarily
suppressed cells. Section 3 describes the basic form of the usual formulations of
the secondary cell suppression problem. In this section it will be explained that
these standard descriptions of the secondary cell suppression problem, as given
in the literature, e.g. [4], [7], [9], [11], [17] and section 4 in [5], are generally
slightly inconsistent. Even the second author of the present article is himself
guilty in this respect (see [30] and [31]). Implicitly, Sande [23], [24] and [25] al-
ready gave a nearly accurate description of the cell secondary suppression prob-
lem in the 1970’s. In our point of view, his definition contains a minor flaw,
however.

Cox [5] and Giessing [12] briefly describe the secondary suppression problem
quite accurately. They refer to the resulting problem as the multicell disclosure
problem. They, however, do not attempt to describe how this multicell disclo-
sure problem should be handled and do not provide any details. In fact, Cox [5]
notes that the multicell disclosure problem “is an unmanageable problem if ap-
proached directly”. Salazar-Gonzalez [22] refers to the problem as the multi-
attacker cell suppression problem, and makes an attempt to solve it. We return
to the approach by Salazar-Gonzélez later in this article.

The material contained in Sections 2 and 3 are for a substantial part based on
the papers referred to above as well as some others, such as [19], [20] and [21].

In Section 4 we give a formulation for the disclosure auditing problem that is
correct in our point of view. This formulation includes a criterion to judge
whether a table is sufficiently protected. This criterion could — and should in our
opinion — also form the basis of methods for secondary cell suppression. As far
as we are aware this is the first time that the new formulation for the disclosure
auditing problem is given in such detail.

In the literature the discussion of the disclosure auditing problem and cell
suppression for magnitude tables is usually restricted to tables with nonnega-
tive contributions only. Furthermore, the contributors to different cells of the
table are assumed not to co-operate, which could happen if they are all enter-
prises of the same holding. The new formulation of the disclosure auditing
problem that is given in Section 5 does allow for negative contributions and
holdings.

In Section 6 a formulation of a Mixed Integer Programming (MIP) problem is
given that can be used to apply our idea for the disclosure auditing problem in
practice. That is, by solving a MIP it can be judged whether some table is suffi-
ciently protected. This MIP formulation requires the sensitivity measure for in-
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dividual cells to be extended to aggregations of cells. Therefore, Section 5 first
discusses this extension. Section 7 concludes the article with a brief discussion.

2 Sensitivity measures for individual cells

As mentioned in the Introduction, one generally uses a sensitivity measure to
determine whether individual cells in a table are sensitive or not. A widely used
sensitivity measure is the (p,q)-prior/posterior rule.

Rule 1 (The (p,q)-prior/posterior rule for separate cells). This sensitivity measure
is based on two nonnegative parameters, p and g with p <g. It is assumed that,
prior to the publication of the table, everyone can estimate the contribution of
each contributor to the table to within g percent. A cell is considered sensitive if
the contribution of an individual contributor to that cell can be estimated, for
instance by one of the other contributors to that cell, to within p percent after
(posterior to) publication of the table.

This criterion is called the prior/posterior rule because it involves both prior
knowledge (g-percent estimates of the individual contributions) and posterior
knowledge provided by the published table. In practical applications, one re-
formulates the general criterion (Rule 1) into an operational one.

For convenience we assume in this section that all contributions to the table
are nonnegative, and later relax this condition in Section 5. We denote the num-
ber of contributors to the table by R. The number of cell values will be denoted
by Nc. We denote a cell value by xi, i = 1,...,Ncand the contribution of contribu-
tor r to xi by x{ (i=1,..,Nc r=1,...,R). No distinction is made between a re-
spondent that does not contribute to a cell and a contribution of zero, in both
cases Xir =0. In practice, most contributors only contribute to one cell, so most

R

x; will be equal to zero. We can write X; :inr . Welet x!, (i=1,....Nc, r=
r=l

1,...,R) represent decreasingly ordered contributions to cell xi i.e.
x> x> > xR >0,

To reformulate the (p,q)-prior/posterior rule into an operational criterion we
consider the accuracy with which contribution t can be estimated by a contribu-
tor s. This so-called intruder (or attacker) s can calculate an upper bound for x;

R
as follows. Knowing the cell value x; = z X{ , he subtracts his own contribution
r=1
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X; and estimates for the other contributions from this cell value. By assumption,
the lower bound on the estimate for the contribution of contributor » amounts to
X[ —(q/100)x{, for r #s, t. This results in the following upper bound on x; from
the perspective of contributor s

U =xt +—L Sy,
X=X+ 05 2%

The cell would be sensitive if U (x{)<x' +(p/100)x; for some s and t. It can be
derived that all contributions are sufficiently protected, i.e.

Ay Py
100 100

r#s,t

for all sand ¢

if the largest contribution is sufficiently protected for the respondent with the
second largest contribution, that is if:
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100 r;,z ' 7100 &

This immediately follows from:
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Note that the second largest contributor to cell i — assuming his contribution to
this cell is non-zero — can estimate the largest contribution to cell i more accu-
rately than someone who does not contribute to cell i at all, as he can use his
own contribution as additional information for making the estimate. To apply

the (pq)-prior/posterior rule in practice one therefore checks whether

R
U, x> x" +(p/100)x!", or equivalently whether qz x> pxM - for all
r=3
i=1,...,Nc.
One can also consider the lower bound on contribution X; of contributor ¢ that

can be derived by contributor s, and base a sensitivity criterion on that, instead
of on the upper bound. This exactly leads to the same operational criterion,
however.

Note that when all contributions to a cell equal zero, the cell is considered to
be unsafe according to the operational criterion. This is in accordance with our
intuitive feelings with respect to a sensitivity measure as everyone can derive
the exact value of the contributors to the cell. For instance, if the cell gives the
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turnover of enterprises in a certain period, everyone can derive that none of the
contributors to that cell had any turnover in that period, which can be highly
sensitive information.

This sensitivity rule can be translated into a so-called sensitivity function S, .

The sensitivity function for the (p,q)-prior/posterior rule is
R
— pyl! [r]
Spa ()= px{" —ay X",
r=3

A cell i is sensitive, if and only if S, ,(X;)>0.

A special case of the prior/posterior rule is the so-called p%-rule, where one
assumes that all that an intruder knows is that the value of each contribution to
the table is nonnegative. In terms of the (p,q)-prior/posterior rule this is more or
less equivalent to assuming that g =100, in the sense that the p%-rule and the
(p,q)-prior/posterior rule with g =100 lead to the same operational definition of a
sensitive cell.

Another common way to determine whether a cell is considered sensitive is by
means of a dominance rule. An (n,k)-dominance rule states that if the values of
the data of a certain number of contributors, n, constitute more than a certain
percentage, k, of the total value of the cell, then this cell is sensitive. The choice
of n and k depends on the desired level of protection. Whereas in the past the
dominance rule used to be the generally preferred rule, nowadays the
prior/posterior rule, in particular its special case the p% rule, seems to be the
generally preferred rule, because of its more appealing properties, e.g. [5], [14],
[15] and [32]. In this article we do not consider the dominance rule anymore, but
focus on the prior/posterior rule instead.

3 Secondary cell suppression

After the sensitive cells have been determined and suppressed, an intruder
may still be able to calculate the original value of a sensitive cell through a close
examination of the published cells and marginal totals. Consider for example
Table 1 below, where all contributions are known to be nonnegative, and x11 and
x21 are primary suppressions. It is easy to see that both x11 and x21 must have the
value 100.
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Table 1. A table with primary suppressions.

Ci (@) Cs Total
R1 X1 1 3 104
R x21 2 1 103
Rs 70 3 2 75
Total 270 6 6 282

In general we have to suppress some additional cells to adequately protect the
sensitive cells. These additionally suppressed cells are the secondary suppres-
sions.

Now we turn to the problem of an intruder who makes estimates of cell val-
ues. Consider Table 1 again. After entry RixCs and R2xCs are chosen as secon-
dary suppressions, Table 2 results. Both x11 and x21 cannot be calculated exactly.
The following equations hold true

x11 + x13 = 103,
x13 + x23 =4,

x11 + x21 = 200,
x21 + x23 =101.

Combining the above equations with the nonnegativity of the contributions
yields a range of possible values for x11. We can deduce that 99 <x;, <103. The
interval [99,103] is the so-called suppression interval of x11.

Table 2. Primary and secondary suppressions.

C1 C Cs Total
R1 X1 1 X13 104
R x21 2 X23 103
Rs 70 3 2 75
Total 270 6 6 282

In order to avoid the possibility of calculating a suppressed sensitive cell in a
(nonnegative) table too closely, one usually requires that the suppression inter-
val for such a cell should be sufficiently wide. Example 1 below illustrates the
procedure.

Example 1. Suppose we apply a p% rule with p =20. We also demand that the
suppression interval of each sensitive cell should have a width of at least 50% of
the cell value. We apply these rules to Table 3.
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Table 3. An unsafe table.

I 11 I Total
A 100 200 150 450
B 250 150 300 700
C 600 450 500 1150
Total 950 800 950 2700

Suppose the sensitive cells are AxI and AxIII. We also suppose that to each of
these two cells there is only one contributor. We protect the table by
suppressing these cells, and a number of additional cell values. Suppose we
obtain Table 4.

Table 4. “Protected version” of Table 3.

I 11 11 Total
A X 200 X 450
B X 150 x 700
C 600 450 500 1150
Total 950 800 950 2700

To determine the suppression intervals of the suppressed cells for the
suppression pattern in Table 4 we consider the following set of equations that
can be derived from Table 4.

Xy + X3 =250, (3.1)
Xy + Xp3 =550, (3.2)
X, + X, =350, (3.3)
Xj3 + X,3 =450, (3.4)
Xi1, X135 X315, X3 2 0, (3.5)

where X; denotes the value of the suppressed cell in row i and column j. For

instance, the upper, respectively lower, bound on the suppression interval of x;,
can be found by maximizing, respectively minimizing, X;, subject to (3.1) to
(3.5). This is a simple linear programming problem, and can, for example, be
solved by means of the simplex algorithm, e.g. [2]. In a similar way, the lower
and upper bounds on the suppression intervals of the other suppressed cell
values can be found. The suppression intervals are given in Table 5.

Table 5. Suppression intervals corresponding to Table 4.

I 11 11 Total
A [0, 250] 200 [0, 250] 450
B [100, 350] 150 [200, 450] 700
C 600 450 500 1150
Total 950 600 950 2700

TRANSACTIONS ON DATA PRIVACY 3 (2010)



An Improved Formulation of the Disclosure Auditing Problem 225

Neither of the two sensitive cell values can be determined to within 50% of its
actual cell value. Table 4, i.e. the “protected version” of Table 3, is hence
considered safe according to the applied criterion on the widths of the
suppression intervals. O

The basic form of the standard formulation of the secondary cell suppression
problem is: find the “best” set of secondary suppressions such that the suppres-
sion interval for each sensitive cell is sufficiently wide. Here “best” is defined by
means of some target function such as: minimize the total suppressed value,
minimize the number of suppressed cell values, or minimize the number of con-
tributions to the suppressed cells. Depending on how the “best” set of secon-
dary suppressions and on how “sufficiently wide suppression intervals for each
sensitive cell” are precisely defined and operationalized one obtains various
formulations for the secondary cell suppression problem. The standard criterion
on the width of the suppression interval is described below.

Operational criterion 1 (The suppression width rule). The upper bound on the
suppression interval has to be at least equal to that value for which the cell
would be safe according to the sensitivity measure for individual cells (for
instance the (p,q)-prior/posterior rule).

Implicitly, this criterion assumes that a sensitive cell is protected by suppress-
ing some additional cells with relatively small contributions (see Example 4 in
this article and, e.g., [3] and [5]).

Note that Operational criterion 1 is aimed at the protection of sensitive cell val-
ues, whereas the more stringent Rule 1 is directed at protecting the underlying
contributions of the respondents. In practice, the operational criterion can be
used as an approximation of Rule 1. In many cases this criterion is sufficient for
protecting the sensitive cell at hand.

Example 2. Consider Table 6 below in which only cell AxI is assumed to be
sensitive. Suppose that the largest contribution to this cell equals 155, and the
second largest to 4. We suppress the value of cell AxI and demand that the up-
per bound on its suppression interval is at least equal to that value for which the
cell would be safe according to the p%-rule with p = 20.
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Table 6. An unsafe table.

I 11 11 Total
A 160 380 340 880
B 40 80 60 180
C 610 800 270 1680
Total 810 1260 670 2740

According to the sensitivity measure, the upper bound on the suppression in-
terval should be at least 190. Namely, when the upper bound on the suppres-
sion interval equals 190, the second largest contributor can derive that the upper
bound on the largest contribution is 186 (=190-4). This upper bound exceeds the
actual value (i.e. 155) by exactly 20%. An upper bound of 190 or more on cell
Axl is achieved by the following suppression pattern.

Table 7. “Protected version” of Table 6.

I Il i Total
A X X 340 880
B X X 60 180
C 610 800 270 1680
Total 810 1260 670 2740

It can easily be derived that the suppression interval of cell AxI is [80, 200]. The
cell is sufficiently protected, since the upper bound implied by the interval
(=200) exceeds the critical value (=190). O

However, if all individual cells of a table are sufficiently protected, according
to Rule 1, and the table as a whole is safe on the basis of Operational criterion 1,
the respondents’ contributions are not necessarily sufficiently protected accord-
ing to Rule 1, as will be shown in Example 3.

Example 3. As in Examples 1 and 2, we will use a p% rule with p = 20. We return
to Table 4, i.e. the “protected version” of Table 3. In this table the cell values AxI
and AxIII have been suppressed. To each of these two cells there is only one
contributor. One can derive the total value of the cells AxI and AxIII. The value
of this “ad-hoc” cell, or aggregation, is 250. Each of the contributors to AxI and
AXIII can easily derive the contribution of the other. Thus, the “protected
version” of Table 3 is not protected at all, according to Rule 1! Note that this
conclusion does not depend on the required size of the suppression interval. o

Sande [28] calls the above phenomenon an “ad-hoc roll up”, and gives a num-
ber of examples in publications of various statistical offices. From Example 3 it
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is clear that — if one wants to use the concept of suppression intervals — tables in
which contributions of respondents may be recalculated exactly by other re-
spondents can sometimes be considered safe! Accordingly, there is a need for a
better operational criterion. In Section 4 a new criterion will be given, that is
indeed better from our point of view.

In Example 3 we considered an aggregation of cells for which the exact value
can be derived. The set of explicit aggregations, i.e. the aggregations that can be
directly read off from the “protected” table, will be denoted by

Ns

D ayx =b, fork=1,...K (3.6)

i=1
where Ns is the number of suppressed cells, and K denotes the number of ex-
plicit aggregations. An explicit aggregation (3.6) is a linear combination of sup-
pressed cells of which the value can be derived from one row or column of a
table. The coefficients of this linear combination are denoted by aixand bx in (3.6).
Usually aix =0 or aix =1, but this is no strict limitation.

For instance, for Table 4 the set of equations (3.6) is given by (3.1) to (3.4). The

aggregations and their total values that can be derived from (3.6) are given by

K K
Zﬂk(zaikXiJ:Zﬂkbka
k=1 i k=1
where the 4, (k=1,...,K) are coefficients. These coefficients may be positive or

negative. For instance: by subtracting (3.3) from (3.1), one obtains the aggrega-
tion:
Xi3 — X5, =—100. (3.7)
An aggregation j is defined by its coefficients (u, 4] ,..., 4} ). For notational
K
convenience we will write the coefficients of aggregation jas 4} = z L Ay -
k=1
Aggregations are defined up to a constant factor, i.e. if we have an aggregation

K K
Zﬂk {Zaik Xi J = Z:ukbk’
k=t i ket

then

K K
Z (770 )(Z A X J = z (e )by,
k=1 i k=1

is basically the same aggregation for a=#0. This allows us to scale the
(ylj , /12] e ). By dividing the ,ukj (k=1,...,K) by the maximum of their abso-

lute values, we can ensure that they lie between -1 and 1,
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i.e. that
—lﬁykjﬁl forallk=1,...,K.

4 A new criterion

The approach of Section 3 is to apply a (p,q)-sensitivity rule to individual cells
and a criterion on the width of the suppression interval to judge the safety of
aggregations. However, from a conceptual point of view separate cells and ag-
gregations are the same: they are just a collection of contributions of which the
total value is known. From this perspective the approach of using a sensitivity
rule for separate cells and a suppression interval criterion for aggregations is
inconsistent. It is more logical that cells and aggregations of cells should be sub-
jected to the same sensitivity rule. This leads to Operational criterion 2 below.

Operational criterion 2. A table is safe if and only if all aggregations of
suppressed cells are safe, on the basis of the same sensitivity rule that is applied
to separate cells.

In the literature sensitivity measures are defined for separate cells only. How-
ever, in order to apply Operational criterion 2, sensitivity measures have to be
extended to aggregations. The extension for the (p,g)-sensitivity rule will be for-
mally defined in Section 5.

Below the sensitivity rule for the most simple form of aggregations will be il-
lustrated: sums of cells of which the value can be derived from one row or col-
umn of the table.

Example 4. We continue with Example 2 and again use the p% rule with p = 20.
The largest two contributions to cell AxI in Table 6 equal 155 and 4, respectively.
Suppose that the largest two contributions to cell BxI equal 28 and 10. Cell AxI
is hence indeed sensitive and cell BxI non-sensitive (according to the p% rule
with p = 20). If we consider the suppression pattern of Table 7, we can merge
cells AxI and BxI into one imaginary cell. This cell has a total value of 200. The
respondent that makes the second largest contribution to this aggregation, with
value 28, can derive that the largest contribution to the aggregation is at most
200-28=172. This is within 20% of the actual value (=155) of the largest
contribution. According to the extended p%-rule, that will be formally described
in Section 5, the “protected version” of Table 6, would hence be unsafe. ]
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The idea applied to Example 4 is that suppressed cells that appear in one row
or column of a table are seen as one imaginary cell and the sensitivity rule is
applied to this cell. On the basis of this rule the table from Example 2 would be
unsafe, since one of the contributions can be recalculated too accurately (i.e. to
within 20% of its actual value). However, on the basis of Operational criterion 1
the table would be classified as safe (see Section 3).

In Operation criterion 1 the implicit assumption is made that the attacker con-
tributes to the same cell as the contribution under attack. The minimum width
of the suppression interval of one particular cell only depends on the sensitivity
rule that is applied to that cell. However, an attacker that contributes to a differ-
ent cell may derive a lower upper bound than an attacker that contributes to the
same cell, by using an aggregation that involves both cells. This may especially
occur if the second largest contribution to the sensitive cell is less than the larg-
est contribution to another suppressed cell within the same aggregation.

As a result Operational criterion 2 is more stringent than Operational criterion
1 in some cases (e.g. in Example 4). The opposite may also occur, as will be
shown in Example 5.

Example 5. Consider Table 8 below. Suppose that three respondents contribute
to cell AxI and three respondents contribute to cell BxI. The contributions to AxI
amount to 1000, 500 and 100 and the contributions to BxI to 100, 30 and 20. Ac-
cording to the p% rule, with p = 20, each upper bound on AxI should be at least
1700 (since 1700 — 500 = 1200 = 1000 + 20%x1000). The largest contributor to BxI
can derive an upper bound on AxI of 1650 (=3750 — 2000 — 100). Hence, Table 8 is
unsafe according to Operational criterion 1.
Table 8. A table with suppressions

I II Total
A X x 2500
B X X 2500
C 2000 1000 3000
Total 3750 4250 8000

However, on the basis of Operational criterion 2 the table would be classified
as safe. For this criterion the cells AxI and BxI are combined into one imaginary
cell, with a value of 1750 and contributions of 1000, 500, 100, 100, 30 and 20. The
second largest contributor to this combined cell can derive an upper bound of
1250 (1750 — 500) for the largest contribution, which exceeds its true value of
1000 by more than 20%. o
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Operational criterion 1 says that the value of a primary suppressed cell may
not be estimated too closely. As mentioned before, this criterion is at the cell
level. Operational criterion 2, however, is at the level of the underlying
contributions. In Example 5 it is shown that an attacker who can derive a close
bound on a cell value, cannot always approximate its underlying contributions
with a similar high precision. Thus, in some cases Operational criterion 1 is
more restrictive than Operational criterion 2.

Although Operational criterion 1 is not always sufficient, it does give a good
approximation for Operational criterion 2. In several cell suppression software
packages, such as CONFID [19], [20] and [21], ACS [26] and [27] and T-ARGUS
[15], this approximation is used. The problem with the standard formulation, i.e.
Operational criterion 1, has been acknowledged by others besides us, such as by
Giessing, [12] and [13], who notes that implicit aggregates of cells may be sensi-
tive. Giessing [12] notes that the sensitivity measure should also be applied to
any linear combination of suppressed cells within a row or column of the table,
but does not consider combinations of suppressed cells that are not within the
same row or column. Moreover, she focuses on the situation where one has sin-
gletons, i.e. cells with one contribution, in the table, whereas we also consider
cells with more contributions.

Most sensitivity measures, such as the (p,q)-prior/posterior rule and the (1,k)-
dominance rule, as described in literature only make sense for sums of cells.
Therefore, to apply our definition the sensitivity measure used has to be ex-
tended in order to make sense for more general combinations of cells, for exam-
ple for differences of cells, such as (3.7). This extension of the (p,q)-
prior/posterior rule will be made in the next section. The minor flaw in Sande’s
formulation referred to in the Introduction is that in his formulation he only
considers aggregations with positive coefficients, whereas also aggregations
with negative coefficients occur.

Cox [5] and Giessing [12] seem to use Operational criterion 2 when they refer
to what they call the multicell disclosure problem. They do not examine, or even
mention, the extension of the sensitivity measure to general linear aggregations
of cells. Cox notes that “the multicell is important because it is at this level that
actual respondents, and not artificial cell totals, are being protected for unau-
thorized disclosure”. He also notes that “all current methods do not protect
against multicell disclosure”.

Salazar-Gonzalez [22] uses an approach similar to Operational criterion 1. For
each attacker, lower and upper bounds on all suppressed cells are assumed. The
attacker knows that the true value of each suppressed cell value lies between
these bounds. Different attackers are assumed to know different lower and up-
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per bounds, reflecting different levels of knowledge of the true value of the sup-
pressed cells. A table is considered safe, if the attackers cannot approximate a
primary suppressed cell value “too closely”. Salazar-Gonzalez [22] assumes that
the difference between the upper (or lower) bound and the true value should be
at least as large as some protection level that has to be specified beforehand. For
each combination of an attacker and a suppressed cell different protection levels
may be used. He does not specify the meaning of “too closely”, however.

The criterion that is used by Salazar-Gonzalez [22] is on the cell level rather
than on the level of the underlying contributions. By choosing the protection
levels for the cell values in some appropriate way, it might be possible to protect
their underlying contributions as well, according to the sensitivity measure
used. As we already mentioned, Salazar-Gonzélez does not discuss the topic of
choosing appropriate values for the protection levels.

5 Extending the sensitivity measure

In this section the extension of the (p,q)-prior/posterior rule to aggregations, i.e.
Operational criterion 2, will be formally described. From this point on negative
contributions and holdings will be allowed.

As in Section 3 aggregations, i.e. linear combinations of suppressed cells with a

[ 4

Ns .
known value, will be denoted by X; =Y A/x;, where 4! (i =1,...,Ns) are coeffi-
i1

cients and the superscript j is used to identify the aggregation. Here, X; will be
used both for the definition of an aggregation, in terms of its constituent parts,
as well as the value at the right-hand side of this aggregation. We hope that it
will be clear from the context whether the definition of the aggregation or its
value is meant. The contribution of respondent r, » = 1,...,R to aggregation X;

Ng
will be denoted by the linear combination X | =Y A/x{. So, this contribution is
i1

defined as a linear combination of the contributions of contributor r to the un-
derlying cell values.

Further, the absolute contribution of a respondent r, (r = 1,...,R) to an aggrega-
Ng
tion X; will be defined as the linear combination X, =3 | A/x{ |. So, absolute
i1
contributions can be obtained from contributions by replacing each term, con-
sisting of a contribution multiplied by its coefficient, by the corresponding abso-
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lute value. Note that the value of an absolute contribution is nonnegative. For
later reference we define the absolute aggregation Xja as

R R Ng

X ia szjrA ZZZMinir |

r=1 r=1 i=l
Just as for the sensitivity measure for single cell values, a sensitivity measure for
an aggregation Xj can be derived by computing an upper (or lower) bound on
the contribution to X; of a specific contributor from the perspective of another
contributor!. Suppose a contributor s wants to approximate the value of the con-
tribution X| of contributor t. In order to check whether X; is adequately pro-

tected for contributor s, we derive an upper bound on the value of X| from the

perspective of contributor s. This upper bound is obtained by subtracting the
value of Xf and lower bounds for the values of Xjr, r=s,t from Xj ie. the

value at the right-hand side of the aggregation. The lower bound L (X|)on the
contribution of respondent r to aggregation j from the perspective of respondent
sis

SUIX] =X -—xr

q .
LS(X})z(l—m) DX+ | 00
i:2] X{ <0

9,
i:2 XI>0 100
This results in the following upper bound U (X]) for the value of X; from

the perspective of contributor s

t t, 9
Us(xj)zxj+ﬁ2ng. (5.1)

r#s,t

Operational criterion 2 says that X is not sufficiently protected for contribu-

tor s if and only if
us(xg)sx}+%x;A. (5.2)

Combining the equation (5.1) with the inequality (5.2) yields that the contribu-
tion of contributor f to aggregation Xjis adequately protected for contributor s if
and only if

4D Xja > PXa. (5.3)

r#s,t

" A sensitivity measure for aggregations may also be based on alternative ideas. Such alternative
sensitivity measures for aggregations are not explored in this paper. For more details on these

alternative measure we refer to Daalmans [6].

TRANSACTIONS ON DATA PRIVACY 3 (2010)



An Improved Formulation of the Disclosure Auditing Problem 233

Analogous to (2.1), one can derive that all contributions to Xj are sufficiently
protected, i.e.
qZX;A>pX}A foreverys, t=1,...R, s#t.
r#s,t

if

g XU > pxi,

r#1,2
which means that the largest contribution to Xja is sufficiently protected for the
contributor with the second largest contribution to Xja. This leads to the follow-
ing operational definition of sensitivity of aggregations. An aggregation X; is

sensitive if and only if

R
gy X< pxl. (5.4)
r=3

Example 6. We return to Tables 6 and 7 of Example 2. We use a (p,q)-
prior/posterior rul with p =20 and g = 100. In contrast to Example 2, this time we
assume that cell BxII is also sensitive and has only one contribution with value
80. The suppression pattern in Table 7 consists of four suppressed cells: AxI,
AxII, BxI and BxII. These will henceforth be denoted by x1, x2, x3, x4, respectively.
This notation differs from that of the earlier examples, but will be convenient
when discussing Example 7. By subtracting the explicit aggregations
x1+ x3= 200,
x3 + x4=120,
we obtain the implicit aggregation
x1 — x2=80. (5.5)
Recall from Example 2 that x1 = 160 and xs = 80. Thus, the translation of the
implicit aggregation to its absolute form is
x1+ x4=240.
Since the largest contribution to x: amounts to 155 and there is only one contri-
butor to x: with a contribution of 80, we obtain that X EL] =155, XE,Z_\]= 80 and

R R
3 XUW=5 (i.e. 240 - 155 — 80). We obtain that pX !l —q¥ X!\ =3100 - 500 =
r=3 r=3

2600. Since this number is positive we conclude that the aggregation is sensive.
Note that aggregation (5.5) allows the (only) contributor to x: to determine a
lower bound of 80 + 80— 5x1.2 =154 for the largest contribution of x1, which is
within 20% of its actual value. This demonstrates that this aggregation is indeed
senstive. O
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Note that the sensitivity rule in (5.4) resembles the sensitivity rule for individ-
ual cells. Namely, the sensitivity rule for aggregations can be obtained from the
sensitivity rule for individual cell values by replacing each contribution to an
individual cell by the absolute contribution to the aggregation.

We can also examine the lower bound on the value of X| from the perspective

of contributor s. As for individual cells, it can easily be seen that this leads to the
same operational definition of the sensitivity measure as the one derived from
the upper bound.

An appropriate sensitivity function for the (p,q)-prior/posterior rule extended
to aggregations is

R
Spq (X)) =pXi —aY X[,
r=3

An aggregation X; is sensitive if and only if S7 (X ;)>0. Note that

Spa(X)=8pq(Xjn).

The concept of absolute contributions has been introduced to extend the (p,q)-
prior/posterior rule to aggregations that involve both positive and negative co-
efficients. Analogous to aggregations, the extended sensitivity rule can also be
applied to separate cells. This leads to the following sensitivity function for in-
dividual cells

R
a _ nylll [r
Sp,q (XJ)_ PXia _qZXiA .

r=3

where X[j;] denotes the r largest contribution in absolute value to cell x;j. This is

almost the same sensitivity function as the one given in Section 2; the only dif-
ference is that this definition allows for negative contributions.

For the (p,q)-prior/posterior rule it is implicitly assumed that an intruder
knows the sign of all contributions. This assumption may not be realistic in
practice, however. Therefore there may be a need for more appropriate sensitiv-
ity measures that can be applied to tables that have positive as well as negative
contributions. We leave these measures open for further research.

Without any further assumptions the p%-rule becomes meaningless for tables
with negative contributions as any contribution can then a priori assume any
value. For any table only cells with at most two contributors would be sensitive,
whereas all other cells would be non-sensitive, see [12]. We propose to opera-
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tionalize the p%-rule for tables with negative contributions as the above (p,q)-
prior/ posterior rule with g = 1002.

Operational criterion 2 says that a table is sufficiently protected if all aggrega-
tions are sufficiently protected. One might fear, however, that there are situa-
tions, in which individual contributions to cell values involved in aggregations
can be estimated too accurately, although all aggregations are non-sensitive.
Fortunately, these situations cannot occur. This is the content of Theorem 1 be-
low.

Theorem 1. If all contributions to an aggregation X; are sufficiently protected
according to the (p,q)-prior/posterior rule, all contributions to individual cell
values involved in Xjare also sufficiently protected.

Proof. See the Appendix. O

As a consequence of Theorem 1, it is not necessary to apply a sensitivity meas-
ure to individual contributions to cells involved in aggregations.

It is not necessary to check whether all possible aggregations are sensitive or
not: one only has to consider aggregates that involve at least one sensitive cell.
Namely, Theorem 2 below says that aggregations that only involve non-
sensitive cells are non-sensitive.

Ns
Theorem 2. Consider an aggregation X ; = Z/L‘ X;. Then S7 (x;) <0 for every i

i=1

with 4] =0 implies $3,(X;)<0.

Proof. See the Appendix. m

The property stated in Theorem 2 that an aggregation of non-sensitive cells is
non-sensitive is an aspect of what is called subadditivity in the literature, e.g. [3]
and [5]. Theorem 2 shows that this aspect of subadditivity holds true for our
extended (p,q)-prior/posterior rule.

2 An alternative way of operationalising the p%-rule for tables with negative contributions would
be by assuming that an attacker a priori (only) knows whether each contributions is positive, zero
or negative. This alternative way is not explored further in this article.
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6 How to determine the most sensitive aggregation

In order to apply Operational criterion 2, and check whether a table is suffi-
ciently protected by means of cell suppression, we apply a simple idea: we de-
termine the most sensitive aggregation. If that aggregation is safe, the table is
safe. To make this simple idea work, some technical “machinery” is required,
however. In this section a mathematical model will be presented to implement
our simple idea.

As before an aggregation will be denoted by

K K
Zﬁk(zaikxi]:Zﬂkbk . (6.1)
k=1 i =

where as usual K stands for the number of explicit aggregations, ax and b« are
coefficients of the explicit aggregations, and /i, are the variables in the mathe-

matical model, i.e. these will be obtained as output. For ease of notation the su-
perscript * will be used to denote all variables. The sum of all absolute contribu-

tions to some aggregation X will be denoted by T , i.e.
R
T=> X
r=1
which can be rewritten as

. R Ng | K
T =ZZ Z/}kaikxir

r=1 i=1 |k=1

Further, the absolute contribution under attack will be denoted by A, and the
absolute contribution of the attacker will be expressed by A2 .
Criterion (5.4) can be rewritten by: a cell is sensitive if
a(T - Al - Az)S pAl,
or equivalently if

(p+a)A +0A, -qT >0, (6:2)
We can, in principle, find ‘the most” unsafe aggregation by maximizing
(P+ QA +0A, —qT. (6.3)

However, the technical problem has to be solved that it is not known before-
hand which contributors yield the values of A and Az- Put differently, before-
hand it is not clear which respondent will be the attacker and which contribu-
tion will be attacked.

Therefore the attacker and the contribution under attack will have to be identi-
fied by the model. For this purpose 0-1 variables U, and V, are introduced, that

satisfy
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A 1 if respondent r is under attack
= . (6.4)
0 otherwise
and
N 1 if respondent r is the attacker
0, = . (6.5)
0 otherwise

A Mixed-Integer Programming (MIP) problem can be solved in order to find
the most sensitive aggregation. The formulation of this optimization problem is

Maximize (p +q)A, +gA, —qT,

subject to T = i NZ &+,

r=1 i=1

K
o> Z,&k a X; for i=1,...Ns, r=1,...
k=1
R K
|F 2 _zﬁkalkxlr fOI' i=1,.-.NS, 7’=1,...

a, tM(1-14,) forr=1,...,R,

A<y a, +M(1-Y,) forr=1,...,R,

K
Gy <Y Iayx +M(1-f,)  fori=1,..Ns, r=1,...

v, +0, <1 for r=1,...,R,
| for i=1,...Ns, r=1,...
-1<4, <1 for k=1,....K,

a,,v, €{0,1} for r=1,...,R,

ﬁir €{0,1} for all i,7,

K
c <= X + MB; for i=1,...Ns, r=1,...

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)
(6.17)
(6.18)
(6.19)

(6.20)

where as before Ns is the number of suppressed cell values, R is the number of

respondents, and M is some sufficiently large, positive number.
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Below we first explain some of the symbols and the meaning of the constraints.
Thereafter, we discuss the working of the model in more detail.
As an outcome of the model, optimal values of i, are obtained. These values

K
identify the aggregation Z M@ X . According to constraint (6.18) /1, are re-
k=1
stricted to values between -1 and +1. This constraint can be used in the model,
since each aggregation can be scaled, such that all absolute values of z, are
smaller than or equal to 1 (see also the end of Section 3).

In (6.7) T is a variable whose optimal value is the sum over all absolute contri-
butions to the aggregation. This property is achieved by constraints in (6.7),
(6.8), (6.9) and (6.17), as will be explained below.

The optimal values for the 0-1 variables U, and V, define the respondent with
the largest and second largest absolute contribution to the aggregation. As men-
tioned before, the first respondent is the one whose contribution is most vulner-
able to disclosure and the second one is the most dangerous attacker. From now
on these respondents will be denoted by “the attacked unit” and the “attacker”.

The constraints (6.14) — (6.15) ensure that there is exactly one attacker and one
unit under attack. Each respondent may be the attacker or the attacked unit,
except that a respondent cannot be both at the same time. For this reason in
(6.16) the values of U, and V, cannot be one for the same 7.

The optimal values of A, and A, define the absolute contribution of the at-

tacked unit and the attacker. As shown hereafter, this property is implied by the
constraints (6.10)-(6.13).

Finally, the variables &, &, @, and B, are incorporated in the model to deal
with absolute values in the problem. As shown below, the optimal values of
éi;+$; and ¢; denote the contribution of respondent r to the most sensitive

aggregation that can be attributed to cell xi.
We now elaborate on the working of the model in more detail.

First, we demonstrate that the optimal value of T is the sum of all absolute con-
tributions to the aggregation. As mentioned in (6.7) T is set equal to a sum of
92; + fi; over all =1,...Ns and r=1,...,R. The inequalities in (6.8), (6.9) and (6.17)
imply a lower bound on E" + £ We consider two cases, depending on the out-

K K
come of z 4,3y X . If, for some i and 7, Z Ly X =0, the tightest lower bound
k=1 k=1

K
on &, is z Ly X , see (6.8), and the tightest lower bound on &;; is 0, cf. (6.17).
k=1

TRANSACTIONS ON DATA PRIVACY 3 (2010)



An Improved Formulation of the Disclosure Auditing Problem 239

K
In the other case, if Z 43, X <0, alower bound on & is 0, cf. (6.17), and a
=

K
lower bound on & is —Z 4 ay X, cf. (6.9). In both cases a lower bound on
k=1
K
Zﬂk x|
k=1

R Ns|K
TZZZZ/}kaikxir
k=1

r=1 i=l
indicating that T is at least as large as the sum of all absolute contributions to

Ervéilis . Substitution of this upper bound into (6.7) gives

b

the aggregation. Due to the maximization of —qT in (6.6), the optimal value of

T will be at its lower bound. This completes our explanation that the optimal

value of T equals the sum of all absolute contributions to an aggregation.
We proceed to show that in the optimal solution U, and V, identify the at-

tacked unit and the attacker and that the optimal values of Al and Az denote

the absolute contributions of these two respondents.
Before showing this main result, we first need to derive an upper bound on

Ns
Z&i, in (6.10) and (6.11). In (6.12) and (6.13) two upper bounds on ¢; are
i1
given. The value of the 0-1 variable B, determines which of the two bounds on
a;, is the tightest.
K

Again, we consider two cases, depending on the outcome of Z £ay X . If, for
k=1

K
some i and 7, Z 4y Xi 20, the largest possible upper bound on ¢ is
k=1

K
achieved for f;, =1 and this upper bound equals Z Ly X .
k=1

K
In the other case, if Z Ly Xi <0, the largest possible upper bound is
k=1

K
achieved for f;, =0 and this bound equals — z ey Xi .
k=1
In both cases the largest possible upper bound on «; can be written as

K
~ r
Zﬂkaik Xi

k=1

. As a consequence, we obtain the result that
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K

z A @i X

k=1

2

Ns Ns
S <3
i=1 i=1
Ns
i.e. that Zo}ir in (6.10) and (6.11) is bounded by the absolute contribution of
i=1
respondent r to the aggregation.

We now return to the main explanation: the meaning of U, v, A and A,.

The constraints in (6.10) and (6.11) impose R upper bounds on Al and AQ, one

for each respondent. Note that the most restrictive upper bound in (6.10)
Ns

amounts to Z&i, where r is the respondent with G, =1. Similarly, the most
i=1

NS
restrictive upper bound in (6.11) is Zdir, for the respondent r with V, =1. As

. i=1

mentioned before, Zdi, is bounded by the absolute contribution to the aggre-
i=1

gation of respondent r.

Due to the maximization of the objective function in (6.6) the optimal values of
A and A, are equal to their highest possible upper bounds. These are the abso-
lute contribution to the aggregation of the respondent r for which 0, and V, is
one, respectively. The highest possible upper bounds are attained when both U,
and V, are one for the respondent with the largest absolute contribution to the
aggregation. However, this is not feasible, since U, and V, cannot be one for the
same respondent 7, due to the constraint in (6.16). Since (6.6) is maximized and
(p+q)>q it follows that A1 > Az in the optimal solution. Thus, U, will be one
for the respondent with the largest absolute contribution to the aggregation (the
attacked unit), and vV, will be one for the respondent with the second largest
contribution (the attacker). As mentioned before, the optimal values of Al and
A, are the absolute contributions to the aggregation of both respondents. Fi-
nally, note that, since the z, can be scaled so they obtain finite values — in our

case they are scaled so they lie between -1 and 1 (see (6.18) and the end of Sec-
tion 3) — a finite optimum to (6.6) exists. This finishes our explanation of optimi-
zation model (6.6) to (6.20).

We are now ready for Theorem 3 below.
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Theorem 3. A table is sufficiently protected according to the (p,q)-prior/posterior
rule if and only if maximizing (6.6) subject to (6.7) to (6.20) yields a negative
value.

Proof. By our criterion of a safe table, a nonnegative value of (6.3) can be ob-
tained, if and only if a table involves a sensitive aggregation. Through the
maximization of the objective function (6.6), the existence of a sensitive aggrega-
tion will lead to a nonnegative objective function value. Also the reverse holds
true: a nonnegative objective function value of (6.6) means that the table con-
tains a sensitive aggregation. This directly follows from the definition (6.3). O

The number of variables of the model can be very large. However, a reduced
model can be applied to check whether some pre-defined set of contributions is
sufficiently protected for some pre-defined selection of attackers. In this reduced
model the variables 0, and V, and the restrictions (6.10) — (6.13) are only defined
for a subset of all “relevant” contributors, i.e. potential attackers and the con-
tributors that are potentially being attacked.

Moreover, it is not necessary to define &, ,&; and ¢, for some combination of

cell xi and respondent r if X{ = 0, since their optimal values will be zero.
Although this is not strictly necessary, it may be worthwhile to add the con-
straint

A > A,
to the formulation of the optimization model as this may speed up solving the
problem.

Example 7. Consider Table 7 again. As in Example 6 the four suppressed cells:
AxI, AxII, BxI and BxII will be denoted by x1, x2, x3, x4, respectively. The explicit
aggregations of this table are:

1: x1 +2x2 =540,

2: x1 +x3 =200,

3: x3 + x4 =120,

4: x2 + x4 =460.

All aggregations can be written as a linear combination of these four explicit
aggregations, as in (6.1), with K=4. For instance, /&, =1, 4, =0, [, =0, [, =-1,
is the implicit aggregation:

1 (x1+x2)—1 (x2+ x4) =x1—x4=540 — 460 = 80.

We suppose that there are 6 respondents. All nonzero contributions are given

in Table 9.
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Table 9. Individual contributions to Table 7

Cell Respondent Contribution
x1 Ri 155

X1 R> 5

x2 R3 200

X2 R4 180

X3 R3 28

X3 Rs 12

X4 Rs 80

Note that in this example all individual cells are sensitive. Note also that
respondent Rsis a holding; it contributes to two cells, x2 and x3. We apply the
p%-rule, with p = 20. As mentioned before, we operationalize the p%-rule, as a
(p,q)-prior/posterior rule with g = 100. The objective function in (6.6) is

Maximize 120A, +100A, —100T

The constraint (6.7) becomes:

T=G 80+ 80 60+ 0 + &+ 60+ Sy &5+ + &5 + 835+ G + S
Note that & and & are defined for the combinations of cells xi and respon-
dents r with nonzero contributions only, i.e. for the combinations that appear in
Table 9. For the combination of cell x: and respondent Ri, constraint (6.8) be-
comes

& = 155(f + i1,
and constraint (6.9) is given by

&n 2 -155(ay + 1, ),
where (4, + f1,) is the coefficient of x: in the aggregation and 155 is the
contribution of respondent R: to x1. Other constraints of types (6.8) and (6.9) are
defined in a similar way.

The constraints in (6.10) on the contribution of the attacked respondent Al are
A <é, +M(1-0),

~

A <é, +M1-1,),

| Sy +M(1-10y),
| S azs + M(1-0y),
<G +M(1-0y).
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The constraints in (6.11) resemble the constraints in (6.10). The only difference
is that A is replaced by A, and that 0, is replaced by V.. For instance, the first
constraint in (6.11) is

A, <G, +M1-Y)).
The upper bounds on ¢;, in (6.12) and (6.13) for cell x: and respondent Ri
become
&y, <155(a + i, )+ M (1= 3y,
&y, <—155(f + f1, )+ My,
The other upper bounds on ¢, are similar.
The constraints in (6.14), (6.15) and (6.16) are respectively
G, +U0, +0; +0, +U5 + 0, =1,
Uy +V, +V; +V, +Vs +V, =1,
0, +v, <1 r=1,...,R.
The first and second constraints above mean that there is only one attacker and

one unit under attack. The third one tells us that both units cannot be the same.
Finally, the bounds in (6.17) — (6.20) become

Si1 S120 $35 So4r 330 G35> Sas 20,

s G125 S:s Soas S35 G355 Sa5 20,

b, Gy, Gy, 4, G5, G, €{0,1},

Vi, Uy, V5, ¥y, Vs, Y, €{0,1),

P Py Boss Bous B> Pass P e{O,l},

—1<p, <1 k=1,...,4.
The optimal solution to the above problem is given by: i, =-1, @, =1, i =1,
[, =—1, meaning that the most sensitive aggregation is

—2x2 + 2x3 =—-680. (6.21)
Furthermore, we obtain the following absolute contributions to the
aggregation: &, =56, &1 =24, &, =400, &5, =360. These figures are twice the
tigures of the contributions in Table 9, due to the coefficients of 2 and -2 in the
aggregation. In the optimal solution T = 840, which is the sum over all absolute

contributions (56 + 24 + 400 + 360).
The attacked unit is respondent 3 (l;=1) and respondent 4 is the attacker

(V,=1). Their absolute contributions to the aggregation are given by A =456
and A, =360. Note that respondent 3 contributes to two cells of the aggregation,
x2 and x3, and therefore we have that Al = 5;3 + 922_3. Respondent 4 contributes to x3

only, hence we obtain Az = 54_ .
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Since 120,5\1 +100A2 ~100T =6720>0, we conclude that the table is

insufficiently protected according to Operational criterion 2.

By looking at the aggregation (6.21), we can indeed see that the table is unsafe.
Namely, respondent 4 can derive that the total contribution to the aggregation
(6.21) of respondent 3 is at most —-680 + 360 = -320. This upper bound
approximates the true contribution to the aggregation 56 — 400 =-344, too
closely, i.e. within 20%. As a further illustration that aggregation (6.21) is
sensitive, note that after multiplying (6.21) by —1/2 respondent 3 can derive that
the contribution of respondent 4 to cell x2 is at most 340 —180 + 28 =168, which
is within 20% of the true value. O

7 Discussion

In this article we have demonstrated that the commonly used definition to
check whether a table with suppressed cell values is safe to be released or not is
slightly inconsistent. We have presented a definition of a safe table that is cor-
rect in our opinion. In this article we have explored some of the consequences of
our new definition, such as extending the sensitivity measure to general linear
aggregations of cells.

Although we claim that our definition, i.e. Operational criterion 2, should re-
place the commonly used definition, i.e. Operational criterion 1, we can under-
stand that some statistical agencies may not want to abandon using Operational
criterion 1 completely, in any case not immediately. Such statistical agencies
may consider using both criteria simultaneously. However, this would possibly
lead to overprotecting a table. In this article we have not explored the combined
use of different auditing criteria.

We have also given a method to check whether a table with suppressed cell
values is safe to be released or not. As we already mentioned, such a checking
method is usually referred to as a disclosure auditing method (see, e.g., [5] and
[10]). A disclosure auditing method is, however, only a first step towards a
method for constructing a safe table given an unsafe one.

Developing a cell suppression method that constructs a safe table, i.e. a table
that satisfies Operational criterion 2, with (close to) minimal loss of information
appears to be much more complicated than developing a disclosure auditing
method. In theory it may be possible to base such a cell suppression method on
the mixed-integer programming approach described in Section 6. For instance,
an objective function could be minimized that depends on the number or the
total of the suppressed cells (see also [30] and [31]) and one of the constraints
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would be that the resulting table is safe, i.e. that the value of the objective func-
tion (6.6) is negative subject to (6.7) to (6.20). Note that this constraint involves
the result of a second optimization problem. In the literature this kind of model
is known as a bi-level model. For more on bi-level models we refer to [1], [8],
and [29].

Another theoretical possibility to base a cell suppression method on the dis-
closure auditing model described in Section 6 is an iterative procedure. During
each iteration an objective function is minimized that, for instance, depends on
the number or the total of suppressed values. Next, it is checked whether the
resulting table is safe by means of the model described in Section 6. If not, one
or more constraints, so-called cuts, are added to the problem, which basically
say that the current solution is no longer allowed. For more on cuts and optimi-
zation algorithms based on cuts in general we refer to [18].

Unfortunately, both approaches sketched above are likely to be exceedingly
slow in practice

Some alternative approaches not based on the disclosure auditing model of
Section 6 have also been developed already. Sande [23], [24] and [25] has done
work on an approach based on so-called elementary aggregations. The idea of
this approach is that a table is safe when all elementary aggregations are safe,
and hence that one only has to focus on protecting the elementary aggregations.
Unfortunately, the number of elementary aggregations can be exceedingly high.
At the U.S. Bureau of the Census an alternative approach has been followed to
obtain safe suppression patterns [16]. The idea of this approach is to determine
to what extent a cell can protect a sensitive cell before a suppression pattern is
generated. The extent to which a cell can protect a certain sensitive cell is called
the protection capacity of the former cell (for this sensitive cell). If the protection
capacities are calculated correctly, one can ensure in this way that the final table
with suppressed cell values is safe. However, determining the correct protection
capacities can be very complicated for practical situations. One therefore often
opts for a conservative approach where one may be too strict but is sure to pro-
duce a safe table.

Both the method based on elementary aggregations and the method based on
protection capacities are not entirely satisfactory. Perhaps the approach by Sala-
zar-Gonzalez [22] may be used to construct safe tables, if appropriate protection
levels can somehow be defined, but this would lead to very large and very
complex optimization problems.

Currently, a cell suppression method that finds secondarily suppressed cells
for tables arising in practice and that yields safe tables according to our defini-
tion in this article appears to be lacking. We encourage experts on operations
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research to develop better methods for constructing safe table by means of cell

suppression. Developing such methods appears to be a major problem.
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Appendix

Proof of Theorem 1.

Consider an aggregation X that involves a cell x. , i.e. A #0. Below it will be

lo

shown that all contributions tox. are sufficiently protected according to the
0

(p,q)-prior/posterior rule, if all contributions to Xj are sufficiently protected.
A contribution to X, of a respondent f is sufficiently protected for an attacker s
0

if this attacker cannot estimate an upper or lower bound for Xit to within p% of
0

its actual value. A mathematical expression for the upper bound will be given
below. It will be derived from the bounds on /1’ . From the perspective of

attacker s these bounds are glven by

U (X ) =2l X+ — g Aixt Al
( ) 100 r#s,t JA 100|¢| ‘ ‘ ( )
LA X )= 2] x R . Axt) A2

S X = Al X 100 2 X ia 100; (A2)

Analogous to the derivation of (5.1), the attacker can derive these bounds from
the value at the right-hand side of the aggregation and bounds on the contribu-
tions of all other respondents, except from the contribution under attack. By
definition these estimates differ g4 percent from the actual values, which explains
the expressions (A.1) and (A.2).

The second term at the right-hand side of (A.1) and (A.2) stands for all abso-
lute contributions from respondents other than s and ¢, and the third term de-
notes all contributions of respondent t, except for the contribution to X that is

under attack.
From (A.1) and (A.2) an upper bound for the contribution Xit can be derived

from the perspective of respondent s. This upper bound is

VNGRS > X+ 2| (A3)

bory! 100\/1'

(]

_a
100‘/130

The derivation depends on the sign of /1ij , ie. US(XitO)=U s(/1ij0 Xito)/ ﬂ.ijn if
A1 >0, else U (x; ) =Ly(4] x; )/ A} . Inboth cases we obtain (A.3).

The contribution x; is sufficiently protected for an attacker s if
0
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U. (X >x +—x
(X)) 100| l

which implies that X. is sufficiently protected for an attacker s if

ZXJA+‘

A > eI I (A4)

r#s,t A; iy

K]

Under the assumption that the contribution of contributor f to the aggregation
Xjis sufficiently protected for contributor s, i.e.
q z Xia > PXia,

r#s,t

see (5.3), it follows that

ZXJA+

r=s,t ‘ﬂj

AR

i=ig ‘/1]

S X a1 X ‘ZV‘HX\

] =R

P

t
i

Xt

ly

j

i

=P

b

which shows that condition (A.4) is indeed satisfied, and hence that xit is suffi-

ciently protected for attacker s.
Since t denotes an arbitrary contributor, s an arbitrary attacker, X, denotes an
0

arbitrary cell and Xj an arbitrary aggregation, we obtain the result that all con-
tributions to cells involved in a safe aggregation are sufficiently protected. o

Proof of Theorem 2.
Consider an aggregation X; and suppose S, ,(x;) <0, for every i with A x0,

which means that this aggregation only involves non-sensitive cells. We will
prove that S7,(X;) <0, where

R
Spq(X)=pXG —a> XU, (A.5)
r=3

That is, we will prove that the aggregation X; is non-sensitive.
Theoretically, the largest possible absolute contribution to an aggregation is
obtained from a holding that makes the largest absolute contribution to each of

the underlying cells of the aggregation. This implies
NS
X<
i=1
Analogously, the largest possible sum of the two largest contributions to X
could come from two holdings that would make the largest and the second larg-
est contribution to each of the underlying cells, i.e.

A (A6)
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Ng Ng
XU+ X3 <3 4]+ 3 A
i=1 i=1
Since
R R Ng
X =D X =31,
r=1 r=1i=l1
it follows that
R R Ns
DW= AN, (A7)
r=3 i=1

r=3

Combining (A.5) — (A.7) gives
Ng R Ny
Spa(X <Y [AX|—a) > [aix
= r=3 i-l

Ns .
2
i=l

s2.(x) <0,

Su{wer s
i=1 r=3

jz

which shows that S|, (X;) <0, under the assumption that S, (x;) <0, for every

iwith A #0.

O
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