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Abstract. The increasing abundance of data about the trajectories of personal movement is opening
new opportunities for analyzing and mining human mobility. However, new risks emerge since it
opens new ways of intruding into personal privacy. Representing the personal movements as se-
quences of places visited by a person during her/his movements - semantic trajectory - poses great
privacy threats. In this paper we propose a privacy model defining the attack model of semantic tra-
jectory linking and a privacy notion, called c-safety based on a generalization of visited places based
on a taxonomy. This method provides an upper bound to the probability of inferring that a given
person, observed in a sequence of non-sensitive places, has also visited any sensitive location. Co-
herently with the privacy model, we propose an algorithm for transforming any dataset of semantic
trajectories into a c-safe one. We report a study on two real-life GPS trajectory datasets to show how
our algorithm preserves interesting quality/utility measures of the original trajectories, when min-
ing semantic trajectories sequential pattern mining results. We also empirically measure how the
probability that the attacker’s inference succeeds is much lower than the theoretical upper bound
established.

Keywords. Semantic trajectories, anonymization of trajectories datasets, taxonomy, sequential pat-
terns

1 Introduction

The increasing abundance of data about the trajectories of personal movement, obtained
through mobile phones and other location-aware devices that accompany our daily rou-
tines, is opening up new avenues for analyzing and mining human mobility, with appli-
cations in diverse scientific and social domains, ranging from urban planning to trans-
portation management to epidemic prevention. Besides new opportunities, also new risks
emerge, as knowing the whereabouts of people also opens new ways of intruding into
their personal privacy; this observation is at the basis of some recent research works that
addressed the problem of protecting privacy while disclosing trajectory data [25, 2, 28, 1].
This problem, however, becomes ever more challenging as the fast progress on mobile de-
vice technology, geographic information and mobility data analysis and mining creates
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entirely new forms of trajectory data, with far richer semantic information attached to the
traces of personal mobility. In fact, we are rapidly moving from raw trajectories, i.e., se-
quences of time-stamped generic points sampled during the movement of a sensed device,
to what is called in the literature semantic trajectories, i.e., sequences of stops and moves of a
person during her/his movement [30]. In semantic trajectories each location of stop can be
attached to some contextual information such as the visited place or the purpose - either by
explicit sensing or by inference. An example of semantic trajectory is the sequence of places
visited by a moving individual such as Supermarket, Restaurant, Gym, Hospital, Museum.

In this paper, we argue that the new form of data of semantic trajectories poses important
privacy threats. In fact, by definition the semantic trajectories represent the most important
places visited by a person and therefore we explicitly represent the person interests in the
movement data itself. The first problem introduced by this form of data is that, from the fact
that a person has stopped in a certain sensitive location (e.g., an oncology clinic), an attacker
can derive private personal information (that person’s health status, in the example). A
place is considered sensitive if it allows to infer personal sensitive information of the tracked
individual.

However, just hiding a person’s trajectory into a crowd, following the idea of k-anonymity,
is not enough for a robust protection. When all individuals in a crowd with indistinguish-
able trajectories visit the same sensitive place, an attacker just needs to know that the person
belongs to that crowd to infer that he/she visited the sensitive place.

This problem reflects the discussion about k-anonymity and l-diversity in relational, tabu-
lar data. Here, we essentially devise a similar privacy model for semantic trajectories, with
reference to a background knowledge defining which are the sensitive and nonsensitive lo-
cations corresponding to the places where the persons stop. We represent this background
knowledge through a place taxonomy, describing sensitive and non-sensitive locations at
different levels of abstraction (e.g., a touristic landmark, a museum, the Louvre museum, a
health-related service, a hospital, the Children Hospital).

The main contribution of this paper is the definition of the attack model of semantic trajec-
tory linking, which formalizes the mentioned privacy-violating inferences, together with a
privacy notion, called c-safety, which provides an upper bound c to the probability of infer-
ring that a given person, observed in a sequence of non-sensitive places, has also stopped
in any sensitive location.

Coherently with the introduced privacy model, we propose an algorithm for transform-
ing any dataset of semantic trajectories into a c-safe one, which can be safely published
under the specified privacy safeguard. Our algorithm is based on the generalization of
places driven by the place taxonomy, thus providing a way to preserve the semantics of
the generalized trajectories. We conduct a study on two real-life GPS trajectory datasets,
and show how our algorithm preserves interesting quality/utility measures of the original
trajectories. In particular, we show that sequential pattern mining results are preserved.
Also, we empirically measure how the probability that the attacker’s inference succeeds is
much lower than the theoretical upper bound established, thus bringing further evidence
that our method achieves an interesting trade-off between privacy and utility.

The rest of the paper is organized as follows. In Section 2 some basic definitions and
background information are given. In Section 3, we describe the privacy model. Section
4 states the problem and introduces the measures for the data utility and the disclosure
probability. Section 5 describes the semantic generalization approach for trajectories. In
Section 6, we present the experimental results of the application of our method on two real-
world moving object datasets. Section 7 discusses the relevant related studies on privacy
issues in movement data. Finally, Section 8 concludes the paper presenting some future
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works.

2 Background

In this section we briefly recall some basic concepts which are useful to understand the
proposed anonymization framework: the notion of semantic trajectory as a sequence of
stops and moves, and an introduction to ontologies and taxonomies.

2.1 Semantic trajectories

A trajectory has been defined as the spatio-temporal evolution of the position of a moving
entity. A trajectory is typically represented as a discrete sequence of points. An interpola-
tion function between two consecutive points approximates the movements between two
sample points. Recently a new trajectory concept has been introduced in [30] for reasoning
over trajectories from a semantic point of view, the semantic trajectory, based on the notion
of stops and moves. Stops are the important parts of a trajectory where the moving object
has stayed for a minimal amount of time. Moves are the sub-trajectories describing the
movements between two consecutive stops. Based on the concept of stops and moves the
user can enrich trajectories with semantic information according to the application domain
[6]. To illustrate these concepts let us consider some basic definitions.

Definition 1 (Trajectory Sample). A trajectory sample is a list of space-time points 〈x0, y0, t0〉,
. . . , 〈xN , yN , tN 〉, where xi, yi ∈ R, ti ∈ R+ for i = 0, 1, . . . , N , and t0 < t1 < t2 < . . . < tN .

Important parts of a trajectory, i.e., stops, correspond to the set of x, y, t points of a trajec-
tory sample that are important from an application point of view. The important parts cor-
respond to places that can be different types of geographic locations as hotels, restaurants,
museums, etc; or different instances of geographic places, like Ibis Hotel, Louvre Museum,
and so on. For every type of important place a minimal amount of time is defined, such
that a sub-trajectory should continuously intersect this place for it to be considered a stop.
A set of important places characterizes a semantic trajectory.

Definition 2 (Semantic Trajectory). Given a set of important places I, a semantic trajectory
T = p1, p2, . . . , pn with pi ∈ I is a temporally ordered sequence of important places, that
the moving object has visited.

Figure 1 (2) illustrates the concept of semantic trajectory for the trajectory sample shown
in Figure 1 (1). In the semantic trajectory the moving object first was at home (stop 1), then
he went to work (stop 2), later he went to a shopping center (stop 3), and finally the moving
object went to the gym (stop 4).

The important parts of the trajectories (stops) are application dependent, and are not
known a priori, therefore they have to be computed. Different methods have been pro-
posed for computing important parts of trajectories. For instance, the method SMoT [5]
verifies the intersection of the trajectory with a set of user defined geographic places, for a
minimal amount of time. The method CB-SMoT (Clustering-based stops and moves of tra-
jectories) [27] is a more sophisticated method that computes important places based on the
variation of the speed of the trajectory. The important places are those in which the speed
is lower than the average speed of the trajectory. After the low speed clusters have been
computed, the method verifies for each cluster if it intersects the user defined geographic
places, i.e., the possible places that were visited by the user. In positive case, this place is
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Figure 1: Example of Trajectory Sample and Semantic Trajectory

added to the sub-trajectory that intersects this place, building a semantic trajectory. Low
speed clusters which do not intersect any geographic place are labeled as unknown stops.
For the purpose of this paper, the unknown stops are simply omitted since they are not
associated to any interesting place. Another work has been proposed by Manso et al. [18]
which developed an algorithm to compute stops based on the variation of the direction of
the trajectory.

2.2 Domain Ontologies and Taxonomies

An ontology is defined in [11] as ”a technical term denoting an artifact that is designed for a
purpose, which is to enable the modeling of knowledge about some domain, real or imag-
ined”. An ontology determines what can be represented and what can be inferred about a
given domain using a specific formalism of concepts. Usually, the term domain ontology is
used to refer to ontologies describing the main concepts and relations of a given domain,
i.e. urban or medical. The basic elements of an ontology are: concepts (or classes), which
describe the common properties of a collection of individuals; properties are binary rela-
tions between concepts; instances represent the actual individuals of the domain. We say
that a given individual is an instance of a concept when the individual properties satisfy
the concept definition. A special property called is a represents the kind of , or specializa-
tion, relationship between concepts. An ontology having only is a relationships is called
taxonomy.

Formally, a taxonomy is a 2-tuple Tax := {C,HC}, where C is a set of concepts, HC is a
taxonomy or concept-hierarchy, which defines the is a relations among concepts (HC(c1, c2)
means that c1 is a sub-concept of c2). A taxonomy of places of interest represents the se-
mantic hierarchy of geographical places of interest. Here, the set of stop places obtained
from the computation of semantic trajectories are the leaves of Tax. For example, we have
that Restaurant “Da Mario” is a kind of Restaurant which is a kind of Entertainment. In gen-
eral, each concept in the taxonomy describes the semantic categories of the geographical
objects of interest for a given application domain. We will see in the remaining of the paper
that the place taxonomy is essential during the generalization phase in the anonymization
algorithm. Figure 2 depicts an example of the taxonomy of places of interest in a city used
as example through the paper. Here, all the places represented by red nodes are sensitive
locations, as discussed later.

It’s important to notice that the taxonomy is global and the leaves represent the pub-
lic points of interest defined by a domain expert and considered relevant w.r.t. a specific
application. As a consequence, the private places such as the homes of the users are not rep-
resented. Moreover, we consider also the special case of points of interests which can be
considered private for a user such as his/her workplace. We solve the problem by suppressing
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Figure 2: The Places taxonomy

these places in the user trajectories (see Section 5).

3 Privacy Model

In this paper we provide a framework that, given a dataset of semantic trajectories, gen-
erates an anonymous semantic trajectory dataset. This new dataset guarantees that it is not
possible to infer the identity of a user and the visited sensitive places with a probability
greater than a fixed threshold, set by the data owner. The method we propose is based on
the generalization, driven by the place taxonomy, of the places visited by a user. The use of
a domain taxonomy to generalize places allows to preserve some degree of semantic infor-
mation in the anonymized dataset. To avoid the identification of sensitive places visited by
a user, first of all we need to specify which places are sensitive and which are non-sensitive.
In relational data the sensitivity notion is defined on the table attributes where it is possible
to specify the quasi-identifier (public information that can be used to discover private infor-
mation) and sensitive attributes (information to be protected). In semantic trajectories, due
to the particular format of the data and their intrinsic geographical nature, this distinction
is among the stop places. A place is considered sensitive when it allows to infer personal
information about the person who has stopped there. This means that some places, with
respect to some applications, can be sensitive because an attacker can derive personal sen-
sitive information. For example, a stop at an oncology clinic may indicate that the user has
some health problem. Other places (such as parks, restaurants, cinemas, etc) are considered
as quasi-identifiers. Note that, any non-sensitive place is assumed to be a quasi-identifier.
In the relational model there are three categories of attributes: quasi-identifiers, sensitive
and non-confidential. But it is often found in the literature a simple and conservative ap-
proach which considers all the non-sensitive attributes as quasi-identifiers. In the present
work we apply this simplification for the places. The place taxonomy is used to set this dis-
tinction: some concepts are tagged as “sensitive” and, as a consequence, all the remaining
concepts are “quasi-identifiers”. We assume the labeled taxonomy is given by the domain
expert who tags each concept with the “sensitivity” label. To formally introduce the sen-
sitivity label of a concept we define a privacy place taxonomy as an extension of the places
taxonomy Tax with a function λ which assigns a concept of C with a label belonging to
the set L = {s, q}, where s means “sensitive” and q means “quasi-identifier”. Hence, the
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taxonomy becomes a triple PTax := 〈C,HC, λ〉.
Given a dataset of semantic trajectories ST and the privacy places taxonomy PTax de-

scribing the categories of the geographical objects of interest for an application domain,
we define a framework to transform ST in its anonymous version ST ∗ by using a method
based on the generalization of places driven by the taxonomy.

Now, we introduce the notion of quasi-identifier place sequence in the context of semantic
trajectories. We use Q and SP to denote the set of quasi-identifiers places and the set of
sensitive places defined in the taxonomy PTax , respectively.

Definition 3 (Quasi-identifier place sequence). A quasi-identifier sequence SQ = q1, . . . , qh,
where h > 0 and qi ∈ Q is a temporally ordered sequence of stop places of the privacy
place taxonomy PTax labelled as quasi-identifier and that can be joined with external in-
formation to re-identify individual trajectories with sufficient probability.

We assume that quasi-identifier places are known based on specific knowledge of the
domain.

The semantic knowledge associated to the dataset allows the classification of the set of
places in sensitive and quasi-identifier places: this clear distinction is not possible without
additional semantic knowledge. Of course this new setting requires the definition of a
suitable privacy model that takes into account this additional information.

The taxonomy can be used to transform a semantic trajectory into its generalized version.
Intuitively, the stop places may be replaced by one of their ancestors in the taxonomy (e.g.
”Restaurant da Mario” may be replaced by ”Restaurant” or by ”Entertainment”). Obvi-
ously, the generalized version looses the specific information of the original semantic tra-
jectory, but tends to preserve some level of semantics (e.g. we know a person stopped at a
restaurant but we don’t know exactly which one). The formal definition of a generalized
semantic trajectory is given below.

Definition 4 (Generalized Semantic Trajectory). Let T = p1, p2, . . . , pn be a semantic trajec-
tory. A generalized version of T , obtained by the place taxonomy PTax , is a sequence of
places Tg = g1, g2 . . . , gn where ∀i = 1, . . . , n we have that HC(pi, gi) holds or gi = pi.

In other words, a place gi of a generalized semantic trajectory can be either an ancestor of
the original place pi or pi itself.

The containment concept, defined below, expresses the basic relation to compare two se-
mantic trajectories even if some of places are generalized.

Definition 5 (Contained). Let Tg = g1, g2 . . . , gn be a generalized semantic trajectory and
A = p1, . . . , pm a sequence of places. We say that A is contained in Tg (A �g Tg) if there exist
integers 1 ≤ i1 < . . . < im ≤ n such that ∀1 ≤ j ≤ m we have gij = pj or the relation
HC(pj , gij ) holds.

Definition 6 (Set Contained). Let Tg = g1, g2 . . . , gn be a generalized semantic trajectory
and A = {p1, . . . , pm} a set of places with m ≤ n. We say that all the places in A are contained
in Tg (A v Tg) if there exists a set B of m places appearing in Tg and ∀gi ∈ B ∃ pj ∈ A such
that either gi = pj or the relation HC(pj , gi) holds.

Notice that the difference between Definition 5 and Definition 6 is that the second one does
not take into account the order of the places of A in the generalized semantic trajectory Tg .
We refer to the number of generalized semantic trajectories in ST ∗ containing a sequence
of places A as support of A denoted by suppST ∗(A). More formally, suppST ∗(A) = |{Tg ∈
ST ∗|A �g Tg}|.
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3.1 Adversary Knowledge and Attack Model

An intruder who gains access to ST ∗ may possess some background knowledge allowing
he/she to conduct attacks making inferences on the dataset. We generically refer to any of
these agents as an attacker. We adopt a conservative model and in particular we assume the
following adversary knowledge.

Definition 7 (Adversary Knowledge). The attacker has access to the generalized dataset
ST ∗ and knows: (a) the algorithm used to anonymize the data, (b) the privacy place taxon-
omy PTax , (c) that a given user is in the dataset and (d) a quasi-identifier place sequence
SQ visited by the given user.

What is the information that has to remain private? In our model, we keep private all the
sensitive places visited by a given user. Therefore, the attack model considers the ability
to link the released data to other external information enabling to infer visited sensitive
places.

Definition 8 (Attack Model). The attacker, given a published semantic trajectory dataset
ST ∗ where each trajectory is uniquely associated to a de-identified respondent, tries to
identify the semantic trajectory in ST ∗ associated to a given respondent U , based on the
additional knowledge introduced in Definition 7. The attacker, given the quasi-identifier
sequence SQ constructs a set of candidate semantic trajectories in ST ∗ containing SQ and
tries to infer the sensitive leaf places related to U . We denote by Prob(SQ, S) the probability
that, given a quasi-identifier place sequence SQ related to a user U , the attacker infers
his/her set of sensitive places S which are the leaves of the taxonomy PTax.

From a data protection perspective, we aim at controlling the probability Prob(SQ, S). To
prevent the attack defined above we propose to release a c-safe dataset.

Definition 9 (C-Safety). The dataset ST is defined c-safe with respect to the place set Q if
for every quasi-identifier place sequence SQ, we have that for each set of sensitive places S
the Prob(SQ, S) ≤ c with c ∈ [0, 1].

It is crucial to understand that in this scenario the focus is on the real place instances (the
leaves of the taxonomy) which represent the most sensitive information. Therefore, the
inner nodes of the taxonomy are used to generalize the semantic trajectory in order to
reduce the probability for the attacker to identify the real places.

4 Problem Statement

Given the definitions introduced in the previous section, we formulate the problem state-
ment as follows.

Definition 10 (Problem Statement). Given a dataset ST of semantic trajectories and a pro-
tection probability threshold that we want to guarantee c ∈ [0, 1], we want to build a c-safe
version ST ∗ of ST .

In other words, we want to fix a threshold at the probability that an adversary who access
ST ∗ can use a sequence of quasi-identifier places visited by a user to correctly infer any
visited sensitive place. The problem that we want to address is very similar to l-diversity
[17], but the particular nature of the data makes the problem different and this framework
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cannot be directly applied to this case. First of all, the semantic trajectories do not have
fixed length. In particular, given any two semantic trajectories Ti and Tj belonging to the
same database, the number of quasi-identifiers stop places contained in Ti is in general
different from Tj . Moreover, in a semantic trajectory we can have more than one sensitive
place stop, and their number is not fixed a-priori for all trajectories. It it worth pointing
out that a trajectory may be composed only by quasi-identifier places or only by sensitive
places. However, these two cases do not introduce further privacy issues: in the first case,
we don’t need to protect any sensitive location visited by the user, whereas in the second
case an attacker cannot use any quasi-identifier place sequence to discover the sensitive
places visited by the user.

It is interesting to notice that a place tagged in the privacy place taxonomy as sensitive by
the domain expert could be for some user a quasi-identifier. For instance, a medical center
is a sensitive place for patients, whereas is a quasi-identifier for doctors and nurses. This
may lead to privacy flows, therefore we choose to explicitly suppress from the trajectories
the places which are tagged in the taxonomy as sensitive, but are, in fact, quasi identifiers
for the user.

There could be different ways to construct a c-safe dataset of semantic trajectories. We
propose a method that is based on a generalization of places, driven by the privacy place
taxonomy, which preserves some data utility. The main steps of the method can be sum-
marized as follows: [a] suppressing from the dataset each sensitive place when, for that
given user, that place is a quasi-identifier; [b] grouping semantic trajectories in groups
of a predefined size, m; [c] building a generalized version of each semantic trajectory in
the group generalizing the quasi-identifier places. In each group the quasi-identifiers of
the generalized trajectories should be identical. Sensitive places are generalized when the
quasi-identifiers generalization is not enough to get a c-safe dataset.

This method generates a c-safe version of a dataset of semantic trajectories keeping under
control both the probability to infer sensitive places and the generalization level (thus the
information loss) introduced in the data. In other words, the obtained dataset guarantees
the c-safety and maintains the information useful for the data mining tasks, as much as pos-
sible. The taxonomy defined by the domain expert is crucial in this process. In fact, having
more levels of abstraction allows the method in finding a better generalization in terms of
information loss (see Section 5). Before going into details of the algorithm, we first discuss
two crucial aspects: how to compute the probability to disclose sensitive information and
how to measure the cost, in terms of information loss, of the anonymization.

4.1 Disclosure Probability

During the anonymization process, the algorithm checks if the probability to infer sensitive
places is less than the fixed threshold c. In the following, we give the basic definitions to
compute this probability. Given a set of sensitive places S = {s1, . . . , sh} (S ⊆ SP ), where
each si is a leaf node of the privacy place taxonomy, and a quasi-identifier sequence SQ,
the probability to infer S is the conditional probability P (SQ, S) = P (S|SQ). This probability
is computed as follows:

P (SQ, S) =
1

suppST ∗(SQ)
×

∑
∀t∈GSQ

Pt(S)

where GSQ
is the set of (generalized) semantic trajectories which support the quasi-identifier

sequence SQ and Pt(S) is the probability to infer the set of places in S in the trajectory t. In
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the following, given the set S′ = {si ∈ S|∀j 6= i.placet(si) 6= placet(sj)∧sj ∈ S}, we define:

Pt(S) =

{
0 if S v t

v∏
∀si∈S′

leaves(placet(si))o(placet(si))
otherwise

where:

• placet(si) is equal to si if the trajectory t contains the leaf place si otherwise it is equal
to the generalized concept of the taxonomy (inner node) used to generalize si in the
semantic trajectory t.

• leaves(placet(si)) denotes the number of places represented in the taxonomy by the
specific node returned by placet(si). More in detail, we define leaves(placet(si)) equal
to 1 when placet(si) is a leaf of the privacy place taxonomy, whereas when placet(si)
is an internal node (a generalized concept) it is equal to the number of leaves of the
sub-tree with root placet(si).

• o(placet(si)) is the number of occurrences of placet(si) in the semantic trajectory t.

• v is the number of combinations of sensitive places that can be represented in the
semantic trajectory t and which support the set S.

The proposed CAST algorithm, introduced in the following, guarantees that for each sen-
sitive place si ∈ S P (si|SQ) ≤ c. In Section 5.1 we will show that this also guarantees
P (S|SQ) ≤ c.

4.2 Data Utility

The main aim of the privacy-preserving data publication techniques is to protect respon-
dents’ individual privacy. However, the recipients of the transformed dataset ST ∗ could
be interested in applying different analytical tools to extract from data some useful knowl-
edge. As an example, they could apply some data mining tools to extract common and
frequent human behaviors. Therefore it is essential that anonymization techniques should
be able to maintain a good quality of the data. For this reason, we introduce a method
that combines anonymization process with data utility. Precisely, our interest is to preserve
as much as possible the sequential pattern mining results. Therefore, when our method
chooses the grouping of trajectories to be generalized it tries to minimize the cost of gen-
eralization, i.e., the cost to transform the original trajectories belonging to the same group
into the generalized ones. The question is: ”how can we express this cost?” We decided
to measure this cost using two different distance functions that measure the cost to trans-
form an original semantic trajectory into a generalized one, based on the taxonomy. These
functions measure the distance in steps from two places in the taxonomy tree (Hops-based
distance), and the information loss based on the number of leaves of a node (Leaves -based
distance).

These measures are formally defined as follows.

Definition 11 (Hops-based Distance). Let T = p1, p2, . . . ph, Tg = g1 . . . gh and PTax be
a semantic trajectory in the original dataset ST , a generalized semantic trajectory and a
privacy place taxonomy, respectively. The Hops-based distance is defined as:

DistanceH(T, Tg, PTax ) =
∑k

1...h Hops(pk, gk, PTax )
MaxDeep( PTax ) ∗ h
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where Hops(pk, gk, PTax ) is the number of steps needed to transform the item pk into gk

w.r.t. the taxonomy PTax ; MaxDeep( PTax ) is the maximum depth of the taxonomy tree.
The Hops-based distance is defined only between semantic trajectories of the same length.
In the other cases the distance is 1.

Intuitively, this definition expresses the distance between a given semantic trajectory and
a generalized one in terms of number of steps in the privacy place taxonomy needed to
transform the original version of the semantic trajectory into the generalized one.

Definition 12 (Leaves-based Distance). Let T = p1, p2, . . . ph, Tg = g1 . . . gh and PTax be
a semantic trajectory in the original dataset ST , a generalized semantic trajectory and a
privacy place taxonomy, respectively. The Leaves-based distance is defined as:

DistanceL(T, Tg, PTax ) =
∑k

1...h Loss(pk, gk, PTax )
Leaves( PTax ) ∗ h

where Loss(pk, gk, PTax ) is the information loss between two items on the taxonomy PTax .
This is quantified as the difference between the number of leaves of the subtree of gk and
the number of leaves of the subtree of pk. Leaves( PTax ) is the total number of leaves in
the taxonomy. The Leaves-based distance is defined only between semantic trajectories of
the same length. In the other cases the distance is 1.

The distance defined above allows to measure the distance between an original semantic
trajectory and a generalized one taking into account that some concepts in the taxonomy
(internal nodes) generalize more than other having more leafs in its subtree. Considering
this fact is important since generalizing to a parent having in its subtree few leaves implies
less information loss than generalizing to a parent having in its subtree more leaves.

In the remaining of the paper we will use the generic term distance to represent one of the
two distances defined above.

The term generalization cost indicates the distance between a set of semantic trajectories
and its generalized version:

Definition 13 (Generalization Cost). Let T , T ∗ and PTax be a set of semantic trajectories
of a dataset ST , the generalized version of T and a privacy place taxonomy, respectively.

The generalization cost is a value in the interval [0, 1] defined as:

GenCost(T , T ∗, PTax ) =

∑
∀Ti∈T ∧T∗

i
∈T ∗ distance(Ti, T

∗
i , PTax )

|T |

where each sequence T ∗
i is the generalized version of the semantic trajectory Ti.

5 CAST Algorithm

We now tackle the problem of constructing a c-safe version of dataset ST of semantic trajec-
tories. The algorithm, called CAST (C-safe Anonymization of Semantic Trajectories), finds
the best trajectory grouping in the dataset which guarantees the c-safety. However, since
this problem is computationally hard, the implementation of the method considers an ad-
ditional parameter m indicating the size of the trajectory groups in which the c-safety must
be guaranteed. The pseudo-code of CAST is provided in Algorithm 1.

The first step of the algorithm calls the function SuppressFalseSP (ST , PTax ) which ver-
ifies automatically if a sensitive place of the privacy taxonomy PTax is a quasi-identifier
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Algorithm 1: CAST(ST , c, m, P -Tax)
Input: A semantic trajectory database ST , a probability c, a group size m, a privacy

place taxonomy PTax
Output: A c-safe semantic trajectory database ST ∗

ST ′ = SuppressFalseSP (ST , PTax );
Ordering(ST ′);
minLength = minLength(ST ′);
maxLength = maxlength(ST ′);
ST ∗ = ∅;
for minLength ≤ i ≤ maxlength do

CurSeq = ExtractSubSet(ST ′, i);
ST ′ = ST ′ \ CurSeq;
while CurSeq.size > m do

G = FindBestGroup(CurSeq, m, c, PTax );
ST ∗ = ST ∗ ∪Generalize(G);
CurSeq = CurSeq −G;

ST ′ = ST ′ ∪ Cut(CurSeq);
return ST ∗

for some user. In this case, the place is suppressed from the sequence of places visited by
that particular user. We recall that a sensitive place can be a quasi identifier when a place,
tagged as sensitive in the taxonomy, is the work place of the user. To automatically de-
tect these particular cases we use the system described in [24]. This system analyses the
trajectories of an individual to identify the most interesting visited places, such as his/her
place of work and inferring the trajectory behaviour. This process realizes the step [a] of
the method described in Section 4. Ordering(ST ′) is the function which temporarily re-
moves from the semantic trajectories the sensitive places. The aim is to obtain sequences
of places containing only quasi-identifiers sorting the resulting semantic trajectories by
length. ExtractSubSet(ST ′, i) function extracts the semantic trajectories obtained at the
previous step having length i. The function FindBestGroup(CurSeq, m, c, PTax ) finds the
groups of semantic trajectories of the same length which minimize the generalization cost
(Definition 13). These three methods implement the step [b] described above. The method
Generalize(G) generalizes the quasi-identifiers of the trajectories within a group to obtain
the identical sequences of places (and generalizes the sensitive places when needed) to
guarantee the c-safety, thus realizing the step [c].

The following example shows the generalization step using the Hops-based Distance in-
troduced in the Definition 11. Consider the taxonomy presented in Figure 2 and a group
G composed of the following three semantic trajectories (therefore the group size is set to
m = 3):

T1 = S1, R2,H1, R1, C2, S2

T2 = S3, D1, R1, C2, S2

T3 = S1, P3, C1, D2, S2

Let us assume that we want to guarantee 0.45-safety (c=0.45). First of all, the algorithm
generalizes the quasi-identifiers of the semantic trajectories in order to obtain trajectories
with identical sequences. To do this, the algorithm removes temporarily the sensitive places

TRANSACTIONS ON DATA PRIVACY 4 (2011)



84 Anna Monreale, Roberto Trasarti, Dino Pedreschi, Chiara Renso, Vania Bogorny

and finds the minimal ancestor in the taxonomy of each place of the semantic trajectories,
thus obtaining:

T1 = Station, P lace, Entertainment, S2 (H1, C2)
T2 = Station, P lace, Entertainment, S2 (C2)
T3 = Station, P lace, Entertainment, S2 (C1)

At this point, the algorithm computes the disclosure probability (defined in Section 4.1)
for each sensitive place: P (SQ,H1) = 1/3, P (SQ, C2) = 2/3 and P (SQ, C1) = 1/3. Note
that in this case SQ is the sequence of places 〈Station, P lace, Entertainment, S2〉. In this
example, only the probability of place C2 is higher than the c-safety threshold, therefore
we need to generalize it to a higher representation level in the taxonomy which is Clinic.
Considering that we have only two clinics leaves in the taxonomy, after the generalization
the probability of C2 becomes 2/5 which is below the threshold, and therefore 0.45-safe.
After that, the algorithm rebuilds the semantic trajectories restoring the sensitive places in
their original positions:

T1 = Station, P lace,H1, Entertainment, Clinic, S2

T2 = Station, P lace, Entertainment, Clinic, S2

T3 = Station, P lace, Clinic, Entertainment, S2

As a general rule, we can notice that when a place is generalized, all the other places having
the same parent in the taxonomy are generalized too. For this reason, C1 is replaced with
Clinic: not generalizing C1 may lead the attacker to infer that Clinic stands for C2.

5.1 Privacy Analysis

We now discuss the privacy guarantees obtained by applying the proposed anonymization
approach. We will formally show that the CAST Algorithm guarantees that the disclosed
dataset ST ∗ is a c-safe version of ST .

Lemma 14. Let S = {s1, s2, . . . , sh} and SQ be a set of sensitive places and a quasi-identifier place
sequence, respectively. If ∀si ∈ S P (SQ, si) ≤ c then P (SQ, S) ≤ c.

Proof. We assume that for any si ∈ S we have P (SQ, si) ≤ c. We recall that

P (SQ, si) =
1

suppST ∗(SQ)
×

∑
∀t∈GSQ

Pt(si)

where

Pt(si) =

{
0 if {si} v t

v′

leaves(placet(si))o(placet(si))
otherwise

Now we have to show that

P (SQ, S) =
1

suppST ∗(SQ)
×

∑
∀t∈GSQ

Pt(S) ≤ c
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where

Pt(S) =

{
0 if S v t

v∏
∀si∈S′

leaves(placet(si))o(placet(si))
otherwise

First of all we show that
P (SQ, S) ≤ P (SQ, si) (1)

To this end we show that ∀t ∈ GSQ
, i.e., for each trajectory selected by the quasi-identifier

sequence SQ, Pt(S) ≤ Pt(si).
To do this, we analyze the three possible cases:

(a) “each sensitive place si ∈ S = {s1, . . . , sh} is generalized in the semantic trajectory
t with the same ancestor”: this implies that in t there are m ≥ h occurrences of the
same generalized place and so S′ = {si ∈ S|∀j 6= i.placet(si) 6= placet(sj) ∧ sj ∈ S}
contains one of the si places. In this case, we have

Pt(S) =
{

0 if {si} v t
v

leaves(placet(si))m otherwise

Pt(si) =

{
0 if {si} v t

v′

leaves(placet(si))m otherwise

It is easy to derive that Pt(S) ≤ Pt(si) because the denominators of the two formulas
are equal and v′ ≥ v.

(b) “for each sensitive place si ∈ S the value of placet(si) is different and in the semantic
trajectory t there is only one occurrence for each value”: this implies that S = S′ =
{si ∈ S|∀j 6= i.placet(si) 6= placet(sj)}. In this case we have:

Pt(S) =

{
0 if S v t

1∏
∀si∈S′

leaves(placet(si))
otherwise

Pt(si) =
{

0 if {si} v t
1

leaves(placet(si))
otherwise

We can observe that Pt(S) ≤ Pt(si) because the numerators of the two formulas are
equal and the denominator of Pt(S) is greater than the one of Pt(si).

(c) “for each sensitive place si ∈ S in the semantic trajectory t there can be more than
one occurrence of placet(si)”: this implies that S′ = {si ∈ S|∀j 6= i.placet(si) 6=
placet(sj)} ⊂ S. We can rewrite the set S in the following way: S = {S1, . . . , Sm}
with m ≤ h where each Si = {sj ∈ S|placet(si) = placet(sj) and si ∈ S}. Moreover,
it easy to see that Pt(S) = Pt(S1) × Pt(S2) × Pt(Sm). We also know, as shown in
the point (a), that Pt(Si) ≤ Pt(sij ) for each sij ∈ Si therefore we can conclude that
Pt(S) ≤ Pt(s1j )× Pt(s2j )× Pt(smj ) and therefore Pt(S) ≤ Pt(sij ).

Since, we shown P (SQ, S) ≤ P (SQ, si) and we know P (SQ, si) ≤ c the lemma follows.

Theorem 15. Given a semantic trajectory dataset ST and a protection probability threshold to be
guaranteed c ∈ [0, 1], the CAST algorithm defined in 1 produces a dataset ST ∗ that is a c-safe
version of ST .
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Proof. The correctness of the theorem is implied by the Lemma 14. Indeed, CAST algorithm
generates groups of m semantic trajectories which are identical with respect to the quasi-
identifier sequence SQ. For each group it guarantees, by construction, that for each sensi-
tive place si belonging to a sensitive place sequence in the group, we have P (SQ, si) ≤ c; by
Lemma 14 we can also derive that P (SQ, S) ≤ c. As a consequence the theorem follows.

5.2 Complexity Analysis

In this section we study the complexity of the CAST algorithm. In the following analysis
we use the same notation of the Algorithm 1 and introduce some new measures: n is the
size of the the semantic trajectory database ST , l is the maximum length of the semantic
trajectories in terms of the number of places and k is the maximum number of trajectories
with the same size. Therefore, considering the different parts of the Algorithm 1, we have:

SuppressFalseSP: this function computes the support of each place visited by the user
applying a temporal constraint to detect workplaces, this can be done in linear time
w.r.t. the number of users’ trajectories, but since it is done for all the users this covers
the whole dataset and then the complexity is O(n).

Ordering by length: a merge sort is used, therefore the complexity is O(n log n);

Extraction of trajectory subsets : considering that the database is sorted by length, this
operation is very simple and can be done in a constant time. We represent it with
O(c).

FindBestGroup: given a subset of trajectories K the algorithm analyzes the m-permutations
of K. For the complexity analysis we consider the worst case where every set K con-
tains the maximum number of trajectories k, therefore the number of m-permutations
is d = k(k − 1)(k − 2) . . . (k − m + 1) and then the complexity of this step becomes
O(d).

Generalization: the selected semantic trajectories are generalized to guarantee the c-safety
analyzing each place; in this case considering the worst case where the length of the
trajectories is l the complexity becomes O(l ×m).

To compute the overall complexity it is important to take into consideration that the last
two operations are repeated b n

mc times obtaining:

O(n) + O(n log n) + O(
n

m
(d + lm)) = O(n + n log n) + O(

n

m
d + nl) = O(n log n +

n

m
d + nl)

It is important to notice that in real cases the average length of semantic trajectories is
small due the fact that they represent only the stops occurring in places described by the
taxonomy PTax. Moreover, the m value is usually small due the fact that a high value
leads to a stronger generalization which decreases the resulting dataset usefulness. These
aspects will be highlighted in Section 6.

6 Experimental Evaluation

This section summarizes the results of running CAST to anonymize two different trajectory
datasets, both representing GPS traces of private cars. The first dataset has been collected in
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the center of Milano, a city in the north of Italy, whereas the second one has been collected
in a wider area which includes Pisa, a small city in the center of Italy1. Details on the two
dataset are depicted in Table 1. These two datasets, despite being the same kind of data,
present different characteristics. In fact the Milano dataset covers a smaller area compared
to the Pisa dataset, therefore the latter one results more spatially sparse. In addition, the
taxonomies used for the two experiments are different. The taxonomy used in the Pisa case
study is larger in number of concepts, levels and leaves (i.e. places instances). We will see
later, when discussing the plots, that these characteristics affect the quality of the results.
In the experiments we have analyzed the following aspects: (a) the data quality after the
data transformation by measuring the quality of the sequential patterns extracted from the
anonymized data; (b) the disclosure probability on the data; and (c) the runtime execution
of the proposed algorithm. Before going into the details of the two case studies, we give
some preliminary definitions of the measures we used to evaluate the data quality.

Dataset N. trajecto-
ries

Avg length of
traj (Km)

Covered area
(Km2)

Avg Stops per
Traj

Avg. Sensitive
Stops per Traj

Milano 6225 8.977 386.021202 5.2 1.28
Pisa 7231 16.502 4675.936938 7.1 1.63

Table 1: Statistics about the experimental datasets

6.1 Measuring the quality of the sequential pattern results

To determine how sequential pattern results of the original dataset are preserved after the
anonymization phase, we designed ad hoc quality measures: coverage coefficient and distance
coefficient.

Definition 16 (Covered Predicate). Given two sequential patterns P = p1 . . . ph and T =
t1 . . . tm and a privacy place taxonomy PTax := 〈C,HC, λ〉, the covered predicate is defined
as:

covered(P, T, PTax ) =
{

true if (h = m) ∧ ∀k=1...h(pk = tk ∨HC(pk, tk))
false otherwise

Definition 17 (Coverage Coefficient). Given two sets of sequential patterns P , P∗ and a
privacy place taxonomy PTax , the coverage coefficient is a value in [0, 1] defined as:

coverage(P,P∗, PTax ) =
|CovSet(. . .)|

|P|

where

CovSet(P,P∗, PTax ) = {P ∈ P|∃ P ∗ ∈ P∗. covered(P, P ∗, PTax ) = true}

Intuitively, the coverage coefficient measures how many patterns extracted from the non-
anonymized dataset are covered at least by the patterns extracted from the anonymized
dataset with a certain level of generalization. It’s important to notice that the coverage
does not measure how much the patterns are generalized, but only if they are covered by a

1The two datasets have been collected by OctoTelematics Spa and they are not public available
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pattern obtained from the anonymized dataset or not. This means that a pattern composed
by place generalized to the root of the taxonomy (i.e. 〈Place P lace P lace〉) will cover all
the patterns with the same length. We have defined three levels of coverage:

• Coverage upper bound considers the whole set of patternsP∗
ub extracted from the anonymized

dataset.

• Coverage considers a subset of the patternsP∗, extracted from the anonymized dataset,
which does not include the patterns composed only of root items.

• Coverage lower bound considers only the subset of patterns P∗
lb, extracted from the

anonymized dataset, which does not contain any root item.

The aim of these three levels is to better describe which kind of generalization is per-
formed and the consequences on the patterns, including or not the room items. We recall
that the presence of the root item indicates that we loose the knowledge about the stop
place. The distance coefficient is a measure that represents the distance between the set
of patterns extracted from the original dataset and the set of patterns extracted from the
anonymized dataset. The definition of this coefficient is very similar to the generalization
cost. The difference consists in the fact that when we generalize a dataset of trajectories
we keep a correspondence between the original trajectory and the anonymized one. In-
stead, in the case of patterns extracted from the two versions of the dataset (original and
anonymized), we do not know a priori which pattern is the generalized version of a spe-
cific pattern since we loose the one-to-one correspondence. In other words, given a pattern
extracted from the original dataset, we can have a set of patterns extracted from the anony-
mous dataset that can be its generalized version. Therefore, the distance coefficient definition
has to take into consideration this fact. In particular, for each pattern extracted from the
original dataset, this measure computes the distance from the pattern extracted from the
anonymous dataset and that minimizes the distance value (Definition 11 or Definition 12).

Definition 18 (Distance coefficient). Let P , P∗ and PTax be the set of sequential pat-
terns extracted from the original dataset, the set of sequential patterns extracted from an
anonymized dataset and a privacy place taxonomy, respectively. The distance coefficient is a
value in [0, 1] defined as:

Dis(P,P∗, PTax ) =

∑
Pi∈P MinP∗

j
∈P∗(distance(Pi, P

∗
j , PTax ))

|P|
This measure shows a different aspect of the effect that the data transformation has on the

patterns. Indeed, it expresses the cost of transforming a pattern from the non-anonymized
dataset to a pattern extracted from the anonymized one. In other words, it measures how
much information we loose, from the semantical point of view, when we apply sequential
pattern to the anonymized dataset. In the following we use the terms DistanceH coefficient
and DistanceL coefficient to denote the Distance coefficient that uses the Hops-based distance
and Leaves-based distance, respectively.

In the following, we study how these two measures may vary depending on different
settings of the problem in two different experiments.

6.2 Case study on Milan urban area

In this section we illustrate the effects of the anonymization process on the sequential pat-
terns extracted from the datasets using Coverage and Distance Coefficients. We have ap-
plied the CAST algorithm on a dataset containing the movements of 17000 moving cars in
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Milan urban area, collected through GPS devices in one week (Figure 3). This is a sample of
data donated by a private company [26] devoted to collect them as a service for insurance
companies.

Figure 3: Milan urban area trajectories dataset (left) and the Points Of Interest, blue indi-
cates the non-sensitive and red the sensitive ones (right)

Starting from the original dataset containing GPS traces, we have computed the semantic
trajectories detecting the stops as described in Section 2. The set of places has been down-
loaded manually selecting the Points of Interest from Google Earth [10]. Figure 3 shows a
plot of sensitive (red squares) and non-sensitive places (blue squares). The taxonomy used
in the experiment is represented in Figure 2 with 530 instances of places (leaves) instead of
the 14 leaves depicted in that figure. In the taxonomy the red nodes represent the places
considered sensitive. We have obtained a dataset of 6225 semantic trajectories with an av-
erage length equal to 5.2 stops. We have run the sequential pattern mining algorithm on
both the original semantic trajectories dataset and the anonymized versions varying the
minimum support threshold value (parameter of the mining algorithm).

A complete view of how the results change varying the parameters of CAST algorithm
is presented in Figure 4, Figure 5 and Figure 6. Here, we have compared the results us-
ing the two distance functions, Hops-based Distance (DistanceH ) and Leaves-based Distance
(DistanceL). Figure 4(b) and Figure 4(d) highlight the fact that the generalization have
a double effect on the patterns: (i) the frequency of generalized places increases, (ii) the
frequency of leaf places of the taxonomy decreases. Therefore, with a high support thresh-
old the difference between the patterns created and removed by the generalization phase
is positive and this increases the size of the resulting patterns set. However, after a cer-
tain threshold, due to the smaller number of generalized places, the decrease of patterns
becomes predominant. We notice a reduction of patterns with lower support and this is
accentuated by the cut of semantic trajectories during the anonymization process. These
effects are highlighted also in Figure 5(c): we notice that, decreasing the support, the cov-
erage coefficient tends first to increase and then to decrease. From the comparison of the
two distances it is clear that the Hops-based distance produces more patterns than the Leaves-
based Distance. This is due to the fact that using the Leaves-based Distance the algorithm
tends to not generalizing the subtrees with high number of leaves or rather generalize faster
the subtrees with a low number of leaves. This behavior tends to produce a greater number
of distinct items and therefore a low number of patterns. For the same reason, the lower
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(a) c = 0.3, distance = DistanceH , support = 0.8% (b) c = 0.3, m = 15, distance = DistanceH

(c) c = 0.3, distance = DistanceL, support = 0.8% (d) c = 0.3, m = 15, distance = DistanceL

Figure 4: Number of patterns extracted from Milan Data varying the group size and the
support threshold.

bound of the number of patterns decreases since the subtrees with a low number of leaves
reaches faster the root item. Figures 4(a) & 4(c) demonstrate this effect.

In Figure 5 we illustrate how the coverage coefficient changes varying the group size, the
c-safety and the support threshold. In Figures 5(a) & 5(d) the coverage lower bound gives us
another hint of how the patterns are transformed after the anonymization using the two
different distance functions. We can notice that, using the Hops-based distance and when the
group size is between 5 and 20, they are generalized without root items (the presence of
root items means we completely lost the information on the stop place). When the group
size exceeds 20, the patterns contain at least one root item, therefore the lower bound cov-
erage value decreases fast. In the other case, using the Leaves-based Distance, it is likely
that the place is generalized to the root when its subtree has a low number of leaves. As a
consequence, the lower bound decreases when the group size has value 5.

In the other hand all the cases shown in Figure 5 the coverage value of Leaves-based
Distance is greater than the Hops-based Distance even if, as shown before, the number of
patterns extracted is lower. In other words, from these results emerges that the Leaves-
based Distance leads to a more intelligent anonymization which maintains the patterns.
Furthermore the analysis of the average distance in Figure 6 highlights that the patterns
are not only better covered using the Leaves-based Distance but also the distance is lower.
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(a) c = 0.3, distance = DistanceH , support = 0.8% (b) m = 15, distance = DistanceH , support = 0.8%

(c) c = 0.3, m = 15, distance = DistanceH (d) c = 0.3, distance = DistanceH , support = 0.8%

(e) m = 15, distance = DistanceL, support = 0.8% (f) c = 0.3, m = 15, distance = DistanceL

Figure 5: Study of the coverage on Milan Data varying the group size, the c-safety threshold
and the support threshold.

6.3 Case study on Pisa

In this section we illustrate an experiment similar to the previous one on a dataset with
different characteristics. The Pisa dataset contains the movements of 25078 moving cars in
Pisa and the surrounding area which covers almost a quarter of Tuscany. Data is collected
from the same provider of the Milano dataset. The dataset and the points of interest used
in the taxonomy are plotted in a map in Figure 7. The main differences between Pisa and
Milano experiments are three: (i) the size of the dataset, since the Pisa dataset is smaller
than the Milano one; (ii) since the spatial area where the movements have been collected
is wider than Milano, Pisa dataset and corresponding places are more sparse, and (iii) the
taxonomy used in the Pisa experiment is deeper and larger than the previous one, contain-
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(a) c = 0.3, support = 0.8% (b) m = 15, support = 0.8% (c) m = 15, c = 0.3

Figure 6: Study of the coefficient distance value varying the group size and the c-safety
threshold and the support threshold.

ing 851 stop places (Figure 8). Similarly to the previous case, red subtrees represent the
sensitive places. We have computed the semantic trajectories from the Pisa dataset with
the new taxonomy obtaining 7231 trajectories with an average length of 7.1 stops.

Figure 7: Pisa trajectories dataset (left) and the Points Of Interest, blue indicates the non-
sensitive ones and red the sensitive ones (right)

Figure 9 shows that the number of patterns is quite lower even if the dataset is bigger
than the previous one. Figure 9(d) highlights that using the Leaves-based Distance the
number of patterns is always below the original ones. Moreover, the Leaves-based Distance
maintains a very high coverage w.r.t. the Hops-based Distance as shown in Figures 10(c)
& 10(f). This experiment mainly confirmed the results obtained for the Milan urban area.
In some cases some behaviors appear accentuated, such as the case illustrated in Figure 10
where we can get evidence of the lower bound effects of the Leaves-based Distance.

6.4 Measuring the Disclosure Probability

In this section we want to study empirically the disclosure probability of a sensitive place
by an hypothetical attacker which knows some of the quasi-identifiers of an specific user.
This probability is the actual c-safety which is guaranteed in the anonymized dataset. We
generated 10,000 instances of attacks and we computed the average of those probabilities.
In the experiments we varied three parameters of the CAST algorithm, i.e., the c-safety
threshold, group size and the distance function. We replicated these experiments for the
two datasets. The overall result is that, generally, the empiric disclosure probability is
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Figure 8: The taxonomy used in the experiments on Pisa dataset.

(a) c = 0.3, distance = DistanceH , support = 0.8% (b) c = 0.3, m = 15, distance = DistanceH

(c) c = 0.3, distance = DistanceL, support = 0.8% (d) c = 0.3, m = 15 distance = DistanceL

Figure 9: Number of patterns extracted from Pisa Data varying the group size and the
support threshold.

lower than the given c-safety threshold. In particular, Figure 12 highlights that the prob-
ability to infer the sensitive place given one quasi-identifier place is below 0.03 and then
the probability increases when the number of known places augments; this is due to the
fact that the set of semantic trajectories containing the exact sequence of known quasi-
identifiers becomes smaller. Another effect to be noticed is that when the group parameter
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(a) c = 0.3, distance = DistanceH , support = 0.8% (b) m = 15, distance = DistanceH , support = 0.8%

(c) c = 0.3, m = 15, distance = DistanceH (d) c = 0.3, distance = DistanceL, support = 0.8%

(e) m = 15, distance = DistanceL, support = 0.8% (f) c = 0.3, m = 15, distance = DistanceL

Figure 10: Study of the coverage on Pisa dataset varying the group size, the c-safety thresh-
old and the support threshold.

becomes higher the probability decreases. Indeed, in this case, the semantic trajectories be-
comes more generalized by the algorithm, thus increasing the possibility of having similar
anonymized trajectories. This effect becomes more evident in the Pisa dataset (Figure 13)
where we have a larger taxonomy in terms of number of leaves and abstraction levels. We
also highlight the fact that the results using the the two distance functions, Hops-based
and Leaves-based, is similar. The only difference results from the experiments on Pisa case
study, where the anonymized dataset using the leaves-based distance tends to generalize a
smaller set of places (Figure 15).
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(a) c = .3, support = 0.8% (b) m = 15, support = 0.8% (c) c = 0.3, m = 15

Figure 11: Study of the distance coefficient varying the group size and the c-safety threshold
and the support threshold.

(a) Milano Dataset, Probability threshold is c=0.3 (b) Milano Dataset, Probability threshold is c=0.6

Figure 12: Results of the experiments that measure the real disclosure probability on Milano
dataset using Hops-based distance

(a) Pisa Dataset - Probability threshold is c=.3 (b) Pisa Dataset - Probability threshold is c=.6

Figure 13: Results of the experiments that measure the real disclosure probability on Pisa
dataset using the Hop-based distance

6.5 Runtime Analysis

The CAST algorithm has been implemented using Java 6.0. All experiments has been per-
formed on an Intel Core 2 Duo T6400 with a 2.00GHz CPU over a Windows platform. We
will now assess the total time needed to generate a c-safe database of semantic trajectories.
Figure 16 reports the timings for anonymizing Milan dataset by using CAST and the Hops-
based distance. We show the runtime behavior of CAST algorithm for different values of
the size of the generalized groups and for various c-safety values. As expected, Figure
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(a) Milano Dataset - Probability threshold is c=.3 (b) Milano Dataset - Probability threshold is c=.6,
Leaves-based distance labelfig:KnownProb2F

Figure 14: Results of the experiments that measure the real disclosure probability on Milano
dataset suing Leaves-based distance the

(a) Pisa Dataset - Probability threshold is c=.3 (b) Milano Dataset - Probability threshold is c=.6

Figure 15: Results of the experiments that measure the real disclosure probability on Pisa
dataset using the Leaves-based distance

16(a) shows that when the size of the groups increases, the algorithm requires less execu-
tion time. This is due to the fact that bigger groups correspond in less groups to be handled.
Analogously, Figure 16(b) shows that the execution time decreases when the c-safety value
is higher. This behavior can be explained with the fact that a higher protection (that is,
lower values of c) requires more generalization and so more time. We only show the exe-
cution time on Milan data with the use of Hops-based distance since the results obtained
by using the Leaves-based distance and those obtained on Pisa dataset are very similar.

7 Related work

Many research studies have focused on the design of techniques for privacy-preserving
data mining and for privacy-preserving data publishing [4, 3, 23]. The basic operation for
data publishing is to replace personal identifiers with pseudonyms. However, in [29] au-
thors showed that this simple operation is insufficient to protect privacy. They proposed
k-anonymity to make each record indistinguishable from at least k − 1 other records thus
protecting data against the linking attack. The k-anonymity framework is the most pop-
ular method for data anonymization and, for relational datasets, is based on the attribute
distinction among quasi identifiers (attributes that could be used for linking with external in-
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(a) Disclosure Probability threshold is c=.3 (b) The size of groups is m=10

Figure 16: Execution Time of CAST

formation) and sensitive attributes (information to be protected) [31]. Although it has been
shown that finding an optimal k-anonymization is NP-hard [19] and that k-anonymity has
some limitations [17, 16], this framework is still very relevant and it is often used in the
studies on privacy issues in transactional databases [33, 13] and in location-based services
(LBSs) [12, 20, 21], as well as on the anonymity of trajectories [2, 25, 35, 22].

In [33] authors study the k-anonymization problem of set-valued data and define the
novel concept of km-anonymity. They assume an a priori distinction between sensitive
items and quasi-identifier and provide a method based on item generalization in a bottom-
up enumerative manner. In [13] instead authors present a top-down local recoding method
using the same assumptions in [33], but they focus on a stronger privacy guaranty, the
complete k-anonymity. These methods present all the limitations deriving from the k-
anonymity that are addressed by the concept of l-diversity [17]. The method presented
in [9] solve the l-diversity problem efficiently for transactional datasets with a large num-
ber of items per transaction. This work distinguishes between non-sensitive and sensitive
attributes.

In [2], the authors propose the notion of (k, δ)-anonymity for moving object databases,
where δ represents the possible location imprecision. The authors also proposed an ap-
proach, called Never Walk Alone based on trajectory clustering and spatial translation. In
[25] Nergiz et al. addressed privacy issues regarding the identification of individuals in
static trajectory datasets. They provide privacy protection by first enforcing k-anonymity
and then randomly reconstructing a representation of the original dataset. This two works
do not account for any notion of quasi-identifiers. In [35] different moving objects may
have different quasi-identifiers and thus, anonymization groups associated with different
objects may not be disjoint. Therefore, an innovative notion of k-anonymity based on spa-
tial generalization is provided in order to generate anonymity groups that satisfy the novel
notion of k-anonymity: Extreme Union and Symmetric Anonymization. This work differs
from ours in two aspects. First, in our privacy model the set of quasi-identifiers is global
and is chosen by a domain expert who provides the place taxonomy where the places are
tagged as “sensitive” or “quasi-identifier”. Clearly, the choice and the tagging depends on
the specific application domain. In [35] authors assume that in some way for each user
the set of quasi-identifier is known. Authors suppose for example that the quasi-identifiers
may be chosen by the user while subscribing to a service, or may be part of the users per-
sonalized settings, or they may be found by means of data analysis. Second, their algorithm
for the data transformation is based on spatial generalization because it takes into account
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raw trajectories. In contrast, we apply a generalization of semantic trajectories that uses
a place taxonomy. In other words, we do not apply any geometric transformation but we
simply generalize a concept describing semantically a place with a more general concept
given by the taxonomy.

In [22] authors present a method for the anonymization of movement data combining
the notions of spatial generalization and k-anonymity and they show how the results of
clustering analysis are faithfully preserved.

It is worth noticing that all these approaches deal with the anonymization of trajectories
from the geometric point of view. The main different from geometric-based approaches and
the semantics-based approach presented in this paper is that the latter tends to preserve the
semantics of the visited places while preserving privacy. On the contrary, geometric-based
approaches tend to modify the spatial coordinates of the moving objects.

In [1, 32], suppression-based approaches for trajectory data are suggested. In the first
one, the objective is to sanitize the input database in such a way that a set of sensitive
patterns is hidden. The second one is based on the assumption that different attackers
know different and disjoint portions of the trajectories and the data publisher knows the
attacker’s knowledge. The anonymization is obtained only by means of suppression of the
dangerous observations from each trajectory.

In the context of LBS the work presented in [7] proposes a solution to protect personal
location information when the adversary is aware of the semantic locations. The main differ-
ence between this work and ours is that we anonymize a dataset of semantic trajectories for
a safe publication while [7] anonymizes a user’s location during the communication with
a LBS provider upon a service request.

The frameworks presented in [14, 15] allow to anonymize location data for publication.
Note that location data is different from trajectory data. Indeed, a location dataset is a
collection of pairs composed of user identifier and location while a trajectory dataset is a
collection of pairs composed of user identifier and an ordered list of locations visited by the
users. In [14], given a location dataset and a sensitive event dataset recording events and
their locations, authors study how to anonymize the location dataset w.r.t. the event dataset
in such a way that by joining these two datasets through location, every event is covered by
at least k user. In [15] Krishnamachari et al. define formally the attack model and propose
two algorithms which employ transformations to anonymize the locations of users in the
proximity of sensitive sites. Their attack model is not based on traces of locations.

In general, frameworks for sequence data anonymization can be considered very related
to our approach since semantic trajectories are a particular type of data with a sequential
nature where each place is an item of a sequence. A framework for the k-anonymization
of sequences of regions/locations is presented in [28], where the authors also propose an
instance of their framework which enables protected datasets to be published while pre-
serving the data utility for sequential pattern mining tasks. In this work does not assume
any distinction between quasi-identifier and sensitive item. Indeed, each item can play
both the roles: private information to be protected and quasi-identifier if it is known by
the attacker. In our framework this classification is possible thanks to the use of the tax-
onomy and the tagging of a place as sensitive by a domain expert who, given a domain
application, can choose in that context which are the sensitive places. Lastly, in [34] Valls
et al. consider the problem of preserving privacy for sequence of events, which has similar
characteristic to semantic trajectories data. Their approach finds clusters of records and
then, for each cluster, it constructs a prototype used to substitute the original values in the
masked version of the data of the cluster.
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8 Conclusions and Future Work

In this paper we have investigated the problem of publishing semantic trajectory datasets
while preserving the privacy of the tracked users. Here, the focus is on the semantics of the
visited places distinguishing between sensitive and quasi-identifier places. The introduced
algorithm, called CAST, exploits a taxonomy to generalize the visited places in order to
obtain a c-safe dataset. C-safety expresses the upper bound to the probability to infer that
a given person has visited a sensitive place. The use of a taxonomy encoding domain
knowledge about the places tends to perform a generalization of the visited places that
preserves the semantics of the movement. Through a set of experiments on two real-life
spatio-temporal datasets, we have shown that CAST, while guaranteeing a good protection
through c-safety, also preserves the quality of the sequential pattern analysis.

Further research includes the experimentation of new pattern mining methods on the
anonymized trajectories. Another point that needs to be evaluated is to study how to ex-
tend CAST to deal with semantic trajectories enriched with temporal information. We will
also investigate improved approaches to generate a c-safe version of a dataset of semantic
trajectories, such as an algorithm that does not consider only groups of a fixed size. An-
other important point to take into account in a future work is the personalization of the
quasi-identifier set for each user. Indeed, it would be interesting to understand how our
framework could be adapted in order to allow to each user the specification of the set of
quasi-identifier places.

Moreover, we would like to study a way to take into consideration in our framework the
correlation among leaf nodes during the generalization. This point is very interesting but in
the same time is very challenging because in this context the correlation strongly depends
on the semantic of the concepts represented by the leaf nodes. As a consequence, finding
an automatic way to compute this correlation could be very hard.

Another future research direction goes towards the exploitation of c-safe semantic trajec-
tories dataset for semantic tagging of trajectories. How does the anonymization step affect
the overall results of a trajectory semantic tagging inference? We believe that since the tax-
onomy tends to preserve semantics, the current approach should preserve some degree of
semantics in the trajectory understanding and behavior classification.
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