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Abstract. As medical data continues to transition to electronic formats, opportunities
arise for researchers to use this microdata to discover patterns and increase knowledge
that can improve patient care. We propose a data utility measurement, called the re-
search value (RV), which reflects the importance of an database attribute with respect to
the other database attributes in a dataset as well as reflect the significance of the content
of the data from a researcher’s point of view. Our algorithms use these research values
to assess an attribute’s data utility as it is generalizing the data to ensure k-anonymity.
The proposed algorithms scale efficiently even when using datasets with large numbers
of attributes.

1 Introduction

With the advances made in technology during the last few decades, health or-
ganizations have amassed large amounts of electronic, health related data. This
data constitutes a valuable resource for researchers, analysts and decision mak-
ers. For example, epidemiologists may use emergency visits to detect potential
arising outbreaks that need to be further investigated and appropriate actions
can be taken in a timely manner. Health related information is also made avail-
able to the general public as a contribution to public health awareness and edu-
cation. For example, electronic birth and death certificates may: 1) provide a rich
source for researchers investigating risk factors for infant deaths or other poor
birth outcomes, 2) provide advocates, health care providers, and government or
nonprofit agencies with specific local information about maternal and child
health issues, and 3) help guide policy development. Like other health depart-
ments across the country, the Marion County Public Health Department
(MCPHD) of Indiana provides the public with access to Datamart, an Internet
application that presents aggregate birth and death certificate data [6]. Users
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may obtain summary information on features such as birth risk factors aggre-
gated by year (since 1997), by census tract, by race, etc.

In order to preserve the anonymity of statistical data, two main approaches
have been adopted: restricting the query capabilities, (also known as query re-
striction), and adding noise to the data (also called data perturbation) [24, 26].
Under query restriction three techniques have been utilized, data partitioning,
cell suppression, and query size control (also called blocking) [23]. This last
technique ensures that the value of a cell returned as a result of a query is gen-
erally above a threshold value. This approach is used in Datamart, where ag-
gregate values less than five are replaced by the character "#". The advantage of
this approach is that it is simple to implement and ensures privacy preserving
as long as the threshold value is appropriate. Its drawback is that it penalizes
the utility of the data especially for cases where actual values (i.e. instead of the
"#" character) are necessary in order to make use of the query results.

Under the data perturbation approach, noise is added either to the data or to

the results of the queries. Recently k-anonymity was proposed to assess the dis-
closure risk of confidential information. K-anonymity ensures that the identity
of an individual cannot be reversely identified within a set of k individuals. Al-
gorithms have been proposed to achieve k-anonymity mostly using suppression
and generalization [21]. Loss of information is a trade-off of this approach as
attributes are either abstracted to higher concepts (e.g. age value is generalized
to range values) or suppressed. A great effort in the proposed algorithms was
towards improving the efficiency of the k-anonymization process as it is known
that achieving an optimal k-anonymity solution is NP-hard [3, 17].
Few contributions have focused on the utility of the information when it is
transformed to satisfy k-anonymity. Work such as in [15, 21, 28] characterizes
information loss in terms of the number of entities (individuals that falls within
each group that satisfies k-anonymity (minimum is k) or in terms of the size of
the generalized domain of the attributes. Xu et al. [28] takes into account the
importance of the attributes in their specification of the information loss, pro-
viding the ability to give a weight for each attribute that needs to be general-
ized. Samarati et al. [19], use generalization heights to represent the information
loss of a generalized dataset; but this approach does not take into account that a
generalization height in one attribute may be not as costly as in another attrib-
ute. Another utility metric, discernability [4], assigns a cost to each tuple based
upon how many other tuples are identical to that tuple. Although this is an
interesting approach, however it does not take into consideration data distribu-
tion. As stated in [13], an anonymized dataset where the original distribution
attributes are uniformly distributed represent less information loss than an ano-
nymized group where the original attributes were skewed.
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While the existing approaches allow for automatic characterization of informa-
tion loss, they do not account for the non-linearity of the change in the value of
the data as it becomes more generalized. The value of data to a researcher is
often not proportional to the number of specific values or combinations of val-
ues in a dataset. For the researcher, it is much more important to provide an
anonymized dataset that provides de-identified content while still maintaining
the content or meaning of the original data. For instance, in health care research,
age generalizations that preserve general inflection points in health care status,
such as the late teens, 65 years old, and 80 years old, may be more valuable than
generalizations that obscure those boundaries but include more age groupings.
Losing an age group boundary at 80 years old may only decrease the data’s util-
ity slightly, while losing the 65 year old boundary may produce a significant
change in the data utility. One approach to assess the utility of the data after the
anonymization process is to determine the amount of informative patterns that
can be discovered using data mining techniques in comparison to the patterns
that are discoverable in the raw dataset. When anonymizing a dataset, the input
of the data content expert can provide insight into the needs of the end user
(such as maintaining important age boundaries), so that information may be
maintained as much as possible in the anonymized dataset.

In this paper we propose a fully user-driven utility metric to guide the process
of k-anonymization; and we describe two utility-based privacy preserving ap-
proaches that implement the new data utility metric while still ensuring k-
anonymity. As described in [11], a utility-based privacy preserving algorithm
has two goals: 1) protecting private information and 2) reducing information
loss due to generalization. Our new utility metric considers information loss
from the perspective of the end user, who often desires to assess patterns that
may not be preserved in a sanitized dataset that conforms to a distribution-
based utility metric. The experiments we have conducted using real data show
that our approach scales well to datasets that contain large numbers of attrib-
utes and multiple generalization levels within those attributes, while incorporat-
ing the view of the data from an end user perspective as the attributes undergo
generalization. More specifically, the contributions of this paper are the user-
driven utility metric and the two proposed algorithms which are designed to
approach the aspect of utility-based anonymization from a holistic view (global
optimization) and an intra-attribute view (local optimization).

The paper is organized as follows. Section 2 provides some definitions to sup-
port the new approach for characterizing the utility metric for k-anonymization.
Related work is presented in Section 3, and the new utility metric is described in
Section 4. Section 5 describes the methodology, which includes the dataset and
the anonymization algorithms that implement the new data utility metric. The
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results of the experiments are presented in Section 6. Section 7provides a dis-
cussion of the results, and a summary of the paper and future research direc-
tions follow in Section 8.

2 Definitions

The basic definitions provided here are also presented in [14, 15] as we find that
their description of attributes generalization is very concise and applies to our
work.

2.1 Attribute Identifiers

Let T= (titz,...tm) be a table storing information about individuals, described
with a set of attributes A = (A, A,, . . . ,Ay). We distinguish three types of attrib-
utes in A, labelled as explicit identifiers, quasi-identifiers and sensitive identifi-
ers as defined in [16].

An attribute Ai is labelled as explicit identifier if it can be used to uniquely
identify an individual. Examples include social security number and name. To
preserve the privacy of the published data we assume that the explicit identifier
attributes undertake a transformation process such as randomization [8]. Quasi-
identifiers are defined in the next section, and sensitive identifiers are attributes
that contain data that are considered to be extremely personal, such as disease
state or a salary.

2.2 Quasi-Identifier Attribute

A set of attributes (A1, Az, ... ,An) of a table T is called a quasi-identifier set if
these attributes can be linked with external data to uniquely identify at least one
individual in the general population ) [16]. It is assumed that the quasi-
identifier attributes are known based upon the specific knowledge of the do-
main experts.

In the work described in [16], a sub-class of quasi-identifier attributes are de-
fined and labeled as sensitive attributes. An example of a sensitive attribute is
cause of death such as individual X died of cancer. In our work this distinction is
not made, which will be addressed in the algorithm discussion.

2.3 Frequency Set

Let Q= (A1, Az, ..., Aq) be a subset of A. The frequency set of T with respect to Q
is a mapping from each unique combination of values (vo, ... vq) of Q in T (the
value groups) to the total number of tuples in T with these values of Q (the
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counts) [13]. In other words, the frequency set of T with respect to Q stores the
set of counts of each unique combination of values of Qin T.

24 K-Anonymity Property

Relation T is said to satisfy the k-anonymity property (or to be k-anonymous)
with respect to attribute set A if every count in the frequency set of T with re-
spect to A is greater than or equal to k [22]. Similar to [13], in order to determine
the frequency set from table T with respect to a set of attributes A, we are utiliz-
ing the COUNT(*) functionality of SQL with A as the attribute list in the
GROUP BY clause of the query. In addition to the value returned by COUNT(¥),
we are using the MIN(list) function to allow of all the calculations for the fre-
quency to be performed at the SQL database level. For example, a sample query
of the patient database may look like this expression:

select min(myCount) as count from (select count(*) as myCount from DB1
group by q1, q2)

The result from this query is compared against the k-anonymity threshold value
“k” for the combinations of attributes q: and qe.

2.5 Attribute Generalization and Suppression

The basic idea of generalization is to abstract the domain of attributes to make it
more difficult to distinguish individual values and therefore increasing the
chances of achieving k-anonymity. Examples of generalization include general-
izing zip code values by replacing the last digit with wild card (i.e. *) or general-
izing individual age values into a range of values. Suppression of attributes is
simply regarded as the case where the attribute is generalized to the highest or
most general level (e.g. zip code attribute is generalized to *****). Please note
that we will refer to the highest/most general level of an attribute as the root
level in the attribute generalization tree later in the paper. As an attribute ap-
proaches the root level in the generalization tree, the information loss for that
particular attribute increases. Minimizing the level of an attribute’s generaliza-
tion during the anonymization process will minimize the amount of information
loss. Therefore there is a need for the existence of different levels of attribute
domain generalization to be available for the transformation process so that the
trade-off between information loss and anonymization can be requested. Let D
represents the set of attributes domains including both categorical and numeri-
cal domains; and let <oc denotes the domain generalization relationship be-
tween domains; where the notation “Duii < Dij” between two domains Dii and
D1 defined on attribute Ai, means that either Di is identical to Dij, or D1 is a
generalization of Dii. The mapping between values from Dii and Dij can be rep-
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resented by a many-to-one generalization function denoted by y. By Convention
i<j; and Dw represents the most specific domain (also noted D) for attribute A

Figure 1. Generalization of race attribute

A2 White Other

RV=15 T / N

Aia White Black Other

?\;;;5 White Black Hispanic Asian

For each attribute we can define a hierarchy of domain nodes totally ordered
using <oc; where the root of the hierarchy represents the most generalized do-
main, and the leaf nodes represent the most specific domain (i.e. original do-
main of the attribute). Figure 1 and Figure 2 provide examples of the domain
generalization hierarchies for the race and zip code attributes.

Figure 2. Generalization of the zip code attribute

Az 462+

RV=10 /, \

Az 4624* 4628*

RV=45

Ao 46241 46245 46288 46283
RV=95

Direct edges between two nodes are the results of direct generalization pro-
duced by applying the generalization function y; and paths between nodes are
implied generalization between domains produced by a series of composition of
the generalization function, denoted by y+. Each generalization level for an at-
tribute is labeled with the attribute number x and the generalization level y
(Axy). The most specific data for an attribute is labeled with a zero, Axo, and as
the attribute becomes more generalized the value increases by one. In Figure 1,
the most generalized level is labeled as Ai_.
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2.6 Full Domain Generalization

As described in [5, 24], several models exist to transform table T to the k-
anonymized view V, including the global recoding. In global recoding the initial
values of each quasi-identifier attribute are mapped to new values to satisfy k-
anonymization. Several approaches exist for global recoding; see [4, 5] for more
information. Using full-domain generalization approach, initial values of each
quasi-identifier attribute are mapped to values in the same domain in the at-
tribute domain hierarchy. More formally, let T be a relation with quasi-identifier
attributes Ai,...An. A full-domain generalization is denoted by a set of functions,
®y,...0n, each of the form @i : Dai — Daqi, where Dai <oc Dai . @i maps each value
“q” from Dai to some value “a” in Dai such that a = q or a belongs to y+(q). A
full-domain generalization V of T is obtained by replacing the value q of attrib-
ute Ai in each tuple of T with the value ®i(q) [19, 20]. This is in contrast with
local recoding [13, 14, 27], where initial values of an attribute Ai can be mapped
to values in different domains in the attribute domain hierarchy. For example,
the age attribute value of 15 exists in the 15-20 domain as well as in the 14-18
domain. The general idea of local recoding is to minimize the interval size,
which may achieve less information loss due to smaller intervals than global
recoding. We address the issues of the same values existing in different domains
in Section 7.2.

This property allows generalizing attribute domains into higher domains. The
hierarchies of an attribute domain generalization can be constructed by progres-
sively mapping the attribute domain values into a higher attribute domain.

The race attribute is shown in Figure 1, and the zip code attribute is shown in
Figure 2. It is initially defined at the most specific level of the attribute to be
(White, Black, Hispanic, Asian). It was then generalized to the level (White,
Black, Other) and then into an even more generalized level (White, Other). The
generalization groupings of the race attribute example demonstrate a concept
that is critical to our new data content expert based utility measurement, which
is that particular values in an attribute are maintained as much as possible even
if they exist in multiple generalization levels. For example, the values of White
and Black exist in three generalization levels, and the reasoning for this is that
those two values in the race attribute have been designated by the data content
expert as critical for research purposes. If a generalization level is required to
drop one of these critical values, the data content expert considers the informa-
tion loss to be significant. With that in mind, the assigned utility metric for a
generalization level without the data content experts desired values intact will
reflect that loss. More details on the calculation of the utility metric are defined
in Section 4.
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3 Related Work

The protection of microdata has been an active research issue [25], and many
researchers have been utilizing k-anonymity to protect the identities of the indi-
viduals in a database. K-anonymity and the deployment of generaliza-
tion/suppression to satisfy k-anonymity were originally characterized in [20],
and a binary search algorithm to find a single full-domain generalization was
described in [19]. New optimization methods were developed in [1, 3, 4, 13, 14,
17]. For example in [13], the authors introduce a class of algorithms for a multi-
dimensional data model that produce k-anonymous full-domain generalizations
while still maintaining a substantial performance improvement over existing
full-domain algorithms.

An area of research within privacy protection has been the analysis of k-
anonymity, and whether or not it protects the privacy of data. L-diversity, pro-
posed by [16], suggests that k-anonymity is susceptible to homogeneity of the
data combined with the knowledge of the attacker. An examples is that if the
attacker knows that a dataset includes all persons in a county, and the data
shows that all persons in the datasets with syphilis also have AIDS, and the at-
tacker has external knowledge that his acquaintance Jim, a county resident, has
syphilis, the data has revealed to the attacker than Jim has AIDS. As initially
described, [-diversity proposes to protect not only the quasi-identifiers, but pro-
vides special attention to a subset of the attributes called sensitive attributes (e.g.
an attribute storing HIV status for a patient, which the patient would not want
disclosed) characterized by having at least | well-represented values exist in a
set of records that have the same values for the quasi-identifiers. In contrast to -
diversity, [15] proposes a concept called t-closeness. This concept is based on the
premise that for any equivalence class, which is a set of quasi-identifiers, the
distance between the distribution of a sensitive attribute in the equivalence class
and the distribution of the attribute in the whole table is no more than a thresh-
old of ¢.

We consider all attributes to be sensitive attributes, so during the anonymiza-
tion process, our algorithms ensure that we have k records to prevent identity
disclosure. Even though our anonymized dataset may not satisfy t-closeness,
we ensure that we have at least k records for each of the “sensitive” attributes as
classified in [16]. An attacker may have external information about any subset
of attributes within a dataset, and so any attribute must be treated as a possible
contributor to identity disclosure, as illustrated by the two attributes Resident
County and syphilis status in the prior example. To achieve k-anonymity, there
must be at least k records with any combinations values from all of the attrib-
utes in the anonymized dataset, not just values from some subset of attributes
that have been categorized as identifiers or quasi-identifiers.
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Among studies of the utility of the data after anonymization, the research of
Xu et al. [28] is one of the few studies that emphasized the need to build utility
aware anonymization in terms of weights among individual attributes. The ex-
ample they provide highlights the difference in importance that exists between
age and zip code attributes when conducting a study for disease analysis. More
precisely, age has more importance in this type of study. Therefore, it makes
sense to try to minimize the level of generalization of age when compared to zip
code during the transformation process. It should be noted that the weights are
not intended to create different anonymized datasets for each type of user, but
instead provide weight on attributes that are generally more important for the
majority of users of the data. For this aim, an attribute weight has been intro-
duced in the utility metric they proposed; although it has been set to one all
across the attributes when actually implemented. The utility metric obtained
corresponds to the sum of the weighted utility of each attribute. The utility met-
ric, also called normalized certainty penalty, is expressed in terms of the loss of
information generated by the generalization process. In a case of a numeric
quasi-identifier attribute Ai whose initial domain Di is generalized to domains
Dio, Diy, ... Dim, the loss of information is expressed in terms of the sum of the
ranges of each sub domain Dij normalized by the range of the initial domain. Di.
Similar reasoning can be extended for categorical attributes.

In other works of k-anonymization such as in [4, 11, 14] the authors have also
introduced utility matrices to guide the transformation process; but did not take
into account the importance of the attributes. For example in [4], the discernabil-
ity model is introduced to measure the information loss for each attribute Ai, by
assigning a penalty to each tuple in the table based on the number of tuples hav-
ing the same generalized sub-domain Dij. In the work described in [14], the
normalized average equivalence class size is introduced. For each quasi-identifier
attribute Ai, the information loss is expressed in terms of the number of tuples
in the table divided by the number of group-bys for the attribute Ai generated
in the next generalization level.

In the work described in [12], the authors propose to release frequency related
information about the data called marginals. For example, if there are five peo-
ple in a zip code that are forty years of age, the authors will release a table with
an entry of forty with a count of four. The determination of what marginals are
released is dependent on an entropy measure and not based on the needs of the
researcher who wants to mine that data. The concept of a normalized certainty
penalty (NCP) is introduced in [10] to capture information loss as the data is
generalized into intervals, therefore losing accuracy in query answering. For
example, a user may want to know how many 18 year old men purchased beer
and diapers in 2005, but may only be able to count men ages 16 to 20 years old if
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age has been aggregated into five year domains in the dataset. For all numerical
attributes, Aj, from table T, NCP is defined as

NCPEEY= 3 i, ,l:_l

G |

where |Ail is defined to be the M&¥rar {443 = Minzar £.4:}, je. the range of
all tuples on attribute Ai. The numerator contains that variables yi and zi, which
are the generalized values for xi. Finally, wi reflects the weight of the utility for
attribute Ai as compared to the other attributes in the dataset.

Categorical attributes follow the following formula for the NCP:

where the size(u) is the number of common descendants and | Al is the number
of distinct values for attribute A. The NCP is an interesting concept, but its limi-
tation is that it does not take into account the importance of particular values in
the dataset that have been identified by the data content expert as critical to the
analysis of the researcher. In the next section, we present our utility metric that
builds upon aspects of the NCP, but also penalizes a particular generalization
level of an attribute if the critical values of that attribute have been generalized.
The data content expert, who is very familiar with the needs of the researchers
receiving the data, pre-defines these critical data values in rules that may be a
value like “white, or black” for a categorical attribute like race, or a range of
numbers like 12-18 for age is well accepted as “adolescent.” If these values are
not present in a particular generalization level, then the information loss in-
creases and the penalty also increases.

4 Utility Metric

We propose that the data curators have more control on defining the utility of
the attributes and how they relate to the overall content of the data that is con-
tained in the datasets that they own. The expertise of the data researchers pro-
vides an understanding particular to thresholds in the data that need to be
maintained through the anonymization process, so that the meaning of the data
is maintained. For this purpose, we define the research value (RV) of an attrib-
ute to encapsulate the utility of the each attribute with respect to the following
conditions:
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1) Significance of the attribute relative to the other attributes;

2) The distinct number of elements in a group at a particular generalization
level;

3) The number of records that exist for each group in a generalization level;

4) The number of data constraint rules that are maintained in that generaliza-
tion level.

A data constraint rule defines groupings of data or ranges of data that are
critical for an attribute to maintain during the anonymization process in order to
maximize the meaning of the data for the end researcher. The data constraint
rules can exist in two forms depending on the data type of the attribute: cate-
gorical or continuous. Categorical attributes use data constraint rules that pre-
serve distinctions between data values or between data value domains. When
all of the data constraint rules are satisfied at a particular generalization level of
an attribute, the value of the data constraint rule in the RV is the sum of all pos-
sible importance values divided by the sum of all the importance values in the
raw dataset, which would be one. Any generalization that violates such a con-
straint rule would be penalized by multiplying the generalization string’s total
research value with a value less than one. Using the race attribute as an exam-
ple, the data expert may assign the following importance values to the elements
that exist for race in a database:

Table 1. Possible Data Constraint Rules for Race Attribute

Do not mix White and Hispanic in same group 5
Do not mix White and Black in the same group 20
Do not mix Hispanic and Black in the same group 10
Do not mix Hispanic and Asian in the same group 5

If a generalization level violated the mixing of Hispanic and Black individuals,
then the data constraint portion of the RV would be 30/40 = 0.75.

For a continuous attribute like age as discussed previously, the data constraint
rules could define inflection points of ages that would be important for someone
who is interested in mining data within the well-defined age groupings. For
example, preserving a distinction between age 20 and 21 years may be impor-
tant to a researcher examining alcohol use, since drinking alcohol usually be-
comes legal on a person’s 21¢t birthday. Similar to the continuous data constraint
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rules, the importance values assigned for each of the ranges of values for an
attribute are normalized to one. The research value (RVk) of a numerical attrib-
ute x at generalization level k is defined to be:

where wx is defined to be the importance weight of attribute x in reference to the

2% 12
other attributes in the dataset. The numerator :=o " is the sum of the
number of elements within each sub-group i times the range of values for those

elements in the i group at the most specific generalization level of attribute x.

ZF'.‘ . i

=g is the sum of the number of elements within each sub-group i times
the range of values for those elements in the i group at the k" generalization
level of attribute x. Finally, the data constraint rules portion of the equation is
the ratio of the sum of the data constraint rules that exist at the k™ generaliza-

DR,

L

tion level, , divided by the total value of all the data constraint rules at
DRy
the most specific generalization level, . The weight calculation of each
attribute can be determined by establishing a correlation matrix between each of
pair of attributes using the original raw dataset. The total sum of all the weights
is normalized to be 1. If an attribute does not correlate highly with any other
attribute, then that attribute is considered to be an independent attribute and
will be assigned a higher weight. On the other hand, if an attribute is highly
correlated with the other attributes, then it will be assigned a lower weight. As
the number of attributes increases, the complexity of determining the correla-
tions between attributes increases dramatically. For the experiment we describe
in this paper, the data expert manually assigned weights for each of the attrib-
utes in both the MCPHD and Adult datasets, but the proposed utility metric to
calculate the RV values was used at each generalization level of the two data-
sets.
For categorical attributes in a dataset, the research value (RVx) of attribute x at

generalization level k is defined to be:

L Mgl EDR
E.1:.|- -— lI"FI-,I- *mt m
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where all the elements are defined to be the same as those for the numerical
5z

attributes, except for the m ratio which is defined the number of unique ele-

ments at generalization level k divided by the number of unique elements de-

fined at the most specific generalization level of the attribute.

To demonstrate the calculation of the research value for the k™ level of attrib-
ute x containing numerical data, the following example is presented. The
weight of the attribute x is calculated to be 0.2; there are three groups in this
generalization level with 25, 45 and 55 elements in each group spanning 10, 15
and 25 values, respectively. The most specific generalization level of this attrib-
ute has 125 elements with a group spanning of 1. The sum of the data constraint
rules that exist at the ki level is 50, and the sum of the data constraint rules at
the most specific generalization level is 100. Given all of these values, the re-
search value for the k' level of attribute x is determined as:

125=1 =50

02+ (25+10)+ (45=15)-+ 155251 100

At the most specific level, the RV of an attribute is equal to wx. It becomes ap-
parent that as one moves to more generalized levels within an attribute, the de-
nominator will continue to grow, and thus the RV value will continue to de-
crease.

Figure 1 demonstrates the research values for the race attribute race across dif-
ferent levels of generalization. As you can see from this example, the starting
research values are not the same for all of the attributes, which indicates that the
data content expert has designated the race attribute to have a higher signifi-
cance value than that of the zip code attribute. This distinction in starting re-
search values allows the data content expert the ability to establish not only re-
search values within an attribute but also to reflect an attribute’s utility across
attributes. As the number of elements increases within a sub-group at a particu-
lar generalization level for an attribute, the chances are greater that those set of
values will produce a measurable pattern during data analysis. In contrast, if
the range of values within a sub-group is very large, then the chances of produc-
ing a measurable pattern in the dataset decrease.

It is important to note that given two attributes Am and An such that Dmo <
Dh_o, then the initial importance status is not necessarily maintained as attributes
Am and An are generalized. That is, Dm_i < Dnj where i<j does not always hold in
the general case. This is a result of the data constraint rules defined for a par-
ticular attribute, and how the generalization levels are defined for those attrib-
utes. Informally, the partial order between research values allows for flexibility
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in defining domain hierarchies for each attribute and the ability to re-evaluate
the utility of the attribute and its importance with respect to the other attributes
as the attributes undergoes global recoding. Compared to the information loss
defined in [7], the research value metric can be regarded as an opposite metric,
wherein the more the attribute undergoes transformation, the less research
value it will have.
To optimize the final overall utility of the transformed data using the research

value metric, two alternative algorithms are proposed:

e Optimization of the overall research value of the dataset after generalization
by maximizing the overall sum of the research values of the transformed at-
tributes. We call this option global research value optimization

e  Optimization of individual attribute research value, by maximizing the in-
dividual research value of each transformed attribute. We call this alterna-
tive local research value optimization

It should be noted that the research values used by these proposed algorithms
were manually calculated by the content expert, and that our future work will
be to automatically generate the research values of the attributes.

5 Methodology

In this section, we will describe the two algorithms that address the global re-
search value optimization and the local research value optimization and the datasets
that were used for running experiments on the algorithms.

5.1 DataSets

For this project, we utilized two datasets, the public Adult Census data from the
UC Irvine machine learning repository [18], and the proprietary death certificate
dataset from the Marion County Public Health Department (MCPHD) of Indi-
anapolis, Indiana. We included the Adult Census dataset in order to compare
our proposed algorithms against existing methodologies, since the MCPHD is
not available to for public download, and the Adult Census dataset is the gold
standard for gauging anonymity techniques.

The Adult dataset was configured in a similar manner to [27] using 30,162 tu-
ples and eight attributes (age, work class, education number, marital status,
occupation, race, sex and native country). Age and education number were
used as numeric values, while the remaining attributes were used as categorical
attributes. Work class and marital status used a three level hierarchy structure.
For the other categorical attributes, a two level hierarchy was used with the
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most specific level having all values, and the second level was set to “ALL,” (i.e.
complete suppression).

For the Marion County Health Department’s death certificate dataset (a total
of 216,000 records) comprised of 76 attributes was paired down to 36 attributes
based upon their utility for data mining. These attributes include: race, sex, col-
lege education, cause of death, etc are listed in Table 2. For each attribute, we
created n levels of generalization, where n ranged from one to six. The original
version of the MCPHD dataset contained a wide range of values in each attrib-
ute. This variety produced many outlier values that needed to be reclassified
for categorical attributes, or removed in the case of numerical data after per-
forming a distribution analysis of each attribute to identify outliers.

Table 2. Marion County Public Health DB Attributes

Race, Sex, Age in Days, College, Industry, Autopsy, Census Tract, Cause of
Death Certifier Type, Citizenship, City of Birth, Date of Birth, Date of Death,
Disposition Method, Education, Farm, Informant Relationship, Injury AM/PM,
Injury Census, Injury County Code, Injury Date, Manner of Death, Marital
Status, Military Motor Vehicle Accident, Occupation Category, Occupation
Code, Place of Death City, Place of Death Code, Place of Death State, Place of
Death Zip, Pregnant, State of Birth, US Vet, Zipcode, Injury Time, Time of
Death

These identified outliers were then recoded to a general category within the
attribute. As described above, every level of generalization for each attribute
was assigned a research value (RV), which ranged from zero to one hundred
(i.e. normalized values). Table 3 demonstrates another generalization example
of the two attributes (Race and Gender), and the corresponding research values
for each level of generalization within the attribute.
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Table 3: Research Value Examples

Race 0.95 W, B, L, A, O*
Race 0.72 W,B,L, O
Race 0.58 W, B, O
Race 0.10 W, O
Gender 0.85 M, F, O%
Gender 0.65 M,UorF, U

(*W= White, B=Black, L=Latino, A=Asian, O=Other, M=Male, *F = Female, U= Un-
known)

5.2 Data Preparation

Using the MCPHD and the Adult census raw datasets, a perturbed dataset was
created by running a SAS® script that formatted the data into generalization
columns. For each attribute, x columns were created based upon the number of
levels of generalization each attribute contains, as discussed in the previous sec-
tion. In Figure 1, we can see how the race attribute, which has three generaliza-
tion columns, will be created (A1, Ai1, and Ai2). In the Aio column, all of the
records will contain either “White,” “Black”, “Hispanic”, “Asian.” In the Ai.
column all records containing either “Asian” is abstracted into “Other”; and in
A1 column all records containing either “Black”, “Hispanic” or “Other (from
the previous level) are abstracted into “Other.” The last level (not shown in Fig-
ure 1 and 2) is the most general level with a zero research value, where all re-
cords contain the same value, “any”, for the generalized attribute. Throughout
the hierarchy creation process, no attribute values were allowed to be in two
groups at once. For example, a generalization of the age attribute could not have
overlapping groupings, like age 13-17 and age 15-22. When values are allowed
to cross groupings, it makes it very difficult to discriminate what grouping of a
particular value (i.e. 15 in this example) is responsible for a pattern in the data-
set. In effect, the groupings for age would range from 13-22, because you could
not assert if 15 was in the 13-17 grouping, or the 15-22 grouping; thus the utility
of the dataset has been decreased. Publications using local recoding where val-
ues are allowed to cross groupings during the anonymization process include
[2, 3, 9, 28]. This process was repeated for all thirty attributes in the MCPHD
dataset and then for the Adult census dataset.

After all thirty attributes of the MCPHD had been generalized; multiple com-
binations of those thirty attributes were created to test the effectiveness of the
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two proposed algorithms. A combination contained as little as three attributes
and up to the maximum of thirty attributes. The criteria for the selection of the
attributes that were selected for each combination fell into two categories: 1)
Random or 2) Maximum number of generalization levels. The maximum num-
ber of generalization levels approach would examine two attributes A1 and A2
and select A1 if it had more generalization levels than Az, or vice versa. In the
case where A1 and A2 had the same number of generalization levels, then one
would be selected randomly. The random combinations were labeled as ri (e.g.
r03 and r08), which indicates a random selection of i attributes from the original
pool of thirty attributes. The maximum combinations were labeled in a similar
manner mi (e.g. m03 and m08). For the Adult dataset, all of the attributes were
used in during the testing phase of the algorithms.

5.3 Algorithms

To ensure that a dataset is k-anonymous, it is critical to test the worst case sce-
nario for the data, which in this case is a combination of all possible attributes
being searched in a single query. This is due to the fact that as the number of
attributes that are combined in a query increases, the chances of k-anonymity
being violated also increases. Herein after we represent this combination of
attributes as a string called generalization string Ai_1Az2...Am_n composed of the
combination of the individual attribute generalization level strings Aij. For ex-
ample, the race and zip code attributes would create generalization strings like
A10A20, A1.0A21, A11A2.0, etc.

The aim is to efficiently compute a dataset generalization string that optimizes
(globally or locally) the overall research value of the transformed view V. Let us
call this string globally (resp. locally) optimized generalized string.

One problem with this strategy is that a dataset with large numbers of attrib-
utes will create millions of possible combinations of generalization strings. From
efficiency perspective the bottleneck point for either one of the alternatives is
the computation of the frequency set for any dataset generalization string, as it

involves a database call to compute a select-group-by SQL statement.

Given a set of attributes A =fA1.A2,_, &3} and a set D of attribute domain gen-
eralization hierarchies, the initial number of dataset string generalizations is
function of the number “n” and the number of levels of each attribute domain
hierarchy in D. Therefore to reduce the number of initial dataset generalization
strings, we need to reduce either the number of initial attributes and/or the hier-

archy depth of the attributes. The pre-pruning phase addresses both options.
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5.3.1 Pre-Pruning

The strategy employed in the pre-pruning phase is supported by the following
properties also used in [14]. The first property called the generalization property
states that if two sets of attributes P and Q have their domains satisfying Dr <
Dq, and if T is k-anonymous with respect to P; then T is k-anonymous with re-
spect to Q.

The second property called subset property states that if T is k-anonymous
with respect to a set of attribute P, then T is also anonymous with respect to any
subset of P.

Using the negation of the subset property we can infer that if T is not k-
anonymous with respect to an attribute in A, then it is not k-anonymous with
respect to any superset obtained by combining the attribute with the other at-
tributes of A. Using the negation of the generalization property we can infer
that if T is not k-anonymous with respect to Aij then it is not k-anonymous with
respect to Ail such that I<j. The outline of the pruning strategy is depicted in
Figure 3.

Figure 3. Pre-Pruning Algorithm

Input: Table T containing attribute names, research values (RV) of attributes, gener-
alization levels of each attributes.
Output: List L containing generalization levels passing k-anonymity
Method:
1. While an attribute and generalization level (gli) >= k exists {
For each generalization level gli of attribute am test k-anonymity {
If gli passes k-anonymity {
Add gli and RVito List L
}
Else {
Select attribute am+1

}

O P NG

—_
<
—_

The pre-pruning strategy uses the negation of both properties, by checking for
each attribute whether or not it satisfies k-anonymity (Line 3). If it does not,
then it can be pruned from the composition of the initial generalization string
set. To account for the existence of different domains for each attribute, we re-
fine the pruning process to prune for each attribute any generalization domain
that does not meet k-anonymization. For example, in Figure 1, if attribute Ao
does not meet the k-anonymization threshold but A1 and Ai2 do, then the do-
main hierarchy of attribute A1 will be trimmed to include only the top two lev-
els; and therefore only A and A will be used in generating the set of initial
dataset generalization strings. If an attribute Al fails k-anonymity at the most
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generalized level, then that attribute is removed from the dataset, because it
would cause other attributes that were combined with Al to also fail k-
anonymity. The benefit of this pre-pruning process is a more efficient k-
anonymity algorithm by minimizing the number of calls to the database to test
the generalization strings for k-anonymity.

5.3.2 Global Optimization of the Utility Metric

The aim is to compute the dataset generalization string that meets the k-
anonymity threshold and have the best global research value. The global re-
search value is computed by summing all of the research values from each re-
spective attribute in the successful generalization string. This method requires
that the research values of all combinations of the attributes” generalizations be
calculated. This may produce a very large number of generalization strings, as
is the case for the MCPHD dataset, but the pre-pruning eliminates a large por-
tion of the strings that do not satisfy k-anonymity. To minimize the number of
database calls, we deploy a binary search over the list of all dataset generaliza-
tion strings sorted in ascending order on their global research value. At each
step of the binary search, we apply several strategies to minimize the number of
generalization strings that need the computation of the frequency set. The prun-
ing steps depend on whether the selected generalization string fails the k-
anonymity test. The details of the global optimization algorithm are shown in
Figure 4.

For the case of a success, the generalization string is added to the list of suc-
cessful strings SL and the pruning strategies are applied. The first pruning strat-
egy eliminates all generalization strings with a global research value less than
the successful string. The second pruning strategy eliminates all generalization
strings that are more general that the successful strings. A generalization string
is considered to be more general if all of the component attributes of that string
have a generalization level gl > gli where i is the generalization level of the cur-
rent string, and k is the generalization level of the string that could be removed
from the list.

For the case when the current generalization string fails, then the only pruning
strategy that applies is to remove all generalizations strings that are more spe-
cific than the current string.
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Figure 4 Global Optimization Algorithm

Input: List L
Output: A k-anonymous T’
A list S of successful generalization strings and their corresponding research values
Number of root nodes within any successful generalization string
Method:
1. Init: Create all possible strings (GSi) from L, sort by total RV. Store in List A
2. While there exists a generalization string GSi in List A {
3 Select GSi as midpoint(List A)
4 If min(count(GSi)) >=k {
5. Add GSito success list SL,
6 Remove all GSkfrom List A with RVk<RVi
7 Remove all GSkfrom List A where gl> gl
8 }
9

. Else {
10. Remove all GSkfrom List A where glk< gl
11. }
12. Remove GSifrom List A

13.  }// End while

14. For each GSiin SL {

15. Determine root # of attributes where glx= glmax

16. }

17.  Apply GSi from SL with (>> RVk && min(root)) on table T

The binary search process is repeated for the remaining list of non- pruned
generalization strings until no more strings are left to be analyzed. If multiple
successful generalization strings were found after running the algorithm, all
having similar research values, then it would be at the discretion of data content
expert to select a generalization string that would be most beneficial from the
end-user perspective. The number of root nodes (most specific levels of an at-
tribute) is determined to provide the data content expert the ability to choose
from multiple success strings after the anonymization process is complete.

5.3.3 Local Optimization of the Utility Metric

The objective of the local optimization approach is to achieve K-anonymity with
optimum RV values for each attribute (i.e. local). As opposed to the global op-
timization approach where the focus is to find the best RV combined over all
attributes, the aim of this approach is to balance the global RV value between
the attributes. In other words, finding generalization strings that minimize the
cases where generalization strings include very specific attributes at the expense
of most general attributes. For example, using attributes race and zip code in
Figures 1, the best generalization string using the global strategy would gener-
ate the generalization string Ai2A20 (combined RV=0.90) while the local strat-
egy may generate the generalization string Ai_1A2.1 (combined RV=0.50).
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Unlike the global approach, the local approach does not use a combined list of
all possible strings to select a generalization string for k-anonymity testing. In-
stead, each attribute is regarded separately (As shown in Figure 5); and at each
step, a generalization level within each attribute is selected and combined with
the other selected generalization levels of the other attributes in order to create a
combined generalization string to be tested for K-anonymity. If that particular
generalization string succeeds, then the next selected generalization level in
each attribute moves half way up the height of the attribute towards the more
specific data of an attribute (i.e. the data is not grouped or suppressed). On the
other hand, if the generalization string fails, then the next selected generaliza-
tion level selected in each attribute moves half way up the height of that attrib-
ute towards the more general data. This continues until it is not possible to
move in all of the attributes that compose the generalization string. If the cur-
rent generalization string passes k-anonymity, then the current string is added
to the success list SL along with its total research value. No pruning occurs in
the local optimization algorithm, but a hybrid version of the local optimization
as described in Section 5.3.4 does use pruning.

To facilitate a binary search in each of the attributes of the generalization
string, we utilize pointers to maintain the current selection level of the attribute,
and also the highest and lowest points still available for selection.

Figure 5 Local Optimization Algorithm

Input: List of n attributes
Output: A k-anonymous T”’
A list S of successful generalization strings with research values
Number of root nodes within any successful generalization string

Method:

1.// Initialize the following index pointers: Hi, Lo & Mid

2. While (Total Stops <> # of attributes) do{

3. Select a generalization string GSiusing Mid index j of all attributes Aito An
4 If min(count(GSi)) >=k {
5 Add GSito success list SL
6 Set Lo = Mid
7. }Else {
8 Set Hi = Mid
9. }
10. Mid=(Hi+ Lo)/2
11. }// End while
12. For each GSiin SL {
13. Determine root # of attributes where glx= glmax
14. }
15.  Apply GSi from SL with (>> RV« && min(root)) on table T
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This procedure continues until the current selection level does not change dur-
ing an iteration, which is classified as a stopping condition for that attribute.
When all of the attributes have met their “stopping condition,” the algorithm
terminates. At this point, similar to the global approach, all of the success
strings are examined for any roots. The aim is to eliminate success generaliza-
tion strings with attributes at the most general level. The generalization string
with the greatest research value and fewest number of root attributes would
then be applied against the raw database to ensure anonymity while still main-
taining some of the utility of the data.

5.3.4 Hybrid Utility Algorithm

The hybrid approach is a combination of the local approach and the global ap-
proach that takes advantage of the quick examination of strings via the local
algorithm and then uses the wider scope of the global algorithm to identify any
remaining success strings. Unlike the local optimization approach, the hybrid
optimization makes use of the list of all possible generalization strings for a
dataset, and pruning of those strings as the algorithm executes. It starts of using
the local algorithm until all of the high and low pointers for all of the attributes
are equal. Once this point is reached, if there are any entries left in the remain-
ing list of generalization strings, the global algorithm is then called until no en-
tries exist in that list.

5.3.5 Distributed Version of the Global Optimization

As described in Section 5.3.2, the global approach assumes that all possible gen-
eralization strings are generated a priori and provided as an input (residing in
main memory) for the algorithm. This assumption generates implementation
issues as soon as we have a number of attribute combinations greater than
twelve. To address this issue we propose a distributed version of the algorithm
that leverages the subset property described in Section 5.3.1. The main idea of
the distributed version of the algorithm is to decompose the generalized string
into subsets of generalization strings that can fit in memory; and then run the
generalization algorithm described in Section 5.3.2 on each of the subsets look-
ing for successful strings within those subsets. Once all of the strings have been
analyzed for a particular subset, the algorithm then starts on the next subset.
After all of the subsets have been analyzed, the successful strings from all of
those subsets are combined and then tested for k-anonymity. Any successful
strings from these combined strings are then tested for any attributes that are at
the root level and the string with the highest RV is applied to the raw database.
Since the datasets we used only produced successful generalization strings us-
ing three and six attributes, the distributed approach was not needed, but as we
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increase the number of attributes beyond twelve, the distributed approach will
be needed to ensure the scalability of the algorithm.

6 Experiments

6.1 Algorithm Performance

The performance of the local optimization algorithm is logz(max height of n
attributes in generalization string) is based on the fact that the local algorithm
uses a binary search technique, and it repeats until no more moves are allowed
in any of the attributes. For the global optimization algorithm, the performance
of the algorithm is log: (generalization of all strings).

6.2 Utility Measurement

6.2.1 MCPHD Dataset

The global optimization utility metric algorithm was tested using multiple k
values on the Marion County death certificate database to test how the algo-
rithms would perform. For this dataset, the research values were established by
the data content expert and not the utility function that was introduced in Sec-
tion 4. Currently, we are testing our algorithms with the research values gener-
ated using our utility function to compare the outcomes from the values gener-
ated by the data content experts and our new utility function. We plan on sub-
mitting this as a future publication.

Results from the MCPHD dataset using k values of three and five with multiple
combinations of attribute are shown in Table 4. As the k value increases, the
amount of successful records drops off dramatically (in most cases, there were
zero successful strings found) for datasets that contained more than twenty-four
attributes. So the data is not shown for those cases. We discuss the possible rea-
sons for no successful generalization strings using the MCPHD dataset in Sec-
tion 7. In Table 4 and Table 5, any empty entries found in the tables indicate
that no successful generalization string was found for that run. Datasets mYY
contain the attributes that have the most generalization levels within the attrib-
ute, while the rXX datasets have randomly selected attributes. m12 had fewer
total strings due to the fact that the pre-pruning phase eliminated a considerable
amount of generalization levels in the attributes for that dataset, and thus the
total number of combinations of generalization strings was less than the r12 for
example.
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Table 4: Global Optimization Utility Algorithm
Highest
Run Data- T,O tal R\z;5 of Mini- Maxi-
K ) Strings
Value Time set Gener- Success- mum mum
(Secs) Name ful RV RV
ated .
String
3 8 m03 1 0.15 0.15 0.15
5 9 m03 1 0.15 0.15 0.15
3 41 mO08 28 1.10 0.15 2.00
5 41 mO08 28 1.10 0.15 2.00
3 49 m12 28 1.00 0.25 1.85
5 49 m12 28 1.00 0.25 1.85
3 25764 m24 44800 0 6.03
3 17 r03 20 0.95 0 1.75
5 13 r03 5 0.48 0 0.995
3 270 r08 700 1.00 0.10 3.67
5 282 r08 700 1.00 0.10 3.67
3 2459 rl2 8400 1.00 0.10 4.87
5 2498 rl2 8400 1.00 0.10 4.87
5 14961 r24 24 0 6.07

Table 4 shows the different runs that use K values of three or five. Within each
run, the highest total research value for the dataset is listed along with the
maximum and minimum research values for the run. The maximum research
value corresponds to an anonymized dataset that contains attributes that all
contain their most specific generalization levels, while the minimum research
value corresponds to an anonymized dataset that contains attributes that all
contain their most generic generalization levels. The empty entries in the high-
est RV of a successful string column indicate that no selected generalization
strings passed the k-Anonymity test.

Table 5 shows the results of running the local optimization utility algorithm
under the same k value conditions as the global algorithm. This table contains
the same fields as that of the global optimization utility algorithm to allow for
comparisons of the two algorithms on the same datasets.
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Table 5: Local Optimization Utility Algorithm
Highest

K Tliaiz Dataset Strfi(:;i RV of Minimum | Maximum

Value Name Successful RV RV

(Secs) Generated )
String
3 17 m03 0.15 0.15 0.15
5 9 m03 1 0.15 0.15 0.15
3 32 m08 28 1.10 0.15 2.00
5 42 mO08 28 0.15 2.00
3 42 m12 28 1.15 0.25 1.85
5 52 m12 28 0.25 1.85
3 119 m24 44800 1.20 0.25 6.03
3 12 r03 20 0.95 0 1.75
5 11 r03 5 0.95 0 0.95
3 40 r08 700 1.05 0.10 3.67
5 59 r08 700 0.10 3.67
3 54 rl12 8400 1.05 0.10 4.87
5 73 rl12 8400 0.10 4.87
5 115 r24 56000 0.25 5.97
6.2.2 Adult Census Dataset

As a means to show how our algorithm performs against existing utility meth-
odologies, our two proposed algorithms were run using the public Adult census
dataset using a range of k values (k=3, k=5 and k=10).

Unfortunately, the local optimization algorithm was not able to find any solu-
tions using the Adult DB, and this will be addressed in the next section. We then
ran the Bottom Up algorithm as defined in[28] using the same three values of k
to compare with our methodology and utility metric. The authors of [29] pre-
sented a Top Down and Bottom Up algorithm, but both showed very similar
results, with the only difference being the execution time, which was not a con-
cern for us in this exercise. For this dataset, we did use our new utility function
to establish the research values for each of the attributes and the generalization
levels of those attributes.

In order to examine the effects of the anonymization process, we used recur-
sive partitioning (RP), which is a multivariable technique that is used to find
patterns in large datasets, on the raw Adult dataset to see which of the attributes
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were most responsible for differentiating individuals who make <=50K or >50K
in yearly salary. Salary was chosen, because it is the attribute of interest in the
Adult dataset for analysis. As seen in Figure 6, out of the original 30162 records,
75% of the individuals had a yearly salary of <=50K and 25% had a salary >50K.

Figure 6 -- Raw Adult Dataset Recursive Partitioning
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The three attributes that significantly differentiated the two salary groups are
Capital Gain, Age and Education Number. Bucket #1 indicates that when an
individual has Capital Gains >=$7298, 98% of the 1330 individuals have a yearly
salary of >50K. On the other hand, bucket #2 shows that when Capital Gains <
$7298 and Age is < 28 years old, 97% of 7162 individuals have salaries <=50K.

After running the global optimization algorithm using a k value of 5, the ano-
nymized dataset was analyzed using recursive partitioning and it produced the
breakdown as shown in Figure 7. Bucket #1 shows that when the Capital Gain is
>=$6001, 95% of the 1387 individuals have a yearly salary of >50K.

The Bottom-Up algorithm with a k value of 5 was also run against the Adult
dataset and the recursive partitioning results are shown in
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Figure 8. Bucket #1 has a mixture of Capital Gains that range from zero to
$15,000+, so no conclusions can be drawn from this bucket. When the Education
Number is Pre-college for all values of Capital Gains, 86% of the 18686 indi-
viduals from the 516 clusters in bucket #2 have Salaries <=50K.

Figure 7 -- Global Optimization RP using k=5
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Both algorithms were also run on the Adult dataset using a k value of 10. The
Global Optimization algorithm did not produce a valid solution where the Sal-
ary attribute is not generalized to a value of both <=50K and >50K. On the other
hand, the Bottom-Up algorithm produced a result that is found in Figure 9.
As in the previous runoff of the Bottom-Up algorithm, Bucket #1 had Capital

Gain represents a full range of values. Therefore no conclusion can be deter-

mined. Bucket #2 has a full range of Capital Gain values and Education Num-

bers of Pre-College have 86% of the 18686 individuals have a Salary <=50K.

When the value of k was raised to be 10, neither the local nor the global optimi-
zation algorithms could produce a solution where the salary attribute did not
contain the most generalized values for the salary (i.e. salary="both”). In con-

trast, Figure 9 shows that the Bottom Up algorithm was able to find a solution.
As present in the k=5 solution, Bucket #1 had the full range of Capital Gain val-
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ues. Bucket # 2 represents Capital Gain values <$7000 that have 86% of 20,000+
individuals having a Salary <=50K.

Figure 8 -- Bottom-Up Recursive Partition using k=5
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Figure 9 -- Bottom-Up Recursive Partition k=10
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7 Discussion

The goal of the algorithms described in Section 5.3 is the optimization of data
utility in a dataset while still protecting the anonymity of the individuals stored
in that dataset. As shown in Table 4 and Table 5, the global optimization utility
metric algorithm and the local optimization algorithm are extremely close in
terms of the highest research value of the successful strings.

7.1 Marion County Public Health Department

For the Marion County Health Department database, the local optimization al-
gorithm (Table 5) performed better than the global optimization algorithm
when you compare the highest successful research value discovered relative to
the maximum total research value using the mXX datasets, where XX was under
12 attributes. As the number of attributes increased in the mXX series, the
global algorithm produced higher success research values due to the increased
number of success strings that were found during the execution of the algo-
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rithm. The local optimization algorithm failed to find a success string in three of
the mXX tests, while the global optimization algorithm only failed to find a suc-
cessful string when 24 attributes were used. Upon examination of the distribu-
tion of the data when all of the attributes were used by both algorithms, it be-
came apparent that there were many outlier instances where the combination of
all the attributes failed to produce a record count greater than one, This leads us
to believe that certain large datasets will require some sort of suppression of
records after an overall distribution analysis has been completed. These records
would be selected for suppression with the goal of minimizing the impact on
data utility, but this exercise is out of the scope of this paper.

The ability of the global optimization algorithm on the rXX dataset was far su-
perior to that of the local optimization algorithm in regards to both the highest
research value discovered and the ability at least one successful generalization
string. As expected, the time performance to run the two algorithms favoured
the local algorithm due to the fact that the local algorithm only examines a small
subset of all possible generalization strings when compared to those examined
by the global algorithm. This explains why the local algorithm did not find suc-
cess strings for all of the experiments. For this study, we examined all possible
combinations off-line of each dataset without concern for performance and
without pruning. This was done to determine all possible successful generaliza-
tion strings from that dataset to ensure that the global optimization algorithm
was in fact correctly executing and finding the maximum utility in the research
value while still upholding the given k-anonymity criteria.

The results from the hybrid approach, which were not included in Table 4 or
Table 5, mirrored the global algorithm in terms of execution time and the high-
est research values found for a successful string, which is not surprising due to
the fact that the local algorithm only examined a small subset of all possible
strings and then removed them from the total pool of possible strings. After the
local algorithm completed its execution, the global algorithm then examined the
remaining possible strings, which in the case of an attribute pool of 24 attrib-
utes, was a large number of strings; thus the time and successes swayed toward
the run results where only the global algorithm was executed.

As for the distributed approach, it was used when the number of attributes in
a testing datasets surpassed 18 attributes due to memory limitations of Java.
This allowed the global optimization algorithm to effectively examine the set of
24 attributes in a timelier manner, even though no successful strings were dis-
covered where k was satisfied due to the presence of outliers in the dataset,
which prevented a tuple (record) count to surpass the k criteria as described in
the previous paragraph.
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7.2 Adult Census Dataset

Both the Local and Global Optimization algorithms were run using the Adult

dataset from the UCI website, using multiple values of k (k=3, k=5 and k=10).
Additionally, the Bottom-Up algorithm [28] was run on the same Adult dataset.
Due to the limited size of the Adult DB, the local algorithm was not able to find
any successful strings among the subset of generalization strings that it exam-
ined. We are currently re-examining how each attribute is being grouped in the
different generalization levels to see if that will aid in the discovery of a success-
ful generalization string while only examining a small subset of all possible
strings.
On the other hand, the global optimization algorithm performed quite well. As
demonstrated in Figure 7, the anonymized dataset using a k value of 3 or 5 was
able to maintain the pattern discovered by the raw dataset where individuals
who have Capital Gains >=$6001 had yearly salaries of >50K. In contrast, the
Bottom-Up algorithm when run using a k value of 3 or 5, the same pattern was
lost, because the Capital Gain in Bucket #1 covered the full range of values. Al-
though the Bottom-Up algorithm produced a result for Bucket #2 to differentiate
the individuals who have a yearly salary <=50K, the wide range of Capital Gains
and the overlapping of groupings of those Capital Gains diminish the impact of
that discovery. Similarly, the Bottom-Up algorithm failed to discover the pattern
in Bucket #1 due to the full range of Capital Gain values, and the Bucket #2 had
overlapping values and did not find the Education Numbers of Pre-College.

When the k value was raised to 10, our algorithm was not able to find any solu-
tions that did not include the most generalized values for the salary attribute. In
contrast, the Bottom Up algorithm had Bucket #1 that had the Capital Gain rep-
resenting a full range of values therefore no conclusion can be determined.
Bucket #2 had Capital Gain values < $7000K where 86% of the 20000+ individu-
als had a Salary of <=50K.

Similar to the MCPHD, we examined off-line all possible combinations of the
generalization strings to ensure that the algorithms were discovering the highest
utility strings that passed the given k-anonymity criteria. Although the utility
metric defined in [28] can help understand the penalty associated with an ano-
nymized dataset, the NCP does not take into account different sizes of groups
within a generalization level, nor does it account for range thresholds defined
by the data expert to be critical for data mining exercise, or categorical values
that must be maintained within a generalization level that could be used to find
patterns or trends in a dataset. Additionally, the Bottom-Up algorithm does not
prevent attributes from having overlapping values, and this dramatically dimin-
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ishes the utility of the anonymized dataset as demonstrated in the previous sec-
tion.

8 Summary and Future Work

In summary, we have introduced two approaches for achieving k-anonymity
while aiming at maximizing a user driven data utility. Each algorithm has its
strengths and weaknesses, but as described before, the ultimate goal is to create
a generalized dataset that maximizes the utility of the transformed data. Unfor-
tunately, data utility and anonymity are in an inverse relationship; as we try to
improve data utility, we expose the confidentiality of the data, and vice versa.
Therefore, we must find an acceptable balance between the two. The Global
Optimization algorithm was shown to outperform the Bottom-Up utility algo-
rithm using recursive partitioning.

Based on the experiments we performed, global optimization utility metric al-
gorithm seems to provide this balance although it may require longer run times
as the number of attributes in a dataset increase. The pre-pruning portion of the
algorithm helped to cut down on the unnecessary database calls with generali-
zation strings that fail k-anonymity. In order to maximize the data utility of a
given dataset, it was necessary to rank the importance of the attributes relative
to each other, and also within each attribute. Our research value metric is an
attempt to encapsulate these constraints. The algorithms we described imple-
menting this concept have the ability to eliminate unwanted generalization
strings while still reaching a desirable solution that satisfies both k-anonymity
and data utility for a researcher.

We are currently working on an automated generalization approach that clus-
ters tuples together to satisfy anonymity requirements only when it maximizes
our proposed RV utility metric. Preliminary results have shown that our auto-
mated approach improves upon existing methodologies.

REFERENCES

1. Aggarwal, G. On k-anonymity and the curse of dimensionality. in 31st
international conference on very large data bases. 2005. Norway.

2. Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigraphy, R.,
Thomas, D., Zhu, A., Approximation Algorithms for k-Anonymity. Journal
of Privacy Technology, 2005.

TRANSACTIONS ON DATA PRIVACY 5 (2012)



An Enhanced Utility-Driven Data Anonymization Method 501

10.

11.

12.

13.

14.

Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Thomas, D., Zhu,
A. Anonymizing Tables. in 10th International Conference on Database Theory.
2005.

Bayardo, R., Agrawal, R., Data Privacy Through Optimal k-Anonymization,
in Proceedings. 21st International Conference on Data Engineering2005. p.
217-228.

Chaytor, R., Utility-preserving k-anonymity, in Department of Computer
Science2006, Memorial University of Newfoundland. p. 82.

DataMart. DataMart. Available from:
http://health.mil/mhscio/programs products/jmis/dhss/products/cdm.as

pXx.

Duncan, G,, Fienberg, S., Krishnan, R., Padman, R., Roehrig, S.,
Disclosure Limitation Methods and Information Loss for Tabular Data, in
Confidentiality, Disclosure and Data Access: Theory and Practical Applications
for Statistical Agencies2001. p. 135-166.

Evfimievski, A., Randomization in privacy preserving data mining. ACM
SIGKDD Explorations, 2002. 4(2): p. 43-48.

Gionis, A., Mazza, A., Tassa, T. k-Anonymization Revisted. in 24th
International Conference on Data Engineering 2008. Cancun, Mexico: IEEE.

Hua, M., Pei, J., A Survey of Utility-based Privacy-Preserving Data
Transformation Methods, in Privacy-Preserving Data Mining2008,
SpringerLink. p. 207-237.

Iyengar, V., Transforming Data to Satisfy Privacy Constraints, in Proceedings
of the 8th ACM SIGKDD International Conference on Knowledge Discovery in
Databases and Data Mining2002.

Kifer, D., Gehrke, J. Injecting Utility into Anonymized Datasets. in
Proceedings of the 2006 ACM SIGMOD International Conference on
Management of Data. 2006. ACM Press.

LeFevre, K., DeWitt, D., Ramakrishnan, R. Incognito: Efficient Full Domain
K-Anonymity. in Proceedings of the 2005 ACM SIGMOD international
conference on Management of data 2005.

LeFevre, K., DeWitt, D., Ramakrishnan, R. Mondrian Multidimensional K-
Anonymity. in In IEEE International Conference on Data Engineering (ICDE).
2006.

TRANSACTIONS ON DATA PRIVACY 5 (2012)



502

Stuart Morton, Malika Mahoui, P. Joseph Gibson, Saidaiah Yechuri

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Li, N,, Li, T., Venkatasubramanian,S., t-Closeness: Privacy Beyond k-
Anonymity and I-Diversity, in 2007 IEEE 23rd International Conference on
Data Engineering 2007.

Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam., M., L-
Diversity: Privacy Beyond k-Anonymity. ACM Transactions on Knowledge
Discovery from Data, 2007. 1(1): p. 12.

Meyerson, A., Williams, R., On the complexity of optimal k-anonymity, in
23rd ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems2004.

Repository, U.CIM.L.; Available from:
http://www.ics.uci.edu/mLearn/mlrepository.html.

Samarati, P., Protecting Respondents’ Identities in Microdata Release. ] IEEE
Transactions on Knowledge and Data Engineering, 2001. 13(6): p. 1010-
1027.

Samarati, P., Sweeney, L., Protecting privacy when disclosing information:k-
anonymity and its enforcement through generalization and suppression, 1998,
SRI Computer Science Laboratory.

Sweeney, L., Achieving k-anonymity privacy protection using generalization
and suppression. International Journal on Uncertainty, Fuzziness and
Knowledge-based Systems, 2002. 10(5): p. 571-588.

Sweeney, L., K-Anonymity: A model for protecting privacy. International
Journal on Uncertainty, Fuzziness, and Knowledge-based Systems, 2002.
10(5): p. 557-570.

Verykios, V., Bertino, E, Fovino, I, Provenza, L., Saygin, Y., Theodoridis,

Y., State-of-the-art in Privacy Preserving Data Mining. SIGMOD Record,
2004. 33(1): p. 50-57.

Willenborg, L., deWaal, T., Elements of Statistical Disclosure Control. Vol.
155. 2001: Springer. 261.

Willenborg, L., deWaal, T., Elements of Statistical Disclosure Control.
Springer Verlag Lecture Notes in Statistics. Vol. 155. 2000: Springer.

Wortman, J., Adam, N., Security-Control Methods for Statistical Databases:
A Comparative Study. ACM Computing Surveys, 1989. 21(4): p. 515-556.

Xu, J., Wang, W, Pei, J., Wang, X., Shi, B., Fu, A. Utility-based
Anonymization for the Privacy Preservation with Less Information Loss. in
ACM SIGKDD Explorations. 2006.

TRANSACTIONS ON DATA PRIVACY 5 (2012)



An Enhanced Utility-Driven Data Anonymization Method 503

28. Xu, J., Wang, W, Pei, J., Wang, X., Shi, B., Fu, A. Utility-based
anonymization using local recoding. in Twelfth ACM SIGKDD international
conference on Knowledge discovery and data mining. 2006. Philadelphia, PA:
ACM Press.

TRANSACTIONS ON DATA PRIVACY 5 (2012)



