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Abstract. We introduce a new model of k-type anonymity, called k-concealment, as an alternative
to the well-known model of k-anonymity. This new model achieves similar privacy goals as k-
anonymity: While in k-anonymity one generalizes the table records so that each one of them becomes
equal to at least k− 1 other records, when projected on the subset of quasi-identifiers, k-concealment
proposes to generalize the table records so that each one of them becomes computationally - indis-
tinguishable from at least k − 1 others. As the new model extends that of k-anonymity, it offers
higher utility. To motivate the new model and to lay the ground for its introduction, we first present
three other models, called (1, k)-, (k, 1)- and (k, k)-anonymity which also extend k-anonymity. We
characterize the interrelation between the four models and propose algorithms for anonymizing data
according to them. Since k-anonymity, on its own, is insecure, as it may allow adversaries to learn
the sensitive information of some individuals, it must be enhanced by a security measure such as
p-sensitivity or `-diversity. We show how also k-concealment can be enhanced by such measures. We
demonstrate the usefulness of our models and algorithms through extensive experiments.

1 Introduction

A vast amount of information is collected on a regular basis about individuals by various
organizations. In today’s global network of organizational connections, there is a growing
demand to disseminate and share this information due to various academic, commercial
and other benefits. As the records of data frequently include sensitive information that
could violate the privacy of the corresponding individuals, it is necessary to preprocess
the data prior to its publication in order to limit the disclosure of sensitive data. Such pre-
processing operations usually involve data distortion. The challenge is then to preprocess
the data so that some privacy measure is met, on one hand, while the utility of the data is
preserved, on the other hand.

Privacy Preserving Data Publishing (PPDP) is an evolving research field that is targeted
at developing techniques to enable publishing data so that privacy is preserved while data
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distortion is minimized [16]. It is closely related to Privacy Preserving Data Mining (PPDM)
[4, 43]. The latter term is usually reserved to settings in which the data mining tasks are
known when designing the corresponding privacy-preserving algorithms; PPDP, on the
other hand, usually refers to settings in which the purposes of the data release are unknown
and it is needed to anonymize the data using general purpose utility measures that are not
targeted at specific data mining goals.

PPDP assumes that the candidate table to be published includes four types of attributes
[9]: identifiers — attributes that uniquely identify an individual (e.g. S.S.N.); quasi-
identifiers — attributes like occupation, age, or gender, that do not offer unique iden-
tification but their combination might yield unique identification; non-identifiers — non-
sensitive attributes that are not quasi-identifiers, in the sense that an adversary is unlikely
to get hold of them; and private attributes —- personal attributes of sensitive nature, such
as health condition. A usual practice in PPDP is to remove the identifiers and to generalize
the quasi-identifiers in order to limit the disclosure of private data.

One of the most well-studied models of PPDP is k-anonymization [2, 6, 28, 33, 38, 39].
In that model, the quasi-identifiers of the table records are generalized until each record
becomes identical to at least k− 1 other records, when projected on the subset of the quasi-
identifiers. A general purpose cost function is used to measure the amount of information
lost by modifying the data. Clearly, by reducing the amount of information lost in the pro-
cess of k-anonymizing a table, we increase the utility of the released table for the purposes
of data mining. Hence, the objective is to modify the table entries so that the table becomes
k-anonymized and the information-loss is minimized.

1.1 Motivation

In this study we assume that the adversary knows the public data of all individuals in the
population, and that he knows the exact subset of the population that is represented in
the table. Such an adversary may extract from a publicly accessible database the subset of
records which relate to the individuals that appear in the released anonymized table. The
former table includes the quasi-identifiers of all records, as well as identifying information.
The latter table includes the generalized quasi-identifiers as well as sensitive information.
The adversarial task is to find the correct mapping between the records of the two tables. k-
Anonymity ensures that each record in the first table can be linked to no less than k records
in the anonymized table. To achieve that, it requires that the anonymized table will consist
of clusters of size at least k, where all records in the same cluster have the same generalized
quasi-identifiers. Consequently, it is impossible to distinguish between the records of a
given cluster in the information-theoretic sense, whence, the adversary cannot tell which
of the k (or more) records is the one for which he is looking.

We argue that the k-anonymity condition is unnecessarily rigid and leads to excessive gen-
eralization of the quasi-identifiers, and, consequently, to unnecessary information losses.
We propose here an alternative model of k-concealment. It extends the model of k-anonymity
in the sense that every table that is k-anonymized satisfies also k-concealment, but the con-
verse does not necessarily hold. In k-concealment we replace the information-theoretic hid-
ing with computational indistinguishability. Namely, there are no more clusters of identical
records; instead, every record can be matched with at least k generalized records and even
the potent adversary that was described above would not be able to distinguish between
them assuming that he is polynomially-bounded (i.e., he may perform only polynomial-
time computations). Hence, from a practical point of view, k-concealment is as secure
as k-anonymity, just as much as modern ciphers are accepted as secure alternatives to
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information-theoretic perfectly secure ciphers. The advantage that is offered by this new
model is enhanced utility: k-Concealment may be achieved with less generalization than
that which is required by k-anonymity.

Example. Consider the basic table in Table 1(a), having quasi-identifiers age and zipcode
and the sensitive attribute disease. Table 1(b) is a corresponding 2-anonymization. It con-
sists of two clusters of records that have the same generalized quasi-identifiers — the first
three records and the last two. It is impossible to distinguish between the records in the
same cluster, because they are identical. Table 1(c), on the other hand, is a 2-concealment of
Table 1(a). An adversary who knows the quasi-identifiers of all records in Table 1(a) cannot
link any such record with less than two generalized records in Table 1(c). For example,
based on the two quasi-identifiers age and zipcode, the adversary cannot tell whether
Alice’s record in Table 1(c) is the first or the third one. Those two records are not identi-
cal; thus, in theory, the adversary may be able to deduce that one of those records is more
likely to be Alice’s than the other. We claim, and explain later on, that it is computationally
hard to do so. Hence, for polynomially-bounded adversaries, these two candidate records
are equally likely to be Alice’s generalized record. Finally, as can be seen, Table 1(c) in-
volves less data distortion than Table 1(b) (the entries in Table 1(c) that are more specific
are marked).

name age zipcode disease
Alice 30 10055 Measles
Bob 21 10055 Flu

Carol 21 10023 Angina
David 55 10165 Flu

Eve 47 10224 Diabetes

(a) The original table

age zipcode disease
21-30 100** Measles
21-30 100** Flu
21-30 100** Angina
47-55 10*** Flu
47-55 10*** Diabetes

age zipcode disease
21-30 10055 Measles

21 100** Flu
21-30 100** Angina
47-55 10*** Flu
47-55 10*** Diabetes

(b) 2-Anonymization (c) 2-Concealment

Table 1: A table and corresponding anonymizations

1.2 Is k-anonymity still relevant?

Several studies have pointed out weaknesses of the k-anonymity model and suggested
more secure measures such as `-diversity [32], t-closeness [30], or p-sensitivity [42]. The
main weakness of k-anonymity is that it does not guarantee sufficient diversity in the pri-
vate attribute in each equivalence class of indistinguishable records. Namely, even though
it guarantees that every record in the anonymized table is indistinguishable from at least
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k − 1 others, it is possible that all of those records, that agree in their generalized quasi-
identifiers, are also equal in their private value. Therefore, an adversary who is capable of
locating his target individual in that block of records, will be able to infer the private value
of that individual. Machanavajjhala et al. [32] proposed the security measure of `-diversity.
They suggested that the private attribute in each block will have at least ` “well repre-
sented” values. They offered two interpretations of that measure. In one interpretation,
the entropy of the values in that attribute in every block should be at least log `, for some
predetermined value of the parameter `. The other interpretation is that of recursive (c, `)-
diversity (see [32] for its definition). According to a simpler interpretation of `-diversity
[47, 48], a block is `-diverse if the relative frequency of each of the private values within
each block is at most 1/`.

It is important to understand that those notions do not and can not replace k-anonymity.
They offer essential enhancements to k-anonymity in the sense that one must require them
in addition to k-anonymity. In accord with this, Truta et al. [42] proposed algorithms that
generate tables that are both k-anonymous and p-sensitive, and Wong et al. [47] considered
the conjunction of k-anonymity with the last interpretation of `-diversity (they call this
conjunction of conditions (1/`, k)-anonymity).

In order to clarify that point, let us consider the measure of `-diversity. The diversity of a
table is bounded from above by the number of possible private values (equality holds if and
only if the distribution of the private values is uniform). The diversity of any anonymiza-
tion of the table is bounded from above by the the diversity of the entire table (equality
holds if and only if the distribution in each block equals the global distribution). There-
fore, if the table has a private attribute with a small number of possible values, all of its
anonymizations will respect `-diversity with ` that does not exceed this number. For exam-
ple, in the case of a binary private attribute, one can aim at achieving `-diverse anonymiza-
tions with ` ≤ 2 only. In such a case, if one imposes only `-diversity, the blocks of indis-
tinguishable records could be of size 2. Such small blocks do not provide enough privacy
for the individuals in them, because if an adversary may be able to learn the private value
of one of those individuals, he may infer that of the other one as well. If, on the other
hand, we demand that such `-diverse anonymizations are also k-anonymous, for a suit-
able selection of k, then the adversary would have to find out the private values of at least
k/2 individuals before he would be able to infer the private value of his target individual.
Hence, k-anonymity is still a vital notion that serves as a basis to `-diversity.

Another reason why `-diversity cannot stand alone and must be accompanied by k-anony-
mity is that it is defined only through the distribution of the sensitive values in each block;
as a consequence, it is vulnerable to minimality attacks [46]. A useful tool in combating
such attacks is to apply k-anonymization with an information loss measure that considers
only the quasi-identifiers (and not the sensitive attributes), and only then transfer the k-
anonymized table into one that also respects `-diversity (for a more detailed explanation,
see [46]).

1.3 Outline and contributions

In this paper we offer the following contributions:

• We introduce new models of k-type anonymizations (namely, (k, 1)-, (1, k)-, and (k, k)-
anonymity and k-concealment) that lead to anonymized tables with higher utility. We
characterize the relations among the new anonymity models and the original model
of k-anonymity.
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• We show that the model of k-concealment offers a comparable level of security to that
of k-anonymity.

• We describe algorithms to achieve (k, k)-anonymity and k-concealment.

• We show how k-concealment may be enhanced using p-sensitivity or `-diversity.

• We demonstrate the usefulness of our definitions and our proposed algorithms through
experimental evaluation on real and synthetic datasets.

The rest of the paper is organized as follows. In Section 2 we discuss related work. In
Section 3 we formally define the basic concepts, and in Section 4 we introduce the new
models of k-type anonymity and discuss their interrelations. Section 5 is devoted to dis-
cussing the security of those models and showing that k-concealment is essentially as se-
cure as k-anonymity. In Section 6 we propose algorithms for (k, k)-anonymization and
k-concealment. Since we assume that the adversary knows the anonymization algorithms,
it is necessary to randomize them; this is done in Section 7. In Section 8 we discuss enhance-
ments of our algorithms so that they issue k-concealed tables that respect also p-sensitivity
or `-diversity. In Section 9 we describe the experiments that we executed for testing the
performance of those algorithms. Finally, we conclude our discussion in Section 10.

A preliminary version of this work [19] included the definitions of the new models and
the algorithms to achieve (k, k)-anonymity. The current work extends [19] by proposing
new algorithms for k-concealment and providing a thorough security analysis of that no-
tion, under stronger adversarial assumptions. In addition, we propose here a randomized
version of our algorithm as a countermeasure against minimality attacks. We discuss en-
hancements of our models to support also p-sensitivity and `-diversity. Finally, our experi-
mentation here significantly extends that which we reported in [19].

2 Related work

The objective of protecting the privacy of individuals represented in databases was for-
mulated by Dalenius [12] in 1977. Since then, many approaches have been suggested for
finding the right balance between data hiding and data disclosure. Such approaches in-
clude query auditing [27], output perturbation [7], secure multi-party computation [3], and
data sanitization [4, 13].

One such approach, originally proposed by Samarati and Sweeney [37, 38, 39], is k-anony-
mization. Meyerson and Williams [33] introduced the problem of transforming a database
table using suppressions so that the k-anonymity property is satisfied and the amount of
information-loss due to the suppression operations is minimized. They showed that this
problem is NP-hard and they devised two approximation algorithms: one with a runtime
of O(n2k) and an approximation ratio of O(k log k), and another with a fully polynomial
runtime and an approximation ratio of O(k log n). Aggarwal et al. [2] extended the setting
of suppressions-only by allowing more general rules for generalizing data entries and they
devised a polynomial O(k)-approximation algorithm.

The information-loss function proposed by Aggarwal et al. [2] is defined as a tree mea-
sure and it is a generalization of the function considered by Meyerson and Williams [33].
In [20], three entropy-based functions were suggested for measuring the information-loss.
Those measures are more general than the tree measure, as they apply to any type of gen-
eralization, and they capture more accurately the information-loss due to anonymization.
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An O(log k)-approximation algorithm was presented in [20] for the problem of optimal
k-anonymity with respect to two of the entropy-based measures, as well as for the tree
measure. More efficient O(log k)-approximation algorithms were described in [35], for the
case of suppressions only, and in [24], for the general case.

Other information-loss measures were used in previous studies. The LM measure [22, 34]
(which we define later on in Section 4.1) is a more precise version of the tree measure of [2].
The CM measure [22] and the DM measure [6] were also used as cost metric measures.
Our notions of k-type anonymity are independent of the underlying cost measure. In our
experiments, we use the basic entropy measure of [20], as a representative of the three
entropy-based measures that were presented there, and the LM measure, which seems to
be the most accurate measure from among the above mentioned measures.

Aggrawal et al. [1] proposed to anonymize data by first clustering the data records and
then publish cluster centers and radii. Our new anonymity notions are independent of
the underlying clustering method and, consequently, they may be applied also with these
clustering techniques.

In a similar line to our present work, the works of Kifer and Gehrke [26] and Xiao and
Tao [48] aim at improving the utility of the anonymized data. Kifer and Gehrke [26] sug-
gested publishing many marginals of the data instead of a single k-anonymous `-diverse
table, in order to obtain better utility while respecting similar privacy properties. Xiao and
Tao [48] proposed publishing the table with all non-sensitive attributes unaltered, while the
sensitive attribute in each record is replaced by a label of an `-diverse group of sensitive
attribute values. In addition, they publish the distribution of the sensitive attribute values
within each such group.

3 Preliminaries

Consider a database that holds information on individuals in some population U = {u1,
. . ., un}. Each individual is described by a collection of r public attributes (also known as
quasi-identifiers), A1, . . . , Ar, and a private attribute, Ar+1. Each of the attributes consists of
several possible values:

Aj = {aj,` : 1 ≤ ` ≤ mj}, 1 ≤ j ≤ r + 1 .

For example, if Aj is the attribute gender then Aj = {M,F}, while if Aj is the attribute age,
then it is a bounded natural number. (Note that we use Aj to denote the attribute as well
as the domain in which it take values.)

Hereinafter, D denotes the projection of the database on the set of r public attributes and
the records of D are denoted Ri, 1 ≤ i ≤ n; namely, Ri ∈ A1 × · · · × Ar. We denote the jth
component of the record Ri by Ri(j). Also, for any set A we let P(A) denote its power set.

Definition 1. Let Aj , 1 ≤ j ≤ r, be finite sets and let Aj ⊆ P(Aj) be a collection of subsets
of Aj . A record R ∈ A1 × · · · × Ar is a generalization of the record R ∈ A1 × · · · × Ar (or,
alternatively, it is consistent with R) if R(j) ∈ R(j) for all 1 ≤ j ≤ r.

If D = {R1, . . . , Rn} is a table of records in A1 × · · · × Ar, then g(D) = {R1, . . . , Rn} is a
generalization of D if for all 1 ≤ i ≤ n, Ri is a generalization of Ri.1

1Hereinafter D and g(D) are multisets, in the sense that they may include differently-indexed records that are
equal.

TRANSACTIONS ON DATA PRIVACY 5 (2012)



k-Concealment: An Alternative Model of k-Type Anonymity 195

As an example, consider a database D with two quasi-identifiers, age (A1) and zipcode
(A2). Then the generalized record R = ({30, . . . , 39}, {98000, . . . , 98099}) is a generalization
of the record R = (34, 98003).

We shall assume that the collection of subsets Aj , 1 ≤ j ≤ r, that may generalize the
values of the attribute Aj are proper, in the following sense.

Definition 2. Given an attribute A = {a1, . . . , am}, a corresponding collection of subsets A
is called proper if it includes all singleton subsets {ai}, 1 ≤ i ≤ m, it also includes the entire
set A, and it is laminar in the sense that B1 ∩B2 ∈ {∅, B1, B2} for all B1, B2 ∈ A.

The first part of Definition 2 implies that with such collections of subsets, we may leave
each value of that attribute unaltered (no generalization), or replace it by the entire set
of values for that attribute (total generalization, or suppression). The second part of the
definition that restricts the subset collection A to be laminar implies that A forms a hierarchy
(see [20, Lemma 3.3].)

As a final note, we distinguish between three main models of generalization:

• In (single-dimensional) global recoding, e.g. [6, 22, 28, 47], each collection of subsets Aj is
a partition of the set Aj (in the sense that Aj includes disjoint sets whose union equals
Aj). In such cases, every entry in the jth column of the database is mapped to the
unique subset in Aj that contains it. As a consequence, every single value a ∈ Aj is
always generalized in the same manner.

• In local recoding, e.g. [19, 20, 33, 35, 47], the collection of subsets Aj covers the set Aj

but it is not a partition (namely, the subsets in the collection may intersect). In such
cases, each entry in the table’s jth column is generalized independently to one of the
subsets in Aj which includes it. Hence, if the age 34, for example, appears in the
table in several records, it may be left unchanged in some, or generalized to 30 - 39,
or totally suppressed in other records.

• The third model is an intermediate one and it is called multi-dimensional global recod-
ing, e.g. [29]. In that model, like in local recoding, the collection of subsets Aj is a
cover of the set Aj (namely, each value of Aj may be contained in more than one
subset in Aj). However, it is a global recoding in the sense that there exists a global
mapping function g : A1 × · · · × Ar → A1 × · · · × Ar such that Ri = g(Ri) for all
1 ≤ i ≤ n.

4 Alternative models of k-type anonymity

We begin this section by reviewing the notion of k-anonymity as it is used in the recent
literature [2, 6, 20, 28, 33]. We then introduce the new notions of k-type anonymity and
discuss them and their interrelations. All of those notions are relaxations of k-anonymity,
whence they allow greater utility.

4.1 Overview of k-anonymization

A k-anonymization of a database D = {R1, . . . , Rn} is a generalization g(D) = {R1, . . . , Rn}
where for all 1 ≤ i ≤ n, there exist indices 1 ≤ i1 < i2 < · · · < ik−1 ≤ n, all of which are
different from i, such that Ri = Ri1 = · · · = Rik−1 . The objective in this context is to gen-
eralize a given database until it becomes k-anonymized, while incurring a minimal loss of
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information. Let Π(D, g(D)) denote the amount of information that is lost by replacing a
database D with a corresponding generalization g(D). The measure of loss of information
Π took several forms in previous studies; the reader is referred to [19] for an overview of
some of the commonly used measures. Most of those measures are additive in the sense
that they associate an information loss with each generalized record and then the overall
information loss in g(D) is the sum of information losses of all generalized records in g(D).
Given a generalized record R ∈ A1×· · ·×Ar, we let c(R) = cΠ(R) denote the cost by which
R is penalized according to the chosen measure Π of information loss.

For the sake of illustration, we recall here the definition of the commonly used Loss Metric
(LM) measure [22, 34]. If R is a generalized record in A1 × · · · × Ar, then the LM measure
associates with it the following cost,

c(R) =
1
r
·

r∑
j=1

|R(j)| − 1
|Aj | − 1

. (1)

Namely, it is an average cost over all r attributes, where the cost in the jth attribute ranges
between 0 (no generalization at all) to 1 (total suppression). If g(D) = {R1, . . . , Rn} is a
generalization of D = {R1, . . . , Rn}, then the overall generalization cost by LM is

Π(D, g(D)) :=
1
n
·

n∑
i=1

c(Ri) . (2)

As mentioned earlier, we use in our experiments the LM measure as well as the basic en-
tropy measure (EM) of [20]; the reader is referred to [20] for a definition of the latter mea-
sure.

Definition 3. Let S ⊂ A1×· · ·×Ar be a set of records. Its closure is the minimal generalized
record in A1 × · · · ×Ar that is consistent with all records in S. The generalization cost of S
is then defined as d(S) = c(S).

4.2 k-type anonymizations

We now proceed to introduce our novel notions of k-type anonymity. Those notions rely
on the concept of consistency, that was defined in Definition 1.

Definition 4. Let D = {R1, . . . , Rn} be a table and g(D) = {R1, . . . , Rn} be a corresponding
generalization. Then

• g(D) is called a (1, k)-anonymization of D if each record in D is consistent with at
least k records in g(D).

• g(D) is called a (k, 1)-anonymization of D if each record in g(D) is consistent with at
least k records in D.

• g(D) is called a (k, k)-anonymization of D if it is both a (1, k)- and a (k, 1)-anonymization
of D.

Correspondingly, we define Ak
D, A(1,k)

D , A(k,1)
D , and A(k,k)

D to be the collections of all k-,
(1, k)-, (k, 1)- and (k, k)-anonymizations of the database D, respectively.
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A(1,k)
D

Ak
D

A(k,k)
D

A(k,1)
D

Ck
D

Figure 1: Interrelations between the five classes of k-type anonymizations.

In order to understand the motivation behind those definitions, we look at things from
the perspective of the adversary. A typical adversarial attack aims at revealing sensitive in-
formation on a specific target individual. In such an attack, the adversary knows a record
R ∈ D and he tries to locate the corresponding generalized record R ∈ g(D). Alternatively,
the adversary could be interested in re-identifying any entity in the released data, for in-
stance to find possible victims to blackmail. Such an attack works in the opposite direction:
Focusing on a generalized record R ∈ g(D), the adversary tries to infer its correct preimage
R ∈ D. (This kind of attack was at the basis of the well-known August 2006 AOL crisis, see
[5].) The notion of (1, k)-anonymity aims at protecting against the first attack; the notion
of (k, 1)-anonymity aims at protecting against the second one; (k, k)-anonymity considers
both attacks.

The notion of (k, 1)-anonymity was already defined in [45] under the name k-ambiguity.
A similar security notion appeared in [39]: an anonymized table adheres to the k-map
protection model if every record in it is consistent with at least k entities in the underlying
population (and not just in the original table, as in k-ambiguity and its equivalent (k, 1)-
anonymity).

Proposition 5. For a given table D, let the collections Ak
D, A(1,k)

D , A(k,1)
D , and A(k,k)

D be as in
Definition 4. Then the relation between these collections is as depicted in Figure 1; i.e.,

Ak
D $ A(k,k)

D $ A(1,k)
D ,A(k,1)

D , (3)

and
A(1,k)

D \ A(k,1)
D 6= ∅, A(k,1)

D \ A(1,k)
D 6= ∅. (4)

(The proof of the propositions in this section are given in Appendix A.)
Our anonymity definitions can also be understood via graph terminology, as follows:2 Let

D = {R1, . . . , Rn} be a table and g(D) = {R1, . . . , Rn} be a corresponding generalization.
This pair of tables defines a bipartite graph VD,g(D) on the set of nodes D ∪ g(D) where an
edge connects Ri ∈ D with Rj ∈ g(D) if and only if the two records are consistent. With
this formulation, A(1,k)

D (respectively, A(k,1)
D , orA(k,k)

D ) is the collection of all generalizations
g(D) for which every node in D (respectively g(D), or D ∪ g(D)) in the graph VD,g(D) has
degree at least k. This formulation in terms of the underlying bipartite graph, gives rise to
our final and main notion:

Definition 6. Let D and g(D) be a table and its generalization, and let VD,g(D) be the cor-
responding bipartite graph. A record R ∈ g(D) is called a match of R ∈ D if (R,R) is an

2All graph terminology that we use herein is defined and discussed in any basic textbook on graph theory, e.g.
[8].
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edge in VD,g(D) and there exists a perfect matching in VD,g(D) that includes that edge. If all
records R ∈ D have at least k matches in g(D), then g(D) is called a k-concealment of D.

Namely, k-concealment is a stronger version of (1, k)-anonymity: While (1, k)-anonymity
required each record (or node) R ∈ D to have at least k adjacent edges in VD,g(D), k-
concealment demands that each record R ∈ D will have at least k adjacent matches. We
could define similar stronger versions of (k, 1)-anonymity and (k, k)-anonymity. Herein
we choose to focus on k-concealment as the stronger version of (1, k)-anonymity since the
adversarial attack that motivates (1, k)-anonymity is the more interesting one (see the dis-
cussion after Definition 4). In addition, the algorithms that we present in this paper for
the notion of k-concealment can be easily modified so that they apply to the concealment
versions of (k, 1)-anonymity and (k, k)-anonymity.

The relation between the new anonymization class, denoted Ck
D, and the previous ones is

given in the following proposition.

Proposition 7. Let Ck
D denote the collection of all k-concealments of D. Then the relation between

the five classes of anonymizations – Ak
D, A(1,k)

D , A(k,1)
D , A(k,k)

D and Ck
D, is as depicted in Figure 1.

We would like to note that our definitions of the alternative models of k-type anonymity
are relevant only in the case of local recoding. It is easy to see that in case of either
single- or multi-dimensional global recoding all those models coincide with the standard
k-anonymity (namely, all domains in Figure 1 collapse into one domain).

5 The security of the new k-type notions

In Section 5.1 we discuss the security of the three basic notions of (1, k)-, (k, 1)- and (k, k)-
anonymity. We explain why they do not provide comparable privacy to that offered by
k-anonymity. This discussion provides the motivation for the central notion which we
introduce in this study — k-concealment. Then, in Section 5.2 we discuss the security of
that notion. We show there that k-concealment offers comparable security as k-anonymity
(but with lower information losses).

5.1 The insecurity of (1, k)-, (k, 1)- and (k, k)-anonymity

Here we discuss the security of the three basic notions of (1, k)-, (k, 1)- and (k, k)-anonymity.
We show that they do not provide the same level of security as k-anonymity. The purpose
of this discussion is to motivate the definition of k-concealment, which, as we show later
on, provides a comparable level of security as k-anonymity (with higher utility, as shown
by experimentation).

Consider a database D and a corresponding (k, 1)-anonymization g(D). Each record in
g(D) is consistent with at least k records in D. However, it is possible that some records R ∈
D are consistent with only one record in g(D), as illustrated in Figure 2. (It describes a (2, 1)-
anonymization but the first record in D is consistent only with one record in g(D).). If the
adversary happens to target an individual whose quasi-identifier record in D has only one
generalized record in the released table that is consistent with it, then that adversary may
infer, with certainty, what is the generalized record that corresponds to his target individual
and, consequently, find the corresponding private attribute of that record.

Next, let g(D) be a (1, k)-anonymization of D. It is true that every record in D is consistent
with at least k records in g(D), whence such anonymizations seem to satisfy our privacy
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D g(D)

Figure 2: An example of a breach of security in (k, 1)-anonymity

goal. However, the following example shows where this notion fails. Assume that D =
{R1, . . . , Rn} and that R

∗
is a generalized record that is consistent with all records in D

(e.g., all entries in R
∗

are suppressed). Consider the following generalization: g(D) =
{R1, . . . , Rn}, where Ri = Ri for all 1 ≤ i ≤ n − k and Ri = R

∗
for all n − k + 1 ≤

i ≤ n (the corresponding bipartite graph for n = 5 and k = 2 is shown in Figure 3).
It is easy to see that g(D) ∈ A(1,k)

D . Moreover, since most of the records in g(D) were
not generalized at all, the information-loss Π(D, g(D)) is very small, for any measure Π.
However, such a generalization is completely unacceptable: The private information of
most of the individuals represented in D is completely revealed.

D g(D)

Figure 3: An example of a breach of security in (1, k)-anonymity

The notion of (k, k)-anonymity combines the two previous notions and it seems that it
does not suffer from the above mentioned shortcomings of those two notions. However,
since we assumed that the adversary knows the exact subset of the population that is rep-
resented in the table, and that he knows the public data of all of them, he may construct
the original public table D. Since the anonymized table g(D) is published, he may con-
struct the bipartite graph VD,g(D), where an edge connects a record Ri ∈ D to a generalized
record Rj ∈ g(D) if and only if the latter generalizes the former. The (k, k)-anonymity
guarantees that every node in that graph has a degree of at least k. However, while this
lower bound on the degree may be sufficient in case the adversary knows only part of D,
it is insufficient under our strong adversarial assumption. Since the adversary knows the
entire graph, he may test each edge in the graph and check whether it may be completed
into a perfect matching in the graph. If it cannot, then it does not represent a possible link
between an original record and a generalized one. By testing the edges of the graph and
removing edges that are not matches, in the sense of Definition 6, the adversary may end
up with nodes in D that have less than k matches, whence he may obtain more linkage
information than what we were expecting.

This discussion motivates our definition of k-concealment, which, as we proceed to show
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next, is secure against the potent adversary that we consider. However, before moving on
to discuss the security of k-concealment, we would like to point out that from practical
point of view, assuming that the adversary knows the exact subset of the population that is
represented in the table is a very strong one. In fact, the data holder can simply eliminate
at random a small subset of records in order to make it impossible for such an adversary
to construct the graph VD,g(D) and apply the above described attack on (k, k)-anonymous
tables. Hence, we believe that in practice the model of (k, k)-anonymity offers a compara-
ble security to that offered by k-anonymity. Having said that, we proceed to discuss the
security of our main model — k-concealment.

5.2 Security of k-concealment

In k-concealment, every Ri ∈ D has at least k matches in g(D). Hence, just like in k-
anonymity, even the strongest adversary, as we described earlier, who targets a particular
record Ri ∈ D, can not narrow down the number of suspect generalized records in g(D) to
less than k.

However, while in k-anonymity the k suspect records in g(D) are identical, whence each
of them is equally likely to be the real generalization of Ri, the same is not true for k-
concealment. Assume that the adversary, who can construct VD,g(D), wishes to “attack”
a given record in D, say R1. Let {Ri1 , . . . , Rit} be the set of matches of R1 in g(D). The
adversary may count, for each 1 ≤ j ≤ t, the number of perfect matchings in VD,g(D)

that include the edge (R1, Rij
). Denoting those counts by mj , he may deduce that the

probability that Rij is the true match of R1 is pj := mj

M , where M =
∑t

j=1 mj is the total
number of perfect matchings in VD,g(D). As the probabilities p1, . . . , pt are not necessarily
equal, that adversary may gain an advantage which could have not been gained in the
k-anonymity model.

However, that attack is infeasible since counting the number of perfect matchings in a
bipartite graph is equivalent to computing the permanent of a {0, 1}-matrix3. That problem
has a rich history in the study of computational complexity. All known algorithms for
computing the permanent over the integers, or over any finite field of odd characteristic,
are exponential. The best known algorithm runs in time O(n22n) [36]. In 1979, Valiant
proved that the problem is in #P-complete [44]. A decade later, Toda [41] demonstrated the
surprising power of #P; Toda’s theorem, combined with Valiant’s result, implies that the
permanent is hard for the entire polynomial-time hierarchy.

The permanent is hard not only in the worst case, but also in the average case. Lipton [31]
has shown that the permanent has the random self-reducibility property. The important
consequence of that property is that the permanent is hard also on the average. The line of
research initiated by Lipton, that connects the worst case and average case complexities of
the permanent was pursued in several studies [14, 17, 18]. The best result in that direction
is due to Cai et al. [10]: They proved that if there exists a polynomial time algorithm (even
a probabilistic one) that computes the permanent of a matrix of order n for any inverse
polynomial fraction of all matrices of order n, then there is a probabilistic polynomial time
algorithm that computes the permanent for every matrix.

Because of its computational difficulty, there has been much research on polynomial time
approximation algorithms for the permanent. The best currently available approximation
is a fully polynomial randomized approximation scheme [23] that provides an arbitrarily

3The permanent of a square matrix A = (ai,j)1≤i,j≤n is defined as perm(A)=
P

σ∈Sn

Qn
i=1 ai,σ(i) where

Sn is the group of all permutations of {1, 2, . . . , n}.
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close approximation. However, the runtime of that algorithm is Õ(n10), thus it is infeasible
even for very modest databases with n in the thousands.

To summarize, even an adversary who can construct the entire graph VD,g(D) cannot locate
his target individual within less than k suspect records in the anonymized table. Further-
more, he cannot even distinguish between those suspect records, since, in order to do that,
he must solve at least k #P-complete problems, or at least use approximation algorithms
which currently are also infeasible. Given all of the above, we conclude that k-concealment
is essentially as secure as k-anonymity.

6 Algorithms

Algorithms for k-anonymization may be separated to approximation algorithms and heuris-
tic algorithms. Approximation algorithms issue, for a given table D, a k-anonymization
g(D) with an approximation ratio guarantee ρ; namely, if go(D) is an optimal k-anonymization
of D then it is guaranteed that Π(D, g(D)) ≤ ρ · Π(D, go(D)). The forest algorithm, by Ag-
garwal et al. [2], offers an approximation ratio guarantee of 3k − 3 with respect to a tree
measure of information loss. (A better approximation algorithm with an approximation
ratio of O(log k) was presented in [35] but it is limited to generalization by suppression
only.) In practice, however, better results may be obtained by heuristic algorithms. The
two algorithms that appear to be the best ones are the agglomerative algorithm [19] and
the sequential algorithm [21]. As demonstrated in [21], the two algorithms offer very simi-
lar results in terms of utility.

In this section we describe algorithms for (k, k)–anonymization and k-concealment, and
compare their performance to that of the above mentioned algorithms for k-anonymity.
In Section 6.1, we describe an algorithm for (k, k)-anonymization, and in Section 6.2 we
describe an algorithm for transforming a (k, k)-anonymized table to one that satisfies (in
addition to (k, k)-anonymity) also the k-concealment property.

6.1 (k, k)-Anonymization

In this section we describe algorithms for (k, k)-anonymizing a given database D. First,
we present in Section 6.1.1 algorithms for (k, 1)-anonymization. Then, in Section 6.1.2, we
describe an algorithm for transforming a (k, 1)-anonymization into a (k, k)-anonymization.

6.1.1 Algorithms for (k, 1)-anonymization

Given a database D = {R1, . . . , Rn}, Algorithm 1 finds an optimal (k, 1)-anonymization
of D. It does so by finding for each record Ri, 1 ≤ i ≤ n, the best subset of k − 1 addi-
tional records such that the generalization cost (see Definition 3) of those records, together
with Ri, would be minimal. Once that subset is found, Ri is set to be the corresponding
generalized record.

Proposition 8. Algorithm 1 produces a table g(D) that is an optimal (k, 1)-anonymization of D.

The proof of proposition 8 is straightforward: the generalization g(D) is a (k, 1)-anonymi-
zation of D because each record in it is a closure of k records in D. Its cost is optimal
because when composing each generalized record Ri, the exhaustive search is performed
on the whole database D (and not only on a subset of not yet chosen records). This can be
done because the iterations of the algorithm are independent of each other.
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Algorithm 1 Optimal algorithm for (k, 1)-anonymization
Input: Table D, integer k.
Output: Table g(D) that satisfies (k, 1)-anonymity.

1: for all 1 ≤ i ≤ n do
2: For all

(
n−1
k−1

)
selections of k − 1 records, Ri1 , . . . , Rik−1 , out of D \ {Ri}, compute the

generalization cost d({Ri, Ri1 , . . . , Rik−1}).
3: Let {Ri1 , . . . , Rik−1} be a selection that resulted in a minimal generalization cost in

the previous step.
4: Define Ri to be the closure of {Ri, Ri1 , . . . , Rik−1}.
5: end for

The runtime of Algorithm 1 is O(n ·
(
n−1
k−1

)
) = O(nk). Even though polynomial in the large

parameter n, it is impractical because of the exponential dependence on k. Algorithm 2,
which we describe below, constructs the generalized records by greedily selecting at each
stage the next closest record. Its runtime is O(kn2) and it offers an approximation ratio
guarantee of k − 1 (see Appendix B).

Algorithm 2 (k, 1)-Anonymization by expansion
Input: Table D, integer k.
Output: Table g(D) that satisfies (k, 1)-anonymity.

1: for all 1 ≤ i ≤ n do
2: Set Si = {Ri}
3: while |Si| < k do
4: Find the record Rj /∈ Si that minimizes dist(Si, Rj) = d(Si ∪ {Rj})− d(Si).
5: Set Si = Si ∪ {Rj}.
6: end while
7: Define Ri to be the closure of Si.
8: end for

6.1.2 From (k, 1)- to (k, k)-anonymization

Let D = {R1, . . . , Rn} be a database and g(D) = {R1, . . . , Rn} be any generalization of D.
Such a generalization may not satisfy (1, k)-anonymity since there could be records Ri ∈ D
that are consistent with less than k generalized records in g(D). Algorithm 3 find such
records in D and then it further generalizes the records of g(D) until it becomes a (1, k)-
anonymization of D. Specifically, if a given record Ri is consistent with only ` < k records
in g(D), the algorithm searches for additional k − ` generalized records in g(D) that could
be further generalized in order to become consistent with Ri with minimal cost. To simplify
notations, for any Ri ∈ D and Rj ∈ g(D) we let Ri + Rj denote the minimal generalized
record that generalizes both Ri and Rj .

By applying this algorithm to a generalization that is already (k, 1)-anonymized, we end
up with a generalized table g(D) that respects (k, k)-anonymity.

The runtime of Algorithm 3 is O(n2): The outer loop consists of n steps; then for each
record we need to check with how many of the n generalized records in g(D) it is consistent,
and if that number is less than k, we have to find the k− ` best ones (O(kn) operations) and
replace up to k generalized records. Hence, the overall runtime is O(kn2). Consequently,
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Algorithm 3 (1, k)-Anonymizer

Input: Table D = {R1, . . . , Rn}, generalized table g(D) = {R1, . . . , Rn}, integer k.
Output: Table g′(D) that generalizes g(D) and satisfies (1, k)-anonymity.

1: for all 1 ≤ i ≤ n do
2: Let ` be the number of records Rj that are consistent with Ri.
3: if ` < k then
4: Scan all records Rj that are not consistent with Ri and find the k − ` ones that

minimize c(Ri + Rj)− c(Rj).
5: Replace each of those k − ` records, Rj , with Ri + Rj .
6: end if
7: end for

so is the runtime of the coupling of that algorithm with the (k, 1)-anonymizer, Algorithm 2
(such a coupling is a (k, k)-anonymizer).

6.2 An algorithm for k-concealment

Next, we describe Algorithm 5 that transforms a (k, k)-anonymization g(D) of a given
database D into a k-concealed table. In order to understand the main idea behind the
algorithm, we begin by characterizing the set of all matches in the graph (see Definition 6).

6.2.1 Finding all matches in a bipartite graph

Let G = (U, V,E) be a bipartite graph where U = {u1, . . . , un}, V = {v1, . . . , vn} and E ⊆
U×V . Assume also that G has at least one perfect matching; for the sake of convenience we
assume that the perfect matching is {(u1, v1), . . . , (un, vn)}. In the spirit of Definition 6, an
edge in E is called a match if it may be extended to a perfect matching in G. In Proposition
10 below we characterize the set of all matches in G.

Definition 9. A set of ` ≥ 1 edges in the graph G is called a bicycle (with respect to the
assumed perfect matching) if there exist ` indices, 1 ≤ i1, . . . , i` ≤ n, such that the ` edges
are

(ui1 , vi2), (ui2 , vi3), . . . , (ui`−1 , vi`
), (ui`

, vi1) . (5)

It is important to note that a bicycle is not a cycle. For example, each of the edges (ui, vi),
1 ≤ i ≤ n, is a bicycle of length ` = 1, which is obviously not a cycle. Each bicycle of length
` > 1 corresponds to a cycle of length 2`; indeed, if we augment the bicycle in (5) with the `
“horizontal” edges (uij

, vij
), 1 ≤ j ≤ `, we get a cycle. The converse, however, is not true.

Consider for example the bipartite graph in Figure 4. The four non-horizontal edges are a
cycle of length 4 that does not correspond to any bicycle; indeed, the only bicycles in that
graph are the four bicycles of length 1 each (since the graph has only one perfect matching).

Proposition 10. Let G = (U, V,E) be a bipartite graph where U = {u1, . . . , un}, V = {v1, . . . , vn}
and E ⊆ U × V , and assume that {(u1, v1), . . . , (un, vn)} ⊂ E. Then an edge e ∈ E is a match if
and only if it is a part of some bicycle.

Proof. Let us assume first that e = (ui1 , vi2) is part of a bicycle, say

(ui1 , vi2), (ui2 , vi3), . . . , (ui`−1 , vi`
), (ui`

, vi1) .
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Figure 4: A bipartite graph with no nontrivial bicycles

If we augment this bicycle with the n−` edges (ui, vi) for all i /∈ {i1, . . . , i`}we get a perfect
matching. The proof in the other direction is immediate since any perfect matching may be
expressed as a disjoint union of bicycles.

Let G = (U, V,E) be the bipartite graph that corresponds to some anonymization g(D) of
D; namely, U = {R1, . . . , Rn} consists of all original records and V = {R1, . . . , Rn} consists
of all generalized records. Since Ri is a generalization of Ri there is an edge that connects
ui = Ri to vi = Ri for all 1 ≤ i ≤ n, and all of those edges are matches. We aim now to find
all other edges of E that are matches. To that end we proceed as follows. First, we define
the directed graph H = (U,F ) that is induced by the bipartite graph G = (U, V,E). In the
directed graph H = (U,F ) the set of nodes is U = {u1, . . . , un} and (ui, uj) ∈ F if and only
if i 6= j and (ui, vj) ∈ E. It is easy to see that, in view of Proposition 10, an edge (ui, vj) ∈ E
is a match in G if and only if i = j or the edge (ui, uj) ∈ F is part of a cycle in H . Hence,
the problem of finding all matches in G reduces to the problem of finding all edges in the
directed graph H that are part of a cycle. This may be achieved as follows: First, one has
to find all strongly connected components of H ; namely, all maximal strongly connected
subgraphs of H (a directed graph is strongly connected if there is a path from each node
in the graph to every other node). If each strongly connected component is contracted to
a single node, the resulting graph is a directed acyclic graph. Consequently, a given edge
in H is a part of cycle if and only if it connects two nodes in the same strongly connected
component.

Algorithm 4 Finding all matches in a bipartite graph G = (U, V,E).
Input: A bipartite graph G = (U, V,E) where U = {u1, . . . , un}, V = {v1, . . . , vn}, E ⊆

U × V , and for all 1 ≤ i ≤ n, (ui, vi) ∈ E.
Output: Marking all edges in E by either YES or NO to indicate whether they are matches

in G.
1: Construct the directed graph H = (U,F ) that corresponds to G.
2: Find all strongly connected components of H .
3: For all edges (ui, uj) ∈ F , if ui and uj belong to the same strongly connected component

in H , mark the edge (ui, vj) ∈ E as YES, otherwise mark it as NO.
4: Mark all edges (ui, vi) ∈ E, 1 ≤ i ≤ n, as YES.

There are several efficient algorithms for finding the strongly connected components of
a given directed graph. Tarjan’s algorithm [40] and Cheriyan-Mehlhorn-Gabow algorithm
[11] are both equally efficient with a linear runtime. We may apply one of those algorithms,
and then identify all edges (ui, uj) ∈ F that are part of a cycle in H : (ui, uj) is a part of a
cycle if and only if ui and uj belong to the same strongly connected component. Finally, we
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use those findings to mark all matches in the original bipartite graph G. Algorithm 4 does
all of the above. Its runtime is O(|U |+ |E|).

6.2.2 The algorithm

The algorithm works as follows: For each Ri ∈ D, it computes the subset P of its set
of neighbors Q, consisting of all matches of Ri. Since g(D) is a (k, k)-anonymization of
D, then |Q| ≥ k, but |P | could be less than k. In order to achieve k-concealment, we
increase |P | so that it becomes at least k. To that end, if |P | < k, we select the non-match
neighbor Rjh

of Ri that minimizes the quantity dh = c(Rjh
+ Ri)− c(Ri). Then, we further

generalize the record Ri to be consistent also with Rjh
. The discussion in Section 6.2.1

implies that this update of Ri “upgrades” Rjh
from a mere neighbor of Ri to a match of Ri

(since now the edge (Ri, Rjh
) becomes a part of a bicycle of length 2). This upgrade of the

edge (Ri, Rjh
) into being a match may have a similar effect on other edges as well. Hence,

we recompute the set of matches and repeat the procedure until |P | becomes at least k.
Once this is accomplished, we move on to deal with the next node Ri+1.

Algorithm 5 From (k, k)-anonymity to k-concealment

Input: Table D = {R1, . . . , Rn}, and a generalized table g(D) = {R1, . . . , Rn} that satisfies
(k, k)-anonymity, integer k.
(It is assumed that for all 1 ≤ i ≤ n, Ri is a generalization of Ri.)

Output: A further generalization of g(D) that is k-concealed (as well as (k, k)-
anonymized).

1: Find all matches in the graph VD,g(D) (Algorithm 4).
2: for all 1 ≤ i ≤ n do
3: Set Q = {Rj1 , . . . , Rjq

} to be the set of q ≥ k neighbors of Ri.
4: Extract P – the subset of Q consisting of all matches of Ri.
5: If |P | ≥ k, skip to next i. Otherwise, proceed with steps 6-10.
6: For all 1 ≤ h ≤ q such that Rjh

∈ Q \ P , compute dh = c(Rjh
+ Ri)− c(Ri).

7: Select the index 1 ≤ h ≤ q where Rjh
∈ Q \ P , for which dh is minimal.

8: Set Ri = Rjh
+ Ri.

9: Recompute the set of all matches in the graph VD,g(D).
10: Return to Step 3.
11: end for

Algorithm 5 invokes Algorithm 4 once at the beginning, before it starts the main loop.
Then, after each addition of a new edge (Step 8), it needs to recompute the matches in the
graph (Step 9), since the addition of a new edge might upgrade more than one edge into
being a match. In order to do that efficiently, we keep the partition of the directed graph
H = (U,F ) to strongly connected components by keeping H ′ = (U ′, F ′) — the directed
graph in which U ′ = {C1, . . . , Cm} is the set of strongly connected components in H , and
F ′ has an edge from Ca to Cb if F has an edge from a node in Ca to a node in Cb. Now,
the operation in Step 8 in Algorithm 5 is equivalent to adding the edge (ujh

, ui) to H . Since
those two nodes belong to two distinct strongly connected components in H , say ujh

∈ C1

and ui ∈ C2, the operation in Step 8 results also in adding a new edge (C1, C2) to H ′. Hence,
what we need to do is to apply Tarjan’s algorithm on the smaller graph H ′ and find the
strongly connected components in it at this stage. The new strongly connected components
in H ′ tell us how to update the separation of H into strongly connected components and
which edges in H upgrade into being matches.
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In order to avoid unnecessary formalism, we prefer to illustrate the above ideas by an
example. Assume that H has 5 strongly connected components and we added in Step 8
an edge (ujh

, ui), where ujh
∈ C1 and ui ∈ C2. Then we add the edge (C1, C2) to H ′ and

then run Tarjan’s algorithm on H ′. Assume that we find out that the strongly connected
components in H ′, in wake of this edge addition, are {C1, C2, C3}, {C4}, {C5}. Then we
conclude that H now has only 3 strongly connected components — C1 ∪ C2 ∪ C3, C4, C5.
Moreover, all edges in H that connect a node from Ci to a node in Cj , where 1 ≤ i 6= j ≤ 3,
will now be matches.

We note that the least that could happen in wake of the operation in Step 8 is the unifica-
tion of C1 and C2 (where ujh

∈ C1 and ui ∈ C2). Indeed, since H already has the edge in the
opposite direction, (ui, ujh

), (namely, H ′ has the edge (C2, C1)), then the new edge (C1, C2)
makes {C1, C2} strongly connected in H ′. But, since it is possible that the addition of that
single edge will create a larger strongly connected component we have to apply Tarjan’s
algorithm on H ′.

The runtime of Algorithm 5 is analyzed as follows. Finding all matches in Step 1 by
invoking Algorithm 4 takes O(kn) time. Then, we start a loop over all n nodes, and for
each node we perform at most k upgrades of an edge to a match. By keeping an array that
holds for each node the connected component to which it belongs, we can decide in O(1)
whether an edge in the graph is a match. Steps 3–8 require O(k) time and Step 9 requires
O(nk) time. The overall runtime of Algorithm 5 is therefore O(kn2).

7 Randomizing the algorithms

A basic assumption in cryptography is Kerckhoffs’ principle [25]. It states that the security
of a cryptographic algorithm must not rely on the assumed secrecy of the algorithm, but
only on the random selections (namely, the key) that the algorithm uses. Hence, when
designing a cryptographic algorithm it must be assumed that the algorithm is known to
the adversary.

As we assumed that the adversary knows D as well as g(D), and that he knows also the
anonymization algorithms, he may construct the graph VD,g(D). Therefore, he knows for
each original record Ri what is the value of its generalization Ri. Hence, given an origi-
nal record Ri, the adversary would know that its generalization is one of the generalized
records in g(D) that equal Ri. The number of those suspect records may be, in the worst
case, one.

Two previous studies have also identified this risk in the context of anonymizing tables
[46, 49]. Our approach here is closer to the one in [46]. The problem that they identified is
when the data owner attempts to `-diversify a table with minimal loss of information. They
showed that since the partition of the table records into equivalence classes of records is
guided by the need to respect `-diversity (a condition which depends only on the sensitive
attribute) and also by the goal to avoid unnecessary generalizations, it is possible some-
times to infer the sensitive values of some of the records. They identified that even though
k-anonymity on its own does not provide a sufficient level of privacy, since it does not
consider the sensitive values when making decisions on how to partition the table records,
it is exactly that feature that makes it a useful component in thwarting such minimality
attacks. Their proposed algorithm MASK (Minimality Attack Safe K-anonymity) has two
phases. First, it k-anonymizes the table. Then, they execute further generalizations in order
to make sure that all equivalence classes satisfy `-diversity. The second stage uses random
decisions as part of the blinding effect.
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Our algorithm works also in two phases: A first phase, that achieves k-concealment
and does not consider the sensitive value, followed by the second phase that achieves `-
diversity or p-sensitivity in addition to k-concealment (the second phase is described in
the next section). We introduce randomization in both phases. Herein we describe the
randomization of the k-concealment phase.
k-Concealment is achieved in three steps. First, we find a (k, 1)-anonymization of D, us-

ing Algorithm 2. Then we transform the (k, 1)-anonymization into a (k, k)-anonymization
(Algorithm 3) and then to a k-concealment (Algorithm 5). We introduce randomization in
all three steps.

In the first step, we consider a randomized version (Algorithm 6) of Algorithm 2. That
version produces, for each 1 ≤ i ≤ n, two different generalized records, R̃0 and R̃1, each
of which is consistent with Ri and at least k − 1 other records in D. Then, we select at
random one of those two generalized records and define the ith record in g(D) as that
generalized record. The first generalized record, R̃0, is the one that Algorithm 2 would
produce (Step 4). In order to find a second generalized record, we look at the q closest
neighbors of Ri (where q > k − 1) and then randomly select k − 1 out of them in order
to define the second generalized record R̃1, see Step 5. If R̃0 6= R̃1, we define Ri to be
one of them with equal probabilities (Step 7). If R̃0 = R̃1, we repeat our random selection
until a different generalized record is obtained. (We may limit the number of trials, and
then, if all trials failed, we can select R̃1 to be any random generalization of R̃0.) Since an
independent selection is made for each record, the overall number of generalizations g(D)
that could be the output of this phase is at least 2n. (In fact, since R̃1 is random in itself, as
there are

(
q

k−1

)
ways to define it, the number of possibilities that needs to be checked by the

adversary is even larger.) Hence, the adversary would need to simulate the next two steps
in the k-concealment process (Algorithms 3 and 5) on at least 2n graphs g(D) that could be
the output of the first step.

Algorithm 6 Randomized (k, 1)-anonymization
Input: Table D, integer k, and integer q > k − 1.
Output: Table g(D) that satisfies (k, 1)-anonymity.

1: For all 1 ≤ i < j ≤ n compute di,j = dj,i = d({Ri, Rj}).
2: for all 1 ≤ i ≤ n do
3: Find q indices Jq := {j1, . . . , jq} that minimize di,j in {1, . . . , n}\{i}. (We order those

indices so that di,j1 ≤ · · · ≤ di,jq .)
4: Define R̃0 to be the generalization of Ri as computed by Algorithm 2.
5: Randomly select k − 1 indices out of Jq, and then define R̃1 to be the closure of the

subset of records consisting of the corresponding k − 1 records and Ri.
6: Repeat Step 5 until R̃1 6= R̃0.
7: Select a random bit b ∈ {0, 1} and set Ri = R̃b.
8: end for

Further randomization may be introduced in the next two steps of achieving k-concealment.
To do that, we select a random ordering of the records in the main loop of Algorithm 3 and
an independent random ordering of the records in the main loop of Algorithm 5. In each
of those algorithms we scan all records R1, . . . , Rn in the table and check whether they
satisfy some anonymity condition ((1, k)-anonymity in Algorithm 3 and k-concealment in
Algorithm 5), and if they do not, we mend the problem by performing appropriate gener-
alizations. The order in which the records are visited has an effect on the final output since
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generalizations that are done in one step of the loop may have an effect on the need to
perform generalizations in later steps. By performing the main loop in each of those algo-
rithms in a random and independent order, we introduce a significant factor of randomness
((n!)2), which multiplies the previous randomness factor of 2n.

8 Enhancing k-concealment by diversity measures

As discussed in Section 1.2, k-anonymized tables must respect also an additional privacy
measure such as `-diversity or p-sensitivity. Here, we describe how our algorithms may be
enhanced towards that end.

Let D = {R1, . . . , Rn} denote the original table and g(D) = {R1, . . . , Rn} be the general-
ized table that respects k-concealment. The latter table is released together with the private
data; namely, each generalized record, Ri, is coupled with the corresponding private at-
tribute si, 1 ≤ i ≤ n. Assume that Ri has t matches in g(D); let us denote them Rij , where
1 ≤ j ≤ t. Then the adversary may deduce that the private value of Ri is one of the private
values in the multi-set Si = {si1 , . . . , sit

}. The goal is to have all multi-sets Si, 1 ≤ i ≤ n,
satisfy some diversity condition. The two conditions that we shall discuss here are:

• p-sensitivity: Si must contain at least p different values.

• `-diversity: The most frequent value in Si must have a frequency of no more than t/`.

This goal may be achieved by further generalization. Namely, we look for a generalization
g′(D) = {R′

1, . . . , R
′
n} of D, where R

′
i either equals Ri or generalizes it, 1 ≤ i ≤ n, that

respects p-sensitivity or `-diversity in the sense described above. Clearly, as g′(D) general-
izes g(D) and g(D) is a k-concealment of D, so is g′(D). We look for such g′(D) with as low
as possible further generalization cost.

The idea is to check those multi-sets to see whether some of them fail to satisfy the re-
quired diversity condition. Assume that Si is not sufficiently diverse. Then we select, in
a greedy manner, a minimal number of generalized records in g(D) that are not matches
of Ri, and then turn them into matches of Ri, by further generalizations. As a result, the
corresponding sensitive values of those new matches will be added to Si. By properly se-
lecting the new matches, those added sensitive values will turn Si into a sufficiently diverse
multi-set.

Recall that in order to turn a generalized record Rj into a match of Ri we can create a
bi-cycle of length 2 between them. Namely, we can replace Ri with Rj + Ri (i.e., further
generalize Ri until it becomes consistent also with Rj) and replace Rj with Ri + Rj . In
order to extend the set of matches of Ri greedily, we can always select a generalized record
Rj that would get us closer to our goal (namely, the corresponding sensitive value sj will
enrich Si towards the required diversity) and for which the required generalization cost is
minimal.

It remains only to describe how to select a minimal subset of non-matches of Ri that
should be matched with Ri.

8.1 Achieving p-sensitivity

If Si contains only p′ < p different values, we greedily pick non-match generalized records
Rj that have different private values that do not appear in Si, and turn them into matches
of Ri, until Si becomes p-sensitive. We add those new matches one at a time. After adding
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one edge in order to create a new match for Ri, we recompute the set of matches in the
graph (an operation which is very simple, as explained in Section 6.2.2 regarding Step 9
in Algorithm 5); this is done since it is possible that the addition of just one edge will add
more than one match to Ri. Algorithm 7 implements that procedure. (We include in the
input to that algorithm the complete set of all matches in the corresponding bipartite graph
since Algorithm 5 computes and updates that set during its execution, and therefore it can
transfer it as an input to Algorithm 7.)

Algorithm 7 Enhancing k-concealment by p-sensitivity
Input: • Tables D, g(D), where g(D) is a k-concealment of D;

• The set of all matches in the bipartite graph VD,g(D);
• An integer p.

Output: Table g(D) that satisfies both k-concealment and p-sensitivity.
1: for all 1 ≤ i ≤ n do
2: Let Mi := {Ri1 , . . . , Rit} be the set of matches of Ri and Si := {si1 , . . . , sit} be their

sensitive values.
3: Compute the number p′ of different values in Si.
4: while p′ < p do
5: Find a record Rj /∈ Mi for which sj /∈ Si, that minimizes [c(Ri + Rj) − c(Rj)] +

[c(Rj + Ri)− c(Ri)].
6: Rj = Ri + Rj .
7: Ri = Rj + Ri .
8: Update the set of matches in the graph.
9: Recompute Mi, Si and p′.

10: end while
11: end for

8.2 Achieving `-diversity

Algorithm 7 may be modified in order to achieve `-diversity instead of p-sensitivity; we
concentrate on the interpretation of diversity as the inverse of the maximal frequency in
Si. To that end, we shall compute in Step 3 of the algorithm the diversity `′ of Si and
compare it to the required minimal diversity `. While `′ < ` we shall select a generalized
record Rj for which sj is different from the most frequent value in Si and whose turning
into a match of Ri entails the minimal generalization cost. The loop will continue until Si

becomes `-diverse.

9 Experimental results

In this section we discuss the experiments that we performed in order to evaluate the new
anonymity model of k-concealment and our proposed algorithms. We tested the algorithms
on both artificial and real data.

Artificial data. The artificial database consisted of n = 5000 records over a set of six at-
tributes A1, . . . , A6. Each of those six attributes consisted of a finite number of values that
were selected according to the following probability distributions:
A1 : {0.7, 0.3}
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A2 : {0.3, 0.3, 0.2, 0.2}
A3 : {0.25, 0.25, 0.4, 0.1}
A4 : {6× 0.07, 10× 0.04, 9× 0.02}
A5 : {10× 0.1}
A6 : {0.05, 0.05, 0.5, 0.3, 0.1}

For example, attribute A1 has two possible values, the first of them with probability 0.7
and the second with probability 0.3. Attribute A4, on the other hand, contains 6 values with
probability 0.07, 10 values with probability 0.04, and 9 values with probability 0.02.

For each of the above attributes, A = {a1, . . . , am}, the collection of permissible general-
ized subsets, A, is described below. As all of those collections include all singleton subsets,
{ai}, 1 ≤ i ≤ m, as well as the entire set A, we list below only the non-trivial subsets in A.

A1 : None (other than{a1}, {a2} and {a1, a2})
A2 : {a1, a2}, {a3, a4}
A3 : {a1, a2}, {a3, a4}
A4 : {a1, . . . , a6}, {a7, . . . , a12}, {a13, . . . , a18},

{a19, . . . , a25}, {a1, . . . , a12}, {a13, . . . , a25}
A5 : {a1, a2}, {a3, a4}, {a6, a7}, {a8, a9},

{a1, a2, a3, a4, a5}, {a6, a7, a8, a9, a10}
A6 : {a1, a2}, {a4, a5}, {a3, a4, a5}

Note, for example, that A6 defines an unbalanced tree of height 3. The distance of a4 and
a5 from the root {a1, a2, a3, a4, a5} is 3, while the distance of a1, a2 and a3 from the root is
2.

Real-life data. We used three real-life datasets, ADULT, CONTRACEPTIVE METHOD CHOICE
(or CMC), and NURSERY from the UCI Machine Learning [15].

ADULT: This dataset was extracted from the US Census Bureau Data Extraction System.
It contains demographic information of a small sample of the US population (n = 45, 222)
with 14 public attributes such as age, education-level, marital-status, occupation,
and native-country. The private information is an indication whether that individual
earns more or less than 50 thousand dollars annually. (That dataset is commonly used in
studies of anonymity, e.g. [6, 28, 35].) The collection of permissible generalized subsets in
each of the attributes was selected by grouping together values that are semantically close.

CMC: This dataset is a subset of the 1987 National Indonesia Contraceptive Prevalence
Survey. Its purpose is to help predicting the contraceptive method choice (no use, long-
term methods, or short-term methods) of a woman, based on her demographic and socio-
economic characteristics. This dataset has 1500 records and 9 public attributes.

NURSERY: This dataset was derived from a hierarchical decision model that was originally
developed to rank applications for nursery schools. The NURSERY dataset contains 12960
records after deleting those with missing values. It has 8 public attributes.

The algorithms were implemented in Java and ran on Pentiumr 4, CPU 3.00 GHz, 960MB
of RAM.

In our first set of experiments we examined the information losses as achieved by k-
anonymity algorithms and our k-concealment algorithm. The two k-anonymity algorithms
that we used were the agglomerative algorithm [19] and the forest algorithm of Aggarwal
et al. [2]. The algorithms were tested for each combination of the entropy measure (EM),
[20], and the Loss Metric measure (LM) (see Eqs. (1)+(2)) with the four datasets as described
above, for k ranging from k = 10 to k = 100. The results are given in Figures 5—8.
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Figure 5: Information losses in the artificial dataset — LM (left) and EM (right)

Figure 6: Information losses in ADULT dataset — LM (left) and EM (right)
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Figure 7: Information losses in CMC dataset — LM (left) and EM (right)

Figure 8: Information losses in NURSERY dataset — LM (left) and EM (right)

TRANSACTIONS ON DATA PRIVACY 5 (2012)



k-Concealment: An Alternative Model of k-Type Anonymity 213

As expected, k-concealment offers smaller information losses than k-anonymity, in all
datasets and for the two information loss measures that were tested.

Next, we tested the randomized version of our k-concealment algorithm (where Algo-
rithm 6 is used in the first step of producing a (k, 1)-anonymization) in order to assess the
degradation in the utility of the anonymized tables that are produced by that algorithm.
We used the parameter q = 2(k − 1) in Algorithm 6. Figure 9 shows the information losses
in the agglomerative algorithm, the basic k-concealment algorithm and the randomized
one, on the ADULT dataset. The randomized algorithm, which makes on purpose rando-
mal non-optimal decisions, yields information losses that are larger than those of the basic
k-concealment algorithm, as expected, but are still better than those of the agglomerative
algorithm.

Figure 9: Testing the effect of randomization on the information losses — ADULT dataset;
LM (left) and EM (right)

In our last set of experiments we tested the version of the k-concealment algorithm that is
designed to achieve `-diversity, as described in Section 8. We used it in the ADULT dataset,
with ` = 1.1, and in the NURSERY dataset, with ` = 2. (The maximal possible diversities for
the ADULT and NURSERY datasets are 1.333 and 3, respectively.) For the sake of compari-
son, we tested also a modification of the agglomerative algorithm that respects `-diversity
(see details in Appendix C). The LM information losses in both experiments are shown
in Figure 10. As can be seen, the advantage of k-concealment in terms of the information
loss in the resulting anonymization is preserved also when considering `-diversity as an
additional constraint.

10 Conclusions

In this paper we proposed the model of k-concealment as an alternative to k-anonymity.
We showed that k-concealment offers essentially the same level of security as k-anonymity:
While k-anonymity ensures that every record in the released table is identical to at least k−1
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Figure 10: Information losses in the diversified algorithms — ADULT (left) and NURSERY
(right)

others, k-concealment guarantees that every record is computationally indistinguishable
from at least k − 1 others. The advantage that is offered by k-concealment is that it allows
reducing the information loss that is caused by generalizing the database entries. Hence,
k-concealed tables offer more utility than k-anonymized tables, as demonstrated by our
experiments, while providing a comparable level of security. Since k-anonymity on its own
is not sufficiently secure and should be enhanced by additional measures of security that
depend on the private attribute, such as `-diversity, so does k-concealment. We described
algorithms for achieving k-concealment and then described how to turn the k-concealed
tables into ones that respect also p-sensitivity or `-diversity.
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Appendix

A Proving the interrelations between the classes of k-type
anonymizations

Proof of Proposition 5. As all the inclusions in (3) are straightforward, it remains only
to exemplify the inequalities in (3) and (4). Consider the following table D (having one
attribute and k+1 records) alongside with four generalizations of it, taken fromAk

D, A(1,k)
D ,

A(k,1)
D , and A(k,k)

D , respectively. (Here, [k + 1] stands for the set {1, 2, . . . , k, k + 1}.)

D gk(D) g(1,k)(D) g(k,1)(D) g(k,k)(D)
1 [k + 1] {1} [k + 1] \ {k + 1} [k + 1] \ {1}
2 [k + 1] [k + 1] [k + 1] \ {1} [k + 1] \ {2}
...

...
...

...
...

k [k + 1] [k + 1] [k + 1] \ {1} [k + 1] \ {k}
k + 1 [k + 1] [k + 1] \ {1} [k + 1] \ {1} [k + 1] \ {k + 1}

• The first generalization is obviously in Ak
D since all of the k + 1 generalized records

are equal.

• The second generalization is in A(1,k)
D ; indeed, the first record in D is consistent with

the first k generalized records, while each of the remaining records in D is consistent
with the last k generalized records. However, that generalization is not in A(k,1)

D since
the first generalized record is consistent only with the first record in D.

• The third generalization is in A(k,1)
D since each generalized record is consistent with

exactly k records in D. However, that generalization is not in A(1,k)
D since the first

record in D is consistent only with the first generalized record.

• The last generalization is in A(k,k)
D , as can be easily seen. However, it is not in Ak

D.

�

Proof of Proposition 7. As it is clear that Ck
D is a subset of A(1,k)

D and a superset of Ak
D,

it remains only to prove that all six regions in Figure 1 are nonempty. One of those re-
gions is Ak

D, which is clearly nonempty, and another is A(k,1)
D \ A(1,k)

D that was shown to be
nonempty in Proposition 5 (see (4) there). The remaining four regions are:

• Ω1 = A(1,k)
D \ A(k,1)

D \ Ck
D;

• Ω2 = A(k,k)
D ∩ Ck

D \ Ak
D;

• Ω3 = Ck
D \ A(k,1)

D ;

• Ω4 = A(k,k)
D \ Ck

D.
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As in the proof of Proposition 5, we give specific anonymizations in each of those regions.
Consider the generalization g(1,k)(D) from the proof of Proposition 5. As shown there, it

is in A(1,k)
D \ A(k,1)

D . We claim that it is in fact in Ω1. To prove this claim, we need to show
that it is not in Ck

D. Indeed, the first record in D, denoted R1, has only one match, which
is the first generalized record in g(1,k)(D). Since the latter generalized record is consistent
only with R1, then the edge that connects those two records in the corresponding bipartite
graph must be present in any perfect matching. That implies that all the other generalized
records with which R1 is consistent are not matches. Hence, R1 has only one match and,
consequently, g(1,k)(D) /∈ Ck

D.
Consider next the generalization g(k,k)(D) from the proof of Proposition 5. As shown

there, it is in A(k,k)
D \ Ak

D. In order to prove that it is in Ω2, we need to show that it is in
Ck

D. To that end, we demonstrate k perfect matchings in the corresponding bipartite graph,
such that any given record in D is matched by those perfect matchings to k different records
in g(k,k)(D). Denoting the records in D by Ri and those in g(k,k)(D) by Ri, 0 ≤ i ≤ k, the
matching

(Ri, R(i+`) mod (k+1)
) , 0 ≤ i ≤ k

is a perfect matching for every value of 1 ≤ ` ≤ k.
Next, we exemplify the non-emptiness of Ω3. Consider the following table D together

with a corresponding generalization, g(D).

D g(D)
R1 = 1 R1 = {1, 2, . . . , k − 1}
R2 = 2 R2 = {1, 2, . . . , k, k + 1}

...
...

Rk = k Rk = {1, 2, . . . , k, k + 1}
Rk+1 = k + 1 Rk+1 = {1, 2, . . . , k, k + 1}

g(D) is not in A(k,1)
D since R1 is consistent with k−1 records. On the other hand, g(D) ∈ Ck

D

as we proceed to show:

• R1 has k + 1 matches:

– R1 is a match, as can be seen through the natural perfect matching, {(Ri, Ri), 1 ≤
i ≤ k + 1}.

– Rj , 2 ≤ j ≤ k − 1, is a match; the perfect matching is {(R1, Rj), (Rj , R1)} ∪
{(Ri, Ri)}i 6=1,j .

– Rj , k ≤ j ≤ k+1, is a match; the perfect matching is {(R1, Rj), (Rj , R2), (R2, R1)}∪
{(Ri, Ri)}i 6=1,2,j .

• Rj , 2 ≤ j ≤ k − 1, has k + 1 matches:

– R1 is a match; the perfect matching is {(R1, Rj), (Rj , R1)} ∪ {(Ri, Ri)}i 6=1,j .

– Rh, 2 ≤ h ≤ k + 1, is a match; the perfect matching is {(Rj , Rh), (Rh, Rj)} ∪
{(Ri, Ri)}i 6=j,h.

• Rj , k ≤ j ≤ k + 1, has k matches:

– Rh, 2 ≤ h ≤ k + 1, is a match; the perfect matching is {(Rj , Rh), (Rh, Rj)} ∪
{(Ri, Ri)}i 6=j,h.
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Finally, we turn to exemplify the non-emptiness of Ω4. Consider the following table D
alongside with a corresponding generalization, g(D).

D g(D)
R1 = a1 R1 = {a1, b1, . . . , bk−1}
R2 = a2 R2 = {a1, . . . , ak+1}
...

...
Rk = ak Rk = {a1, . . . , ak+1}
Rk+1 = ak+1 Rk+1 = {a2, . . . , ak+1}
Rk+2 = b1 Rk+2 = {b1, . . . , bk}
...

...
R2k+1 = bk R2k+1 = {b1, . . . , bk}

It may be easily verified that g(D) is a (k, k)-anonymization of D. However, it is not k-
concealed since the first record in D, R1, has only one match and that is the first record in
g(D), R1. Indeed, even though Ri, 2 ≤ i ≤ k, are all consistent with R1, none of them is a
match. Assume, on the contrary, that we try to extend one of the edges (R1, Ri), 2 ≤ i ≤ k,
into a perfect matching. That is impossible since each of the k records R2, . . . , Rk+1 is
consistent only with the k generalized records R2, . . . , Rk+1. But as Ri is already matched
with R1, that does not leave enough matches for R2, . . . , Rk+1.
�

B The approximation guarantee of Algorithm 2

We define here two natural properties of the information loss measure Π — monotonicity
and sub-additivity, and then proceed to prove that if the information loss measure satis-
fies those two properties, Algorithm 2 issues a (k, 1)-anonymization that approximates the
optimal one.

Definition 11. Let D be a database, let g(D) be a generalization of D, and g′(D) be a
generalization of g(D). Then a measure of loss of information, Π, is called monotone if
Π(D, g(D)) ≤ Π(D, g′(D)).

Definition 12. If for all subsets of records S, T ⊂ A1 × · · · × Ar that have a non-empty
intersection the following inequality holds,

d(S ∪ T ) ≤ d(S) + d(T ) ,

the measure Π is called sub-additive.

Proposition 13. Algorithm 2 produces a table g(D) = {R1, . . . , Rn} that is a (k, 1)-anonymization
of D. Let Π be a measure of loss of information that respects monotonicity and sub-additivity. Then
Algorithm 2 approximates optimal (k, 1)-anonymity to within a factor of k − 1, with respect to the
cost measure Π.

Proof. Each generalized record in g(D) is consistent with at least k records in D, say, Ri,
Ri1 , . . . , Rik−1 , where the last k − 1 records are those that were selected in Step 4 in the
algorithm. Therefore, g(D) is a (k, 1)-anonymization of D.
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Let g′(D) = {R′
1, . . . , R

′
n} be an optimal (k, 1)-anonymization of D. Since it is a (k, 1)-

anonymization of D, we infer that R
′
i is consistent with, say, Ri, Ri′1

, . . . , Ri′k−1
. Without

loss of generality, we may assume that the records Ri′1
, . . . , Ri′k−1

are ordered in such a
way that for every 1 ≤ ` ≤ k − 1, Ri′`

/∈ {Ri1 , Ri2 , . . . , Ri`−1}. We claim that under that
assumption, the following inequality holds:

d({Ri, Ri1 , . . . , Ri`
}) ≤ d({Ri, Ri1 , . . . , Ri`−1}) + d({Ri, Ri′`

}) , 1 ≤ ` ≤ k − 1 . (6)

Indeed, Ri`
was selected in the `th application of Step 4 in the algorithm, after the records

Ri1 , . . . , Ri`−1 have been already determined, as a record that minimized d({Ri, Ri1 , . . .,
Ri`

}). Since, by our assumption, Ri′`
is not one of the first ` − 1 records that were already

selected at this stage, we infer that

d({Ri, Ri1 , . . . , Ri`−1 , Ri`
}) ≤ d({Ri, Ri1 , . . . , Ri`−1 , Ri′`

}) . (7)

By sub-additivity,

d({Ri, Ri1 , . . . , Ri`−1 , Ri′`
}) ≤ d({Ri, Ri1 , . . . , Ri`−1}) + d({Ri, Ri′`

}) . (8)

Inequality (6) now follows from (7) and (8).
Applying inequality (6) repeatedly for ` = k − 1 down to ` = 1 we infer that

d({Ri, Ri1 , . . . , Rik−1}) ≤
k−1∑
`=1

d({Ri, Ri′`
}).

Monotonicity implies that d({Ri, Ri1 , . . . , Rik−1}) ≤ (k − 1) · d({Ri, Ri′1
, . . . , Ri′k−1

}). Since
the left hand side in the last inequality equals c(R) while the right hand side is bounded
from above by (k−1)·c(R′

i), we conclude that c(Ri) ≤ (k−1)·c(R′
i). Hence, the information-

loss function Π(D, g(D)) may be bounded as follows:

Π(D, g(D)) =
1
n
·

n∑
i=1

c(Ri) ≤ (k − 1) · 1
n

n∑
i=1

c(R
′
i) = (k − 1) ·Π(D, g′(D)) .

We would like to stress that the approximation ratio guarantee in Proposition 13 is mainly
of theoretical value because of two reasons. First, the proven approximation ratio, which is
of the same order of magnitude as the approximation factor of the forest algorithm due to
Aggarwal et al. in the context of k-anonymity [2], is quite large. The experimental results
with both algorithms (see Section 9) provide a much better indication of the algorithms’
performance in practice. The second reason is that Algorithm 2 must be coupled with the
algorithms of the next steps (Algorithms 3 and 5) which are heuristical algorithms.

C Modifying k-anonymizations to meet the `-diversity con-
straint

As noted in [32], any algorithm for k-anonymization may be enhanced so that it issues k-
anonymized tables that are also `-diverse. The idea is simple: The diversity of the union of
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two clusters of records is a convex combination of the diversities of the two clusters (this is
true for all acceptable definitions of diversity). Hence, if there are clusters of records that
violate `-diversity, one can start unifying them until `-diversity is met. Such a procedure,
as explained in [32], will always stop successfully if the target diversity parameter ` is a
legitimate one (namely, if the global diversity in D is at least `). Therefore, in order to
convert an algorithm that is designed to achieve only k-anonymity into one that achieves
k-anonymity and `-diversity, it is needed to post-process the output clustering by unifying
clusters that violate `-diversity until all clusters are `-diverse. (Namely, as explained in
Section 8, until in each cluster of records, the most frequent sensitive value appears in
relative frequency which is no larger than 1/`.)

Before describing the algorithm, we introduce the following notations:

Definition 14. Let C = {Ri1 , . . . , Ri|C|} be a cluster of records in D and let C ′ := {si1 , . . . ,
si|C|} be the private values of those records. Let f be the number of occurrences of the most
frequent value in C ′. Then the diversity of C is div(C) := |C|/f . Let γ = {C1, . . . , Cb} be a
clustering of the records of the table D. Then its diversity is div(γ) := min1≤i≤b div(Ci).

Algorithm 8, that is described below, is a post-processing procedure that may be applied
on top of any algorithm of k-anonymization. Its input is any clustering of the records of the
table D, and a target diversity parameter ` ≥ 1. Its output is a coarser clustering in which
all clusters are `-diverse. (By a coarser clustering we mean that it is derived from the input
clustering only by means of unifying clusters.) When Algorithm 8 is applied on clusterings
issued by a k-anonymization algorithm, namely, clusterings in which all clusters are of
size at least k, it will output a clustering in which all clusters are of size at least k, and, in
addition, are `-diverse.

First, the algorithm computes the diversities of all clusters in the input clustering γ. It
selects the cluster Cm with minimal diversity. If that cluster is already `-diverse, the clus-
tering is ripe to be output. Otherwise, we look for the best cluster with which Cm can be
unified. Once such a cluster is found, we unify it with Cm and then repeat the procedure
until all clusters are `-diverse.

The algorithm uses a cost function in order to decide about the most profitable unification.
On one hand, unifying the least diverse cluster with another cluster brings us closer to
meeting the `-diversity requirement. On the other hand, unifying clusters increases the
information loss. It is our goal to achieve a maximal gain towards meeting the `-diversity
requirement, but at the same time we wish to favor unifications that will incur smaller
additions to the information loss. Hence, we define the cost function as a weighted average
between an information cost and a diversity cost.

Let γ = {C1, . . . , Ct} be a clustering of the records in the table D. For any two clusters
in γ, say Ci, Cj , we let γCi,Cj denote the clustering that would be obtained from γ if Ci

and Cj were unified (i.e., γCi,Cj = (γ \ {Ci, Cj}) ∪ {Ci ∪ Cj}). Let costI(Ci, Cj) denote the
loss of information in case we decide to unify Ci and Cj ; it equals the information loss of
γCi,Cj minus the information loss of γ. The diversity cost, costD(Ci, Cj), is defined as the
remaining gap between the diversity of the unified cluster Ci ∪ Cj and the target level `:

costD(Ci, Cj) = max {`− div(Ci ∪ Cj) , 0} . (9)

Our goal is to minimize costI(Ci, Cj) as well as costD(Ci, Cj). To that end, we define the
weighted cost function

cost(Ci, Cj) = w · costI(Ci, Cj) + (1− w) · costD(Ci, Cj) , (10)
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where w is a weight between 0 and 1 that can be tuned experimentally. In our experiments
we used w = 0.15, a value that was found to yield best results.

Algorithm 8 A post-processing algorithm to achieve `-diverse anonymizations
Input: A clustering γ = {C1, . . . , Ct} of the records in a table D; a target diversity parameter
` ≥ 1.
Output: A coarser clustering that respects `-diversity.

1: Compute div(Ci) for all Ci ∈ γ.
2: Let Cm be the cluster with minimal diversity in γ.
3: if div(Cm) ≥ ` then
4: Output γ and stop.
5: end if
6: Compute cost(Ci, Cm) for all Ci ∈ γ \ {Cm}.
7: Find the cluster Ci ∈ γ \ {Cm} for which cost(Ci, Cm) is minimal.
8: Remove Ci and Cm from γ and add to γ the cluster Ci ∪ Cm.
9: Go to Step 2.
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