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Abstract. Wireless networks and mobile devices, such as mobile phones and GPS receivers, sense
and track the movements of people and vehicles, producing society-wide mobility databases. This is
a challenging scenario for data analysis and mining. On the one hand, exciting opportunities arise out
of discovering new knowledge about human mobile behavior, and thus fuel intelligent info-mobility
applications. On other hand, new privacy concerns arise when mobility data are published. The
risk is particularly high for GPS trajectories, which represent movement of a very high precision and
spatio-temporal resolution: the de-identification of such trajectories (i.e., forgetting the ID of their
associated owners) is only a weak protection, as generally it is possible to re-identify a person by ob-
serving her routine movements. In this paper we propose a method for achieving true anonymity in
a dataset of published trajectories, by defining a transformation of the original GPS trajectories based
on spatial generalization and k-anonymity. The proposed method offers a formal data protection
safeguard, quantified as a theoretical upper bound to the probability of re-identification. We conduct
a thorough study on a real-life GPS trajectory dataset, and provide strong empirical evidence that
the proposed anonymity techniques achieve the conflicting goals of data utility and data privacy. In
practice, the achieved anonymity protection is much stronger than the theoretical worst case, while
the quality of the cluster analysis on the trajectory data is preserved.
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1 Introduction

In recent years, many Knowledge Discovery techniques have been developed that provide
a new means of improving personalized services through the discovery of patterns which

∗This article is an extended version of a paper presented at the 2nd SIGSPATIAL ACM GIS 2009 International
Workshop on Security and Privacy in GIS and LBS (SPRINGL 2009), Seattle WA, USA, Nov. 3, 2009.
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represent typical or unexpected customer and user behavior. The collection and the disclo-
sure of personal, often sensitive, information increase the risk of violating a citizen’s pri-
vacy. Much research thus focused on privacy-preserving data mining [2, 25, 11, 15]. These
approaches enables knowledge to be extracted at the same time trying to protect the privacy
of the individuals represented in the dataset. Some of these techniques return anonymous
data mining results, while others provide anonymous datasets to the companies/research
institutions responsible for their analysis. In the last few years, spatio-temporal and mov-
ing objects databases have gained considerable interest, due to the diffusion of location-
aware devices, such as PDAs, cell phones with GPS technology, and RFID devices, which
enable a huge number of traces left by moving objects to be collected. Clearly, in this con-
text privacy is a concern: location data enable inferences which may help an attacker to
discover personal and sensitive information such us the habits and preferences of individ-
uals. Hiding car identifiers, for example by replacing them with pseudonyms as shown in
[25], is insufficient to guarantee anonymity, since the location could still lead to the identi-
fication of the individual. Sensitive information about individuals can be uncovered with
the use of visual analytical methods [4]. Therefore, in all cases when privacy concerns are
relevant, such methods must not be applied to original movement data. The data must
be anonymized, i.e., transformed in such a way that sensitive private information can no
longer be retrieved.

In this paper we present a method for the anonymization of movement data combining
the notions of spatial generalization and k-anonymity. The main idea is to hide locations by
means of generalization, specifically, replacing exact positions in the trajectories by approx-
imate positions, i.e. points by centroids of areas. The main steps involved in the proposed
methods are: (i) to construct a suitable tessellation of the geographical area into sub-areas
that depends on the input trajectory dataset; (ii) to apply a spatial generalization of the
original trajectories; (iii) to transform the dataset of generalized trajectories to ensure that
it satisfies the notion of k-anonymity.

In the literature, most anonymization approaches proposed in a spatio-temporal context
are based on randomization techniques, space translations of points, and the suppression
of various portions of a trajectory. To the best of our knowledge only [27] uses spatial
generalization to achieve anonymity for trajectory datasets; however, the authors used a
fixed grid hierarchy to discretize the spatial dimension. In contrast, the novelty of our
approach lies in finding a suitable tessellation of the geographical area into sub-areas de-
pendent on the input trajectory dataset. The concept of spatial generalization has also been
used in studies on privacy in location-based services [10, 19, 20], where the goal is the on-
line anonymization of individual location-based queries. Our aim, on the other hand, is
privacy-preserving data publishing, which requires the anonymization of each entire tra-
jectory. A detailed discussion appears in Section 2.

In this paper, we make the following contributions:

• We formally define an adversary’s model of attack by clarifying the exact background
knowledge that the adversary may possess. We also give a formal statement of the
problem studied. Our anonymous dataset is based on the notion of k-anonymity.

• We develop an anonymization algorithm based on a spatial generalization and k-
anonymity. In order to guarantee k-anonymity, we propose two strategies for the
anonymization step called KAM-CUT and KAM-REC.

• We conduct a formal analysis based on our attack model and prove that our ap-
proaches guarantee that the probability of re-identification can always be controlled
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to below the threshold chosen by the data owner, by setting the threshold k.

• We conduct a detailed analysis of our approach using a real data set. The dataset
consists of a set of 5707 trajectories of GPS tracked cars moving in the area of Milan
(Italy). The dataset was provided by the European project GeoPKDD. Our results
show that we obtain anonymous trajectories with a good analytical utility. We show
how the results of the clustering analysis are preserved by analyzing the quality of
the clusters both using a visual analysis and analytical measurements.

The rest of the paper is organized as follows. Section 2 discusses the relevant related studies
on privacy issues in spatio-temporal data. In Section 3 some background information and
some notions on the clustering analysis are given. Section 4 introduces the attack model
and the background knowledge of the adversary. Section 5 states the problem. In Section 6
we describe our anonymization method. In Section 7 we present the privacy analysis. The
experimental results of the application of our methods on the real-world moving object
dataset are presented and discussed in Section 8. Finally, Section 9 provides the conclusion.

2 Related Work

Many research studies have focused on techniques for privacy-preserving data mining [2]
and for privacy-preserving data publishing. The first operation before data publishing is
to replace personal identifiers with pseudonyms. In [25] Samarati and Sweeney showed
that this simple operation is insufficient to protect privacy. They proposed k-anonymity to
make each record indistinguishable with at least k − 1 other records. In recent years many
algorithms for k-anonymity have been developed [14, 11, 8, 15]. Although it has been
shown that finding an optimal k-anonymization is NP-hard [18] and that k-anonymity has
some limitations [17, 16], this framework is still very relevant.
K-anonymity has been used both for data publishing and the publication of data mining

results, such as patterns extracted from the data [7]. Moreover, this technique is the most
popular method for the anonymization of spatio-temporal data. It is often used both in
the studies on privacy issues in location-based services (LBSs) and on the anonymity of
trajectories.

In an LBS context, a trusted server usually has to handle the requests of users and to
pass them on to the service providers. Essentially, it has to provide an on-line service
without compromising the anonymity of the user. The various systems proposed in the
literature to make the requests indistinguishable from other k− 1 requests use a space gen-
eralization, called spatial-cloaking [10, 19, 20]. In our approach the anonymization process
is off-line, as we want to anonymize a static database of trajectories. To the best of our
knowledge only three studies have addressed the problem of the k-anonymity of mov-
ing objects using a data publishing perspective [1, 22, 27]. In [1], the authors studied the
privacy-preserving publication of a moving object database. They propose the notion of
(k, δ)-anonymity for moving object databases, where δ represents the possible location im-
precision. This is an innovative concept of k-anonymity based on co-localization, which
exploits the inherent uncertainty of the whereabouts of the moving objects. The authors
also proposed an approach, called Never Walk Alone based on trajectory clustering and spa-
tial translation. In [22] Nergiz et al. addressed privacy issues regarding the identification
of individuals in static trajectory datasets. They provide privacy protection by: (1) first
enforcing k-anonymity, i.e. all released information refers to at least k users/trajectories,
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(2) randomly reconstructing a representation of the original dataset from the anonymiza-
tion. Yarovoy et al. in [27] study the k-anonymization of moving object databases in order
to publish them. Different objects in this context may have different quasi-identifiers and
thus, anonymization groups associated with different objects may not be disjoint. There-
fore, an innovative notion of k-anonymity based on spatial generalization is provided. In
fact, the authors proposed two approaches in order to generate anonymity groups that
satisfy the novel notion of k-anonymity. These approaches are called Extreme Union and
Symmetric Anonymization.

Another approach based on the concept of k-anonymity is proposed in [23], where a
framework for the k-anonymization of sequences of regions/locations is presented. The
authors also propose an approach that is an instance of their framework, which enables
protected datasets to be published while preserving the data utility for sequential pattern
mining tasks. This approach, called BF-P2kA, uses a prefix tree to represent the dataset in
a compact way. Given a threshold k it generates a k-anonymous dataset while preserving
the sequential pattern mining results.

Lastly, in [26], a suppression-based algorithm is suggested. Given the head of the trajec-
tories, it reduces the probability of disclosing the tail of the trajectories. It is based on the
assumption that different attackers know different and disjoint portions of the trajectories
and the data publisher knows the attacker’s knowledge. Thus, the solution is to suppress
all the dangerous observations.

3 Preliminaries

A moving object dataset is a collection of trajectories D = {T1, T2, . . . , Tm} where each Ti is
a trajectory represented by a sequence of spatio-temporal points.

Definition 1 (Trajectory). A Trajectory or spatio-temporal sequence is a sequence of triples
T =< x1, y1, t1 >, . . . , < xn, yn, tn >, where ti (i = 1 . . . n) denotes a timestamp such that
∀1≤i<n ti < ti+1 and (xi, yi) are points in R2.

Intuitively, each triple < xi, yi, ti > indicates that the object is in the position (xi, yi) at
time ti.

Definition 2 (Sub-Trajectory). Let T =< x1, y1, t1 >, . . . , < xn, yn, tn > be a trajectory. A
trajectory S =< x′1, y

′
1, t

′
1 >, . . . , < x′m, y′m, t′m > is a sub-trajectory of T or is contained in T

(S � T ) if there exist integers 1 ≤ i1 < . . . < im ≤ n such that ∀1 ≤ j ≤ m < x′j , y
′
j , t

′
j >=<

xij , yij , tij >.

We refer to the number of trajectories in D containing a sub-trajectory S as support of S
and denote it by suppD(S), more formally suppD(S) = |{T ∈ D|S � T}| .

Clustering analysis is one of the general approaches to exploring and analyzing large
amounts of data. Here we consider the problem of clustering a large dataset of trajecto-
ries. The aim of a clustering method is to partition a set of trajectories into smaller groups,
where each group (or cluster) contains objects that are more similar to each other than to
objects in other clusters. The methods to determine this partition may use different strate-
gies [12]. An exploration of the clustering search space is driven by the concept of “similar-
ity”. When dealing with complex objects, such as trajectories, the approaches to clustering
can be summarized into two main groups: (i) distance-based clustering, where the concept
of “similarity” is encapsulated within the definition of a distance function, and (ii) methods
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tailored for the specific domain [9, 13, 3]. Following strategy (i), the problem of clustering
a set of trajectories can be reduced to selecting a particular clustering method and defining
a similarity function for the specific domains. In this paper we focus on the application
of a density-based clustering algorithm for trajectories, namely OPTICS [6] and a specific
distance function, i.e., “Route Similarity” [4]. The density-based clustering methods have
been successfully applied for the clustering of trajectories [21], since they are very robust
to noisy data and do not make any assumption on the number of clusters and their shape
(i.e., they are not limited to the discovery of convex shaped clusters).

The OPTICS algorithm uses a density threshold around each object to identify interesting
data items (i.e., the trajectories that form a cluster) from the noise. The density threshold
for a trajectory T is expressed by means of two parameters: a distance threshold MaxDis-
tance from T , defining the maximum neighborhood extension, and a population threshold
MinNeighbors, defining the minimum number of items within the neighborhood. The role
of these two parameters as follows: (1) if an object has at least MinNeighbours objects lying
within the distance MaxDistance, this is a core object of a cluster; (2) if an object lies within
the distance MaxDistance from a core object of a cluster, it also belongs to this cluster; the
other objects are marked as noise. The algorithm then identifies all the core trajectories and
group them together into clusters. For each trajectory T , the algorithm checks if T is a
core trajectory. If it is a core trajectory, a new cluster is initiated from this first element and
it is enlarged by checking the core condition for all its neighbors. The enlargement of the
cluster continues until all the neighbors of the cluster are noise objects, i.e., the cluster is
separated from the other elements in the dataset by the noise. The algorithm the visits the
next unvisited object of D, if there is one.

During the visit, each trajectory is only tested for the core condition once. The outcome of
the tests for all the trajectories is summarized in a reachability plot: the objects are ordered
according to the visiting order and, for each item in the plot, the reachability distance is
specified. Intuitively, the reachability distance of a trajectory T corresponds to the minimum
distance of T from any other trajectory in its cluster. If T is a noise object, its distance is set
by default to ∞. As a consequence, a high mean value of the reachability distance in a cluster
denotes a sparse set of objects, while a low value is associated with very dense clusters.

4 Privacy Model

LetD denote the original dataset of moving objects. The dataset owner applies an anonymiza-
tion function to transform D into D∗, the anonymized dataset.

Our anonymization schemes are based on: (a) generating a partition in areas of the ter-
ritory covered by the trajectories; (b) applying a function for the spatial generalization to
all the trajectories in order to transform them into sequences of points that are centroids of
specific areas; (c) transforming the generalized trajectories to guarantee privacy.

We use g to denote the function that applies the spatial generalization to a trajectory. Given
a trajectory T ∈ D, this function generates the generalized trajectory g(T ), i.e. the centroid
sequence of areas crossed by T .

Definition 3 (Generalized Trajectory). Let T =< x1, y1, t1 >, . . . , < xn, yn, tn > a trajectory.
A generalized version of T is a sequence of pairs Tg =< xc1 , yc1 >, . . . , < xcm , ycm > with
m <= n where each xci , yci is the centroid of an area crossed by T .

Definition 4 (Generalized Sub-Trajectory). Let Tg =< x1, y1 >, . . . , < xn, yn > be a gener-
alized trajectory. A generalized trajectory Sg =< x′1, y

′
1 >, . . . , < x′m, y′m > is a generalized
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sub-trajectory of Tg or is contained in Tg if there exist integers 1 ≤ i1 < . . . < im ≤ n such
that ∀1 ≤ j ≤ m < x′j , y

′
j >=< xij , yij >.

We refer to the number of generalized trajectories in a datasetDG containing a sub-trajectory
Sg as support of Sg and denote it by suppDG (Sg), where suppDG (Sg) =

∣∣{Tg ∈ DG |Sg � Tg}
∣∣ .

4.1 Adversary Knowledge

An intruder who gains access to D∗ may possess some background knowledge allowing
him/her to conduct attacks that may allows him/her to make inferences on the dataset.
We generically refer to any of these agents as an attacker. An attacker may know a sub-
trajectory of the trajectory of some specific person, for example, by shadowing that person
for some time, and could use this information to retrieve the complete trajectory of the
same person in the released dataset. Thus, we assume the following adversary knowledge.

Definition 5 (Adversary Knowledge). The attacker has access to the anonymized dataset
D∗ and knows: (a) the details of the schema used to anonymize the data, (b) the fact that a
given user U is in the dataset D and (c) a sub-trajectory S relative to U .

4.2 Attack Model

The ability to link the published data to external information, which enables various re-
spondents associated with the data to be re-identified is known as linking attack model.
In relational data, linking is made possible by using a combination of attributes that can
uniquely identify individuals, such as birth date and gender; these attributes are called
quasi-identifiers. The remaining attributes, called sensitive, represent the private informa-
tion, which may be disclosed by the linking attack, and thus has to be protected. In privacy-
preserving data publishing techniques, such as k-anonymity, the goal is to protect personal
sensitive data against this kind of attack by suppression or generalization of quasi-identifier
attributes.

The movement data have a sequential nature; in the case of sequential data the dichotomy
of attributes into quasi-identifiers (QI) and private information (PI) does not hold any
longer. Thus, in the case of spatio-temporal data a sub-trajectory can play both the role
of QI and PI. In a linking attack conducted by a sub-trajectory known by the attacker the
entire trajectory is the PI that is disclosed after the re-identification of the respondent, while
the sub-trajectory serves as QI.

In this paper, we consider the following attack:

Definition 6 (Attack Model). Given the anonymized dataset D∗ and a sub-trajectory S rel-
ative to a user U , the attacker: (i) generates the partition of the territory starting from the
trajectories in D∗; (ii) computes g(S) generating the sequence of centroids of the areas con-
taining the points of S; (iii) constructs a set of candidate trajectories in D∗ containing the
generalized sub-trajectory g(S) and tries to identify the whole trajectory relative to U .
The probability of identifying the whole trajectory by a sub-trajectory S is denoted by
prob(S).

From the point of view of data protection, minimizing the probabilities of re-identification
is desirable. Intuitively, the set of candidate trajectories corresponding to a given sub-
trajectory S should be as large as possible. A good solution would be to minimize the
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probabilities of re-identification and maximize data utility by minimizing the transforma-
tion of the original data. We propose a k-anonymity setting as a compromise. The gen-
eral idea is to control the probability of the re-identification of any trajectory to below the
threshold 1

k chosen by the data owner. Thus, our goal is to find an anonymous version
of the original dataset D, such that, on the one hand, it is still useful for analysis, when
published, and on the other, a suitable version of k-anonymity is satisfied.

The crucial point of our attack model is that it can be performed by using any sub-
trajectory in D: a sub-trajectory occurring only a few times in the dataset (but at least once)
enables a few specific complete trajectories to be selected,and thus the probability that the
sequence linking attack succeeds is very high. On the other hand,a sub-trajectory occur-
ring so many times that it is compatible with too many subjects reduces the probability of a
successful attack. We will therefore consider the first type of trajectories as harmful in terms
of privacy, and the second as non-harmful.

Definition 7. Given a moving object dataset D and a trajectory T ∈ D we denote by PD(T )
the set of all the trajectories T ′ ∈ D such that g(T ) � g(T ′).

Definition 8. Given a moving object dataset D and an anonymity threshold k > 1, a trajec-
tory T is k-harmful (in D) iff 0 < |PD(T )| < k.

The above notion allows us to define a k-anonymous version of a moving object dataset D,
parametric w.r.t. an anonymity threshold k > 1.

Definition 9. Given an anonymity threshold k > 1, a moving object dataset D and a gen-
eralized moving object dataset D∗, we can say that D∗ is a k-anonymous version of D iff for
each k-harmful trajectory T ∈ D either suppD∗(g(T )) = 0 or suppD∗(g(T )) ≥ k, where g(T )
is the spatial generalization of T .

The parameter k is the minimal acceptable cardinality of a set of indistinguishable gener-
alized trajectories, which is considered as sufficient protection of anonymity in the given
situation. Note that, the Definition 9 does not apply any constraints to non-harmful trajec-
tories in the original dataset: these may have any support value in the anonymous version.
The following theorem proves that in the k-anonymous version of a dataset the probability
of re-identification has an upper bound of 1

k .

Theorem 10. Given a k-anonymous version D∗ of a moving object dataset D, we have that, for any
QI trajectory T , prob(T ) ≤ 1

k .

Proof. Two cases arise.

Case 1: if T is a k-harmful trajectory in D, then, by Def. 9, either suppD∗(g(T )) = 0, which
implies prob(T ) = 0, or suppD∗(g(T )) ≥ k, which implies prob(T ) = 1

suppD∗ (g(T )) ≤
1
k .

Case 2: if T is not a k-harmful trajectory in D, then, by Def. 8 we have |PD(T )| = M ≥ k
and by Def. 9, g(T ) can have an arbitrary support in D∗. If suppD∗(g(T )) = 0 or
suppD∗(g(T )) ≥ k, then the same reasoning as Case 1 applies. If 0 < suppD∗(g(T )) <
k, then the probability of success of the linking attack via T to person U is the proba-
bility that U is present in D∗ times the probability of picking U in D∗, i.e.,

prob(T ) =
suppD∗(g(T ))

M
× 1

suppD∗(g(T ))
=

1
M

≤ 1
k

where the final inequality is justified by the fact that U is present in D by the assump-
tion of the linking attack, and by the fact that M ≥ k due to the hypothesis that T is
not k-harmful in D. This concludes the proof.
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The above theorem provides a formal mechanism for quantifying the probability of suc-
cess of a successfully attack defined in Definition 6. Note that, given a dataset D, this may
have many possible k-anonymous versions, corresponding to different ways of dealing
with the k-harmful trajectories. However, from a statistics/data mining point of view, we
are only interested in the k-anonymous versions that preserve various interesting analytical
properties of the original dataset.

5 Problem Statement

We will now tackle the problem of constructing a k-anonymous version of D. The pro-
posed approaches are based on two main steps: (i) applying a spatial generalization of the
trajectories inD, and (ii) checking the k-anonymity property on the generalized dataset and
transforming the data when this property is not satisfied. Our approaches guarantee the
privacy requirements and also preserve the clustering analysis.

Definition 11 (Problem Definition). Given a moving object dataset D, and an anonymity
threshold k > 1, find a k-anonymous version D∗ of D such that clustering results are pre-
served in D∗.

In Section 8 we assess the preservation of the clustering results after the anonymization
by using both analytical and visual comparisons.

6 Anonymization Approaches

In this section we will present our approach, which enables us to anonymize a dataset of
moving objectsD, by combining spatial generalization of trajectories and k-anonymization.
The details of the two main steps (see Algorithm 1) are described below. Note that we
propose two different strategies for the k-anonymization step.

Algorithm 1: PPSG(D, k, r, p)
Input: A moving object database D, an integer k, the radius r, a percentage p
Output: A k-anonymous version D∗′ of the database D
// Step I: Trajectory Generalization
< DG′, V, C >= SpatialGeneralization(D, r);
// Apply progressive generalization to the Voronoi tessellation (see Algorithm 3)
< DG , V ∗, C∗ >= ProgressiveGeneralization(DG′, V, C, k);
// Step II: Trajectory k-Anonymization
D∗ = k-Anonymization(DG , k, p);
return D∗

6.1 Trajectory Generalization

The generalization method (see Algorithm 2) extracts characteristic points from the trajec-
tories, groups them into spatial clusters, and uses the centroids of the clusters as generating
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points for Voronoi tessellation of the geographical area. Each trajectory is then transformed
into a sequence of visits of the resulting Voronoi cells. The generalized version of the tra-
jectory is built from the centroids of the visited cells. The degree of generalization depends
on the sizes of the cells which, in turn, depend on the spatial extents of the point clusters.
The desired spatial extent (radius) is a parameter of the method.

Algorithm 2: SpatialGeneralization(D, r)
Input: A moving object database D, the radius r
Output: A generalized moving object database DG , set of Voronoi cells V , set of their

centroids C
// Extract P - the set of characteristic points from D
P = CharacteristicPoints(D);
// Group the points of P in spatial clusters with desired radius r
S = SpatialClusters(P, r);
// Compute the centroids of the spatial clusters
C = Centroids(S);
// Generate Voronoi cells around the centroids
V = V oronoiTessellation(C);
// Generalize the trajectories
DG = GeneralizedTrj(D, V , C);
return DG , V, C

The algorithms for extracting characteristic points from trajectories, the spatial clustering
of the points and the division of the territory are described in [5]. The use of the resulting
division for producing generalized trajectories is straightforward.

A special note should be made concerning the time stamps of the positions in the gener-
alized trajectories. The generalization method associates each position with a time interval
[t1, t2], where t1 is the moment of entering and t2 is the moment of exiting the respective
area. This can be considered as a temporal generalization. However, the current version of
the anonymization algorithm ignores the temporal component of the data.

Figure 1 outlines the generalization process. We used a small sample consisting of 54
trajectories of cars (Figure 1A). Figure 1B demonstrates one of the trajectories with its char-
acteristic points, which include the start and end points, the points of significant turns,
the points of significant stops, and representative points from long straight segments. The
extraction of the characteristic points is controlled by the user-specified thresholds: mini-
mum angle of a turn, minimum duration of a stop, and maximum distance between two
extracted points. In the example given, we used the values 45◦, 5 minutes, and 3500 me-
ters. Figure 1C shows the characteristic points extracted from all trajectories of the sample.
The points are shown by circles with 30% opacity, so that the concentrations of points are
visible. The points were grouped into spatial clusters with the desired radius 3500m (we
use a large value to have a clearer picture for the figure). The rhombus-shaped symbols
mark the centroids of the clusters. Figure 1D shows the results of using the centroids for
the Voronoi tessellation of the territory. The generalized trajectories generated on the basis
of this tessellation are presented in Figure 1E. The trajectories are drawn on the map with
10% opacity. The shapes of most of the trajectories coincide exactly; therefore, they appear
just as a single line on the map. Figure 1F provides an insight into the number of coincid-
ing trajectories. For each pair of neighboring areas, there is a pair of directed lines, called
flow symbols. The thickness of a symbol is proportional to the number of trajectories go-
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ing in the direction indicated by the arrow pointer. In this figure, the maximum thickness
corresponds to 32 trajectories.

Figure 1: Illustration of the process of trajectories generalization. A) Subset of trajectories.
B) One of the trajectories and the characteristic points extracted from it. C) Characteristic
points extracted from all trajectories (represented by circles) and the centroids of the spatial
clusters of the points (represented by rhombuses). D) Voronoi tessellation of the territory.
E) Generalized trajectories. F) A summarized representation of the trajectories. The thick-
ness of each flow symbol (directed line) is proportional to the number of trajectories going
between the respective pair of areas in the indicated direction.

6.1.1 Spatial Density of Trajectories

The density of trajectories is not the same throughout the territory as depicted in Figure
2. On the left, car trajectories are shown with 10% opacity. It can be seen that the density
on the belt roads around the city and on the major radial streets is much higher than in
the other places. On the right, the differences in the densities are represented by shading
various compartments. The number of trajectories passing an area varies from 1 to 386.

(a) (b)

Figure 2: (a) A subset of car trajectories made in Milan in the morning of a working day.
The lines are drawn with 10% opacity. (b) The tessellation of the territory based on spatial
clusters of characteristic points with approximate radius 500m. The shading of the areas
shows the variation of the density of the trajectories over the territory
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The areas with a low density of trajectories (less than k) are not very suitable for the pur-
poses of anonymization, because the probability of identifying of the trajectories passing
these areas will be more than 1

k . These trajectories will need to be removed in the second
step of Algorithm 1, which increases the loss of information. However, it is possible to
handle the areas with a low density of trajectories at the generalization stage. The idea is
to increase the sizes of the areas in the low density regions so as to increase the number of
trajectories passing these areas. This means that the level of spatial generalization should
vary depending on the density of the trajectories. The distortion of the trajectories will be
higher in sparse regions than in dense regions; however, fewer trajectories will need to be
removed from the dataset to ensure k-anonymity.

Furthermore, not only is the number of trajectories passing each area important but also
the connections between areas. Thus, if there are less than k trajectories going from A to
B, the risk of their identification will exceed 1

k , although each of the areas A and B may be
passed by more than k trajectories.

6.1.2 Progressive Generalization

In this section we describe how to adapt the generalization method in order to consider the
spatial density of the trajectories and the anonymity threshold k.

At the generalization stage, it is hard to account for the connections of all possible pairs
of places whereas connections between neighboring places are an effective way to adapt
the generalization level to the data density. Specifically, if A and B are neighboring areas
and there are less than k (but more than 0) trajectories going from A to B or from B to A,
these areas should be joined into a single area. This will hide the sensitive segments of the
trajectories.

However, directly joining the irregularly shaped areas may produce non-convex shapes,
which are computationally costly and inconvenient to use. Therefore, we apply another
approach. Let a and b be two areas that need to be joined, C is the set of centroids of all
areas, ca ∈ C is the centroid of a and cb ∈ C is the centroid of b. We extract all trajectory
points contained in a and in b, and compute ca+b as the centroid or medoid of these points
(using the centroid distorts the data more than using the medoid). Then, we remove ca

and cb from C and put ca+b instead. The modified set C is used to generate a new Voronoi
tessellation. The whole algorithm, called Progressive Generalization, can be described as in
Algorithm 3.

Formally, Algorithm 3 terminates in one of the following two cases: either there are no
neighboring areas connected by less than k trajectories or less than two areas remain. How-
ever, achieving one of these termination conditions, especially the second one, may not be
desirable because increasing the generalization level decreases the quality of the resulting
generalized trajectories. Andrienko and Andrienko in [5] introduce numeric measures of
the generalization quality derived from the displacements of trajectory points, i.e. the dis-
tances from the original points to their representatives in the generalized trajectories, which
are the centroids of the areas. There are local and global quality measures. The former are
the average and maximum displacements in an area and the latter are the sum, average,
and maximum of the displacements over the whole territory. It is obvious that increasing
the sizes of the areas increases the displacements of the trajectory points. A very high level
of generalization can make the data unsuitable for analysis. Therefore, it may be reasonable
to stop the generalization process before reaching the formal termination conditions.

The numeric measures of the generalization quality allow us to modify Algorithm 3 in
a way that the quality of the resulting generalized trajectories can be controlled by the
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Algorithm 3: ProgressiveGeneralization(DG , V , C, k)

Input: A generalized moving object database DG , set of Voronoi cells V , set of their
centroids C, integer k

Output: modified set of Voronoi cells V ∗, set of their centroids C∗

foreach pair of neighboring cells from V do1

Count the number of trajectories going between them in each of the two directions;2

Take the minimum of the two counts if both are positive or the maximum otherwise;3

end4

Create a set P including all pairs of areas such that the count of the connecting5

trajectories is positive but less than k;
if P == ∅ then6

V ∗ = V ;7

C∗ = C;8

go to line 23;9

else10

Sort the set P in the order of increasing count;11

while P 6= ∅ do12

Take the first pair (a, b) from P ;13

Remove all other pairs including a or b from P ;14

Generate C∗ computing ca+b and replacing ca and cb in C by ca+b;15

end16

Generate a new set of Voronoi cells V ∗ using the points from C∗;17

if V ∗ contains more than 2 areas then18

V = V ∗;19

C = C∗;20

go to line 1;21

else22

// Generalize the trajectories using the modified tessellation
DG′ = GeneralizedTrj(DG , V ∗, C∗);23

return DG′, V ∗, C∗24

end25

end26

user. For this purpose, we introduce an additional parameter for the minimum acceptable
quality, which is expressed as the maximum local displacement allowed, denoted MaxDis-
placement. Let us assume that a pair of areas (a, b) is chosen for joining in Algorithm 3 (see
line 5). Before performing the joining, it is possible to compute the expected displacement
in the resulting area a + b. First, the centroid of this area ca+b is computed. Next, the ex-
pected local displacement is derived from the distances of the trajectory points contained
in areas a and b to the point ca+b. The areas a and b are joined only if the expected value
of the local displacement in a + b is not higher than MaxDisplacement. Hence, we modify
Algorithm 3 in the following way: when a candidate pair of areas is selected for joining
(line 5 of Algorithm 3), the expected displacement in the area resulting from their joining
is computed. If the expected displacement exceeds MaxDisplacement, the pair is removed
from the list P .

Another possibility is to do progressive generalization in an interactive way. This may be
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preferable when the user has difficulties in choosing an appropriate value for the parameter
MaxDisplacement. We have implemented an interactive version of the algorithm that allows
the user to see the result of each iteration step on a map and stop the process when the
visible distortion becomes too high. In this case, the most recent result is discarded, and
the previous result is taken as final.

The result of each step in the progressive generalization is shown to the user using flow
symbols (Figure 1F). As an example, we applied the progressive generalization to the set of
approximately 6000 car trajectories in the Milan area - see Figure 2(a). We used Algorithm
2 to produce the initial tessellation with the desired cell radius 500m, as shown in Figure
2(b). Then we applied Algorithm 3 with k = 5. Figures 3(a) & 3(b) present the outcomes of
11 and 12 iteration steps, respectively. Figures 3(a) & 3(b) demonstrate that the progressive
generalization method tends to preserve the representative points (cell centroids) lying on
the major roads where the density of the trajectories is high. Hence, the distortions in the
corresponding segments of trajectories after the generalization are low.

(a) (b) (c)

Figure 3: The results of progressive generalization after 11 (a), 12 (b) and 36 (c) iteration
steps.

To provide a comparison of the outcomes of two consecutive generalization steps, their
results can be shown in one map by superimposing one map layer on the other. The flow
symbols are drawn in a semi-transparent mode, which allows the user to see where the two
results coincide and where they differ. The user may also superimpose the results of the
generalization on the map layer with the original trajectories (Figure 2(a)). For the example
presented in Figure 3(b), the user may feel that the outcome of 12 steps distorts the original
trajectories too much and decide to keep the previous result. In the original generalization,
there were 1908 pair-wise connections with less than 5 trajectories between areas. After 11
steps of the algorithm’s work, there are 233 such connections, which is a substantial im-
provement in terms of preserving privacy. At the next stage, the k-anonymization method
is applied to the generalized trajectories.

Figure 3(c) presents the result of the progressive generalization algorithm when not in-
terrupted by the user. The algorithm has made 36 iteration steps and removed 1102 of
the original 1245 cells. The resulting generalization level is very high, which decreases the
usefulness of the generalized trajectories for analysis.

One more approach to controlling the generalization quality is a combination of the in-
teractive and automatic approaches, which allows the user to overcome the difficulty of
choosing a suitable value of MaxDisplacement in advance. In this approach, Algorithm 3
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performs a certain (user-chosen) number of generalization steps and presents the result to
the user. If the user is fully satisfied with the quality, he/she allows Algorithm 3 to perform
a given number of further steps. If the user finds the quality in some areas to be unaccept-
able, he/she interactively marks these areas on the map. Then, the local displacements in
all areas are computed. The maximum among the local displacements in the non-marked
areas that is lower than the smallest local displacement among the marked areas is taken
as the value of the parameter MaxDisplacement. After this, the modified Algorithm 3 is
fulfilled.

6.2 Generalization vs k-anonymity

The approach described in Section 6.1, given a dataset of trajectories enables us to generate
a generalized version, denoted by DG . In order to complete the anonymization of move-
ment data, a further step is required. It is necessary to ensure that the disclosed dataset is
a k-anonymous version of the original dataset. In other words, we want to ensure that for
any sub-trajectory used by the attacker, the re-identification probability is always controlled
below a given threshold 1

k . In the database DG we do not have this guarantee, in fact we
could have a single generalized trajectory representing a single trajectory (or in general few
trajectories) inD. Clearly, there are many ways to make a generalized dataset k-anonymous
and each one corresponds to a different implementation of the k-Anonymization function in
the Algorithm 1. Therefore, we now introduce two variants of a method based on the work
introduced in [23], KAM CUT and KAM REC, which apply a transformation to the gener-
alized moving object dataset DG in order to obtain a k-anonymous version of D. They are
based on the well-known data structure called prefix tree, which allows us to represent the
list of generalized trajectories in DG in a more compact way.

6.2.1 KAM CUT Algorithm

The main steps of the Algorithm 4 are as follows:

1. The generalized trajectories in the input datasetDG are used to build a prefix tree PT .

2. Given an anonymity threshold k, the prefix tree is anonymized, i.e., all the trajectories
whose support is less than k are pruned from the prefix tree.

3. The anonymized prefix tree, as obtained in the previous step, is post-processed to
generate the anonymized dataset of trajectories D∗.

We will now describe the details of each step to better understand the transformation ap-
plied to the generalized dataset.

Prefix Tree Construction. The first step of the KAM CUT algorithm (Algorithm 4) is the
PrefixTreeConstruction function. It builds a prefix tree PT , representing the list of gener-
alized trajectories in DG in a more compact way. The prefix tree is defined as a triple
PT = (N , E , Root(PT )), where N is a finite set of labeled nodes, E is a set of edges and
Root(PT ) ∈ N is a fictitious node that represents the root of the tree. Each node of the
tree (except the root) has exactly one parent and it can be reached through a path, which
is a sequence of edges starting from the root node. Each node v ∈ N , except Root(PT ),
has entries in the form 〈id, point, support, children〉 where id is the identifier of the node v,
point represents a point of a trajectory, support is the support of the trajectory represented
by the path from Root(PT ) to v, and children is the list of child nodes of v.

TRANSACTIONS ON DATA PRIVACY 3 (2010)



Movement Data Anonymity through Generalization 105

Algorithm 4: KAM CUT(DG , k)

Input: A moving object database DG , an integer k
Output: A k-anonymous version D∗ of the database DG

// Step I: Prefix Tree Construction
PT = PrefixTreeConstruction(D);
// Step II: Prefix Tree Anonymization
Lcut = ∅;
foreach n in Root(PT ).children do

PT ′ = TreePruningcut(n,PT , k);
end
// Step III: Generation of k-anonymous Dataset
D∗ = AnonymousDataGeneration(PT ′);
return D∗

Prefix Tree Anonymization. The TreePruningcut function prunes the prefix tree with re-
spect to the anonymity threshold k. Specifically, this procedure visits the tree and when the
support of a given node n is less than k then it cuts the subtree with root n from the tree.

Generation of anonymous data. The third step enables the anonymous dataset D∗ to be
generated. The AnonymousDataGeneration procedure visits the anonymized prefix tree and
generates all the represented trajectories.

The main characteristic of KAM CUT is that it enables us to publish only the k-frequent
prefixes of the generalized trajectories. For example, given the trajectory Tg =< xc1 , yc1 >
, . . . , < xcm , ycm >,< xcm+1 , ycm+1 >, . . . , < xcn , ycn >, where the initial portion < xc1 , yc1 >
, . . . , < xcm , ycm > occurs less than k times in the generalized dataset, while the portion
< xcm+1 , ycm+1 >, . . . , < xcn , ycn > occurs at least k times, the algorithm removes the whole
trajectory Tg from the prefix tree, wasting also the frequent sub-trajectory. Clearly, this
method is suitable to anonymize very dense datasets, as in this case the prefix tree consid-
erably compresses the dataset and so the number of lost frequent sub-trajectories tends to
be low. Usually, a moving object database is characterized by a low density. It would there-
fore be useful to have a method capable of recovering portions of trajectories which are
frequent at least k times. With this aim we developed the algorithm KAM REC, described
in the next section.

6.2.2 KAM REC Algorithm

Algorithm 5, like the previous algorithm, consists of three main steps:

1. The generalized trajectories in the input datasetDG are used to build a prefix tree PT .

2. Given an anonymity threshold k, the prefix tree is anonymized, i.e., all the trajectories
whose support is less than k are pruned from the prefix tree. Part of these infrequent
trajectories is then re-appended in the prefix tree.

3. The anonymized prefix tree, as obtained in the previous step, is post-processed to
generate the anonymized dataset of trajectories D∗.
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Clearly, the first and the last steps (points 1 and 3) are the same as those described for the
algorithm in the previous section. While, the Anonymization step (point 2) is different from
that of the algorithm KAM CUT. Thus we will now describe the details of the second step
in order to better understand the transformation applied to the generalized dataset.

Algorithm 5: KAM REC(DG , k, p)

Input: A moving object database DG , an integer k, a percentage p
Output: A k-anonymous version D∗ of the database DG

// Step I: Prefix Tree Construction
PT = PrefixTreeConstruction(D);
// Step II: Prefix Tree Anonymization
Lcut = ∅;
foreach n in Root(PT ).children do

Lcut = Lcut ∪ TreePruning(n,PT , k);
end
PT ′ = TrjRecovery(PT ,Lcut, p);
// Step III: Generation of k-anonymous Dataset
D∗ = AnonymousDataGeneration(PT ′);
return D∗

Prefix Tree Anonymization. The first operation performed during this step is to prune
the prefix tree with respect to the anonymity threshold k. This operation is executed by
the TreePruning function, which modifies the tree by pruning all the infrequent subtrees
and decreases the support of the path to the last frequent node. TreePruning visits the tree
and, when the support of a given node n is less than k, it computes all the trajectories rep-
resented by the paths which contain the node n and which start from the root and reach
the leaves of the sub-tree with root n. All the computed infrequent trajectories and their
supports are inserted into the list Lcut. Next, the subtree with root n is cut from the tree.
After the pruning step, the algorithm tries to re-attach part of the generalized trajectories in
Lcut onto the pruned tree, using the TrjRecovery function (see Algorithm 6). This function
checks if the infrequent trajectories contain generalized sub-trajectories that are frequent
at least k times in DG . From each infrequent trajectory it tries to recover the longest sub-
trajectory that is frequent in the pruned tree PT and/or in the list Lcut. To do this, the
function uses the well-known notion of longest common subsequence. When the algorithm
finds a sub-trajectory which is frequent at least k times then it is appended to the root of
the pruned tree only if it contains at least p% (input parameter) of points of the infrequent
generalized trajectory.

This algorithm differs from BF-P2kA [23] in terms of the TrjRecovery step. The algorithm in
[23] computes the longest common subsequence only between each infrequent trajectory
and the trajectories in the pruned tree, while we also consider in this computation the
infrequent trajectories in Lcut. This allows us to recover a larger amount of frequent sub-
trajectories. Suppose for example that a sub-trajectory S always appears as a suffix of k
different trajectories that are cut during the phase of pruning. BF-P2kA loses these sub-
trajectories, whereas we are able to recover them. Another difference is that our method
inserts less noise in the anonymized dataset. In fact, when we find a frequent sub-trajectory
we append it to the Root, while BF-P2kA reattaches it to the path in the tree closest to the
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Algorithm 6: TrjRecovery(PT , Lcut, p)
Input: A prefix tree PT , a list of sequences Lcut, a percentage p
Output: An anonymized reconstructed prefix tree PT ′

foreach distinct T ∈ Lcut do
// Compute LCS between T and the trajectories in the prefix tree
LCSPT = ClosestLCS(T,PT );
// Compute LCS between T and the trajectories in list Lcut

LCSLcut
= ClosestLCS(T,Lcut);

S = max(LCSPT , LCSLcut);
if length of the sub-trajectory S is at least p% of T then

Append S to the Root of PT ;
end

end
return PT

sub-trajectory, thus introducing noise.

6.3 A running example

We will now present an example which shows how our two k-anonymization approaches
work, highlighting the main difference between them. We consider the dataset of gener-
alized trajectories in Figure 4(a) and a k-anonymity threshold equal to 2. Note that, each
letter in a trajectory represents a centroid of a generalized area.

t1 A B C D E F G
t2 A B C D E F G
t3 A B C D E F G
t4 A D E F
t5 A D E F
t6 A D E F
t7 C H L
t8 D E C H L
t9 D E J F G

(a) Generalized Trajectories

t′1 A B C D E F G
t′2 A B C D E F G
t′3 A B C D E F G
t′4 A D E F
t′5 A D E F
t′6 A D E F
t′7 D E
t′8 D E

(b) Trajectories by KAM CUT

t′1 A B C D E F G
t′2 A B C D E F G
t′3 A B C D E F G
t′4 A D E F
t′5 A D E F
t′6 A D E F
t′7 C H L
t′8 C H L
t′9 D E F G

(c) Trajectories by KAM REC

Figure 4: A toy example

During the first step our two methods build the prefix tree in Fig. 5(a).
During the anonymization step, as explained in the previous sections, the methods anonymize

the tree in different ways.
First we show how KAM CUT works. The prefix tree is modified by the TreePruningcut

function pruning the tree with respect to the k-anonymity threshold. This procedure searches
the tree for all the highest nodes in the tree hierarchy with a support of less than 2. When it
finds the three nodes 〈11, C, 1〉, 〈16, J, 1〉 and 〈19, C, 1〉 the sub-trees that have these nodes as
root are eliminated, thus obtaining the anonymized tree in Figure 5(b). Finally, the Anony-
mousDataGeneration procedure provides the anonymized dataset shown in Figure 4(b).

In the Algorithm KAM REC we need to consider another input parameter, i.e. a per-
centage p that for example we assume to be equal to 40%. This percentage allows us to
recover frequent sub-trajectories only if they preserve at least 40% of the points of the orig-
inal trajectories. The TreePruning function searches the tree for all the highest nodes in the
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(b) Anonymized Prefix Tree

Figure 5: Prefix tree processing in KAM CUT

tree hierarchy with a support of less than 2 and finds the nodes 〈11, C, 1〉, 〈16, J, 1〉 and
〈19, C, 1〉. Next, it identifies the paths that contain these nodes and which start from the
root and reach each leaf belonging to the subtrees of these nodes. Then, it generates all the
sequences represented by these paths and inserts them into the list Lcut. Now the list con-
tains the sub-trajectories (CHL, 1), (DEJFG, 1) and (DECHL, 1). Finally, the TreePruning
procedure eliminates the paths representing the sub-trajectories listed above from the tree,
and updates the support of the remaining nodes. The prefix tree obtained after the pruning
step is shown in Fig. 6(a).

The infrequent sub-trajectories within Lcut are then processed, using the notion of the
longest common subsequence, in this way: (CHL, 1) occurs twice in Lcut and has at least
40% of the points of the original trajectory. Thus, it is appended to the root obtaining a
branch with nodes 〈11, C, 1〉, 〈12,H, 1〉 and 〈13, L, 1〉; (DEJFG, 1) contains the frequent
sub-trajectory DEFG that has at least 40% of the points of the original trajectory. Thus, it
is appended to the root producing the branch with the nodes 〈14, D, 1〉, 〈15, E, 1〉, 〈17, F, 1〉
and 〈18, G, 3〉; finally, (DECHL, 1) contains the frequent sub-trajectory CHL that has at
least 40% of the points of the original trajectory. Thus, it is appended to the root increas-
ing the support of the branch with nodes 〈11, C, 1〉, 〈12,H, 1〉 and 〈13, L, 1〉. The prefix tree
obtained after the anonymization step is shown in Fig. 6(b). Finally, the AnonymousData-
Generation procedure provides the anonymized trajectories shown in Fig. 4(c).
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(b) Anonymized Prefix Tree

Figure 6: Prefix tree processing in KAM REC
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6.4 Complexity Analysis

In this section, we discuss the time complexity of our approach, analyzing the complexity
of each step of Algorithm 1. In the following we denote by n the total number of points in
the original trajectory dataset.

The SpatialGeneralization function has a time complexity of O(n) as each step of this
procedure is linear w.r.t. the number of points n. In fact, the extraction of characteristic
points from the trajectories and the transformation of each trajectory into a generalized
version require to visit all the points of the original dataset. Also, the spatial grouping of
the characteristics points costs O(n) as at the worst case we have n points of this kind.

Each iteration of ProgressiveGeneralization procedure analyzes the centroids of the cells.
The number of centroids at the worst case is equal to the number of points n, thus the time
cost is O(n× I), where I is the number of iterations.

Regarding the time cost of the two methods for the k-Anonymization of the generalized
trajectories, note that at the worst case the total number of points of the generalized dataset
is equal to n. Thus, KAM CUT algorithm has time cost O(n) and KAM REC algorithm
costs O(n2). The cost of KAM CUT is linear w.r.t. n as it only requires the construction
of the prefix tree and the visit of the tree for the pruning. Instead, KAM REC also tries to
recover portions of trajectories which are frequent at least k times computing the longest
common subsequence and this requires O(n2) time.

7 Privacy Analysis

In this section we discuss the privacy guarantees obtained applying our anonymization
approaches. We will formally show that our Algorithm 1, using both KAM CUT and
KAM REC, always guarantees that the disclosed dataset D∗ is a k-anonymous version of
D.

Theorem 12. Given a moving object dataset D and an anonymity threshold k > 1, Algorithm 1
using Algorithm 4 produces a dataset D∗ that is a k-anonymous version of D.

Proof. First, we show that DG is a generalized version of D. Secondly, we show that the
dataset D∗ generated by Algorithm 4 is a k-anonymous version of DG and finally, that D∗

also is k-anonymous version of D.

1. The dataset DG is obtained by applying the generalization (Algorithms 2 & 3) to all
the trajectories in D, thus it is the generalized version of D.

2. By construction, the pruning step of Algorithm 4 prunes all the subtrees with support
less than k. The pruned prefix tree PT ′ then only contains generalized trajectories
that are frequent at least k times in DG . Therefore, after this step, if a generalized
trajectory Tg occurs less than k times in DG then there is no occurrence of it in PT ′. If
Tg occurs at least k times in DG then it can occur either 0 or at least k times in PT ′.

3. Next, we must prove that the dataset D∗, containing only the trajectories represented
by PT ′, is a k-anonymous version of D. Two cases arise:

a) if a trajectory T is k-harmful in D then after the generalization step we can have
either suppDG (g(T )) < k and through point 2 of this proof we have suppD∗(g(T )) =
0, or suppDG (g(T )) ≥ k and by point 2 of this proof we have either suppD∗(g(T )) =
0 or suppD∗(g(T )) ≥ k.
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b) if a trajectory T is not k-harmful in D then after the generalization step we have
suppDG (g(T )) ≥ k and by point 2 of this proof we have either suppD∗(g(T )) = 0
or suppD∗(g(T )) ≥ k. This concludes the proof.

Theorem 13. Given a moving object dataset D and an anonymity threshold k > 1, Algorithm 1
by using the Algorithm 5 produces a dataset D∗ that is a k-anonymous version of D.

Proof. The proof is similar to Theorem 13. First, we show that DG is a generalized version
of D. Secondly, we show that the dataset D∗ generated by Algorithm 5 is a k-anonymous
version of DG and finally, that D∗ is also a k-anonymous version of D.

1. The dataset DG is obtained by applying the generalization (Algorithms 2 & 3) to all
the trajectories in D, thus it is the generalized version of D.

2. By construction, the pruning step of Algorithm 5 prunes all the subtrees with support
less than k, then the pruned prefix tree PT only contains generalized trajectories that
are frequent at least k times in DG . Thus, after this step, if a generalized trajectory Tg

occurs less than k times in DG then there is no occurrence of it in PT . If Tg occurs
at least k times in DG then it can occur either 0 or more times in PT . Nevertheless,
the reconstruction step does not change the tree structure of PT , it only increases
the support of existing generalized trajectories which are already frequent at least
k times in DG . In conclusion, at the end of the second step of Algorithm 5, all the
sub-trajectories which are represented in PT ′ are frequent at least k times in DG .

3. Now, we need to prove that the dataset D∗, containing only the trajectories repre-
sented by PT ′, is a k-anonymous version of D. Two cases arise:

a) if a trajectory T is k-harmful in D then after the generalization step we can have
either suppDG (g(T )) < k and through point 2 of this proof we have suppD∗(g(T )) =
0, or suppDG (g(T )) ≥ k and through point 2 of this proof we have suppD∗(g(T )) ≥
0.

b) if a trajectory T is not k-harmful in D then after the generalization step we have
suppDG (g(T )) ≥ k and through point 2 of this proof we have suppD∗(g(T )) ≥ 0.
This concludes the proof.

8 Experiments

The two anonymization approaches were applied to a dataset of trajectories, which is a
subset of a dataset donated by Octotelematics S.p.A. for the research of the GeoPKDD project.
This dataset contains a set of trajectories obtained by GPS-equipped cars moving during
one week in April 2007 in the city of Milan (Italy). When two consecutive observations
where too far in time, or in space, we applied a pre-processing to the whole dataset to
cut trajectories. Note that we did not reconstruct the missing points by interpolation: if a
point was missing then we assumed that the object stays still in the last position observed.
After the pre-processing, the whole dataset contained more than 45k trajectories. In our
experiments we used 5707 trajectories collected from 06.00 AM to 10.00 AM on 4 April
2007.
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8.1 Statistics on the dataset before and after anonymization

The anonymization process influences the geometrical features of the trajectories. In Fig-
ures 7(a) and 7(b) the distribution of length of the anonymized trajectories obtained with
both methods is shown in meters. It is evident how the generalization removes the shortest
trajectories of the original data: this depends on the parameter r used for the tesselation.
The generalized datasets used for the experiments were computed starting with parameter
r = 500m and then by executing several steps of progressive generalization.

(a) KAM REC: Length of trajectories (m) (b) KAM CUT: Length of trajectories (m)

Figure 7: Distribution of trajectory lengths

Figure 8 depicts the summarization of the trajectories after the anonymization process. A
comparison with the original dataset shows how for k = 8, for example, the shape is pre-
served for the denser regions of the geographical area. As expected, KAM REC preserves
the dataset best.

(a) Original trajectories (b) KAM REC: k = 8 (c) KAM CUT: k = 8

Figure 8: Visual summarization of original dataset and anonymized version with k = 8

8.2 Visual comparison of clusters

In our experiments we used the density-based clustering algorithm OPTICS [6] and the
distance function for trajectory “route similarity” [24]. It is well known that results of
clustering algorithms are sensitive to the choice of MaxDistance and MinNeighbours values.
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Suitable values are typically chosen in an empirical way by trying several different combi-
nations and evaluating the clustering results from the perspective of an internal cohesion
of the clusters and their interpretability as well as their number and sizes (thus, a large
number of very small clusters is not desirable). For the clustering of the original dataset we
found the combination MaxDistance = 450m and MinNeighbours = 5 to be appropriate in
terms of producing a reasonable number of sufficiently coherent clusters. For the clustering
of the generalized and anonymized trajectories, we used the same value as the minimum
population threshold MinNeighbours = 5. The main criterion for choosing the values for
the distance threshold was the similarity of the resulting clusters to the clusters of the orig-
inal trajectories. The distance thresholds for the generalized and anonymized trajectories
need to be smaller than for the original trajectories. This is because the distances between
similar trajectories decrease in the process of generalization due to the replacement of close
points by identical points and further decrease in the process of anonymization due to the
removal of infrequent segments.

Figure 9 shows the 10 largest clusters of the original trajectories. The clusters are presented
on a map of Milan in a summarized form using the flow map technique, where arrows
indicate the direction of the movement and have a thickness proportional to the number of
trajectories. Cluster 12, which consists of very short trajectories, is represented by a special
circular symbol with the width proportional to the number of trajectories. Above the image
of each cluster, its numerical index and size (in parentheses) are shown. Figure 10 shows
the 10 largest clusters of the generalized trajectories resulting from Algorithms 2 and 3. The
clusters were obtained with the distance threshold of 200m. Figure 11 shows the 10 largest
clusters of the anonymized trajectories resulting from Algorithm 5 with k = 5 and p = 40%.
The distance threshold for the clustering was 50m.

Above the images of the clusters in Figures 10 and 11, the numbers in bold are the indexes
of the corresponding clusters of original trajectories. The symbols “??” denote the cases
when no corresponding clusters were found, in particular, cluster 9 in Figure 10, and clus-
ters 37 and 132 in Figure 11. The absence of a cluster of original trajectories corresponding
to a cluster of generalized or anonymized trajectories means that the original trajectories do
not satisfy the necessary conditions for making a cluster, i.e. each has less than MinNeigh-
bours (= 5) trajectories lying within the distance MaxDistance (= 450m)from it. This does
not mean, however, that the shapes (routes) of the original trajectories differ much from
the shapes of the corresponding generalized or anonymized trajectories. As an example,
Figure 12 demonstrates the original trajectories corresponding to cluster 9 of the general-
ized trajectories (bottom right corner of Figure 10). It can be seen that the shapes of the
original trajectories match the shape of cluster 9 very well. Similarly, clusters 37 and 132 of
the anonymized trajectories have corresponding subsets of original trajectories with similar
shapes, although they could not be united into clusters according to the formal conditions.
Hence, we can say that the generalization and anonymization may reveal some frequent
patterns which are difficult to find among the original trajectories due to high variability.

Another interesting case is cluster 6 of the generalized trajectories (Figure 10, upper left
corner), which combines clusters 5 and 16 of the original trajectories. Cluster 6 consists
of trajectories that have a large common part going from east to west along the northern
highway and then split into three branches. In the clustering of the original trajectories, two
of the branches are together (cluster 5) and one is separated (cluster 16). However, putting
these three branches together or separately depends on the distance threshold used for
the clustering. Thus, with the distance threshold of 600m, they make up a single cluster
with a size of 82, which is very close to the size of cluster 6 (79) in Figure 10. After the
anonymization, the three branches are separated into three clusters, 4, 5, and 91 (the latter
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two clusters are not visible in Figure 11) with the sizes of 41, 20, and 17, respectively. These
variations in putting several slightly differing frequent routes together or separately still
means that we can interpret the clustering results.

Figure 9: 10 largest clusters of the original trajectories obtained with the distance threshold
450m and minimum population threshold 5.

Figure 10: 10 largest clusters of the generalized trajectories (resulting from algorithms 2 &
3) obtained with the distance threshold 200m and minimum population threshold 5. The
numbers in bold indicate the corresponding clusters of the original trajectories.
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Figure 11: 10 largest clusters of the anonymized trajectories (resulting from Algorithm 5
with k = 5 and p = 40%) obtained with the distance threshold 50m and minimum popu-
lation threshold 5. The numbers in bold indicate the corresponding clusters of the original
trajectories.

Figure 12: The original trajectories corresponding to cluster 9 of the generalized trajectories.

8.3 Measuring the quality of the clustering

To determine how the clusters of the original dataset are preserved after the anonymiza-
tion phase, we designed ad hoc quality measures for the resulting clusterings of the density-
based approach. Since a direct effect of the anonymization process is an increase in the con-
centration of trajectories (i.e. several original trajectories are bundled on the same route),
the clustering method will thus be influenced by the variation in the density distribution.
The increase in the concentration of trajectories is mainly caused by the reduction of noisy
data. In fact, the anonymization process tends to render each trajectory similar to the neigh-
boring ones. This means that the original trajectories, initially classified as noise, can now
be “promoted” as members of a cluster. This phenomenon may produce an enlarged ver-
sion of the original clusters.
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To evaluate the actual increase in the density of the cluster, we computed the actual dis-
tribution of the trajectories after the anonymization steps. Information on the density of a
clustering is implicitly present in the reachability plot obtained by the OPTICS algorithm,
since the reachability distance is inversely correlated with the density of the data items: a
high mean value of reachability distance stands for a sparse cluster, while a low value
denotes a very dense group. Thus, we computed a clustering for the original dataset,
the generalized dataset, and for each dataset from the two anonymization techniques, for
k = 2, 4, 8, 16, 20, 25, 30. The results of the comparison are shown in Figure 13 on a log scale.
Not surprisingly, the datasets produced by the KAM CUT algorithm are more dense than
the dataset produced by KAM REC, since the recovery phase of KAM REC enables us to
recover several trajectories that maintain a relative diversity in the original groups.

Figure 13: The density distribution of the original dataset (in red), the generalized dataset
(in blu), and various level of anonymization for the two approaches

Our aim is to verify that these enlarged clusters are neither so large that they embrace all
the original clusters (i.e. all the trajectories fall in a unique large cluster) nor so fragmented
as to split each original cluster into several anonymized versions. We are interested in
monitoring whether the objects of a cluster C are maintained in the same group after the
clustering of the anonymized version of the dataset and, at the same time, we want to
verify that the “shape” of the original cluster is preserved after the anonymization, i.e. the
original clusters are not merged arbitrarily into the same large clusters. Moreover, since we
adopted a density-based clustering method, we wanted to verify how the density varies
during the anonymization process, in order to verify how well the clusters are separated in
the anonymized version.

Given a dataset of objects D, the result of the clustering method can be expressed as CD =
{C1, C2, . . . , Cm,noise}. We say also that all the elements in cluster Ci belong to class ci.
Given an anonymized version D∗ of D and the clustering CD∗ = {C∗

1 , C∗
2 , . . . , C∗

l ,noise∗},
we denote with C∗−1

j the set of original objects whose anonymized versions form the cluster
C∗

j . Given a cluster Ci ∈ CD and the clustering CD∗ of an anonymized version of D we
define the Precision as

P (Ci, CD∗) =
|Ci ∩ C∗−1

j |
|C∗−1

j |
, arg max

j
|Ci ∩ C∗−1

j | ∧ C∗
j ∈ CD∗

and the Recall as

R(Ci, CD∗) =
|Ci ∩ C∗−1

j |
|Ci|

, arg max
j

|Ci ∩ C∗−1
j | ∧ C∗

j ∈ CD∗ .
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The recall measures how the cohesion of a cluster is preserved: it is 1 if the whole original
cluster is mapped into a single anonymized cluster, it tends to zero if the original elements
are scattered among several anonymized clusters. The precision measures how the sin-
gularity of a cluster is mapped into the anonymized version: if the anonymized cluster
contains only elements corresponding to the original cluster its value is 1, otherwise the
value tends to zero if there are other elements corresponding to other clusters. The con-
tamination of an anonymized cluster may depend on two factors: (i) there are elements
corresponding to other original clusters or (ii) there are elements that were formerly noise
and have been promoted to members of an anonymized cluster. Since we are interested on
the variation of the original cluster members, we can refine the definition of the precision
by defining a measure of Precision* considering only non-noise objects and:

P ∗(Ci, CD∗) =
|Ci ∩ C∗−1

j |
|C∗−1

j − noise|
, arg max

j
|Ci ∩ C∗−1

j | ∧ C∗
j ∈ CD∗

The F-measure is usually adopted to express the combined values of precision and re-
call and is defined as the harmonic mean of the two measures. In this context, given two
clusterings CD and CD∗ we define the F-measure as:

F (CD, CD∗) =

∑
i=1,2,...,|CD| F (Ci, CD∗)

|CD|
,where F (Ci, CD∗) = 2

P (Ci, CD∗) ·R(Ci, CD∗)
P (Ci, CD∗) + R(Ci, CD∗)

We denote with F-measure* the F-measure computed using the Precision* instead of Preci-
sion.

To compare the measure of precision and recall on different levels of anonymization,
we performed a reference clustering on the original dataset, using the same parameters
specified in Section 8.2 (MaxDistance=450m, MinNeighbors=5), and a clustering for each
anonymized dataset for different levels of k. The results of the comparison are shown
in Figure 14.

The values of recall for KAM REC are clearly better than the KAM CUT algorithm since
the infrequent sub trajectories are recovered into frequent groups, hence guaranteeing that
close sub-trajectories are kept together. The KAM CUT approach maintains a relative con-
stant value for recall, since it preserves the most frequent core of each group of trajectories.
In addition the level of fragmentation of the clusters is bounded by the density of popula-
tion in each group: a significant loss in recall is visible when the value of k increases above
the population of the identified clusters, since the trajectories in the smallest clusters are
removed.

The values of precision were evaluated using the two definitions given above. Not sur-
prisingly, the values of Precision* are greater than the standard Precision computation.
From a comparison of the two values of precision, we can estimate the number of trajec-
tories that were formerly identified as noise in the original dataset and that are associated
with a cluster in the anonymized versions. For example, for the KAM REC algorithm and
for k = 2, each anonymized cluster contains 30% of the trajectories associated with noise in
the original dataset.

The behavior of the two algorithms is also evident in the ratio of recall and precision
they achieve: KAM REC has larger values of recall and lower values of precision w.r.t.
KAM CUT, since infrequent branches of groups are recovered in possibly shorter groups
that are, however, close to the original one. This ensures that original k-harmful trajec-
tories are maintained in a form close to their original neighborhood, thus minimizing
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(a) F-measure KAM CUT (b) F-measure* KAM CUT

(c) F-measure KAM REC (d) F-measure* KAM REC

Figure 14: Comparison of the clusterings of the anonymized dataset versus the clustering
of the original trajectories. For both anaonymization startegies it is presented a comparison
using the standard F-measure and the F-measure*.

the fragmentation of the cluster and, hence, maintaining the recall. The recovery, how-
ever, can transform noise trajectories into anonymized versions that can be attached to an
anonymized cluster, thus negatively affecting the level of precision.

8.4 Measuring the Probability of Re-identification

We also analyze the probability of re-identification of a given user in the released dataset. In
Section 7 we formally proved that our methods for the anonymization of movement data
ensure that, for any sub-trajectory used by the attacker, the re-identification probability
is always controlled below a given threshold 1

k . Clearly, this threshold is only an upper
bound. In fact, from an accurate investigation of our real-world data we discovered that
given a sub-trajectory of a specific user, the probability of re-identification is often lower
than 1

k . It depends on the number of observations of the attacker: in general, a low number
of observations reduces the probability of re-identification.

This phenomenon is highlighted by the plots in Figure 15, which show the cumulative
distributions of the identification probability with varying numbers of observations. We
calculated the cumulative distributions for a number of observations from 1 to 80 on the
datasets anonymized by KAM REC with k =2,4,8,16 and p = 40%. These are computed
choosing randomly a total of 50000 sub-trajectories from the original dataset; they contain
a number of points from 1 to 80. To make the plots easy to read we only show the dis-
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tributions for some values of the number of observations. We also performed the same

(a) k = 2 (b) k = 4

(c) k = 8 (d) k = 16

Figure 15: Cumulative Distribution of Identification Probability on Milan Datasets
anonymized by KAM REC

computation on the datasets anonymized by the algorithm KAM CUT, obtaining very sim-
ilar behaviours.

Moreover, we computed the re-identification probability for each trajectory of the original
dataset assuming an increasing number of observations known by the attacker. Given a
trajectory we computed the probability when the attacker knows the first point, the first
two points, and so on. Then, given a specific number of observations we calculated the
average, the maximum and the minimum value of probability. The minimum value in each
anonymous dataset and for each number of observations is always 0. The plots in Figure
16 depict the average and the maximum re-identification probability for the anonymization
obtained by KAM CUT and KAM REC with different values of k. These plots confirm the
theoretical upper bound 1

k and show that given a dataset anonymized with an anonymity
threshold k, in general, the protection guaranteed by our methods is much higher.

8.5 Run Time Analysis

Our algorithms were implemented using Java 6.0. All experiments were performed on
an Intel Core2 Duo processor with a 2.66GHz CPU and 6GB RAM over a Linux platform
(ubuntu 8.10). We will now assess the total time needed to anonymize a database of move-
ment data (generalization of trajectories and k-anonymization step). Figure 17 reports the
timings for anonymizing a dataset of 5707 trajectories, according to the two methods for
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(a) KAM CUT (b) KAM REC

(c) KAM CUT (d) KAM REC

Figure 16: Identification Probability by varying the number of observations

guaranteeing k-anonymity, KAM CUT and KAM REC. We show the runtime behavior of
the two methods for different values of k. The approach using algorithm KAM CUT re-
quires a lower execution time since this algorithm, after the pruning step, does not try to
recover frequent sub-trajectories from the infrequent ones eliminated from the tree (see Al-
gorithm 4). The use of KAM REC requires more execution time, however it enables us to
recover more trajectories and to obtain better results in terms of a clustering analysis.

Figure 17: Execution Time of our methods
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9 Conclusion

In this paper, we have studied the problem of publishing movement data while preserv-
ing the privacy. We have proposed a method that combine a well-known notion of k-
anonymity and a technique for the spatial generalization of trajectories. In particular, we
introduced two k-anonymization strategies. The novelty of our approaches lies in finding
a suitable tessellation of a geographical area into sub-areas depending directly of the input
trajectory dataset. We have shown that our methods yield a formal theoretical protection
guarantee against the re-identification attack. Through an extensive set of experiments on a
real-life spatio-temporal dataset, we have showed that the anonymity protection achieved
is considerably stronger than the theoretical worst case and the proposed techniques pre-
serve the quality of the clustering analysis.

The whole anonymization process is based on different steps using different transforma-
tion tools. At the moment there is no a strict integration of consecutive steps, although
we believe that there several margins to improve the quality of the anonymization. For
example, the initial generalization step, at the moment, is mainly independent from the
successive anonymization phase. We plan to integrate the generalization phase into the
anonymization step, in order to better estimate how to merge or separate the tessellation
areas.

Further investigations could be directed to developing a generalization method that con-
siders both spatial and temporal information in order to obtain generalized and anony-
mous spatio-temporal data.
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