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Abstract. Consider a database D with records containing history of individuals’ transactions, that has been
de-identified, i.e., the variables that uniquely associate records with individuals have been removed from the
data. An adversary de-anonymizes D via a linkage attack if using some auxiliary information about a certain
individual in the database, it can determine which record of D corresponds to such individual.

One example of this is given in the article Robust De-anonymization of Large Sparse Datasets, by Narayanan
and Shmatikov [19], which shows that an anonymized database containing records with ratings of different
movies rented by customers of Netflix, could in fact be de-anonymized using very little auxiliary information,
even with errors. Besides the heuristic de-anonymization of the Netflix database, Narayanan and Shmatikov
provide interesting theoretical results about database de-anonymization that an adversary can produce under
general conditions.

In this article we revisit these theoretical results, and work them further. Our first contribution is to exhibit
different simple cases in which the algorithm Scoreboard, meant to produce the theoretical de-anonymization
in [19], fails to do so. By requiring 1 − sim to be a pseudo-metric, and that the algorithm producing the
de-anonymization outputs a record with minimum support among the candidates, we obtain and prove de-
anonymization results similar to those described in [19].

We then consider a new hypothesis, motivated by the fact (observed in heuristic de-anonymizations) that when
the auxiliary information contains values corresponding to rare attributes, the de-anonymization achieved is
stronger. We formalize this using the notion on long tail [4], and give new theorems expressing the level
of de-anonymization in terms of the parameters of the tail of the database D. The improvement in the de-
anonymization is reflected in the fact that when at least one value in the auxiliary information corresponds to a
rare attribute of D, the size of auxiliary information could be reduced in about 50%, provided that D has a long
tail.

We then explore a microdata file from the Joint Canada/United States Survey of Health 2004 [22], where the
records reflect the answers of the survey respondents. While many of the variables are related to health issues,
some other variables a related to characteristics that individuals may disclose easily, such as physical activities
(sports) or demographic characteristics. We perform an experiment with this microdata file and show that using
only some non-sensitive attribute values it is possible, with a significant probability, to link those values to the
corresponding full record.
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1 Introduction

Anonymization, also referred to as de-identification, is often used to provide privacy before pub-
lishing a set of records corresponding to individuals. It consist in not releasing the variables that
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uniquely associate records to the corresponding individuals, such as name, email address, social se-
curity number, and so on. This mechanism often fails in providing privacy, because the rest of the
variables present in the data could work jointly as a fingerprint, despite the fact that each one isolated
does not carry enough information to do so.
This is eloquently expressed in [18]: “While some attributes may be uniquely identifying on their

own, any attribute can be identifying in combination with others. For example, the books a person
has read: while no single element is a (quasi)-identifier, any sufficiently large subset uniquely identi-
fies the individual.” As a result, supposedly anonymized datasets can sometimes be de-anonymized
by an adversary with access to auxiliary information [1, 17, 19, 21], producing privacy breaches.
One type of de-anonymization is called linkage attack. Consider a database D with records contain-

ing history of individuals’ transactions, that has been de-identified, i.e., the variables that uniquely
associate records with individuals have been removed from the data. An adversary de-anonymizes
D via a linkage attack if using some auxiliary information about a certain individual in D, it can
determine which record in D corresponds to such individual. Considering the increasingly available
data on the Internet and in digital media [14], this scenario turns out to be realistic.
Such attacks are remarkable for the small amount of auxiliary information that the adversary needs

in order to succeed. One example of this is given in the article Robust De-anonymization of Large
Sparse Datasets, by Narayanan and Shmatikov [19], which shows that an anonymized database pub-
lished by Netflix in www.netflixprize.com—meant to be used to improve the performance of the
Netflix recommender system—could in fact be de-anonymized using very little auxiliary informa-
tion, even with errors.
The Netflix database consists of records with ratings (and date of the ratings) of different movies

rented by customers of Netflix (a DVD rental company). The performance of the de-anonymization
in [19] was measured using auxiliary information coming from the same database, with introduced
errors. They also show that the auxiliary information can be taken from the Internet Movie Database
(IMDb), where users provide reviews and ratings of movies. While the identity of a user in IMDb
may be public by choice (the user’s profile could include the real name), this user may want to be
anonymous in the Netflix database, for instance because it contains a larger history of movie rentals.
So, by linking a record of IMDb to a record of the Netflix database (both corresponding to the same
person), it is possible to reveal information that such a person has chosen to keep private.
Besides the heuristic de-anonymization of the Netflix database, Narayanan and Shmatikov also

provide interesting theoretical results about the de-anonymization of databases that can be done
under general conditions. These results apply to a large class of databases, and express the level
of de-anonymization in terms of global parameters of the database (size and sparsity) and of the
auxiliary information (accuracy).
In this article we start by focusing on these theoretical results, and work them out further. Our

main contribution is to establish and prove mathematical results (Theorems 4, 6, 8, 9, 10 and 11)
describing the de-anonymization that can be achieved by an adversary under general and realistic
assumptions.
Our starting point is Theorem 1 in [19]. We describe some technical issues in its proof, which

uses a specific adversary algorithm (different from the one used in the heuristic de-anonymization of
the Netflix database). We believe that this algorithm does not produce the de-anonymization meant
by the theorem. We consider an extra hypothesis on the similarity function sim, and change the
adversary algorithm slightly, after which we prove a result analogous to Theorem 1 in [19].
Then we consider a hypothesis about how sparse the database D is, and show that in general, the

de-anonymization improves due to sparsity (which is already observed in [19]). Also, we evaluate
our theoretical results on the Netflix database, and compare—through the size of the auxiliary in-
formation denoted by m—the heuristic de-anonymization in [19], against the de-anonymization that
our results guarantee (the former being more efficient, although both give values for m with the same
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order of magnitude).
Next we consider a new theoretical hypothesis, motivated by the fact—observed in the heuristic

de-anonymization—that when the auxiliary information contains values corresponding to rare at-
tributes, the de-anonymization achieved is stronger. We formalize the needed concepts using the
notion on long tail from [4], and give new theorems expressing the level of de-anonymization in
terms of the parameters of the tail of the database D. The improvement in the de-anonymization
theorems is reflected on the fact that when the database D has a long tail, the size of the auxiliary
information could be reduced to the half of what it is when it is not known if values correspond to
rare attributes.
Then we work with a concrete microdata file produced by the Joint Canada/United States Survey of

Health 2004 [22]. This database is less sparse than the databases with large number of attributes and
records, so to guarantee high level of adversary success via the established theorems, the adversary
is required to use large auxiliary information. Alternatively, we evaluate a linkage attack throughout
an experiment and show that using significantly less (than the theorems) values of non-sensitive
attributes, the adversary can successfully perform a linkage attack.

1.1 Related Work

The general problem in the field of Private Data Analysis (also known as Statistical Disclosure Con-
trol) is how to release useful information about a set of individuals, while preserving their privacy.
To answer this question, one approach is to create mechanisms that sanitize the data before its pub-
lication [2, 3, 6, 8, 9, 10, 12, 16], and give empirical or theoretical evidence of the fact that the
sanitized data has the desired properties regarding privacy. These are positive results in the sense
that say how it is possible to provide privacy.
Other valuable contributions to Privacy Data Analysis come in the form of impossibility results,

showing the limitations that commonly used mechanisms have. These results tell how not to re-
lease information if privacy wants to be preserved, which helps to re-design and improve the known
sanitizers. These results usually consist in showing an explicit attack to a sanitizer. The adversary
algorithm representing the attack would take the sanitized data as input, and produce an output that
represents a privacy threat. Some of these attacks use only sanitized data as input [9, 11], while
others use auxiliary information (separate from the sanitized data) [1, 17, 19].
The article [13] is a predecessor of [19], which uses the same scoring paradigm to re-identify

users from a public web movie forum in a private movie ratings database. The work done in [15]
shows that people’s gender, ZIP code and full date of birth allow unique identification of 63% of
the U.S. population, which means that any sensitive information joining these three variables could
be linked to individuals’ identities. In [1], the authors use files made public by the Social Security
Administration, to determine the correlation between Social Security numbers and place and date of
birth, which is data usually available in social networking sites. Many recent articles deal with de-
anonymizations of social graphs [5, 17, 23, 24, 25], based on the topology of the graphs, friendship
relationship, and group membership.

1.2 Organization of the Paper

Section 2 starts with the motivation of the problem, followed by some of the definitions needed
throughout the paper, and simple remarks. In section 3 we review the main theoretical result in [19]
about de-anonymization of databases, and expose three specific problems with its proof.
These problems induce changes that allow us to prove new de-anonymization results in section 4.1

(Theorems 4 and 6) and section 4.2 (Theorem 8). In section 4.3 we evaluate these results on real
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databases to determine the levels of de-anonymization that the results guarantee, and compare them
with the heuristic de-anonymization in [19].
Section 4.4 contains new results on de-anonymization (Theorems 9 and 10) that take into account

the distribution of the support size of the attributes of the database, and increase the level of de-
anonymization of databases having a long tail.
In section 4.5 we work with a microdata produced by the Joint Canada/United States Survey of

Health 2004. We perform a linkage attack using simulated auxiliary information coming from the
same database, and compare the rate of success in this experiment to the adversary success ensured
by one of the proved theorems. Section 4.6 explores an alternative way (Theorem 11) of estimating
the probability of de-anonymization.

2 Preliminaries

2.1 Motivation

In our context, a database is a table with rows corresponding to individuals and columns correspond-
ing to attributes. For example, a database representing the books that each person bought online
from Amazon. Such a database would have many empty entries since the set of books bought by
each person is typically small compared to all the books available in a catalogue. Empty entries are
represented by the symbol ⊥ (null), and occur whenever an individual does not manifest a certain
attribute, which is common among databases reflecting histories of transactions, as well as surveys.
The Netflix database contains ≈ 100 million ratings from 1 to 5 (and the corresponding dates of

the ratings) about 17,770 movies, provided by ≈ 480,000 Netflix users. Note that 100 million is less
than 1.2% of 17,770×480,000, so most of the entries of the Netflix database are null.

Ratings 1-5 (and Dates) on DVDs Rented From Netflix

Customer ID Toy Story Titanic ... Brazil

ID1 2 (10/03/01) ⊥ ... ⊥
ID2 ⊥ 1 (12/04/04) ... 4 (15/01/02)

... ... ... ...
IDn 5 (25/12/08) 3 (22/08/10) ... ⊥

This is an example of the kind of database on which our results are meant to be applicable. Another
example could be a database detailing when web pages are visited by users of an Internet service
provider:

Web Pages Visited by AOL Users

User ID gmail.com cnn.com ... ebay.com

ID1 ... ... ... ...
... ... ... ... ...
IDn ... ... ... ...

While databases like these are published and used for research and commercial purposes, it is likely
that some of their attributes are sensitive for some of the individuals contributing their data. There
are two seemingly opposing interests—utility and privacy—and our goal is to understand better how
this trade-off works.

TRANSACTIONS ON DATA PRIVACY 5 (2012)



Theoretical Results on De-Anonymization via Linkage Attacks 381

To model this general situation consider two parties interacting, represented by algorithms: the
sanitizer and the adversary. The sanitizer algorithm takes a database as input, and outputs a sanitized
version (to be published) meant to protect the privacy of the individuals who contributed their data
to the original database. The adversary, in turn, takes the sanitized database and uses it to attempt a
privacy breach.
To preserve privacy, the least thing that the sanitizer should do is to eliminate all the attributes that

directly match individuals to records, such as full name, email address and social security number.
This is called de-identification or anonymization.
The next question is if this is enough to preserve privacy. Under realistic assumptions it is not

enough, and for an illustrative example, consider the two following databases [21].

De-Identified Database: Medical Conditions
Gender Postal code Date of birth Description

... ... ... ...

This anonymous database describing (sensitive) medical conditions could be the input of the ad-
versary algorithm. It is realistic to assume that the adversary has also access to auxiliary databases,
such as:

Auxiliary Database: Voter List

Gender Postal code Date of birth Name

... ... ... ...

If an individual who has records in both databases happens to have a unique value for v =(gender,
zip code, date of birth), then v becomes an identifier that links both records. In that case, the name
of such individual can be linked to the sensitive attribute description in the anonymized database.
Individuals with unique values for v are not rare. In [15], the authors show that 63% of the U.S.
population is expected to have unique values for v =(gender, zip code, date of birth).
The auxiliary information that the adversary has access to can be seen also as a collection of values

of certain attributes, among which there could be an identifier. As in the example with the voter list,
attributes of this kind are not used to link the auxiliary information to the corresponding record in
the anonymized database (only gender, postal code and date of birth are used to link the databases).
Hence, to study the linkage attacks we can ignore identifiers, as well as any other attributes in the

auxiliary information that are not attributes in the anonymized database.
So we simply assume that the attributes in both the auxiliary information and the anonymized

database are the same and come in the same order, and we model them as arrays. The Netflix
database would look like this:

D =









2 (10/03/01) ... ⊥
⊥ ... 4 (15/01/02)
... ... ...

5 (25/12/08) ... ⊥









The auxiliary information is modeled as a subrecord (see Definition 3) of a perturbed record of D.
This is, for a record r in D, r′ represents some perturbation of r, and the auxiliary information aux(r)
is given by some of the values (not all of them) of r′. In this way, the adversary algorithm receiving
the input (aux(r),D), attempts to find (or approximate) the record r in the de-identified database D.
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2.2 Definitions

Notation. If m ∈ N, then [m] = {1, ...,m}. We denote the set from where entries of matrices and
vectors are taken by V, which contains the element ⊥, called null.

Definition 1. Given an array M ∈ V
n×c, its support is supp(M) = {( j, i) ∈ [n]× [c] : M j,i 6=⊥}. If x

is a row of M, then supp(x) = {i ∈ [c] : xi 6=⊥}, and if i ∈ [c] denotes a column, then supp(i) = { j ∈
[n] : M j,i 6=⊥}. Two arrays M and M′ of the same size have the same support if supp(M) = supp(M ′),
which means that the null values (if any) appear in the same places in both arrays.

Definition 2. If n,c ∈ N, a database of size n×c is D ∈ V
n×c. We reserve D to denote databases and

n and c to denote their sizes. Each row of D represents an individual and each column an attribute.
Rows of D, also called records, are denoted by x,y,z, or by r to denote a particular record. Attributes
are labeled by i ∈ [c]. That x is a record of D (i.e., a row of D), is denoted by x ∈ D (by abuse of
notation we sometimes treat D as the set of its rows).

Definition 3. Let D be of size n×c, and let m∈N, with m≤ c. D is m-supported if ∀x∈D, |supp(x)| ≥
m. D is fully supported if it is c-supported. We say that x is a subrecord of y ∈ V

c if ∀i ∈ supp(x),
xi = yi; we denote this by x ⊆ y.

Definition 4. A similarity function (on values) is a function sim : V×V → [0,1] satisfying:
(i) ∀a ∈ V, sim(⊥,a) = 0
(ii) ∀a ∈ V\{⊥}, sim(a,a) = 1
(iii) Symmetry: ∀a,b ∈ V, sim(a,b) = sim(b,a).

For some results we require that 1− sim has to satisfy the triangle inequality over V \ {⊥}. This
means that if d(x,y) = 1− sim(x,y), then ∀x,y,z ∈ V \ {⊥}, d(x,y) ≤ d(x,z)+ d(z,y). This makes
of 1− sim a pseudometric over V\{⊥}, i.e., a metric, except for the fact that d(x,y) = 0 ⇒ x = y.

Remark 1. A simple way of producing a sim function such that 1− sim is a (pseudo)metric, would
be to take a (pseudo)metric d and define sim(x,y) := 1− d(x,y). However, since we need sim ≥ 0,
we take instead sim(x,y) := max(1−d(x,y),0). In that case, 1− sim(x,y) = min(d(x,y),1), which
is a bounded (pseudo)metric.

Unless we specify sim, the results we present apply to an abstract sim, i.e., any function satisfying
Definition 4.

Definition 5. A similarity function (on records) is a function Sim : V
c×V

c → [0,1] such that ∀x∈V
c,

Sim(x,x) = 1.

Although the definition of Sim is general, most of the results we give refer to a specific Sim given
by a formula depending on a certain sim function (abstract or not). Note the use of “s” and “S”
to distinguish between similarity functions on values and on records. The following are three Sim
functions that we use in different results (assume µ ∈ (0,1]).

Simµ(x,y) =
|{i : sim(xi,yi) ≥ µ}|
|supp(x)∪ supp(y)|

(2.1)

Sim(x,y) =
∑i sim(xi,yi)

|supp(x)∪ supp(y)|
(2.2)

Sim(x,y) =
|supp(x)∩ supp(y)|
|supp(x)∪ supp(y)|

(2.3)
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It is straightforward to verify that the above equations define similarity functions on records, pro-
vided that sim is a similarity function on values.
Note that (2.1) becomes (2.3) when sim is defined by:

sim(a,b) =

{

1 if a 6=⊥ and b 6=⊥
0 otherwise

Definition 6. Given h > 0, two databases D and D′ of the same size are h-similar (with respect to
sim) if ∀ j, i such that d j,i 6=⊥ or d′

j,i 6=⊥, it holds that sim(d j,i,d′
j,i) ≥ h.

Remark 2. If D and D′ are h-similar (h > 0), then D and D′ have the same support. This follows
from (i) in Definition 4: ∀a ∈ V, sim(⊥,a) = 0.

Definition 7. Given a database D, an auxiliary database is a database D′ with the same size and the
same support of D. If x ∈ D, then x′ denotes the corresponding record (same row) of D′. We reserve
D′ to denote auxiliary databases.

Note that D′ is not the auxiliary information of the adversary, but it is used to define it as we explain
next.
The database D′ represents a perturbation of D, from which the adversary observes only some of

the values of a record r′, based on which it tries to construct an approximation of r. To accomplish
this, the adversary has access to the whole database D, so its goal consists in finding the record r in
D, given the values of some coordinates of r′ (a perturbation of r).

Notation. If x ∈ V
c and s ⊆ [c], then x|s ∈ V

c is defined by: ∀i ∈ s, (x|s)i = xi, and ∀i /∈ s, (x|s)i =⊥.

Definition 8. An adversary is an algorithm that has input (r′|s,D), where r ∈ D of size n× c, D′ is
an auxiliary database, and s ⊆ supp(r). The vector r′|s is the auxiliary information of the adversary.
The output of the adversary algorithm is a vector in V

c meant to be highly similar to r.

Defining auxiliary information as some of the coordinates of r′ (those corresponding to s), reflects
the fact that the adversary observes some particular values (possibly with errors) of the target record
r.
Although we allow D′ 6= D, we assume that D and D′ have the same support. As a consequence, if

an entry is non-null in r′|s, then the corresponding entry in r must be non-null as well. For example,
if the auxiliary information has a rating for a certain movie, then the corresponding record in D
must have also a rating (maybe different) for that movie. The converse is true: if an individual
rated a movie in the anonymized database D, then the auxiliary information r ′|s may either give the
adversary a different rating, or omit whether that individual have rated such a movie (in case the
movie is not an attribute in s).

Remark 3. For any x ∈ D, and any s ⊆ [c]: supp(x|s) ⊆ s. Also: supp(x|s) = s ⇔ s ⊆ supp(x). In
particular, that D and D′ have the same support implies s ⊆ supp(r) = supp(r′), which combined
with (⇐) gives supp(r′|s) = s.

The auxiliary information could be associated to an identifier, so a breach of privacy occurs if the
adversary links the auxiliary information to the record to which it corresponds in D (or a record
equal to it).
The definition of de-anonymization that follows describes an adversary algorithm A, which on

input given by D and the auxiliary information r′|s, outputs a record that is similar to r. The interest
is not upon a specific record r, but on the overall fraction of records for which a high similarity
(parameterized by σ ) is achieved. Thus, we consider a random variable (r.v.) R selecting random
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records from D, and a parameter p that measures the fraction of records that are at least σ -similar to
the adversary’s guess.
Now, for each record r, we have to consider the auxiliary information r′|s on which the adversary’s

guess is based. The set s is assumed to have size m and to be chosen uniformly at random among all
the subsets of supp(r) with m elements. Let Sr be the r.v. that outputs such a set s. Notice that once
r ∈ D is fixed, the random variables Sr and R are (probabilistically) independent. For simplicity we
denote Sr just by S (the corresponding r should be clear from the context).

Definition 9. Given m ∈ N, σ ∈ (0,1) and p ∈ (0,1), an m-supported database D can be (σ , p,m)-
de-anonymized with respect to Sim and D′, if there exists an adversary A such that:

P[Sim(R,A(R′|S,D)) ≥ σ ] ≥ p (2.4)

where R is a uniform r.v. selecting a record r ∈ D, and S is a uniform r.v. selecting a subset of
supp(r) with m elements. The probability is taken with respect to R, S and the random choices that
A makes (if any). When (2.4) occurs, we say that D is (σ , p,m)-de-anonymized by A, or that A
(σ , p,m)-de-anonymizes D (with respect to Sim and D′).

That S is a uniform r.v. selecting a subset of supp(r) with m elements means that each one of the
(|supp(r)|

m

)

sets has probability 1/
(|supp(r)|

m

)

of being chosen.

Notation. We do not specify the size of D in every statement, but it is always assumed to be n× c.
We may omit saying that D is m-supported, but this is always assumed in statements in which a
random subset s of size m is taken from supp(r), for an arbitrary r. We always assume σ , p ∈ (0,1)
and m ≤ c. We omit saying with respect to which Sim and D′ is the de-anonymization in question,
but this should be clear from the context.

3 A Theorem on De-Anonymization

Theorem 1 in [19] gives hypotheses under which a certain degree of de-anonymization is possi-
ble. The proof of the theorem shows a particular adversary that is meant to produce such a de-
anonymization. One of the appealing aspects of the theorem is that it deals with two realistic situa-
tions: (i) the database D is not fully supported (Definition 3), i.e., entries of D are allowed to be null;
and (ii) the auxiliary information is not a subrecord of an existing record (Definition 3), so D′ 6= D.
However, it is precisely in these two situations that the proof of Theorem 1 in [19] fails. Our goal

is to continue the work initiated in [19] by producing formal results on de-anonymization such as
Theorem 1. The first thing we do is to point out the technical problems in its proof, and then we fix
them by introducing an extra hypothesis on sim, and modifying the adversary algorithm.

Theorem 1 [19]. Let ε ,δ ∈ (0,1) and let D be a database. Let Aux be such that aux = Aux(r)

consists of m ≥ log(n/ε)
− log(1−δ ) randomly selected non-null value attributes of the target record r, and

∀i ∈ supp(aux), sim(auxi,ri)≥ 1−ε . Then D can be (1−ε −δ ,1−ε)-de-anonymized with respect

to Aux and Sim(x,y) = ∑i sim(xi,yi)
|supp(x)∪supp(y)| .

Notation. In Theorem 1, both Aux(r) and aux mean r′|s (as in Definition 8). With our notation,

Theorem 1 says that when m ≥
log(n/ε)

− log(1−δ ) and D and D′ are (1− ε)-similar, then there exists an

adversary algorithm A such that P[Sim(R,A(R′|S,D)) ≥ 1− ε −δ ] ≥ 1− ε , where the probability is
taken as in Definition 9, and with Sim given by equation (2.2).
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The conditions in Definition 4 given for sim are also assumed in [19], but there 1− sim is not
required to be a pseudometric. In fact, the sim function that the authors use for the heuristic de-
anonymization of the Netflix database is:

sim(a,b) =

{

1 if a 6=⊥, b 6=⊥ and |a−b|< ρ
0 otherwise

with which 1− sim is not a pseudometric (it does not satisfy the triangle inequality when ρ > 0). We
will show that with this sim function there are some technical issues with the proof of Theorem 1.
The adversary algorithm Scoreboard, used in [19] to prove Theorem 1 consist of two steps. Given

the input (aux,D):

1. Compute the set Daux = {y ∈ D : ∀i ∈ supp(aux),sim(auxi,yi) ≥ 1− ε}

2. Choose an element of Daux uniformly at random and use it as output.

Note that Daux = {y ∈ D : score(aux,y)≥ 1− ε}, where score(aux,y) = mini∈supp(aux) sim(auxi,yi).

3.1 Cases Where Scoreboard Fails De-Anonymizing as Meant by Theorem 1

The following cases are meant to point out technical problems with the proof of Theorem 1 in
[19]. They should be seen as a way of testing the proof, rather than real-world examples. They are
quite simple, so the formal results on de-anonymization should contemplate them. The issues with
the proof do not imply that Theorem 1 is not true, and in fact, these cases suggest how to fix the
problems so that results similar to Theorem 1 can be established.
In cases 1 and 2, D is fully supported, so none of its entries are null. However D′ 6= D, so the aux-

iliary information has errors with respect to the original records. In case 3 the auxiliary information
has no error (D′ = D), but D has null values. For the sake of clarity, these cases are given for specific
values of n, c, ε , δ , D and D′, but similar examples work for many other values (for instance, for any
n even).

Case 1. Let n = 106, c = 30, ε = 0.4 and δ = 0.5. Let D and D′ be:

D =





















1 1 ... 1
2 2 ... 2
3 3 ... 3
4 4 ... 4
... ... ... ...

n−1 n−1 ... n−1
n n ... n





















D′ =





















1.5 1.5 ... 1.5
1.5 1.5 ... 1.5
3.5 3.5 ... 3.5
3.5 3.5 ... 3.5
... ... ... ...

n−0.5 n−0.5 ... n−0.5
n−0.5 n−0.5 ... n−0.5





















We use:

sim(a,b) =

{

1 if |a−b|< 0.6
0 otherwise

Note that ∀r ∈ D,∀i ∈ [c],sim(r′i ,ri) = 1 ≥ 1− ε , so if the algorithm A = Scoreboard proves The-

orem 1, it should happen that if m ≥ log(106/0.4)
− log(0.5) ≈ 21.2, then P[Sim(R,A(R′|S,D)) ≥ 0.1] ≥ 0.6.

However, whatever value m has (somewhere between 1 and 30), for any target r, it always happens
that Daux(r) has two different records, one of which is the target (for example, if r = (1, ...,1), then
r′ = (1.5, ...,1.5), and so Daux = {(1, ...,1),(2, ...,2)}). Since the output of A is taken from Daux
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with uniform probability, then with probability 0.5 the adversary A outputs the wrong record, in
which case Sim(r,A(aux(r),D) = 0. Hence, for any 1 ≤ m ≤ 30, P[Sim(R,A(R′|S,D) = 0] ≥ 0.5,
which contradicts that ∀m ≥ 22, P[Sim(R,A(R′|S,D))≥ 0.1]≥ 0.6, showing that Scoreboard cannot
always prove Theorem 1 when D 6= D′.
What makes it possible to have this counterexample is that sim(a,b) = 1 and sim(b,c) = 1 does not

imply sim(a,c) = 1. This does not happen if 1− sim satisfies the triangle inequality, which suggests
that this is a condition that would allow us to fix the problem that we are exposing.

Case 2. In this case we also have that D is fully supported, and now we work with a sim function
for which 1− sim is a metric, but still Scoreboard algorithm is not good enough for the proof of
Theorem 1. Let n = 105, c = 200, ε = 0.25 and δ = 0.125. Let D and D′ be:

D =





















0.5 ... 0.5
1 ... 1

1.5 ... 1.5
2 ... 2
... ... ...

n/2−0.5 ... n/2−0.5
n/2 ... n/2





















D′ =





















0.75 ... 0.75
0.75 ... 0.75
1.75 ... 1.75
1.75 ... 1.75
... ... ...

n/2−0.25 ... n/2−0.25
n/2−0.25 ... n/2−0.25





















We use sim(a,b) = max(1− |a− b|,0). By Remark 1, 1− sim is a bounded metric. Now, ∀r ∈
D,∀i ∈ [c], sim(r′i ,ri) = 0.75 ≥ 1− ε , so if Scoreboard works to prove Theorem 1, we would con-

clude that if m ≥ log(105/0.25)
− log(0.875) ≈ 96.6, then P[Sim(R,A(R′|S,D)) ≥ 0.625]≥ 0.75.

As in case 1, for every target record r, when the adversary observes r′|s, it constructs Daux hav-
ing two candidates. For example, when r = (2, ...,2), then r′ = (1.75, ...,1.75), and then Daux =
{(1.5, ...,1.5),(2, ...,2)}. The similarity between the two candidates in Daux (one of which is the tar-
get) is always 0.5, and since the probability of not outputting the target is 0.5, then for any 1 ≤ m ≤
200, P[Sim(R,A(R′|S,D))≤ 0.5]≥ 0.5, which is equivalent to P[Sim(R,A(R′|S,D)) > 0.5]≤ 0.5, and
contradicts that ∀m ≥ 97, P[Sim(R,A(R′|S,D)) ≥ 0.625]≥ 0.75. Again, this shows that Scoreboard
does not always work to prove Theorem 1 when D 6= D′. In this case, however, 1− sim is a metric.
What makes this counterexample possible is how the parameters of de-anonymization are given in
Theorem 1. We are going to fix this by weakening a little the aimed level of de-anonymization.

Case 3. Let n = 105, c = 100, ε = 0.2 and δ = 0.6. About sim, we only assume that sim(a,b) = 0
if |a− b| ≥ 1; and sim(a,a) = 1 if a 6=⊥. An analogous case can be given with sim(a,b) = 0 if
|a− b| ≥ ρ , for any ρ > 0, but for simplicity we work with ρ = 1. Notice how general this sim is.
Let D and D′ be:

D = D′ =





















1 ... 1 ⊥ ... ⊥
1 ... 1 1 ... 1
2 ... 2 ⊥ ... ⊥
2 ... 2 2 ... 2
... ... ... ... ... ...

n/2 ... n/2 ⊥ ... ⊥
n/2 ... n/2 n/2 ... n/2





















Assume that the number of columns on the left side of D that contain no ⊥ are c′ = 19. Thus, half
of the rows have support of size 19 (small), and the rest have support of size 100 (large). Moreover,
each row with small support is a subrecord (see Definition 3) of the record immediately below it,
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which has large support and is referred to as its extension. The similarity between a record of short
support and its extension, using equation (2.2) and sim(a,b) = 0 if |a−b| ≥ 1, equals c′

c = 0.19.
Since D = D′, then D and D′ are (1− ε)-similar. If A = Scoreboard proves Theorem 1, we should

have that if m ≥ log(105/0.2)
− log(0.4) ≈ 14.3, then P[Sim(R,A(R′|S,D)) ≥ 0.2]≥ 0.8.

Suppose now that r has short support. Since D′ = D, then the values that the adversary observes
in r′|s come from the first 19 coordinates of r (since the rest are null). But since r has an extension,
the adversary cannot distinguish if the values observed in r′|s come from r or its extension. Hence,
Daux consists of two records, r and its extension, from which the algorithm Scoreboard chooses one
uniformly at random as its output.
Now, half of the records in D have short support, and when the target has short support, Scoreboard

wrongly outputs its extension with probability 0.5. The similarity between a record of short support
and its extension is 0.19, so we get that for any 1 ≤ m ≤ 19, P[Sim(R,A(R′|S,D)) ≤ 0.19] ≥ 0.25,
which is equivalent to P[Sim(R,A(R′|S,D)) > 0.19]≤ 0.75, and contradicts the fact that for m ≥ 15,
P[Sim(R,A(R′|S,D)) ≥ 0.2] ≥ 0.8. This shows that Scoreboard cannot always prove Theorem 1
when D is allowed to have null values.
The problem with Scoreboard in this case is that after seeing that all the values in r′|s come from

the first 19 attributes, it still considers equally likely that the target has short support and that it is
fully supported. However, given that the values observed in the auxiliary information correspond to
some of the first 19 attributes, it is lot more likely that the target has short support than full support.
We fix this simply by requiring that the output of the adversary algorithm has minimum support size
among the candidates in Daux.

4 Results

We start with two technical lemmas that are used later.

Lemma 1. Let Z be a finite set and m ∈ N. Let S be a uniform r.v. taking one of the
(|Z|

m

)

subset of Z
with m elements. Suppose Γ ⊆ Z and |Γ| < γ · |Z|, for some γ ∈ (0,1). Then P[S ⊆ Γ] ≤ γ m.

Proof. If m > |Γ|, then P[S ⊆ Γ] = 0. Assume m ≤ |Γ|. Since |Γ| < γ · |Z|, then m ≤ |Γ| ≤ bγ · |Z|c,
so:

P[S ⊆ Γ] =

(

|Γ|
m

)

·

(

|Z|
m

)−1

≤

(

bγ · |Z|c
m

)

·

(

|Z|
m

)−1

=
m−1

∏
j=0

bγ |Z|c− j
|Z|− j

≤ γm

The last inequality holds because ∀ j ∈ {0, ...,m−1}, bγ|Z|c− j
|Z|− j ≤ γ|Z|− j

|Z|− j ≤ γ .

Lemma 2. Let U and V be two finite sets such that |V | ≤ |U |, and let ψ ,σ > 0 such that ψ <
σ · |U ∪V | and ψ ≤ |U ∩V |. Then, ψ < 2σ

1+σ · |U |.

Proof. From |U ∪V |= |U |+ |V |−|U∩V | follows ψ < σ · |U ∪V |= σ · (|U |+ |V |−|U∩V |). Since
|V | ≤ |U | and ψ ≤ |U ∩V |, then ψ < σ · (2|U |−ψ), which implies ψ · (1+σ) < 2σ · |U |.

The adversary algorithms that we use in this paper have all the following general form: on input
(x,D)—where x represents the auxiliary information—the algorithm constructs a non-empty subset
Dx of the set of records in D, and then outputs an element from Dx. What specifies the algorithm is
how Dx is defined, and how the output is chosen from Dx.
The input of interest for our results is x = r′|s, where D and D′ have the same size and the same

support, r ∈ D, and s ⊆ supp(r) with |s| = m ∈ N.
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4.1 New Adversary Output: a Candidate With Minimum Support

Consider the algorithm Â, given by Dx = {y ∈ D : ∀i ∈ supp(x),sim(xi,yi) ≥ α}, where α > 0 is
a parameter of the algorithm, and the output is any element of Dx with minimum support. This
algorithm is essentially Scoreboard from [19], with the only difference that the output of Â is not a
random element from Dx as in Scoreboard, but one with minimum support (any record from Dx with
minimum support, in case there is more than one, will make the adversary succeed with the desired
probability; we do not need to take probability with respect to Â).
Since the output is a record from Dx, it is required that Dx 6= φ . The input of interest is x = r′|s,

so it is reasonable to expect r ∈ Dr′|s , which is the same as ∀i ∈ s,sim(ri,r′i) ≥ α (for this use that
supp(r′|s) = s by Remark 3, and that sim is symmetric by Definition 4). Now, if D and D′ are
(1− ε)-similar (we assume this is known by the adversary), then ∀i ∈ s,sim(ri,r′i) ≥ 1− ε . So to
have r ∈ Dr′|s , it suffices that 1− ε ≥ α .

Remark 4. To make the adversary output more accurate, α should be taken as high as possible.
Thus, when D and D′ are (1− ε)-similar, put α = 1− ε , which ensures r ∈ Dr′|s .

Remark 5. Recall that we always have supp(r′|s) = s (Remark 3), so if the input of an algorithm
includes r′|s, then the algorithm is allowed to use s in its computations.

Algorithm Â. Given D, D′, and m, the algorithm Â can be described concisely as follows:
Input: (r′|s,D), with r ∈ D and s ⊆ supp(r) such that |s| = m.

Output: Â(r′|s,D) is any element of Dr′|s = {y ∈ D : ∀i ∈ s,sim(r′i ,yi) ≥ α} with minimum support.

Since both r and Â(r′|s,D) belong to Dr′|s , and Â(r′|s,D) has minimal support among the records
in Dr′|s , then |supp(Â(r′|s,D))| ≤ |supp(r)|.

Proposition 3. For Â to (σ , p,m)-de-anonymize D, it suffices that ∀r ∈ D, P[Sim(r, Â(r′|S,D)) <
σ ] ≤ 1− p, with probability taken with respect to S.

Proof. First, that D is (σ , p,m)-de-anonymized by Â (with respect to Sim and D′), is equivalent to:

P[Sim(R, Â(R′|S,D)) < σ ] ≤ 1− p

Now,

P[Sim(R, Â(R′|S,D)) < σ ] = ∑
r∈D

P[Sim(R, Â(R′|S,D)) < σ
∣

∣R = r] ·P[R = r] =

= ∑
r∈D

P[Sim(r, Â(r′|S,D)) < σ
∣

∣R = r] ·P[R = r] =

= ∑
r∈D

P[Sim(r, Â(r′|S,D)) < σ ] ·P[R = r]

where the last equality holds because for each fixed r ∈ D, the random variables R and Sr are in-
dependent. Hence, if ∀r ∈ D, P[Sim(r,A(r′|S,D)) < σ ] ≤ 1− p, then P[Sim(R,A(R′|S,D)) < σ ] ≤
1− p.

Theorem 4. Let D and D′ be (1− ε
2 )-similar (with ε ∈ [0,1)), and let m ∈ N. Assume that 1− sim

satisfies the triangle inequality.
(1) If Sim1−ε is given by (2.1) and m ≥ log(n/(1−p))

log((1+σ)/(2σ))
, then Â (σ , p,m)-de-anonymizes D.

(2) If Sim is given by (2.2) and m ≥ log(n/(1−p))
log((1−ε+σ)/(2σ))

, (assumingσ < 1− ε), then Â (σ , p,m)-de-
anonymizes D.
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Proof. (1) Given σ ∈ (0,1) and r ∈ D, let Fr,σ = {y ∈ D : Sim(r,y) < σ & |supp(y)| ≤ |supp(r)|}.
First we show that:

P[Sim(r, Â(r′|S,D)) < σ ] ≤ n · max
y∈Fr,σ

P[y ∈ Dr′|S ] (4.1)

Sim(r, Â(r′|s,D)) < σ implies that ∃y∈Fr,σ (the output of Â) such that y∈Dr′|s . Hence, (4.1) follows:

P[Sim(r, Â(r′|S,D)) < σ ] ≤ P[∃y ∈ Fr,σ such that y ∈ Dr′|S ] =

= P
[

⋃

y∈Fr,σ

{y ∈ Dr′|S}
]

≤

≤ ∑
y∈Fr,σ

P[y ∈ Dr′|S ] ≤

≤ |Fr,σ | · max
y∈Fr,σ

P[y ∈ Dr′|S ] ≤

≤ n · max
y∈Fr,σ

P[y ∈ Dr′|S ]

By Proposition 3 and (4.1), it suffices to show that ∀r ∈ D:

n · max
y∈Fr,σ

P[y ∈ Dr′|S ] ≤ 1− p (4.2)

with probability taken with respect to S. Up to here the proof follows the approach in [19].
Now fix r and y ∈ D. We bound P[y ∈ Dr′|S ] from above. If y ∈ Dr′|s , then ∀i ∈ s, sim(r′i ,yi) ≥

α = 1− ε
2 (see Remark 4). By hypothesis on the similarity between D and D′, we have: ∀i ∈ s,

sim(ri,r′i) ≥ 1− ε
2 . Since 1− sim satisfies the triangle inequality, we get: ∀i ∈ s, sim(ri,yi) ≥ 1− ε ,

which means: s ⊆ {i : sim(ri,yi) ≥ 1− ε}.
Denoting Γ = {i : sim(ri,yi) ≥ 1− ε}, we just proved y ∈ Dr′|s ⇒ s ⊆ Γ, which implies:

P[y ∈ Dr′|S ] ≤ P[S ⊆ Γ] (4.3)

Next, we use Lemma 2 with U = supp(r), V = supp(y) and ψ = |Γ|, to prove:

y ∈ Fr,σ ⇒ |Γ| <
2σ

1+σ
· |supp(r)| (4.4)

We check the hypotheses of Lemma 2. Note that σ > 0 by hypothesis, and ψ > 0 because ψ = |Γ| ≥
|s| = m ≥ 1. Assume y ∈ Fr,σ . Since y ∈ Fr,σ , then |supp(y)| ≤ |supp(r)|, which means |V | ≤ |U |.
Also, y ∈ Fr,σ gives Sim(r,y) < σ , which is ψ < σ · |U ∪V |. Finally, {i : sim(ri,yi) ≥ 1− ε} ⊆
supp(r)∩ supp(y) implies ψ ≤ |U ∩V | (use ε < 1 and ∀a ∈ V, sim(a,⊥) = 0). So by Lemma 2,
ψ < 2σ

1+σ · |U |, which is exactly (4.4).
So, for any y ∈ Fr,σ , we have: P[y ∈ Dr′|S ] ≤ P[S ⊆ Γ] by (4.3), and |Γ| < 2σ

1+σ · |supp(r)| by (4.4).

Now we apply Lemma 1 with Z = supp(r) and γ = 2σ
1+σ , to get P[y ∈ Dr′|S ] < (2σ/(1+σ))m. So,

to obtain (4.2), it suffices that n · (2σ/(1+σ))m ≤ 1− p, which is equivalent to m ≥ log(n/(1−p))
log((1+σ)/(2σ))

.

(2) In (1) we just proved that if m ≥ log(n/(1−p))
log((1+σ ′)/(2σ ′))

, then P[Sim1−ε(R, Â(R′|S,D)) ≥ σ ′] ≥ p.

Sim given by (2.2) satisfies that ∀x,y,Sim(x,y) ≥ (1− ε)Sim1−ε(x,y). So, m ≥
log(n/(1−p))

log((1+σ ′)/(2σ ′))

implies P[Sim(R, Â(R′|S,D)) ≥ (1− ε)σ ′] ≥ p. The result follows by setting σ ′ = σ
1−ε .

Remark 6. In Definition 9 of de-anonymization, the probability is taken with respect R, S and A.
However, in the proof given above, we only took probability with respect to S. Probability with
respect to R is avoided by Remark 3, and probability with respect to A does not apply because A is
not probabilistic, and the proof works for any output chosen from Dr′|s with minimum support.
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To illustrate Theorem 4, we evaluate it in the simple case D = D′ and D fully supported (no null
entries). Since D = D′, we put ε = 0, and set:

sim(a,b) =

{

1 if a = b
0 otherwise

(4.5)

Note that 1− sim is the discrete metric. Sim given by (2.1), with sim as (4.5), becomes Sim(x,y) =
1
c |{i : xi = yi}|. By (1) in Theorem 4, if m ≥ log(n/(1−p))

log((1+σ)/(2σ))
, then D can be (σ , p,m)-de-anonymized

by Â. Using that P[Sim(R, Â(R′|S,D))≥ σ ]≥ p is equivalent to P[|{i : Ri = Â(R′|S,D)i}| ≥σ ·c]≥ p,
we can formulate the following:

Corollary 5. When the adversary Â knows D (fully supported) and has access to m ≥ log(n/(1−p))
log((1+σ)/(2σ))

random attribute values of a random record of D of size c, it can learn at least σ ·c attributes of that
same record, with probability at least p.

Example 1. For Corollary 5 to be useful, we need m << σ · c. If the adversary wants to double
the number of values known about a record, then 2m ≤ σ · c. Let n = 106 and p = 0.99. From
m ≥ log(n/(1−p))

log((1+σ)/(2σ)) and 2m ≤ σc we get 16
σ log((1+σ)/(2σ)) ≤ c, which determines c for each σ ∈ (0,1).

For example, σ = 0.35 gives c ≈ 160. In fact, for n = 106, c = 160, p = 0.99 and σ = 0.35,
Corollary 5 says that with 0.99 probability, when the adversary knows the whole database and 29
random attribute values of a random record, it can learn 56 attribute values of it (including the known
values).

Remark 7. (2) in Theorem 4 gives a result close to Theorem 1 in [19]. With σ = 1− ε −δ and p =

1−ε , we get that if m ≥ log(n/ε)
log(1+δ/(2−2ε−2δ )) , then D can be (1−ε −δ ,1−ε ,m)-de-anonymized. This

is as Theorem 1 in terms of the Sim function (2.2) and the parameters (σ , p) of de-anonymization.
The differences are: (i) D and D′ are (1− ε

2 )-similar, instead of (1− ε); (ii) 1− sim satisfies the

triangle inequality; (iii) and the lower bound on m, which in Theorem 1 is m ≥
log(n/ε)

log(1/(1−δ )) .

Now we give a result on de-anonymization regardless of the level of error in the auxiliary informa-
tion. This is reflected on the fact that the result works for every D and D ′ having the same support,
regardless of the level of similarity. The Sim function (2.3) does not depend on the actual values of
the records but only on their supports.

Algorithm B̂. Given D, D′, and m, the algorithm B̂ works as follows:
Input: (r′|s,D), with r ∈ D and s ⊆ supp(r) such that |s| = m.
Output: B̂(r′|s,D) is any element of Dr′|s = {y ∈ D : s ⊆ supp(y)} with minimum support size.

Recall that since r′|s is part of the input and supp(r′|s) = s, then B̂ is allowed to use s to construct
Dr′|s (Remark 5).

Theorem 6. Let D and D′ have the same support, and Sim be given by (2.3). If m ≥ log(n/(1−p))
log((1+σ)/(2σ))

,

then B̂ (σ , p,m)-de-anonymizes D.

Proof. Use (1) in Theorem 4 with ε = 0 and a specific similarity function sim on values:

sim(a,b) =

{

1 if ⊥/∈ {a,b}
0 otherwise

(4.6)

which satisfies Definition 4, and with which D and D′ are 1-similar. Since 1− sim is zero over
V\{⊥}, it trivially satisfies the triangle inequality there. By (1) in Theorem 4, if m ≥ log(n/(1−p))

log((1+σ)/(2σ)) ,
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then Â (σ , p,m)-de-anonymizes D, with respect to Sim1 given by (2.1). To conclude, it suffices to
show that with the sim given by (4.6), Sim1 coincides with (2.3), and Â = B̂.

For Sim1(x,y) = |supp(x)∩supp(y)|
|supp(x)∪supp(y)| we need to check |{i : sim(xi,yi) ≥ 1}| = |supp(x)∩ supp(y)|,

which follows from sim(xi,yi) ≥ 1 ⇔⊥/∈ {xi,yi}⇔ i ∈ supp(x)∩ supp(y).
For Â = B̂, it suffices that {y ∈ D : ∀i ∈ s,sim(r′i ,yi) ≥ 1} = {y ∈ D : s ⊆ supp(y)}, which follows

from: (∀i ∈ s,sim(r′i ,yi) ≥ 1) ⇔ s ⊆ supp(y). For (⇒), take i ∈ s. By hypothesis sim(r′i,yi) ≥ 1, so
yi 6=⊥, thus i ∈ supp(y). For (⇐), take i ∈ s. Since s ⊆ supp(r) = supp(r′), then r′i 6=⊥. Also, by
hypothesis i ∈ supp(y), so yi 6=⊥, hence sim(r′i,yi) ≥ 1.

4.2 Improvements by Sparsity

Large databases with individuals’ transactions typically have high level of sparsity, which means that
it is unlikely for a random record of the database to be highly similar to another record of the same
database. It is shown in [19] that sparsity improves the de-anonymization of Theorem 1. We show
in general that every result on de-anonymization turns into a result on perfect de-anonymization (see
Definition 11 below), under a certain hypothesis on sparsity.

Definition 10. Let K be a r.v. selecting an element from [n] uniformly at random. Given j ∈ [n], let
D j denote the j-th row of D. A database D is (σ ,q)-sparse with respect to Sim if:

P[∃ j ∈ [n] : j 6= K & Sim(DK ,D j) ≥ σ ] ≤ q

with probability taken with respect to K.

Definition 11. An m-supported database D can be perfectly (p,m)-de-anonymized with respect to
D′ if there exists an adversary A such that:

P[R = A(R′|S,D)] ≥ p (4.7)

The probability is taken with respect to R, S (as in Definition 9) and the random choices of A (if any).

We express (4.7) saying that A perfectly (p,m)-de-anonymizes D, or that D is perfectly (p,m)-de-
anonymized by A.
Note that if A perfectly (p,m)-de-anonymizes D with respect to D′, then A (1, p,m)-de-anonymizes

D with respect to Sim and D′ (for any Sim), since x = y ⇒ Sim(x,y) = 1.
The next theorem shows that in combination with the appropriate hypothesis on sparsity, every

result on de-anonymization by an adversary outputting records of D, becomes a result on perfect
de-anonymization, with a cost on the probability of success of the adversary.

Theorem 7. Let p > q. Assume that under certain hypotheses H (e.g., about m, D and D′), the
database D can be (σ , p,m)-de-anonymized by an algorithm A (outputting records of D) with respect
to Sim and D′. Assume also that D is (σ ,q)-sparse with respect to Sim. Then, H implies that D can
be perfectly (p−q,m)-de-anonymized by A with respect to D′.

Proof. We want P[R = A(R′|S,D)] ≥ p− q. The outputs of A and R are records of D, so it suffices
that P[row(R) = row(A(R′|S,D))]≥ p−q, where row(R) ∈ [n] denotes the row given by R (similarly
for row(A(R′|S,D)). It is equivalent to show P[row(R) 6= row(A(R′|S,D))] ≤ 1− p+q. Now:

P[row(R) 6= row(A(R′|S,D))] = P[(row(R) 6= row(A(R′|S,D)))∩ (Sim(R,A(R′|S,D)) ≥ σ)]

+ P[(row(R) 6= row(A(R′|S,D)))∩ (Sim(R,A(R′|S,D)) < σ)]
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We bound each term on the right-hand side. First:

P[(row(R) 6= row(A(R′|S,D)))∩ (Sim(R,A(R′|S,D)) ≥ σ)]

≤ P[∃ j ∈ [n] : j 6= row(R) & Sim(R,D j) ≥ σ ]

= P[∃ j ∈ [n] : j 6= K & Sim(DK,D j) ≥ σ ] ≤ q

where the first inequality follows setting j = row(A(R′|S,D)) and the last inequality holds by the
hypothesis on sparsity. Second:

P[(row(R) 6= row(A(R′|S,D)))∩ (Sim(R,A(R′|S,D)) < σ)] ≤ P[Sim(R,A(R′|S,D)) < σ ] ≤ 1− p

since H implies that A (σ , p,m)-de-anonymizes D with respect to Sim and D′.

The next result combines the de-anonymization theorems 4 and 6, with Theorem 7.

Theorem 8. Assume D is (σ ,δ )-sparse with respect to Sim used in each of the following cases.
(a) Let D and D′ be (1− ε

2 )-similar, for an ε ∈ [0,1), and assume that 1− sim satisfies the triangle

inequality. If Simµ is given by (2.1), with µ = 1− ε , and m ≥ log(n/δ )
log((1+σ)/(2σ)) , then Â perfectly

(1−2δ ,m)-de-anonymizes D.
(b) Let D and D′ be (1− ε

2 )-similar, for an ε ∈ [0,1), and assume that 1− sim satisfies the triangle

inequality. If Sim is given by (2.2), and m ≥ log(n/δ )
log((1−ε+σ)/(2σ)) (assume σ < 1− ε), then Â perfectly

(1−2δ ,m)-de-anonymizes D.

(c) Let D and D′ have the same support, and Sim be given by (2.3). If m ≥ log(n/δ )
log((1+σ)/(2σ))

, then B̂

perfectly (1−2δ ,m)-de-anonymizes D.

Proof. Call H the hypotheses on D, D′, and on m. For (a) and (b), Theorem 4 gives that under H, D
is (σ ,1−δ ,m)-de-anonymized by Â. For (c), Theorem 6 gives that under H, D is (σ ,1−δ ,m)-de-
anonymized by B̂. Now, D is (σ ,δ )-sparse with respect to Sim, so from Theorem 7 it follows that D
is perfectly (1−2δ )-de-anonymized (using Â for (a) and (b), and using B̂ for (c)).

4.3 Applying Theorem 8 on the Netflix Database

In this section we evaluate Theorem 8 in the parameter values of the Netflix database, here denoted
by DN . This database has approximately n = 480,000 records, each of which contains ratings—and
the dates of these ratings—for c = 17,770 movies, entered by Netflix users. The movies are the
attributes, and each element in V is a pair rating-date.
To evaluate Theorem 8 on DN , we use one of the sparsity functions of DN given in [19]. The

definition of sparsity function is the following.

Definition 12. The sparsity function f : [0,1] → [0,1] of D with respect to Sim is given by f (σ) =
P[∃ j ∈ [n] : j 6= K & Sim(DK ,D j) ≥ σ ], with probability taken with respect to K (as in Definition
10).

Theoretical vs. Heuristic De-Anonymization. We compare the level of de-anonymization guaran-
teed by Theorem 8, with the heuristic de-anonymization given in [19] for the Netflix database, where
it is concluded that when the adversary knows 8 exact ratings of movies (but ignores the dates), of
which 6 are outside the top 500 most rated movies, then the adversary can uniquely identify the
complete history of ratings and dates, with probability 0.84.
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We want to obtain an analogous result using (b) in Theorem 8. Since the adversary knows the
ratings exactly, but ignores the dates, we assume that DN only contains the ratings, and that DN = D′

N
(no error in the auxiliary information), so we set ε = 0. We use the same Sim as in [19], which is
given by (2.2), with sim defined by:

sim(a,b) =

{

1 if a = b and ⊥/∈ {a,b}
0 otherwise

which is referred to as “ratings +/−0” in [19], and makes of 1− sim a discrete metric over V\{⊥}.
We have to apply (b) in Theorem 8 with the probability level at 0.84, so 1−2δ = 0.84, which gives

δ = 0.08. The sparsity function of DN gives that DN is (0.25,0.08)-sparse [19], so σ = 0.25, and by

(b) in Theorem 8, if m ≥
log(480,000/0.08)

log(1.25/0.5) ≈ 17.03, then Â perfectly 0.84-de-anonymizes the Netflix
database DN .
The heuristic de-anonymization requires a smaller number of movies (8 instead of 18), and it re-

covers a record with the exact ratings and dates, while the theorem assures that the adversary re-
covers only the exact ratings (not the dates). This gap is to be expected, since in the heuristic de-
anonymization the adversary algorithm is specifically calibrated for the Netflix database, whereas
the theorems are proved using a fixed algorithm that works for all the databases satisfying general
hypotheses. Moreover, in the heuristic de-anonymization the auxiliary information is stronger, in the
sense that 6 of the 8 movies are outside the top 500 most rated, which is not assumed in Theorem 8.
This motivates the next results.

4.4 Decreasing m When D Has a Long Tail

One of the parameters to evaluate the performance of the adversary is m, the number of non-null
attribute values used by the adversary to de-anonymize a database (i.e., the size of the auxiliary
information). In each of the previous results, a lower bound for m is given. These bounds are not
necessary, but sufficient to prove the statements.
In this section we obtain better (from the adversary’s point of view) lower bounds, assuming that

the adversary knows at least one value corresponding to a non-popular attribute in the long tail of D.
For this we need to introduce Definition 13.
Without loss of generality, we assume that the attributes of D are given in decreasing order with

respect to their support sizes, i.e., i 7→ |supp(i)| is a decreasing function on [c], where i ∈ [c] is an
attribute and supp(i) is its support. We always assume that ∀i ∈ [c], supp(i) 6= φ .

Definition 13. Let τ ,κ ∈ [0,1]. A database D of size n× c has a (τ ,κ)-tail if:

|supp(dτ · ce)| = bκ ·nc

Remark 8. Let D of size n× c have a (τ ,κ)-tail. Since i 7→ |supp(i)| is decreasing, then:

∀i ∈ [c](i ≥ τ · c ⇒ |supp(i)| ≤ κ ·n)

Theorem 9 (below) is meant to formalize what is observed in the heuristic de-anonymization of the
Netflix database: when the auxiliary information contains values corresponding to rare attributes,
less amount of auxiliary information suffices to achieve perfect de-anonymization (at a certain prob-
ability level).
In [4], the author describes the long tail phenomenon, which occurs in many different databases

where individuals (records) relate to attributes (columns). Examples include the Netflix, Amazon,
and Rhapsody (an online music service) databases, where attributes correspond to movies, books,
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and music tracks, respectively. Something observed in these cases is that the majority of the items
are related to a small fraction of the individuals, but because there are so many non-popular items,
their sales represent a significant share of the total.
If the support sizes |supp(.)| are plotted decreasingly, the long tail is the part of the graph corre-

sponding to non-popular items, and their sales (in items) equals the area under the curve.
We use this simple description of the graph of |supp(.)| to improve the de-anonymization results

given above.
Table 1 shows the number of track downloads via Rhapsody, from a total of 1.5 million tracks, when

there were 1.4 million subscribers (December 2005, http://investor.realnetworks.com/results.cfm).
The most popular tracks were downloaded approximately 180,000 times, but as popularity decreases,
the number of downloads decreases very rapidly.
If D is the database corresponding to Table 1, with size 1,400,000×1,500,000, then the third line

of Table 1 says that D has a ( 1
300 , 1

140)-tail.
Another characteristic of a database is the proportion of records with support containing non-

popular attributes, which is formalized in the following definition.

Definition 14. Let D be of size n× c and let τ ∈ [0,1]. Then:
(1) A record x ∈ D is supported on τ-ranks if ∃i ∈ supp(x) such that i ≥ τ · c.
(2) D≥τ is the database formed with records of D that supported on τ-ranks.

Table 2 gives this information for DN , the Netflix database. Since D N has c = 17,770 attributes,
the third line in Table 2 implies that 97% of the records in DN are supported on 0.06-ranks (since
1000/17770≈ 0.06).

Table 1: Downloads From Rhapsody [4]

Popularity rank Number of downloads ≈

1 180,000
1,000 30,000
5,000 10,000
25,000 700
85,000 150

Table 2: Netflix’s % of Subscribers Supported at Different Ranks [19]

% of subscribers who rated a movie not among the x most rated

100% x = 100
99% x = 500
97% x = 1,000

The improvement we give consist in decreasing the lower bound on m, so that with less auxiliary
information, we can still assure that the de-anonymization is successful. This will be possible when
at least one attribute in s is not popular, so we need to change the way s is chosen. So far s was taken
uniformly at random among those subsets of supp(r) with |s| = m. For the results in this section,
given r ∈ D supported on τ-ranks (i.e., r ∈ D≥τ), we take i ∈ { j ∈ supp(r) : j ≥ τ · c} uniformly at
random, and s̃ ⊆ supp(r) with |s̃|= m−1 uniformly at random. Then s = s̃∪{i} is used to define the
input of the adversary. If S̃ and I are the random variables giving s̃ and i, we now write S = S̃∪{I}.

Remark 9. Definitions 9 and 11 of de-anonymization change accordingly: the probability is now
taken with respect to the r.v. S = S̃∪{I}, and the r.v. R, selecting a random record from D≥τ .
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Analogously to Proposition 3, it holds that to get de-anonymization, it suffices that:

∀r ∈ D≥τ ,P[Sim(r,A(r′|S,D)) < σ
]

≤ 1− p

with probability taken with respect to S̃ and I.
Now, because for each fixed r ∈ D≥τ , the random variables S̃ and I are independent, to have

P[Sim(r,A(r′|S,D)) < σ
]

≤ 1− p with probability over both S̃ and I, it suffices that

P[Sim(r,A(r′|S,D)) < σ
]

≤ 1− p

for each possible output of I fixed, with probability taken only with respect toS̃. So we have this:

Remark 10. For (σ , p,m)-de-anonymization (note Remark 9), it suffices that ∀r ∈D≥τ , ∀i∈ supp(r)
such that i ≥ τ · c, it happens that P[Sim(r,A(r′|S,D)) < σ

]

≤ 1− p with probability over S̃, where
S = S̃∪{i}.

The following theorem is very similar to part (1) of Theorem 4, except that it uses the extra hypothe-
sis of D having a (τ ,κ)-tail, which leads to a smaller lower bound on m. Also, the de-anonymization
is with respect to the new random variables: S = S̃∪{I} and R taking a random record from D≥τ .

Theorem 9. Let D have a (τ ,κ)-tail, D and D′ be (1− ε
2 )-similar (with ε ∈ [0,1)), m ∈ N, and as-

sume that 1−sim satisfies the triangle inequality. If Sim1−ε is given by (2.1) and m > log(κ·n/(1−p))
log((1+σ)/(2σ))

,

then Â (σ , p,m)-de-anonymizes D with respect to Sim1−ε and D′.

Proof. By Remark 10, if we fix r ∈ D≥τ , and i ∈ supp(r) such that i ≥ τ ·c, then it suffices to prove:
P[Sim(r, Â(r′|S,D)) < σ

]

≤ 1− p, with probability taken with respect to S̃ (where S = S̃∪{i}). This
is similar to what is done in the proof of Theorem 4. Instead of (4.1), here we want:

P[Sim(r, Â(r′|S,D)) < σ ] ≤ κ ·n · max
y∈Fr,σ

P[y ∈ Dr′|S ] (4.8)

where Fr,σ = {y ∈ D : Sim(r,y) < σ & |supp(y)| ≤ |supp(r)|}. Once we prove (4.8), we then need:

κ ·n · max
y∈Fr,σ

P[y ∈ Dr′|S ] ≤ 1− p (4.9)

with probability taken with respect to S̃. As in the proof of Theorem 4, we get that P[y ∈ Dr′|S ] ≤

(2σ/(1+σ))m−1 (recall that S = S̃∪{i}), and S̃ picks a subset s̃ ⊆ supp(r) such that |s̃| = m−1).
So to get (4.9), it suffices that κ · n · (2σ/(1 + σ))m−1 ≤ 1− p, which is equivalent to our current

hypothesis: m > log(κ·n/(1−p))
log((1+σ)/(2σ))

. So to conclude the proof we show (4.8).

We stress that in (4.8), the probability is taken with respect to S̃ (outputting s̃ such that |s̃|= m−1),
and S = S̃∪{i}, where i remains fixed.
Denote D̂ = {y ∈ D : yi 6=⊥} and n̂ = |supp(i)|. Note D̂ is in 1-1 correspondence with supp(i), and

since D has a (τ ,κ)-tail and i ≥ τ · c, then we have |D̂| = n̂ ≤ κ ·n.
Note that ∀s̃, Dr′|s ⊆ D̂. This is because if y ∈ Dr′|s , then by definition of Â, y ∈ D and ∀ j ∈ s =

s̃∪{i}, sim(r′j ,y j) ≥ 1− ε > 0. In particular, j = i gives sim(r′i ,yi) > 0, so yi 6=⊥, and hence y ∈ D̂.

Now, for every s̃ with |s̃| = m− 1, Sim(r, Â(r′|s,D)) < σ implies that ∃y ∈ Fr,σ (the output of Â)
such that y∈ Dr′|s ⊆ D̂, and D̂ remains fixed for the different subsets s̃. We can express this by saying
that for every s̃ with |s̃| = m−1, Sim(r, Â(r′|s,D)) < σ implies that ∃y ∈ Fr,σ ∩ D̂ such that y ∈ Dr′|s .
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Hence:

P[Sim(r, Â(r′|S,D)) < σ ] ≤ P[∃y ∈ Fr,σ ∩ D̂ such that y ∈ Dr′|S ] =

= P
[

⋃

y∈Fr,σ∩D̂

{y ∈ Dr′|S}
]

≤

≤ ∑
y∈Fr,σ∩D̂

P[y ∈ Dr′|S ] ≤

≤ |Fr,σ ∩ D̂| · max
y∈Fr,σ∩D̂

P[y ∈ Dr′|S ] ≤

≤ n̂ · max
y∈Fr,σ

P[y ∈ Dr′|S ] ≤

≤ κ ·n · max
y∈Fr,σ

P[y ∈ Dr′|S ]

Remark 11. If τ1 ≤ τ2 and κ1 ≤ κ2 then the de-anonymization is more efficient when D has a
(τ1,κ1)-tail than when it has a (τ2,κ2)-tail. In fact, the lower bound on m is smaller with κ1,
so less amount of auxiliary information is required, and τ1 ≤ τ2 implies D≥τ1 ⊇ D≥τ2 , so the de-
anonymization is successful over a larger set of records.

By looking at the proofs given so far, we note that (2) in Theorem 4, Theorem 6 and Theorem 8, all
follow from (1) in Theorem 4. Likewise, Theorem 9 (which is an updated version of (1) in Theorem
4), yields results analogous to (2) in Theorem 4, Theorem 6, and Theorem 8.
The updated statements are similar to the previous ones, with the following differences: (i) D has

a (τ ,κ)-tail; (ii) the lower bound on m, which previously looked like m ≥ log(n/...)/ log(...), now
becomes m > log(κ · n/...)/ log(...); and (iii) the de-anonymization is with respect to the uniform
random variables R, taking a record of D≥τ , and S = S̃∪{I} (where S̃ takes a subset of supp(r) with
m−1 elements, and I takes an element from {i ∈ [c] : i ≥ τ · c}).
For instance, the new version of (c) in Theorem 8 is:

Theorem 10. Assume D has a (τ ,κ)-tail. Let Sim be given by (2.3), and assume D is (σ ,δ )-sparse

with respect to Sim. If m > log(κ·n/δ )
log((1+σ)/(2σ)) , then B̂ perfectly (1−2δ ,m)-de-anonymizes D with respect

to D′ (having the same support as D).

We want to know how is the new lower bound on m compared to the previous one. Suppose we
want the new lower bound log(κ·n/δ )

log((1+σ)/(2σ)) to be half of the previous lower bound log(n/δ )
log((1+σ)/(2σ)) , so

that the auxiliary information of the adversary can be reduced a 50%, still making the adversary able
to de-anonymize.

From log(κ·n/(1−p))
log((1+σ)/(2σ)) = 1

2 ·
log(n/(1−p))

log((1+σ)/(2σ)) , we solve for κ to get κ =
√

1−p
n . So given p and n, when

κ =
√

1−p
n is satisfied, the new lower bound on m is half of the previous bound. But this new bound

on m only works to de-anonymize the records of Dτ ⊆ D, where τ is determined by κ (hence by p
and n). Notice that for each κ there is a corresponding (minimum) τ for which the database has a
(τ ,κ)-tail.
To illustrate, consider a database D with n = 480,000, and let the probability of de-anonymization

be p = 0.99. Then, the new lower bound on m would be half of the previous one if κ ≈ 0.0001.
Now, for κ = 0.0001, we want τ for which D has a (τ ,κ)-tail. The Rhapsody database—to consider

a real example—has a (0.056,0.0001)-tail. This follows from the last line in Table 1 and that the
Rhapsody database has size 1,400,000× 1,500,000. So the de-anonymization with the new lower
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bound applies to the records of D≥τ , with τ = 0.056. Note that by Table 2, 97% of the Netflix records
are supported on some attribute (movie) beyond the 1000 most rated. Since the Netflix database has
c = 17,770, this means that 97% of its records are in D≥τ , for τ = 0.056.

4.5 Linkage Attacks on Survey Data

In this section we evaluate one of the theorems on a database with relatively small number of records
and attributes, which does not have a high level of sparsity. We then perform an heuristic linkage
attack on the database, and compare the rates of adversary success given by both the theorem and
the experiment.
We work with the microdata file of the Joint Canada/United States Survey of Health, 2004 [22]

(JCUSH), produced by Statistics Canada and distributed by the Data Liberation Initiative1. The
complete survey, supporting documentation and JCUSH file can be downloaded from the Ontario
Data Documentation, Extraction Service and Infrastructure (ODESI) at odesi.ca.
The JCUSH file contains 366 variables (attributes) and 8688 records, each corresponding to an

individual who participated in the survey. The variables are grouped into 24 different categories,
mostly related to health, but also including socio-demographic characteristics. Among the different
categories, some may be considered more sensitive than others. The categories chronic conditions
or depression, could be considered more sensitive than the category physical activity, which consists
of attributes such as whether the participant practices tennis or basketball, among other activities.
Of the 366 variables, we use 353; we ignore the following 13 variables: SAMPLEID, SPJ1 CP

(sampled collection period), DPJ1DPP (depression scale), IWJ1DXUC (exchange rate U.S. to Can),
IWJ1DXCU (Can to U.S.), WTS STR (variance domain), WTS SAM (sampling weight), and 6
other variables (survey administration).
The used 353 variables correspond to questions made to the participants, and the answers are en-

coded with non-negative integers. The majority of the variables contemplate answers such as not
applicable, don’t know, refusal, not stated, all of which we treat as null (⊥).
Of the 353 variables, 213 take values 1 (yes), 2 (no), and ⊥. This is, 213 variables have only 2 non-

null values in their ranges. Among the remaining variables, 97 have less than 14 non-null values in
their ranges, and the other 43 have ranges with different amounts (up to 103) of non-null values.
Of the 8688 records, we ignore 69 records that have size support smaller than 80, which yields

the database that we denote by DJ , having n = 8619 and c = 353. Of the 8619×353 = 3,042,507
entries of DJ , 1,515,364 are non-null (≈ 50%).
We first evaluate Theorem 8 (a) with the parameters of DJ . For simplicity we assume no error in

the auxiliary information, which is D′ = D, and so ε = 0. Set:

sim(a,b) =

{

1 if a = b
0 otherwise

so that 1− sim is the discrete metric. Sim given by (2.1) becomes

Sim(x,y) =
|{i ∈ supp(x)∩ supp(y) : xi = yi}|

|supp(x)∪ supp(y)|

Theorem 8 (a) then says that if a database D is (σ ,δ )-sparse with respect to Sim and m≥ log(n/δ )
log((1+σ)/(2σ)) ,

then Â perfectly (1−2δ ,m)-de-anonymizes D (in the sense of Definition 11).
Recall that the sparsity function of DJ is f : [0,1] → [0,1],

f (σ) = P[∃ j ∈ [n] : j 6= K & Sim(DK ,D j) ≥ σ ]

1The results or views expressed are those of the author and are not those of Statistics Canada.
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so by definition of f , DJ is (σ , f (σ))-sparse. Hence, if m ≥ log(n/ f (σ))
log((1+σ)/(2σ))

, then with probability

1− 2 f (σ), the adversary Â successfully links the auxiliary information (of size m) of a random
record in D with the right record.
We need to find a value for σ such that f (σ) is small enough so that the probability of success is

high, but at the same time the lower bound on m is as small as possible.

As σ approaches 1, f (σ) approaches 0, however the lower bound on m given by log(n/ f (σ))
log((1+σ)/(2σ))

increases (mostly dominated by the denominator).
Table 3 gives these parameters for different values of σ .

Table 3: Parameters in Theorem 8 (a) for DJ With n = 8619

σ f (σ) m ≥ P[adversary success] ≥

0.45 1.000 19 -1 (useless bound)
0.50 0.988 23 -0.98 (useless bound)
0.55 0.955 27 -0.91 (useless bound)
0.60 0.673 33 -0.35 (useless bound)
0.65 0.455 42 0.09
0.70 0.145 57 0.71
0.75 0.063 77 0.87
0.80 0.000 N/A (divide by 0) 1

To calculate each f (σ) in Table 3 we take a random sample of 400 records of DJ , and for each
record r in the sample we look at all the other records in DJ to determine whether there exists a
record x 6= r such that Sim(r,x)≥ σ . Then f (σ) is calculated as the fraction of the sample of records
for which such x exists. This is of course an approximation of f (σ)—to get the exact value this
computation should be done over all the records of DJ instead of using a sample.
By Table 3 the value of σ to be used in Theorem 8 should satisfy σ > 0.70 if we want to ensure a

probability of success greater than 0.71 (rather low), and also σ < 0.75 so that we can take m < 77,
which seems large.
We calculate f (0.73) = 0.079 (again using a random sample of 400 records), which then by Theo-

rem 8 (a), implies that if the adversary knows m = 69 randomly attribute values from supp(r), for a
randomly chosen record r ∈ D, then the adversary can find the 353 values of r with probability 0.842
(at least).
To test this empirically we perform a linkage attack on DJ using the adversary algorithm Â, which

with the current sim works as follows:

Input: (r|s,D), with r ∈ D and s ⊆ supp(r) such that |s| = 69.

Output: Â(r|s,D) is any element of Dr|s = {y ∈ D : r|s = y|s} with minimum support.

In the implementation of this algorithm, for which we use R [20], the output is chosen uniformly
at random from the elements of Dr|s with minimal support.
We take a random sample of 150 records of D, and for each r, a subset s ⊂ supp(r) with |s| = 69

is then taken at random (this is possible since ∀r ∈ DJ , |supp(r)| ≥ 80). The proportion of the 150
records (in the sample) for which r = Â(r|s,D) is an approximation of the probability of the adversary
success, which by Theorem 8 should be ≥ 0.842. In our experiment all the 150 outputs A(r|s,D)
were equal to r. The difference between the theorem and the concrete results of the experiment with
DJ in terms of the rate of success (0.842 vs. 1) could be explained by the level of generality of
Theorem 8 and the fact that the theorem gives a lower bound on the probability of success.
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A Second Experiment. What we obtained is an adversary that is successful when it uses 69 non-
null attribute values, which is large (≈ 20% of c). Moreover, these 69 non-null values are taken
among any of the attributes, including sensitive attributes such as those in the category chronic con-
ditions. One could argue that using sensitive data to reveal more sensitive data is a flawed approach
for a successful attack, since it starts by assuming the availability of the sensitive attributes.
This leads us to try a linkage attack on DJ based only on non-sensitive attributes. Among the 24

categories of variables in JCUSH, perhaps the less sensitive is physical activity, followed by dental
visits and some socio-demographic variables. If we put these variables together, the restriction of
DJ to these attributes is not sparse enough to obtain a meaningful application of our theorems: to
make 1−2 f (σ) > 0 and have a useful lower bound on the probability of success, σ has to be taken
so close to 1, that makes the lower bound on m even larger than the total number of non-sensitive
attributes.
This means that our theorems are not strong enough to show a successful linkage attack on DJ

based on the (seemingly) non-sensitive attributes. However, we can still experiment with Â and DJ

and evaluate the linkage attack heuristically.
We perform this linkage attack based on the following 35 variables: 25 belong to the physical

activity category, and represent the answers to the question “have you done any of the following
in the past 3 months?”. The 25 variables correspond to 25 activities such as walking, swimming,
and so on. These 25 variables take values in {1,2,⊥}. The other 10 variables used for this linkage
attack are age, sex, type of participant (US or Canada), and the 7 variables of the socio-demographic
characteristics category (4 them taking 2 non-null values, and the others no more than 6).
We run the same experiment using Â as we did above (with the sample of 150 records), except that

now we impose that for each record r, the random subset s that defines the auxiliary information
r|s is such that |s| = 20 and s ⊆ supp(r)∩V , where V consist of the described 35 non-sensitive
attributes. To make sure every record in the database has at least 20 non-null values among those
corresponding to the attributes in V , we kept in DJ only the records with support size ≥ 30 (so now
n = 8419). Over a random sample of 150 records we get that on 110 of them the adversary Â outputs
r when the input is r|s. In other words, an adversary that knows 20 random non-null values from the
35 non-sensitive variables described, can find all the 353 values (including the sensitive one) of the
record from which those 20 are coming, with probability ≈ 0.73.
A comment on the term de-anonymization. Our work is motivated by [19], where the authors

show that anonymous records of the Netflix database can be linked to profiles in the IMDb, which
could be associated to the names of the users (a real de-anonymization). The concept is formalized
in a definition and used in the cited Theorem 1.
We use the same definition for our formal results. However, what we do with the JCUSH database

is to show a successful linkage attack through an experiment, in which we simulate the auxiliary
information using random values of the non-sensitive variables from the same database. We do not
link identifiers (such as name) to records of JCUSH, nor we explore the degree in which an adversary
can find on the web, or any other data source, such non-sensitive attribute values associated to the
identity of a participant of a survey.
Perhaps a valid implication of our experiments is that once sensitive and non-sensitive attributes

are published together in microdata, the non-sensitive attributes become sensitive.

4.6 Another Approach

We explore another approach to perfect de-anonymization, without using the hypothesis on sparsity.
Let A∗ denote an algorithm with the following general form: on input (x,D), where x = r ′|s is the

auxiliary information, the algorithm constructs a non-empty subset of candidates Dx ⊆ D, and then
outputs an element from Dx chosen uniformly at random. Assume that the target record r is always
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among the candidates, i.e., ∀r ∈ D and ∀s ⊆ supp(r), r ∈ Dr′|s . The Scoreboard algorithm in [19]
has this form, for instance.

Theorem 11. For any such A∗, it holds that:

P[R = A∗(R′|S,D)] = E[|DR′|S |
−1] ≥

1
E[|DR′|S |]

with probability over R, S and A∗, where R and S are random variables giving a record from D and
a subset of supp(R), respectively.

Proof. For each r ∈ D,

P[r = A(r′|S,D)] =
n

∑
k=1

P[r = A(r′|S,D)
∣

∣|Dr′|S | = k] ·P[|Dr′|S | = k] =(∗)

=
n

∑
k=1

1
k
·P[|Dr′|S | = k] = E

[

|Dr′|S |
−1]

(*) holds because r ∈ Dr′|s , and the choice from Dr′|s made by A∗ is uniformly at random and inde-
pendent of S. Also, since for each r, the r.v.’s Sr and R are independent, we have (**) next:

P[R = A(R′|S,D)] = ∑
r

P[R = A(R′|S,D)
∣

∣R = r] ·P[R = r] =(∗∗)

= ∑
r

P[r = A(r′|S,D)] ·P[R = r] =

= ∑
r

E[|Dr′|S |
−1] ·P[R = r] =

= E[|DR′|S |
−1] ≥

1
E[|DR′|S |]

where the last inequality holds by Jensen’s inequality [7]—which gives E[ϕ(X)] ≥ ϕ(E[X ]) for any
convex function ϕ—and the fact that ϕ(t) = 1

t is convex on the positive real numbers.

Remark 12. Since ∀r ∈ D and ∀s ⊆ supp(r), it holds that r ∈ Dr′|s , then 1 ≤ E[|DR′|S |]. We would
like hypotheses on D, D′, and m implying E[|DR′|S |] ≤ β , for β ≥ 1 as small as possible. For the
obtained β , D is perfectly 1

β -de-anonymized by A∗ with respect to D′.

Toy Example. Assume D′ = D and suppose that the non-null values in D are taken uniformly and
independently at random out of b different values. For simplicity put b = 2, so V = {v1,v2,⊥}. Since
D′ = D, consider the adversary Ã that uses as output an element from Dr|s = {y ∈ D : y|s = r|s}. Fix
r ∈ D and let s be given by m non-null attribute values taken independently from supp(r). Let, for
each j ∈ [m], s j := {i1, ..., i j} (note that s = sm). For each i∈ [c], roughly 50% of supp(i) corresponds
to v1’s, and the rest to v2’s. Hence, |Dr|s1

| ≤ 1 + n
2 , |Dr|s2

| ≤ 1 + n
22 ,..., |Dr|sm

| ≤ 1 + n
2m , thus:

E[|Dr|S | ≤ 1+ n
2m . If m = k + log2 n, then E[|Dr|S | ≤ 1+ 1

2k , so by Theorem 11, P[R = Ã(R′|S,D)] ≥
2k

2k+1
. With k = 4 we get that if m ≥ 4 + log2 n, then Ã perfectly 0.94-de-anonymizes D (roughly).

With n = 480,000 as the Netflix database, we get m ≥ 4+ log 2(480,000)≈ 22.9.

The same argument holds for any b ≥ 2, giving: m ≥ k + logb n ⇒ P[R = Ã(R′|S,D)] ≥ bk

bk+1
.

If b = 10 (e.g., ratings), then k = 2 gives: m ≥ 2 + logn ⇒ P[R = Ã(R′|S,D)] ≥ 0.99, which for
n = 480,000 gives m ≥ 7.7. Thus, m = 8 non-null attribute values are sufficient to identify a whole
record with probability 0.99.
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This is an example of how Theorem 11 can be used. We would like to explore more realistic
scenarios. For instance, D′ = D should be replaced by a different relationship between D and D′.
Also, assuming that the non-null values are independent is unrealistic, since typically some pairs of
attributes are highly correlated (e.g., a movie and its sequel).

5 Conclusions

In this paper we revisited Narayanan and Shmatikov work [19] on the de-anonymization of large
sparse databases, such as the Netflix database. We discover and resolve technical issues with the
proof of their main theoretical result (Theorem 1) for both the case where the auxiliary information
has error and the case where the database contains null values.
The new results that we establish are very similar to Theorem 1 in [19], and can in turn be improved

under assumptions on the sparsity of the database. These upgraded theorems, when evaluated on
the Netflix database using its size and sparsity, guarantee levels of de-anonymization weaker but
consistent with the heuristic de-anonymization of the Netflix database in [19].
We explore one aspect of the de-anonymization of the Netflix database, regarding the fact that the

performance of the adversary improves when the auxiliary information includes rare attributes. This
can be formalized via the notion of tail of the database, and the parameters describing the tail can be
incorporated to the de-anonymization results, yielding more efficient attacks when the database has
a long tail, since less auxiliary information can ensure the same level of success.
One of our theorems is then tested on the JCUSH database, which has a level of sparsity much

lower than that of the Netflix database. This shows that high sparsity and a long tail are required
in order to guarantee efficient de-anonymizations via our theoretical results. This becomes more
evident when the same algorithm used to prove the abstract results is used to perform an empirical
linkage attack on the JCUSH database, giving a satisfactory adversary success.
A path for future work is to establish formal results of de-anonymization dealing with a different

type of auxiliary information. In our theorems we are assuming that the values in the auxiliary
information could have error, but these are uniformly bounded by a parameter, which in addition
is known by the adversary (D and D′ are assumed to be (1− ε)-similar). Moreover, in our model,
we assume that if ri =⊥, then the corresponding value in the auxiliary information (r′|s)i is also
⊥ (since s ⊆ supp(r)). New results should contemplate the possibility of the auxiliary information
taking non-null values on those attributes in which the original record is null.
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