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Abstract. Organizations often need to release microdata without revealing sensitive information. To
this scope, data are anonymized and, to assess the quality of the process, various privacy metrics
have been proposed, such as k-anonymity, `-diversity, and t-closeness. These metrics are able to
capture different aspects of the disclosure risk, imposing minimal requirements on the association of
an individual with the sensitive attributes. If we want to combine them in a optimization problem, we
need a common framework able to express all these privacy conditions. Previous studies proposed
the notion of mutual information to measure the different kinds of disclosure risks and the utility, but,
since mutual information is an average quantity, it is not able to completely express these conditions
on single records. We introduce here the notion of one-symbol information (i.e., the contribution to
mutual information by a single record) that allows to express and compare the disclosure risk metrics.
In addition, we obtain a relation between the risk values t and `, which can be used for parameter
setting. We also show, by numerical experiments, how `-diversity and t-closeness can be represented
in terms of two different, but equally acceptable, conditions on the information gain.
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1 Introduction

Governmental agencies and corporates hold a huge amount of data containing information
on individual people or companies (micro data). They have often to release part of these
data for research purposes, data analysis or application testing. However, these data con-
tain sensitive information and organizations are hesitant to publish them. To reduce the
risk, data publishers use masking techniques (anonymization) for limiting disclosure risk in
releasing sensitive datasets. In many cases, the data publisher does not know in advance
the data mining tasks performed by the recipient, or even it does not know who the re-
cipients are (so called privacy preserving data publishing [18]). Therefore, the data publisher
tasks are basically to anonymize (under some privacy constraints) and to release the data.

0Some parts of this paper has been presented at the International Conference on Privacy in Statistical
Databases, Lausanne, Switzerland [6]. The theoretical framework has been extended, in particular new con-
straints on the mutual information has been added, Eq. 4, an upper bound for ` derived, and relation between t
and ` proposed, Eq. 12. The experimental work (Section 4) and the corresponding discussion are all new work.
Introduction and Conclusions have also been revised.
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In other scenarios, the data publishers may know the data mining activities in advance
(privacy preserving data mining scenario), therefore they can customize the anonymiza-
tion to preserve some statistical properties. In this paper we will mainly focus on the first
scenario, privacy preserving data publishing, which is relevant in many real use cases, such
as creating test data for application testing, outsourcing the development of new mining
algorithms [2], and it is also pushed by regulatory frameworks [9].

Typically, data are contained in tables, and the attributes (columns) in the original table
can be categorized, from disclosure perspective, in the following types:

• Identifiers. Attributes that explicitly identify individuals. E.g., Social Security Num-
ber, passport number, complete name.

• Quasi-identifiers (QIs) or key attributes [10]. Attributes that in combination can be used
to identify an individual E.g., Postal code, age, gender, etc ... .

• Sensitive attributes. Attributes that contain sensitive information about an individual
or business, e.g., salary, diseases, political views, etc ...

Various anonymization methods can be applied to obfuscate the sensitive information,
they include: generalizing the data, i.e., recoding variables into broader classes (e.g., re-
leasing only the first two digits of the zip code) or rounding numerical data, suppressing
part of or entire records, randomly swapping some attributes in the original data records,
permutations or perturbative masking, i.e., adding random noise to numerical data val-
ues. These anonymization methods increase protection, lowering the disclosure risk, but,
clearly, they also decrease the quality of the data and hence its utility [14]. There are two
types of disclosure: identity disclosure, and attribute disclosure. Identity disclosure oc-
curs when the identity of an individual is associated with a record containing confidential
information in the released dataset. Attribute disclosure occurs when an attribute value
may be associated with an individual (without necessarily being able to link to a specific
record). Anonymizing the original data, we want to prevent both kinds of disclosures. In
the anonymization process Identifiers are suppressed (or replaced with random values),
but this is not sufficient, since combining the quasi-identifiers values with some external
source information (e.g., a public register) an attacker could still be able to re-identify part
of the records in the dataset. To reduce the risk some of the masking techniques described
above are applied on the quasi-identifiers. To assess the quality of the anonymization pro-
cess, there is the need to measure the disclosure risk in the anonymized dataset and its
utility. Typically, disclosure risk metrics are set to define the privacy constraints, and then
we look for the masking mechanisms that maximize the utility. Both disclosure risk and
utility metrics are hard to define in general, because they may depend on context variables,
e.g., data usage, level of knowledge of the attacker, amount of data released, etc..., and
many possible definitions have been proposed so far.

We focus here on disclosure risk measures. Various models have been proposed to capture
different aspects of the privacy risk (see [18] for a review). From the data publisher point of
view, it would be desirable to have these privacy models expressed in terms of semantically
“similar” measures, so he could be able to compare their impact and optimize the trade off
between the different privacy risks.

In Ref. [1], the authors proposed an information theoretic framework to express aver-
age disclosure risk using mutual information. The advantages of mutual information for-
mulation are twofold: first, it allows to express the different risk measures, and associate
thresholds, in a common framework, with well defined units; second, it permits applying a
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wide range of well established information theory tools to risk optimization (e.g., privacy-
distortion trade off problem [24]). Note that, mutual information (or, similarly, information
loss) has been also proposed as utility measure [11]. Although, we will use this definition
in our simulations (see Sect. 4), the main focus of our paper is investigating how we can
compare the different privacy metrics among them, independently on the utility metrics
used.

In this paper, we extend the information theoretic formulation of disclosure risk mea-
sures. In particular, existing privacy metrics (k-anonymity, `-diversity and t-closeness met-
rics [25, 22, 20]) define minimal requirements for each entry (or QI group) in the dataset,
but because mutual information is an average quantity, it is not able to completely express
these conditions on single entries. In fact, as pointed out in [21], privacy is an individual
concept and should be measured separately for each individual, accordingly average measures,
as mutual information, are not able to fully capture privacy risk.

Thus, we introduce here two types of one-symbol information (i.e., the contribution to
mutual information by a single record), and define the disclosure risk metrics in terms
of information theory (see Sect. 3). By introducing one-symbol information we are able
to express and compare different risk concepts, such as k-anonymity, `-diversity and t-
closeness, using the same units. In addition, we obtain a set of constraints on the mutual
and one-symbol information for satisfying `-diversity and t-closeness. We also derive a
relation between the risk parameters t and `, which allows to assess t in terms of the more
intuitive ` value.

We present a simple example, to point out that in presence of a constant average risk,
the records at risk may depend on the information metric used (Sect. 3.1). In Sect. 4, we
test our framework, using a census dataset, to show the relevant differences between risk
estimation based on average measures, as mutual information, and record specific metrics,
as one-symbol information. We also show how focusing on the information contribution
of a single record or group, we can minimize the information loss during anonymization.
Lastly, we discuss our results and introduce some directions for future work.

In summary, this paper does not provide a unique answer to what disclosure risk is, but
it gives the necessary theoretical ground for expressing and comparing different risk mea-
sures, and provides some useful relations for setting risk parameters.

Before entering in details about the proposed model, in the following sections we will
introduce some background on disclosure risk metrics (Sect. 2.1) and information theory
(Sect. 2.2).

2 Preliminaries

2.1 Privacy Metrics

Let us consider a dataset containing identifiers, quasi-identifiers (QIs), X , and sensitive at-
tributes, W (for example as in Table 2). We create an anonymized version of such data, re-
moving identifiers, and anonymizing quasi-identifiers (X̃), for example generalizing them
in classes (see Table 3).

To estimate the disclosure risk in the anonymized data, various metrics have been pro-
posed so far.
k-Anonymity [25] condition requires that every combination of key attributes (QI group)

is shared by at least k records in the anonymized dataset. A large k value indicates that the
anonymized dataset has a low identity disclosure risk, because, at best, an attacker has a
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probability 1/k to re-identify a record, but it does not necessarily protect against attribute
disclosure. In fact, a QI group (with minimal size of k records) could also have the same
confidential attribute, so even if the attacker is not able to re-identify the record, he can
discover the sensitive information.

To capture this kind of risk `-diversity was introduced [22]. `-diversity condition requires
that for every combination of key attributes there should be at least ` “well represented”
values for each confidential attribute. In the original paper, a number of definitions of “well
represented” were proposed. Because we are interested here in providing an information-
theoretic framework, the more relevant for us is in terms of entropy, i.e.,

H(W |x̃) ≡ −
∑

w∈W

p(w|x̃) log2 p(w|x̃) ≥ log2 `

for every QI group x̃, and with ` ≥ 1. For example, if each QI group have n equally
distributed values for the sensitive attributes, the entire dataset will be n-diverse. Note that
if `-diversity condition holds, also the k-anonymity condition (with k ≤ `) automatically
holds, since there should be at least ` records for each group of QIs.

Although, `-diversity condition prevents the possible attacker to infer exactly the sensitive
attributes, he may still learn a considerable amount of probabilistic information. In partic-
ular if the distribution of confidential attributes within a QI group is very dissimilar from
the distribution over the whole set, an attacker may increase his knowledge on sensitive
attributes (skewness attack, see [20] for details). t-closeness estimates this risk by computing
the distance between the distribution of confidential attributes within the QI group and in
the entire dataset. The authors in [20] proposed two ways to measure the distance, one of
them has a straightforward relationship with mutual information (see Eq. 7 below), as we
discuss in the next section.

Another notion for assessing the privacy risk is differential privacy [15]. The basic idea
is that the removal, addition or replacement of a single personal information (a record) in
the original database should not significantly impact the outcome of any statistical analy-
sis. This privacy model requires that the data publisher knows in advance the exact set of
queries/analysis that need to be performed on the released data. However, this does not fit
the requirements of the privacy preserving data publishing scenario we are addressing in this
paper. We will discuss possible extension to include differential privacy in our framework
in the last section.

These measures provide a quantitative assessment of the different risks associated to data
release, but they have also major limitations. First, they impose strong constraints on the
anonymization, resulting in a large utility loss; second, it is often hard to find a computa-
tional procedure to achieve a pre-defined level of risk; third, since they capture different
features of disclosure risks, they are difficult to compare and optimize at the same time. To
address the last point, we propose in the next sections a common framework, one-symbol
information, for expressing these three risk measures. We will discuss the first two issues,
in the last Section.

2.2 Information theory

Let us consider two random variables X and Y (e.g., the tuple of quasi-identifiers or sen-
sitive attributes), which take values x and y. Let us denote the corresponding probability
density or probability mass functions pX(x) (p(x) in short) and pY (x) (p(y)). In the context
of data anonymization, p(x) and p(y) may be estimated in terms of frequency. Be p(x, y)
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Definition Positive Chain rule Chain rule Average
definite X Y MI

I1 Yes Yes No Yes
I2 No Yes Yes Yes
I3 No Yes No Yes
I4 Yes Yes Yes/No No

Table 1: Main properties of the four definitions of one-symbol information. I1 and I2 are
discussed in the main text, I3(x, Y ) ≡

∑
y∈Y p(y|x)[H(X)−H(X|y)] [8] is a definition based

on weighted average of reduction of uncertainty, I4(x, Y ) ≡ I({x, x̄};Y ) [3] is the mutual
information between Y and a set composed by two elements: x and its complement in X :
x̄ ≡ X\x. For more details, see [5].

and p(x|y) the corresponding joint and conditional probability functions. Following Shan-
non [26], we can define the mutual information I(X;Y ) as:

I(X;Y ) =
∑

x∈X,y∈Y

p(x, y) log2

[
p(x, y)

p(x)p(y)

]

=
∑

x∈X,y∈Y

p(y)p(x|y) log2

[
p(x|y)
p(x)

]
, (1)

(with conditional probability p(x|y) = p(x, y)/p(y) according to Bayes’ rule) or, equiva-
lently, introducing the entropy of a probability distribution: H(Y ) = −

∑
y∈Y p(y) log2 p(y),

I(X;Y ) = H(Y )−H(Y |X) =
∑
x∈X

p(x)[H(Y )−H(Y |x)] (2)

where H(Y |X) ≡
∑

x∈X p(x)H(Y |x) is the conditional entropy.
Mutual information summarizes the average amount of knowledge we gain about X by ob-

serving Y (or vice-versa); e.g.: in the trivial case, they are completely independent, p(x, y) =
p(x)p(y) and I = 0. Mutual information has some mathematical properties that agree to our
intuitive notion of information. In particular, we expect that any observation does not de-
crease the knowledge we have about the system. So, mutual information has to be positive,
as it can be easily shown starting from Shannon’s definition. In addition, for two indepen-
dent random variables {X1, X2}, we expect: I({X1, X2}, Y }) = I(X1, Y ) + I(X2, Y ). This
additivity property is a special case of a more general property, known as chain rule [26].

Mutual information is an average quantity, for some applications (see Sect. 3 and e.g., [5]
and references therein), it is important to know which is the contribution of a single symbol
(i.e., a single value x or y) to the information. In his original formulation, Shannon did not
provide any insights about how much information can be carried by a single symbol, such
as a single tuple in our case. After Shannon’s seminal work, to the author’s knowledge, four
different definitions of so called one-symbol specific information (sometimes also called
stimulus specific information, because it has been used in the framework of neural response
analysis) have been proposed. Ideally, this specific information should be proper information
in a mathematical sense (non-negative, additive) and give mutual information as average.

In a previous work [5], we reviewed the four definitions proposed in literature (see Ta-
ble 2.2), outlining their main characteristics, and, in particular, stressing that none of the
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proposed definitions have these desired mathematical properties, but each of them can
capture different aspects of information transmission. We also showed, in the context of
brain processing, how each of them should be used according to the aspect of neural cod-
ing we are interested in studying.

In this paper, we want to express existing privacy metrics in terms of such specific infor-
mations, accordingly, we will focus on two of them, following [12] referred as I1 and I2, that
can be directly linked to well-known risk metrics (see below). The other two measures, I3

and I4 are not considered here, because they have no easy interpretation as privacy metrics,
and, as mentioned above, the scope of this study is not introducing new privacy metrics,
but to redefine the existing ones in a common framework.

I1, Surprise (j-measure)

Originally proposed by Fano [17], this definition can be immediately inferred from Eq. (1),
simply taking the single symbol contribution to the sum:

I1(x, Y ) = Surprise(x) =
∑
y∈Y

p(y|x) log2

p(y|x)
p(y)

This quantity measures the deviation (Kullback-Leibler distance) between the marginal dis-
tribution p(y) and conditional probability distribution p(y|x). It clearly averages to the
mutual information, i.e.

∑
x∈X p(x)I1(x;Y ) = I(X;Y ), and it is always non-negative:

I1(x;Y ) ≥ 0 for x ∈ X . Furthermore it is the only positive decomposition of the mu-
tual information [7]. Since I1(x, Y ) is large when p(y|x) dominates in the regions where
p(y) is small, i.e., in presence of surprising events, this quantity is often referred to as “sur-
prise” [12] (it is also called j-index [27]). Surprise lacks additivity, and this causes many
difficulties when we want to apply it to a sequence of observations. Despite this main
drawback, surprise has been widely used, for example for exploring the encoding of brain
signals or for association rule discovery [27].

I2, Specific Information (i-measure)

An entropy based definition was proposed by Blachman [7] and it may be derived from
Eq. (2), extracting the single symbol contribution from the sum:

I2(Y, x) = H(Y )−H(Y |x) = (3)

= −

∑
y∈Y

p(y) log2 p(y)− p(y|x) log2 p(y|x)


Here, information is identified with the reduction of entropy between marginal distribu-

tion p(y) and conditional probability p(y|x). The I2(Y, x) measure is called specific infor-
mation in [12], and i-measure in [27]. This quantity captures how diverse are the entries in
Y for a given entry (tuple) x. Indeed, it expresses the difference of uncertainty between
the a priori knowledge of Y , H(Y ), and the knowledge for a given symbol x, H(Y |x). As
shown in [12], this is the only decomposition of mutual information that is also additive,
but, unlike mutual information, it can assume negative values.

Note that any weighted combination of I1 and I2 averages to mutual information, and it
can represent a possible definition of one-symbol specific information. Thus, we have an
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Original Dataset {X, W}
Name Height X Diagnosis W

Timothy 166 N
Alice 163 N
Perry 161 N
Tom 167 N
Ron 175 N

Omer 170 N
Bob 170 N

Amber 171 N
Sonya 181 N
Leslie 183 N
Erin 195 Y
John 191 N

Table 2: Original dataset.

infinite number of plausible choices for a one-symbol decomposition of mutual informa-
tion. But, as mentioned above, only I1 is always non-negative and for I2 only the chain rule
is fulfilled. In addition, as we will see in the next section, only I1 and I2 have a straightfor-
ward interpretation as disclosure risk measures.

Anonymized Dataset {X̃,W}
Name Height X̃ Diagnosis W
******

[160-170]

N
***** N
***** N
***** N
******

[170-180]

N
***** N
***** N
***** N
****** [180-190] N
***** N
****** [190-200] Y
***** N

Table 3: Anonymized dataset.

3 Information theoretic Risk Metrics

Before entering in the details of the different privacy metrics, let us deduce a general rela-
tion between the information about the sensitive attributes and the quasi-identifiers before,
I(W,X), an after the anonymization process I(W, X̃). Because the anonymization of the
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QIs can be generally represented as a function between X and X̃ 1 for the data processing
inequality of the mutual information, we have:

I(W, X̃) ≤ I(W,X) (4)

Let us consider the different privacy metrics in terms of information theory.

• k-anonymity. In case of suppression and generalization, we have that a single QI
group in the anonymized database x̃ can correspond to a number, Nx̃ of records in
the original table X . Accordingly, the probability of re-identifying a record x given x̃
is simply: p(x|x̃) = 1/Nx̃, and k-anonymity reads:

H(X|x̃) ≥ log2 k (5)

for each x̃ ∈ X̃ . In terms of one-symbol specific information I2, it reads

I2(X, x̃) ≡ H(X)−H(X|x̃) ≤ log2

N

k
(6)

where N is the number of tuples in the original dataset X (assumed different). I2(X, x̃)
measures the identity disclosure risk for a single record. Eq. 5 holds also in case of
perturbative masking [4], therefore I2 can be used for any kind of masking transfor-
mations.

Averaging Eq. 6 over X̃ we get:

I(X, X̃) ≤ log2

N

k

So, the mutual information can be used as a risk indicator for identity disclosure [13],
but we have to stress that this condition does not guarantee the k-anonymity QI group
x̃, i.e., it is necessary but not sufficient.

• t-closeness condition requires:

D(p(w|x̃)||p(w)) ≡
∑

w∈W

p(w|x̃) log2

p(w|x̃)
p(w)

≤ t (7)

for each x̃ ∈ X̃ . This is equivalent to the one-symbol specific information I1 (sur-
prise), i.e.,

I1(W, x̃) ≡
∑

w∈W

p(w|x̃) log2

p(w|x̃)
p(w)

≤ t (8)

I1(W, x̃) is a measure of attribute disclosure risk for a QI group x̃, as difference be-
tween the prior belief about W from the knowledge of the entire distribution p(w),
and the posterior belief p(w|x̃) after having observed x̃ and the corresponding sensi-
tive attributes. Averaging over the set X̃ we get an estimation of the disclosure risk
(based on t-closeness) for the whole set [24],

I(W, X̃) ≡
∑
x̃∈X̃

p(x̃)
∑

w∈W

p(w|x̃) log2

p(w|x̃)
p(w)

≤ t (9)

1Strictly speaking, Eq. 4 is true if X̃ is a function, deterministic or random, of X only, i.e., X̃ = G(X). This
is the case of generalization or suppression, and, in most of the cases, of perturbative masking. Eq. 4 is not valid
any more when X̃ is not conditionally independent of W , i.e., p(x̃|x, w) 6= p(x̃|x).
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Again, this is necessary but not a sufficient condition to have t-closeness table, since
this condition requires to have t-closeness for each x̃.

• `-diversity condition, in terms of entropy, reads:

H(W |x̃) ≥ log2 `

for each QI group x̃ ∈ X̃ . It can be expressed in terms of one-symbol specific infor-
mation I2,

I2(W, x̃) ≡ H(W )−H(W |x̃) ≤ H(W )− log2 ` (10)

I2(W, x̃) is a measure of attribute disclosure risk for a QI group x̃, as reduction of
uncertainty between the prior distribution and the conditional distribution.

Averaging over the set X̃ we get an estimation of the average disclosure risk for the
whole set [24].

I(W, X̃) ≡ H(W )−H(W |X̃) ≤ H(W )− log2 ` (11)

This is the `-diversity condition on average. Again, this is necessary but a not suffi-
cient condition to satisfy `-diversity for each x̃. Note that, since the mutual informa-
tion is a non-negative quantity, I(W, X̃) ≥ 0, from Eq. 11 immediately follows that
H(W ) is an upper bound for log2 `, i.e.,

log2 ` ≤ H(W )

or equivalently ` ≤ `max ≡ 2H(W ).

Eqs. 9, 11 suggest a way to compare the two risk parameters ` and t. Indeed, if we equalize
the maximal contribution to information of ` and t, we can derive the following relation:

`t = 2H(W )−t (12)

`t tells us, for a given t, what the equivalent value ` is, i.e., the value of ` that has the same
impact on the information. The advantage of Eq. 12 is that it allows us to express the value
of t parameter, which it is often hard to set, in terms of `, that has a much more intuitive
meaning.

In summary, for any anonymized dataset which satisfies `-diversity and t-closeness, the
following average conditions are necessary:

I(W, X̃) ≤ I(W,X)
I(W, X̃) ≤ t

I(W, X̃) ≤ H(W )− log2 `

(13)

whereas the necessary and sufficient conditions are:{
I1(W, x̃) ≤ t
I2(W, x̃) ≤ H(W )− log2 `

(14)

for each x̃ ∈ X̃ .
For setting the risk parameters, we derived lower and upper bounds for `,

1 ≤ ` ≤ `max ≡ 2H(W ) (15)

and the `t equivalent to t,
`t = 2H(W )−t

which allows to express t in terms of the more intuitive diversity parameter `.
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Figure 1: Values of information-based disclosure risk metrics: I1 (t-closeness) and I2 (`-
diversity related) for the different entries in the anonymized database. Dashed line indi-
cated mutual information I(X̃,W ), i.e., the average of I1 and I2.

3.1 Example

To illustrate the qualitative and quantitative differences in the behavior of t-closeness and
`-diversity based risk metrics, I1 and I2, let us consider a simple example. This example is
not realistic, but the aim is to show some basic features of I1 and I2 without any additional
complexity. Let us take a medical database {X, W} (Table 2) containing three fields only:
a unique identifier (name), a quasi-identifier (Height) and a sensitive attribute (Diagno-
sis). In the released, anonymized dataset {X̃,W}, Table 3, names are removed, the Height
generalized in broader classes, and the sensitive attribute unchanged. Let us say that after
this anonymization process, we have reached an acceptable level of identity and attribute
disclosure risk as measured by I(X, X̃) and I(W, X̃). But, if we analyze the contribution
to this risk of single entries in X̃ in terms of symbol specific informations I1, I2 (see Fig. 1),
we observe:

• The distribution of risk shows large fluctuations, so the average is not a good repre-
sentation of the risk level.

• The entries at risk (say, well above the average) depends on the risk measures used
(I1 or I2). In other words, set of tuples (QI groups) largely at risk according I2 (`-
diversity based) have low value of I1 (so they are acceptable from t-closeness point of
view), and vice versa.

In short, this simple example shows that, although, on average the two risk metrics are
equal, their impact on single entries can be the opposite. We will show a more extended
analysis on a larger dataset in the next section.
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UCI Adult Dataset
Attribute Values Generalization

Age 74 ranges-25-50
Gender 2 Suppression

Race 5 Suppression
Education 16 Suppression

Occupation 14 Suppression
Marital Status 7 Sensitive
Salary Class 2 Sensitive

(0,100)

(0,50)

(0,25) (25,50)

(50,100)

(50,75) (75,100)

A3

A2

A1

Table 4: Left. Summary of the anonymization methods. Right. Generalization hierarchy
for age attribute: first level, A1, Age is generalized in 25 years range, A2 in 50 years and A3

fully generalized. Un-generalized Age (A0) not shown.

(0,100)

(0,50)

(0,35) (35,50)

(50,100)

(50,60) (60,100)

A3

A2

A∗1

]

Table 5: Generalization hierarchy for age attribute: first level, A∗1, Age is generalized in
ranges of variable size, for minimizing information loss. A2 in 50 years and A3 fully gener-
alized. Un-generalized Age (A0) not shown.

4 Experiments

For testing our framework, we performed some numerical analysis on a relatively large
dataset widely used in the research community. We ran our experiments on the Adult
Database 2 from the UCI Machine Learning Repository, which contains 32561 tuples from
US Census data with 15 demographic and employment related variables. We removed the
tuples with missing values, ending with 30162 usable tuples.

The choice of the identifiers, QIs, and sensitive attribute set, typically depends on the spe-
cific domain. In particular, for QIs, they should include the attributes a possible attacker
is more likely to have access to (e.g., using a phonebook or a census database) and for
sensitive attribute to the application the anonymized data are used for. Generally speak-
ing increasing the number of QIs increases the risk, or results in strong anonymization
impacting final data quality. In our experiments we limited the QIs to four attributes:
QI ≡ {Age, Gender,Race,Education}. The generalizations applied are summarized in Ta-
ble 4. In the census data the salary is typically chosen as sensitive attribute. In this dataset,

2Available at http://archive.ics.uci.edu/ml/datasets/Adult
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Figure 2: Left: Mutual information I(X̃,W ) between the anonymized QIs and the sensitive
attribute (black bar), the t value (shaded dark gray bar), `-diversity threshold for informa-
tion (light gray bar), and the mutual information between the original QIs and the sensitive
attributes (white bar). Right: information contributions in terms of I1 (shaded dark gray
bar) and I2 (light gray bar) for the A2 QI groups. Straight line indicates the t threshold, for
I1, with t = 0.55. Dashed line indicates the `-diversity threshold for I2 (` = 2.7).

salary attribute can assume two values > 50k and < 50k, and the entropy of this attribute
is quite small (H ≈ 0.80), limiting its effectiveness for demonstrating the different features
of the privacy metrics. Therefore, for our tests, we used as sensitive attribute the Marital
Status, which has 7 possible values and a larger entropy (H ≈ 1.85), which corresponds to
a maximum value of `max ≈ 3.53.

Let us consider that we want to release this dataset, assuring that the privacy risk is under
a certain threshold value, as measured by t and `.

We set these thresholds as following: ` = 2.7 and t = 0.55. For setting the ` threshold,
we had to find a compromise between having a sufficient level of privacy, and the same
time not impacting too much the quality of data. In particular ` values lower than 2 do not
clearly provide much privacy, whereas, considering the maximum value of `max ≈ 3.53,
values larger than 3 need a strong anonymization, which removes most of the information.
We set t in a way that its information contribution does not differ too much from the `
contribution, for our analysis we chose t = 0.55, which corresponds to a value of `t = 2.42
so differing of ' 10% from the chosen value of `.

For the anonymization step, we used as anonymizaton engine the UT Dallas Anonymiza-
tion Toolbox [19], which implements Incognito algorithm for k-anonymity and `-diversity.
This toolbox comprises an implementation of Incognito for t-closeness, too, but it measures
t value against the Earth Moving distance (whereas we use Eq. 7), so we did not use it, and
we verified the t value, according to our metric, on the anonymized dataset.

We run the anonymization engine using the transformations listed in Table 4(Left), and
we obtained that the attributes {Gender,Race,Education} were suppressed (or fully gen-
eralized) and Age generalized in two groups, A2 (see Table 4(Right)).

In Fig. 2(Left) we plot the values of the mutual information I(X̃,W ) between the QI
groups (anonymized QIs) and the sensitive attribute, the ` threshold in terms of informa-
tion (Eq. 11), the t value, and the mutual information between the original QIs and the
sensitive attributes. We observe that, as expected, the necessary conditions, Eqs. 13, on the
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Figure 3: Left: Original mutual information I(X̃,W ) (black bar), the t value (shaded dark
gray bar), `-diversity threshold (light gray bar), and the mutual information for anoyn-
mized dataset (white bar). Right: information contributions A1 QI groups. For details see
the caption of Fig. 2

average information are fulfilled, and I(X̃,W ) (white bar) is lower than the other three
bars. In Fig. 2(Right), we plot the information contributions in terms of I1 and I2 for the
two QI groups. Both of them are lower than the corresponding thresholds for t (contin-
uous line) and `, fulfilling the conditions expressed by Eqs. 14. In other words, for this
anonymized dataset 2.7-diversity and 0.55-closeness are fulfilled.

On the other hand, the information loss is quite relevant≈ 88% (see white bar vs. black bar
in Fig. 2(Left)), and it is typically desirable to preserve as much information as possible in
the anonymization 3. To this scope, we consider a weaker generalization on {Age} attribute,
i.e., one single level A1 instead of two A2 of the previous case.

In Fig. 3(Left) we show the amount of information I(X̃,W ) (white bar) left after the
anonymization, and (as in the previous case) we compared it with Eq. 11, the t value, and
the original information I(X, W ). We can see that I(X̃,W ) is lower than the other bars,
i.e., the conditions expressed by Eqs. 13 are fulfilled. These conditions are necessary but
not sufficient for having `-diversity and t-closeness enforced. Indeed, if we analyze the
contribution of the level of QI group, Fig. 2(Right), we observe that two groups (labeled
[0, 25) and [75, 100]) do not satisfy the t closeness condition (continuous line), and one of
them, [0, 25), does not satisfy `-diversity condition (dashed line). Note, as in the example
of Section 3.1, [75, 100] group has a very different risk profile depending whether we use t
or `, i.e., very risky from t-closeness point of view, and pretty safe for `-diversity.

In short, although the conditions on the average are satisfied, the same is not true for each
x̃, QI group, so the dataset is neither 2.7-diverse nor satisfies 0.55-closeness.

We identified the two QI groups that do not fulfill the privacy requirements, the next step
is trying to increase the size of these outlier groups for reducing the privacy risk (both
in terms of ` and t). To this scope, we modified the first level of the generalization A1

3Note that here we try to maximize the information I(X̃, W ), or minimize the information loss, whereas, as
mentioned in the introduction, we should maximize the utility (once the privacy constraints are satisfied). In
general, utility cannot be measured as mutual information [21], but utility metric strongly depends on the final
application of the anonymized data. Still, for demostrating purpose, here, we limit our analysis to information
maximization, which, in any case, is always benefical to preserve at maximum.
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Figure 4: Left: Original mutual information I(X̃,W ) (black bar), the t value (shaded dark
gray bar), `-diversity threshold (light gray bar), and the mutual information for anoyn-
mized dataset (white bar). Right: information contributions A∗1 QI groups. For details see
the caption of Fig. 2

hierarchy for age attribute, in particular we run an heuristic search for the optimal size of
the two groups, which maximizes the information I(X̃,W ), and satisfies the t-closeness
and `-diversity requirements. The resulted generalization A∗1 is reported in Table 5. In
Fig. 4, we plotted, as in the previous cases, the mutual information I(X̃,W ) compared to
` and t thresholds and to the original information I(X, W ). On the right panel, we show
I1 and I2 for each QI group compared to the risk thresholds. We can see as t-closeness and
`-diversity conditions are satisfied, and that we were able to preserve a larger amount of
information compared to A2, Fig. 2, (we do not consider A1, since it does not satisfy our
privacy requirements), indeed the information loss was reduced to ≈ 55%, compared to ≈
88% of A2, and in terms of information we have I(X̃,W ) = 0.34 for A∗1 vs. I(X̃,W ) = 0.09
for A2.

In summary in our numerical analysis, using a census dataset, we showed the main fea-
tures of information-based privacy metrics, including their application for setting risk pa-
rameters, and how they can be used to reduce the information loss in the anonymization
process.

5 Conclusions and Future Works

In the original t-closeness paper [20], the authors stated that ”Intuitively, privacy is mea-
sured by the information gain of an observer”. The question is which metric we should use
for measuring such information gain. In this paper, we showed that if we consider ”in-
formation gain” as a reduction of uncertainty, the corresponding privacy metrics is similar
to `-diversity, whereas if we think to information gain as the novelty of the information,
t-closeness is the corresponding metrics. Accordingly, the choice of the privacy risk metric
depends on what kind of information we do not want to disclose, which in turn depends
on the specific application, the tolerable level of information loss, and the attack model.
The advantage of the proposed formulation in terms of information theory is that we can
express all the different metrics using comparable units (bits), and, at least principle, use
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all the tools of information theory for optimizing the privacy constraints, and, possibly,
utility. The last point can be technically difficult in many cases, because expressing condi-
tions on particular records largely increases the complexity of the optimization problem.
Indeed, Eq. 14 must hold for each QI group, resulting in large number of constraints, so
making difficult to obtain analytical results and even numerical solutions. Clearly, this is a
relevant question to address in the near future, and, in particular, it is important to test the
applicability of our approach to realistic cases.

Another possible extension is considering other data release scenarios, and the corre-
sponding privacy models. For example, if we examine the scenario where the data pub-
lisher knowns in advance the data mining tasks, we can consider the differential privacy
notion [15]. In a nutshell, the idea of differential privacy model, called ε-differential privacy,
is to guarantee that small changes (one record) in the original database has a limited im-
pact on the outcome of any statistical analysis on the data. More formally, let us consider
a database X0 (we do not distinguish between identifiers and sensitive attributes, so we
will use X0 to indicate the whole original database), and a randomized function F that
has as output a real number4, for example composed by a query on the original database
that returns a numerical value plus an appropriately chosen random noise. We say that the
random function F ensures ε-differential privacy if for all the datasets X0

sup
X∈X

sup
s∈S

∣∣∣∣ln p(F = s|X0)
p(F = s|X)

∣∣∣∣ ≤ ε (16)

where X ≡ {X|δ(X0, X) ≤ 1}, i.e., the set of databases differing for at most one record
from X0 (δ is the Hamming distance), S ≡ Range(F), where Range(F) is the set of possible
outputs of the randomized function F , and ε is the privacy parameter. The closer ε is to 0,
the stronger privacy is guaranteed (for a discussion on ε see [16]).

A good candidate for expressing the ε-differential privacy as an information metric is the
surprise, I1, of the database X0 (not of a single record, as used above), i.e.

I1(F,X0) ≡
∑
s∈S

p(s|X0) log2

p(s|X0)
p(s)

≤ θε (17)

with
p(s) =

∑
X∈X

p(s|X)p(X)

and θε is a parameter related to the ε of Eq. 16
Note that the condition expressed by Eq. 17 is different from Eq. 16, since in the first case

we compare the probability p(s|X0) of having a certain outcome s from the analysis of the
database X , with the average outcome over “similar” databases, p(s), and then we average
over all the possible outcomes. Whereas, in the original ε-differential privacy, we compare
p(s|X0) directly with p(s|X) (so, not with the average), and we take the maximum over s
and over all the neighbor databases. Therefore, the latter condition is more conservative.

The formal relationship between Eq. 17 and Eq. 16, and between the corresponding thresh-
olds, θε and ε, as well as a more detailed analysis of possible advantages of expressing
differential privacy in terms of information theory have to be investigated in future works.

4For sake of simplicity, we consider here a single function F that takes values in R, but the same analysis
can be applied to a function F which takes values in Rn or to a set of functions {F1, F2, . . .}. An extension to
non-numeric output has also been proposed in [23].
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