
TRANSACTIONS ON DATA PRIVACY 5 (2012) 223–251

,

Utility-guided Clustering-based
Transaction Data Anonymization†

Aris Gkoulalas-Divanis∗, Grigorios Loukides∗∗,‡
∗ Information Analytics Lab, IBM Research – Zurich, Switzerland.
∗∗ School of Computer Science & Informatics, Cardiff University, UK.

E-mail: agd@zurich.ibm.com, g.loukides@cs.cf.ac.uk

Abstract. Transaction data about individuals are increasingly collected to support a plethora of ap-
plications, spanning from marketing to biomedical studies. Publishing these data is required by
many organizations, but may result in privacy breaches, if an attacker exploits potentially identify-
ing information to link individuals to their records in the published data. Algorithms that prevent
this threat by transforming transaction data prior to their release have been proposed recently, but
they may incur significant utility loss due to their inability to: (i) accommodate a range of different
privacy requirements that data owners often have, and (ii) guarantee that the produced data will
satisfy data owners’ utility requirements. To address this issue, we propose a novel clustering-based
framework to anonymizing transaction data, which provides the basis for designing algorithms that
better preserve data utility. Based on this framework, we develop two anonymization algorithms
which explore a larger solution space than existing methods and can satisfy a wide range of pri-
vacy requirements. Additionally, the second algorithm allows the specification and enforcement of
utility requirements, thereby ensuring that the anonymized data remain useful in intended tasks.
Experiments with both benchmark and real medical datasets verify that our algorithms significantly
outperform the current state-of-the-art algorithms in terms of data utility, while being comparable in
terms of efficiency.

Keywords. Data Privacy, Anonymization, Transaction Data, Clustering-based Algorithms

1 Introduction

Transaction datasets, containing information about individuals’ behaviors or activities,
are commonly used in a wide spectrum of applications, including recommendation sys-
tems [7], e-commerce [51], and biomedical studies [28]. These datasets are comprised of
records, called transactions, which consist of a set of items, such as the products purchased
by a customer of a supermarket, or the diagnosis codes contained in the electronic medical
record of a patient.
Unfortunately, publishing transaction data may lead to privacy breaches, even when ex-

plicit identifiers, such as individuals’ names or social security numbers, have been removed

†A preliminary version of this work appeared at the 4th EDBT International Workshop on Privacy and
Anonymity in the Information Society (PAIS), March 25, 2011, Uppsala, Sweden.

‡Part of the work was done when the author was at the Health Information Privacy Lab, Vanderbilt University.

223

224 Aris Gkoulalas-Divanis, Grigorios Loukides

prior to data release. This became evident when New York Times journalists managed to
re-identify an individual from a de-identified dataset of search keywords that was released
by AOL Research [3]. The reason such privacy breaches may occur is because potentially
identifying information (e.g., the diagnosis codes given to the individual during a hospital
visit [6]) can be used to link an individual to her transaction in the published dataset, as
explained in the following example.

Example 1. Consider releasing the dataset in Fig. 1(a), which records the items purchased
by customers of a supermarket, after removing customers’ names. This allows an attacker,
who knows that Anne has purchased the items a, b, and c during her visit to this super-
market, to associate Anne with her transaction, since no other transaction in this dataset
contains these 3 items together.

Name Purchased items
Anne a b c d e f
Greg a b e g
Jack a e
Tom b f g

Mary a b
Jim c f

(a)

Purchased items
(a, b, c, d, e, f, g)

(a, b, c, d, e, f, g)

(a, b, c, d, e, f, g)

(a, b, c, d, e, f, g)

(a, b, c, d, e, f, g)

(a, b, c, d, e, f, g)
(b)

....(a,b,c,d,e,f,g).

.... ..g

.

.... ..(d,e,f).

.... ..f.e.d.

....(a,b,c).

.... ..c.b.a

(c)

Purchased items
(a, b, c) (d, e, f, g)

(a, b, c) (d, e, f, g)

(a, b, c) (d, e, f, g)

(a, b, c) (d, e, f, g)

(a, b, c)

(a, b, c) (d, e, f, g)
(d)

Purchased items
(a, b) c (d, e, f)

(a, b) (d, e, f) g
(a, b) (d, e, f)

(a, b) (d, e, f) g
(a, b)

c (d, e, f)
(e)

Purchased items
a (b, c) (d, e, f)

a (b, c) (d, e, f) g
a (d, e, f)

(b, c) (d, e, f) g
a (b, c)

c (d, e, f)
(f)

Figure 1: An example of: (a) original dataset, (b) output of Apriori Anonymization (AA),
(c) item generalization hierarchy, (d) output of COAT, (e) output of PCTA, and (f) output
of UPCTA.

Re-identification is a major privacy threat to individuals’ privacy, which needs to be ad-
dressed for three main reasons. First, this is a requirement to comply with legislation and
regulations that govern data sharing, such as regulations related to medical data shar-
ing [1,2] or the EU Directive on privacy and electronic communications1. Second, avoiding
to forestall re-identification may endanger future data collection [22], for example, in ap-
plications related to the sharing of electronic medical records [28], statistical [22] and video
rental data [33], even when the identified transactions contain no sensitive information.
Last, thwarting identity disclosure allows for better protection of potentially sensitive in-
formation contained in individuals’ transactions. This is because it helps prevent attackers,
whose knowledge is expected to be limited [29, 47, 50], from obtaining additional knowl-
edge needed to infer sensitive information. For instance, having associated Anne with her
transaction, the attacker considered in Example 1 can infer any other item purchased by
Anne.

1http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32002L0058:EN:NOT

TRANSACTIONS ON DATA PRIVACY 5 (2012)

Utility-Guided Clustering-based Transaction Data Anonymization 225

Several methods for anonymizing transaction data have been proposed recently [6, 12, 29,
30, 46, 47, 50], but they all produce solutions that may incur a large amount of information
loss. This is because these methods consider only a small number of possible transforma-
tions to anonymize data and are unable to accommodate specific privacy requirements that
data owners often have. For instance, the method introduced in [19] assumes that an item
in the original data, represented as a leaf-level node in a generalization hierarchy such as
the one shown in Fig. 1(c), can only be replaced by a node lying in the path between itself
and the root of the hierarchy, and that an attacker has knowledge of all items associated
with an individual transaction. This may lead to producing data with unnecessarily low
data utility, particularly when attackers have knowledge of only some of the items that are
associated with an individual, as is the case for transaction data that are high-dimensional
and sparse [29,47,50]. Note that these characteristics of transaction data make it difficult to
use a gamut of methods that have been developed for anonymizing relational data, such
as those proposed in [4, 5, 9, 11, 24, 31, 34, 41].
In this work, we propose a clustering-based approach to anonymizing transaction data

with “low” information loss. Our work makes the following contributions:

• We propose a novel clustering-based framework inspired from agglomerative cluster-
ing [49]. This framework is independent of the way items are transformed and allows
flexible algorithms that can anonymize transactions with low information loss, under
various privacy requirements and utility requirements, to be developed.

• We design two effective and efficient anonymization algorithms based on our
clustering-based framework. Both algorithms explore a large number of possible
data transformations, which helps produce data which incur a small amount of in-
formation loss, and exploit a lazy updating strategy, which is crucial to achieving
efficiency. Our first algorithm (called PCTA) focuses on dealing with privacy require-
ments, while the second one (called UPCTA) additionally ensures that utility require-
ments data owners often have can be expressed and satisfied by the anonymized
result.

• We perform extensive experiments using two benchmark datasets containing click-
stream data, as well as real patient data derived from the Vanderbilt University Med-
ical Center to evaluate our algorithms. The results of our experiments confirm that
both our algorithms significantly outperform the state-of-the-art algorithms [29, 47]
in terms of retaining data utility, while maintaining good scalability.

The rest of this paper is organized as follows. Section 2 provides the necessary back-
ground and discusses related work. Section 3 introduces our clustering-based framework.
In Section 4, we present our anonymization algorithms and, in Section 5, we evaluate them
against the state-of-the-art methods. Finally, Section 6 concludes the paper.

2 Background and related work

In this section, we review transformation strategies for anonymizing transaction data, dis-
cuss measures that capture data utility, and provide an overview of anonymization princi-
ples and algorithms, focusing on those designed for transaction data.

TRANSACTIONS ON DATA PRIVACY 5 (2012)

226 Aris Gkoulalas-Divanis, Grigorios Loukides

2.1 Notation

Let I = {i1, ..., iM} be a finite set of literals, called items. Any subset I ⊆ I is called
an itemset over I, and is represented as the concatenation of the items it contains. An
itemset that has m items, or equivalently a size of m, is called an m-itemset and its size is
denoted with |I|. A dataset D = {T1, ..., TN} is a set of N transactions. Each transaction Tn,
n = 1, ..., N , corresponds to a unique individual and is a pair Tn = ⟨tid, I⟩, where tid is a
unique identifier and I is the itemset. A transaction Tn = ⟨tid, J⟩ supports an itemset I , if
I ⊆ J . Given an itemset I in D, we use sup(I,D) to represent the number of transactions
Tn ∈ D that support I . This set is called the set of supporting transactions of I in D.

2.2 Data transformation strategies

Constructing an anonymous transaction dataset is possible through techniques that trans-
form items. One such technique is perturbation [8, 10], which operates by adding or re-
moving items from individuals’ transactions with certain probability [39]. While the data
produced by perturbation can be used to build accurate data mining models, perturbation
produces falsified data that cannot be analyzed meaningfully at a transaction level. As a
result, perturbation is not suitable for anonymizing data intended to support several ap-
plications, such as in biomedical analysis [10, 28], where data should by no means contain
false observations. On the other hand, the techniques of suppression and generalization
produce data that are not falsified. Both of these techniques can be applied either globally,
in which case all items of the dataset undergo the same type of transformation, or locally,
where items of certain transactions of the dataset are transformed. Suppression is an opera-
tion which removes items from the dataset before it is anonymized [50]. Global suppression
is generally preferred, because it produces data in which all items have the same support
as in the original dataset. This is important in building accurate data mining models using
the anonymized data [50].
Generalization transforms an original dataset D to an anonymized dataset D̃ by mapping

original items in D to generalized items [29,47]. This technique often retains more informa-
tion than suppression, as suppression is a special case of generalization where an original
item is mapped to a generalized item that is not released [29]. Thus, global generalization
can be considered as a mapping function from I to the space of generalized items Ĩ, which
is constructed by assigning each item i ∈ I to a unique generalized item ĩ ∈ Ĩ that contains
i. It is easy to observe that, given an item i that is mapped to a generalized item ĩ, it holds
that sup(i,D) ≤ sup(̃i, D̃), because each transaction of D that supports i corresponds to at
least one transaction of D̃ that supports ĩ. The following example illustrates the concept of
global generalization.

Example 2. Consider Fig. 2 which illustrates the mapping of original items, contained in
the dataset of Fig. 1(a), to the anonymized items of the dataset shown in Fig. 1(e). Based on
this mapping, item a is mapped to the generalized item (a, b), and item c to the generalized
item (c). We note that we may skip notation () from a generalized item when a single item
is mapped to it. The generalized item (a, b) is interpreted as a, or b, or a and b, and appears
in the same transactions as those that have these items in the data of Fig. 1(a). Observe
also that the generalized item (a, b) is supported by 5 transactions of the dataset of Fig. 1(e)
(those that contained a and/or b before the anonymization), while each of the a and b is
supported by 4 transactions of the dataset shown in Fig. 1(a).

TRANSACTIONS ON DATA PRIVACY 5 (2012)

Utility-Guided Clustering-based Transaction Data Anonymization 227

a

b

c

d

e

f

g

(a,b)

(c)

(d,e,f)

(g)

 I

Figure 2: Mapping original to generalized items using global generalization.

2.3 Information loss measures

There are numerous ways to anonymize a transaction dataset, but the one that harms data
utility the least, is typically preferred. To capture data utility, many criteria measure the
information loss that is incurred by generalization based on item generalization hierar-
chies [46,48]. One of them is the Normalized Certainty Penalty (NCP) measure, which was
introduced in [48] and employed in [46, 47]. NCP is expressed as the weighted average
of the information loss of all generalized items, which are penalized based on the num-
ber of ascendants they have in the hierarchy. Other measures are the multiple level mining
loss (ML2), and differential multiple level mining loss (dML2), which express utility based on
how well anonymized data supports frequent itemset mining [46]. However, all the above
measures require the items to be generalized according to hierarchies. A measure that can
be used in the absence of hierarchies and captures the information loss incurred by both
generalization and suppression is Utility Loss (UL) [29], which is defined below.

Definition 1 (Utility loss for a generalized item). The Utility Loss (UL) for a generalized
item ĩ is defined as

UL(̃i) =
2|̃i| − 1

2|I| − 1
× w(̃i)× sup(̃i, D̃)

N

where |̃i| denotes the number of items in I that are mapped to ĩ, and w : Ĩ → [0, 1] is a
function assigning a weight according to the perceived usefulness of ĩ in analysis.

Definition 2 (Utility loss for an anonymized dataset). The Utility Loss (UL) for an
anonymized dataset D̃ is defined as

UL(D̃) =
∑
∀ĩ∈Ĩ

UL(̃i) +
∑

∀suppressed item im∈I

Y(im)

where Y : I → ℜ is a function that assigns a penalty, which is specified by data owners, to
each suppressed item.

UL quantifies information loss based on the size, weight and support of generalized items,
imposing a “large” penalty on generalized items that are comprised of a large number of
“important” items that appear in many transactions. The size is taken into account because
ĩ can represent any of the (2|̃i| − 1) non-empty subsets of the items mapped to it. That is,
the larger ĩ is, the less certain we are about the set of original items represented by ĩ. The
support of ĩ also contributes to the loss of utility, as highly supported items will affect more
transactions, resulting in more distortion. The denominators (2|I| − 1) and N in Definition

TRANSACTIONS ON DATA PRIVACY 5 (2012)

228 Aris Gkoulalas-Divanis, Grigorios Loukides

1 are used for normalization purposes, so that the scores for UL are in [0, 1]. Moreover, a
weight w is used to penalize generalizations exercised on more “important” items. This
weight is specified by the data owner based on the perceived importance of the items to
the subsequent analysis tasks. We note, however, that w can also be computed based on
the semantic similarity of the items that are mapped to a generalized item [21, 29]. The
following example illustrates how UL is computed.

Example 3. Consider that we want to compute the UL score for the generalized item ĩ =
(a, b) in the dataset of Fig. 1(e) that was produced by anonymizing the dataset of Fig. 1(a),
assuming that w(̃i) = 1. Since 2 out of the 7 items of the dataset of Fig. 1(a) are mapped to
the generalized item (a, b), which is supported by 5 out of 6 transactions of the anonymized
dataset of Fig. 1(e), we have that UL(̃i) = 22−1

27−1 × 1× 5
6 ≈ 0.02.

2.4 Principles and algorithms for transaction data anonymization

Anonymization principles have been proposed for various types of data, such as rela-
tional [20, 24, 31, 35], sequential [38], trajectory [15, 23], and graph data [26]. In this section,
we review the privacy principles that have been proposed for anonymizing transaction
data and explain why and how they offer privacy protection from the main threats in data
publishing, namely identity [47] and sensitive itemset disclosure [30, 50]. We also survey
anonymization algorithms that can be used to enforce these principles.

Identity disclosure. A well-established and widely used anonymization principle is k-
anonymity, which was originally proposed for relational data [41,45], but has been recently
adapted to other data types, including sequential [38], mobility [15, 18, 23], and graph data
[26]. He et al. [19] applied a k-anonymity-based principle, called complete k-anonymity, to
transaction datasets, requiring each transaction to be indistinguishable from at least k − 1
other transactions, as explained below.

Definition 3 (Complete k-anonymity). Given a parameter k, a dataset D satisfies complete
k-anonymity when sup(Ij ,D) ≥ k, for each itemset Ij of a transaction Tj = ⟨tidj , Ij⟩ in D,
with j ∈ [1, N].

Satisfying complete k-anonymity guarantees protection against identity disclosure be-
cause it ensures that an attacker cannot link an individual to less than k transactions of
the released dataset, even when this attacker knows all the items of a transaction. To en-
force this principle, He et al. [19] proposed a top-down algorithm, called Partition, that uses
a local generalization model. Partition starts by generalizing all items to the most general-
ized item lying in the root of the hierarchy and then replaces this item with its immediate
descendants in the hierarchy if complete k-anonymity is satisfied. In subsequent itera-
tions, generalized items are replaced with less general items (one at a time, starting with
the one that incurs the least amount of data distortion), as long as complete k-anonymity
is satisfied, or the generalized items are replaced by leaf-level items in the hierarchy. As
mentioned in the Introduction, Partition has two shortcomings that lead to producing data
with excessive information loss: (i) it cannot be readily extended to accommodate various
privacy requirements that data owners may have, since its effectiveness and efficiency de-
pend on the use of complete k-anonymity, and (ii) it explores a small number of possible
generalizations due to the hierarchy-based model it uses to generalize data.
Terrovitis et al. [47] argued that it may be difficult for an attacker to acquire knowledge

about all items of a transaction, in which case protecting all items would unnecessarily

TRANSACTIONS ON DATA PRIVACY 5 (2012)

Utility-Guided Clustering-based Transaction Data Anonymization 229

incur excessive information loss. In response, the authors proposed the km-anonymity
principle, defined as follows.

Definition 4 (km-anonymity). Given parameters k and m, a dataset D satisfies km-
anonymity when sup(I,D) ≥ k, for each m-itemset I in D.

A km-anonymous dataset offers protection from attackers who know up to m items of
an individual, because it ensures that these items cannot be used to associate this individ-
ual with less than k transactions of the released dataset. Terrovitis et al. [47] designed the
Apriori algorithm to efficiently construct km-anonymous datasets. Apriori operates in a
bottom-up fashion, beginning with 1-itemsets (items) and subsequently considering incre-
mentally larger itemsets. In each iteration, the proposed algorithm enforces km-anonymity
using the full-subtree, global generalization model [20]. The same authors have recently
proposed two other algorithms to enforce km-anonymity [46], namely Vertical Partition-
ing Anonymization (VPA) and Local Recoding Anonymization (LRA). These algorithms
operate in the following way. VPA first partitions the domain of items into sets and then
generalizes items in each set to achieve km-anonymity. Next, the algorithm merges the gen-
eralized items to ensure that the entire dataset satisfies km-anonymity. LRA, on the other
hand, partitions a dataset horizontally into sets in a way that would result in low informa-
tion loss when the data is anonymized, and then generalizes items in each set separately,
using local generalization. These algorithms are more flexible than Partition in the sense
that they can be configured to offer protection against attackers who do not know all items
of a transaction, but, contrary to our approach, perform hierarchy-based generalization.
Loukides et al. [29] proposed a privacy principle that imposes a lower bound of k to the

support of combinations of items that need to be protected from identity disclosure. Differ-
ent from previous works, the approach of [29] limits the amount of allowable generalization
for each item to ensure that the generalized dataset remains useful for specific data analysis
requirements. To satisfy this principle, the authors of [29] proposed COAT, an algorithm
that operates in a greedy fashion and employs both generalization and suppression. The
choice of the items generalized by COAT is governed by utility constraints that model data
analysis requirements and correspond to the most generalized item that can replace a set
of items. Thus, COAT allows constructing any generalized item that is not more general
than an owner-specified utility constraint. When such an item is not found, COAT selec-
tively suppresses a minimum number of items from the corresponding utility constraint
to ensure privacy. Our method is similar to COAT in that it addresses the aforementioned
limitations of the approaches of [19, 46, 47], but it preserves data utility better than COAT
due to the use of clustering-based heuristics, as our experiments verify.

Sensitive itemset disclosure. Beyond identity disclosure is the threat of sensitive itemset
disclosure, in which an individual is associated with an itemset that reveals some sensi-
tive information, e.g., purchased items an individual would not be willing to be associ-
ated with. The afore-mentioned principles do not guarantee preventing sensitive itemset
disclosure, since a large number of transactions that have the same generalized item can
all contain the same sensitive itemset. To guard against this type of inferences, several
approaches have been recently proposed. Ghinita et al. [12] developed an approach that
releases transactions in groups, each of which contains public items in their original form
and a summary of the frequencies of the sensitive items, while Cao et al. [6] introduced ρ-
uncertainty, a privacy principle that limits the probability of inferring any sensitive itemset
and a greedy algorithm to enforce it. The proposed algorithm for ρ-uncertainty iteratively
suppresses sensitive items and then generalizes non-sensitive ones using the generalization

TRANSACTIONS ON DATA PRIVACY 5 (2012)

230 Aris Gkoulalas-Divanis, Grigorios Loukides

model of [47].

Identity and sensitive itemset disclosure. Different from [12] and [6], which provide no
protection guarantees against identity disclosure, the works of [50] and [30] are able to
prevent both identity and sensitive itemset disclosure. In particular, Xu et al. [50] proposed
(h, k, p)-coherence, a privacy principle which treats public items similarly to km-anonymity
(the function of parameter p is the same as m in km-anonymity) and additionally limits the
probability of inferring any sensitive item using a parameter h. More recently, Loukides
et al. [30] examined how to anonymize data to ensure that owner-specified itemsets are
sufficiently protected. The authors proposed the notion of PS-rules to effectively capture
privacy protection requirements and designed a generalization-based anonymization algo-
rithm. This algorithm operates in a top-down fashion, starting with the most generalized
transaction dataset, and then gradually replaces generalized items with less general ones,
as long as the data remain protected. Our approach focuses on guarding against identity
disclosure but can be extended to additionally prevent sensitive itemset disclosure. How-
ever, we leave this extension for future work.
Finally, we note that our work is orthogonal to approaches that investigate how to mine

data in a way that the resulting data mining model will preserve privacy [43], or others that
focus on preventing the mining of sensitive knowledge patterns, such as frequent itemsets
[14, 16, 17, 36, 42, 44] or sequential patterns [13], from the released data.

3 Achieving anonymity through clustering

This section presents our clustering-based formulation of the transaction data anonymiza-
tion problem. After introducing the main framework that satisfies detailed privacy re-
quirements, we discuss how this framework can be extended to allow the specification and
enforcement of utility requirements.

3.1 Dealing with privacy requirements

We model the task of anonymizing transaction data as a clustering problem. The latter
problem requires assigning a label to each record of a dataset so that the records that are
similar, according to an objective function, are assigned the same label. A series of pa-
pers, such as [5,25,31], have shown that anonymized relational datasets can be constructed
based on clustering. In these approaches, records that incur low information loss when
anonymized end up in the same cluster, and each cluster needs to contain at least k records
to satisfy k-anonymity. To anonymize a transaction dataset D, in this work, we aim at
solving the following problem.

Problem 1. Construct a set of clusters C of generalized items such that: (i) each cluster
c ∈ C corresponds to a unique generalized item, (ii) C satisfies the owner-specified pri-
vacy constraints, and (iii) the anonymized version D̃ of D, constructed based on C, incurs
minimal Utility Loss.

We note that Problem 1 is fundamentally different from the one considered in [5, 25, 31].
First, clusters are built around generalized items, and not transactions. As a result, a clus-
ter that represents a generalized item ĩ may be associated with more than one transactions,
since it is associated with the supporting transactions of ĩ in D̃. Second, instead of requir-
ing all clusters to have at least k records for achieving k-anonymity, we require the entire

TRANSACTIONS ON DATA PRIVACY 5 (2012)

Utility-Guided Clustering-based Transaction Data Anonymization 231

anonymized dataset D̃ to adhere to a set of specified privacy constraints that can span clus-
ters. A privacy constraint [29] is modeled as a set of potentially linkable items from I and
needs to be satisfied to thwart identity disclosure, as explained below.

Definition 5 (Privacy constraint). A privacy constraint p = {i1, ..., ir} is a set of potentially
linkable items in I. Given a parameter k of anonymity, p is satisfied in D̃ when either
sup(p, D̃) ≥ k or sup(p, D̃) = 0.

It is easy to observe that a set of privacy constraints can be specified to offer protection
based on detailed privacy requirements and, alternatively, on complete k-anonymity [19] or
km-anonymity [47], as explained in [29]. Privacy constraints can be satisfied by generaliza-
tion and suppression. This is because the support of a generalized item in the anonymized
dataset D̃ is greater than or equal to the support of any item mapped to it in the original
dataset D, as discussed in Section 2.2, while suppressed items do not appear in D̃. It is also
worth noting that an attacker does not gain any advantage by using subsets of a privacy
constraint p in linkage attacks, since, for every p′ ⊆ p and anonymized dataset D̃, it holds
that either sup(p′, D̃) ≥ sup(p, D̃) or sup(p′, D̃) = 0. The concept of privacy constraint and
its satisfaction are illustrated in the following example.

Example 4. Consider the privacy constraint {a, d} (which translates to “at least k transac-
tions of the anonymized dataset should be associated with a, or d, or a and d”) and that
k = 4. This privacy constraint is satisfied in the anonymized data of Fig. 1(d) because
the generalized item (a, b, c) ∪ (d, e, f, g) to which a and d are mapped, is supported by 5
transactions.

The clustering-based model we propose aims to satisfy privacy constraints by progres-
sively merging clusters as hierarchical agglomerative clustering algorithms do [49]. Since
the support of a privacy constraint in D̃ can become at least k or 0 as a result of apply-
ing generalization and suppression, respectively, a clustering that satisfies the specified
privacy constraints will eventually be found by following a bottom-up approach that iter-
atively merges clusters formed by the items in D, for any k ∈ [2, N]. This approach initially
considers each original item as a singleton cluster and then iteratively merges singleton
clusters (leading to the corresponding item generalizations) until the privacy constraints
are satisfied. Although there are alternative approaches, such as divisive methods that split
large clusters in a top-down fashion, these approaches have been shown to incur more in-
formation loss than bottom-up methods [48]. Since disparate item generalization decisions
may incur a substantially different amount of information loss, the entire clustering process
is driven by the UL measure, so that the two clusters that lead to minimizing information
loss are merged at each step. This process is illustrated in Example 5.

Example 5. Assume that the original dataset of Fig. 4(a) needs to be anonymized to satisfy
the privacy constraints p1 = {i1} and p2 = {i5, i6} for k = 3. First, a set of singleton clus-
ters are constructed, each built around one of the (generalized) items (i1) to (i7), as shown
in Fig. 3. That is, the data of Fig. 4(a) are transformed as shown in Fig. 4(b). Since the
specified privacy constraints are not satisfied in the dataset of Fig. 4(b), the current (sin-
gleton) clusters are subsequently merged. Among the different merging options, assume
that merging the clusters for (i1) and (i2) incurs the minimum amount of utility loss, as
measured by UL. This merging operation leads to a new cluster for the generalized item
(i1, i2), which is associated with transactions T1 and T2, as shown in Fig. 3. Note that the
latter cluster will always have a higher UL score than each of the clusters from which it

TRANSACTIONS ON DATA PRIVACY 5 (2012)

232 Aris Gkoulalas-Divanis, Grigorios Loukides

� �

��

��

�� ��

�����

�����

�����������

�
�	

	�
�
�

�
�
�
�
��
�

��	���
�����	������	��	���������	�����
����	������������� �����������

�� ��

�!

��

��

��

��

�� ��

��

��

�!

Figure 3: Data anonymization as a clustering problem.

tid Items
T1 i1 i2 i7
T2 i2 i7
T3 i3 i5
T4 i4 i6 i7
T5 i5 i7

(a)

tid Items
T1 (i1) (i2) (i7)

T2 (i2) (i7)

T3 (i3) (i5)

T4 (i4) (i6) (i7)

T5 (i5) (i7)
(b)

tid Items
T1 (i1, i2) (i7)

T2 (i1, i2) (i7)

T3 (i3) (i5)

T4 (i4) (i6) (i7)

T5 (i5) (i7)
(c)

tid Items
T1 (i1, i2) (i7)

T2 (i1, i2) (i7)

T3 (i3, i4) (i5)

T4 (i3, i4) (i6) (i7)

T5 (i5) (i7)
(d)

tid Items
T1 (i1, i2, i3, i4) (i7)

T2 (i1, i2, i3, i4) (i7)

T3 (i1, i2, i3, i4) (i5, i6)

T4 (i1, i2, i3, i4) (i5, i6) (i7)

T5 (i5, i6) (i7)
(e)

Figure 4: Example of original data and its different anonymizations for Fig. 3.

was constructed. Still, the dataset produced by this clustering, shown in Fig. 4(c), does not
satisfy the privacy constraints, because (i1, i2) is associated with less than k transactions.
As a next step, the clusters for (i3) and (i4) are merged to create the cluster (i3, i4) that has
the lowest UL score. This produces the dataset of Fig. 4(d). After additional cluster merg-
ing operations, shown in Fig. 3, the clusters (i1, i2, i3, i4), (i5, i6), and (i7), are obtained and
not extended any further, as they correspond to the dataset of Fig. 4(e) which satisfies the
specified privacy constraints. This dataset can be safely released.

An important benefit of adopting our clustering-based framework when designing
anonymization algorithms is that it is general enough to accommodate different generaliza-
tion models and anonymization requirements. This allows algorithms that exploit several
generalization and privacy models to be developed. In terms of generalization models,

TRANSACTIONS ON DATA PRIVACY 5 (2012)

Utility-Guided Clustering-based Transaction Data Anonymization 233

the soft (overlapping) clustering solution that is produced in the transaction-space by our
clustering-based framework, leads to the generation of a cover instead of a partition of the
original transactions, thereby allowing each produced cluster to be anonymized differently.
This is important because it can lead to anonymizations with significantly less information
loss [46]. Furthermore, the proposed model can be easily employed to anonymize data
that satisfy stringent privacy and utility constraints, as we will discuss shortly. In any case,
we note that finding the clustering that incurs minimum information loss is an NP-hard
problem (the proof follows from [29]), and thus one needs to resort to heuristics to tackle it.

3.2 Incorporating utility requirements

Producing an anonymized dataset based on Problem 1, or by using the approaches of [12,
19, 47], guarantees that the dataset is protected from identity disclosure, but not that it
will be useful in intended applications. This is because, even when the level of incurred
information loss is minimal, generalized items that are difficult to be interpreted in these
applications may be produced during anonymization. For instance, the dataset of Fig. 4(e)
is not useful to a data recipient who is interested in counting the number of individuals
associated with i3, because the generalized item (i1, i2, i3, i4) may be interpreted as any
non-empty subset of the itemset i1i2i3i4. In fact, this requirement can only be satisfied
when no other item is mapped to the same generalized item as i3.
To satisfy such requirements, we employ the notion of utility constraint [29]. Utility con-

straints specify the generalized items that each item in the original dataset is allowed to
be mapped to, effectively limiting the amount of generalization these items can receive.
The specification of utility constraints is performed by data owners based on application
requirements. The concepts of utility constraint and its satisfiability are explained in Defi-
nitions 6 and 7, and illustrated in Example 6.

Definition 6 (Utility constraint set). A utility constraint set U is a partition of I that specifies
the set of allowable mappings of the items from I to those of Ĩ. Each element of U is called
a utility constraint.

Definition 7 (Utility constraint set satisfiability). Given a parameter s and an anonymized
dataset D̃, a utility constraint set U is satisfied if and only if (1) for each non-empty ˜im ∈ Ĩ,
∃u ∈ U such that all items from I in D that are mapped to ˜im are also contained in u, and
(2) the fraction of items in I contained in the set of suppressed items S is at most s%.

Utility constraint
u1 = {i1, i2}
u2 = {i3}
u3 = {i4}
u4 = {i5, i6, i7}

Table 1: An example of a
utility constraint set.

� �

��

��

��

��
���

����

��������

��	���
�����

����

���

���

���

��������

����

����

��	�

��
�

����

��

��

	�

	�

	�

	�

	�
	�
������

����
�

Figure 5: Utility-guided anonymization as a
clustering problem.

TRANSACTIONS ON DATA PRIVACY 5 (2012)

234 Aris Gkoulalas-Divanis, Grigorios Loukides

Example 6. Consider the utility constraint set U = {u1, u2, u3, u4}, which is shown in Table
1, and let s = 0%. Satisfying U requires mapping i1 and i2 to the same generalized item,
or releasing them intact. Furthermore, i3 and i4 need to be released intact, and each of the
items i5, i6, and i7 must be mapped to a unique generalized item to which no item other
than these three items can be mapped. The anonymized dataset of Fig. 4(c) satisfies U ,
because all items i1 to i7 are generalized as specified by the utility constraints u1 to u4, and
none of these items is suppressed.

Notice that we limit the level of suppression incurred during anonymization by bounding
the number of items that can be suppressed using a threshold s. Although suppression
is not necessary to satisfying privacy requirements when there are no utility constraints,
as in Problem 1, it is essential and beneficial when there are strict utility requirements.
This is because it offers our approach the ability to deal with items that are difficult to be
generalized together with others in a way that satisfies the privacy and utility constraints,
without violating the latter constraints.
An anonymized dataset that satisfies a utility constraint set ensures that the number of

transactions in the original dataset D that support at least one item mapped to a generalized
item ĩ is equal to the number of transactions that support ĩ in the anonymized dataset
D̃. Producing such datasets is crucial in many applications, e.g., in biomedicine, where
counting the number of patients suffering from any type of a certain disease is required [32].
In what follows, we explain how our clustering-based framework can be enhanced to

produce anonymized data that respect the specified utility constraints. Since the set of
utility constraints U is a partition of I (i.e., every item in I belongs in exactly one utility
constraint), we can view the set of generalized items constructed by mapping all items
in each u ∈ U to the same generalized item ĩũ as a clustering CU . Also, we state that a
cluster c ∈ C is subsumed by a cluster c′ ∈ CU when, for each set of items that is mapped
to a generalized item ĩ (represented as c ∈ C), this set of items is mapped to exactly one
generalized item ĩ′ (represented as c′ ∈ CU). Thus, a utility constraint set is satisfied when
each cluster c ∈ C is subsumed by exactly one cluster c′ ∈ CU , except those clusters in C that
correspond to suppressed items. The following example illustrates these concepts.

Example 7. Consider the utility constraint set U of Example 6 and that s = 0%. Each of the
utility constraints u1, u2, u3, and u4 in U corresponds to a different cluster c′1,c′2, c′3, and c′4,
which are the elements of the clustering CU , as shown in Fig. 5. The utility constraint u4, for
example, corresponds to c′4, which represents the generalized item (i5, i6, i7). The cluster
c4, which belongs to the clustering C, is subsumed by c′4, because the generalized item (i5)
is mapped to the generalized item (i5, i6, i7). Since each other cluster in C is subsumed by
one cluster in CU , the utility constraint set U is satisfied.

The problem of anonymizing a transaction dataset D based on the specified utility con-
straints can be expressed as follows.

Problem 2. Construct a set of clusters C such that: (i) each cluster c ∈ C corresponds to
a unique generalized item or a suppressed item, (ii) for each cluster c ∈ C that is mapped
to a generalized item, there exists exactly one cluster in CU that subsumes c, (iii) there are at
most s% items in I that correspond to suppressed items, (iv) C satisfies the owner-specified
privacy constraints, (v) the anonymized version D̃ of D, constructed based on C, incurs
minimal Utility Loss.

Problem 2 is based on Problem 1 and remains NP-hard (the proof follows from [29]). How-
ever, its feasibility depends on the specification of utility and privacy constraints and that

TRANSACTIONS ON DATA PRIVACY 5 (2012)

Utility-Guided Clustering-based Transaction Data Anonymization 235

of threshold s. To see this, assume that we need to anonymize the dataset of Fig. 4(a),
using a single privacy constraint p = {i1}, a utility constraint set comprised of one utility
constraint u1 = {i1}, and parameters k = 2 and s = 0%. Observe that the support of i1
in this dataset is 1, so p is not satisfied, but neither generalizing nor suppressing i1 would
satisfy both p and U . Nevertheless, as we will show in our experiments, using benchmark
and real patient data, anonymizations that satisfy various privacy and utility requirements
without incurring “high” information loss can be found.

4 Clustering-based anonymization algorithms

In this section, we present two algorithms that employ our clustering-based framework
for anonymizing transaction data with “low” information loss. Section 4.1 presents
our Privacy-Constrained Clustering-based Transaction Anonymization (PCTA) algorithm,
which attempts to solve Problem 1, while Section 4.2 introduces a heuristic algorithm that
tackles Problem 2 to produce anonymized data that satisfy utility requirements.

4.1 PCTA algorithm

Dealing with Problem 1 is possible by mapping original items to generalized items in order
to construct a clustering, and then examining whether this clustering satisfies the specified
privacy constraints. This is conceptually similar to how Apriori [47] and Partition [19]
algorithms work. However, this strategy is likely to incur excessive information loss, be-
cause generalization is not “focused” on the items that are potentially linkable and need to
be protected. For this reason, we opt for a different strategy that exploits the knowledge
of which items need to be protected by targeting items contained in privacy constraints.
Our strategy considers the imposed privacy constraints one at a time, selecting the privacy
constraint p that is most likely to require a small amount of generalization in order to be
satisfied. Then, it examines all possible cluster merging decisions that correspond to items
in p and applies the one that leads to the minimum utility loss. The same process continues
until the privacy constraint is satisfied, at which point the next non-satisfied privacy con-
straint is selected. Both this strategy and a novel lazy cluster-updating heuristic are used
in the PCTA algorithm, whose pseudocode is provided in Algorithm 1.
The PCTA algorithm works as follows. In steps 1 and 2, we initialize D̃ to D and a pri-

ority queue PQ to the set containing all the specified privacy constraints P . PQ orders
the constraints with respect to their support in decreasing order and implements the usual
operations top(), which retrieves the privacy constraint that corresponds to an itemset with
the maximum support in D̃ without deleting it from PQ, and pop(), which deletes the pri-
vacy constraint with the maximum support from PQ. In steps 3 − 27, PCTA iteratively
merges clusters to increase the support of each privacy constraint in PQ to at least k, so
that the constraint is satisfied in D̃. More specifically, we assign the privacy constraint that
lies in the top of PQ to p (step 4) and update its items to reflect the generalizations that
have occurred in previous iterations of PCTA (steps 5 − 11). This lazy updating strategy
significantly improves the runtime cost of PCTA, as experimentally verified in Section 5.2.4,
since the generalized items that are needed to update p are retrieved without scanning the
anonymized dataset. This leads to considerably better efficiency, particularly when many
clusters need to be merged, as is the case for large k values. For this purpose, we use a
hashtable H which has each item of D̃ as key and the generalized item that corresponds
to this item as value. Then, we remove the privacy constraint p from PQ if its support is

TRANSACTIONS ON DATA PRIVACY 5 (2012)

236 Aris Gkoulalas-Divanis, Grigorios Loukides

Algorithm 1 PCTA(D,P, k)

input: Dataset D, set of privacy constraints P , parameter k
output: Anonymous dataset D̃

1. D̃ ← D
2. PQ← privacy constraints of P
3. while (PQ ̸= ∅)
4. p← PQ.top()
5. foreach (im ∈ p) //lazy updating strategy
6. if (H(im) ̸= im)

7. ˜im ← H(im)

8. if (˜im ∈ p)
9. p← p\im
10. else
11. p← (p\im) ∪ ˜im
12. if (sup(p, D̃) ≥ k) //p is protected
13. PQ.pop()
14. else // apply generalization to protect p
15. while (sup(p, D̃) < k)
16. µ← 1 // maximum UL score
17. foreach (im ∈ p)
18. is ← arg min

∀ir∈H,ir ̸=im
UL((im, ir))

19. if (UL((im, is)) < µ)
20. µ← UL((im, is))
21. σ ← {im, is}
22. ĩ← (im, is) // generalize σ (cluster merging)
23. update transactions of D̃ based on σ

24. p← (p ∪ {̃i})\σ // update p to reflect the generalization of im to σ
25. foreach (ir ∈ σ)
26. H(ir)← ĩ
27. PQ.pop()

28. return D̃

at least k (step 13), in which case p is satisfied by the current clustering solution, or we
merge clusters to protect it (steps 11 − 27), if p is still unprotected in D̃. In steps 16 − 21,
we select the best cluster merging decision among the clusters that affect the support of
privacy constraint p. This is achieved by identifying the item im that can be generalized
with another item is such that the resultant item σ incurs the least amount of information
loss as measured by UL. When the best pair of clusters is found, PCTA performs the merg-
ing of the clusters by generalizing the items’ pair σ to construct a new generalized item ĩ

(step 22). Following that, the affected transactions in D̃, the items in privacy constraint p,
and the hashtable H , are all updated to reflect the new generalization (steps 23− 26). Steps
15 − 26 are repeated until the support of p becomes at least k, in which case the current
clustering satisfies the privacy constraint p. Then, p is removed from PQ in step 27. Finally,
the dataset D̃ is returned in step 28.
To illustrate the operation of the PCTA algorithm, we provide the following example.

Example 8. Consider applying PCTA to the dataset of Fig. 1(a), assuming a single privacy
constraint p = {a, b, e, f} and k = 3. In steps 1 and 2, we initialize the anonymized dataset
D̃ to the original dataset D and add p to the priority queue PQ. Then, in step 4, we retrieve

TRANSACTIONS ON DATA PRIVACY 5 (2012)

Utility-Guided Clustering-based Transaction Data Anonymization 237

p from PQ and subsequently (steps 5-11) iterate over its items a, b, e and f , replacing each of
them with its value in the hashtable H . Since these items have not been generalized before,
their values in H contain the items themselves and thus p is left intact. Next, in step 12, we
compute the support of p in D̃, and, since it is less than k, we execute the loop beginning
in step 15. In steps 16 to 21, PCTA considers all possible cluster merging operations that
affect the privacy constraint p. Put in terms of item generalization decisions, the algorithm
considers generalizing each of the items {a, b, e, f} together with any other item in the
domain I and constructs the generalized item (d, f), which incurs the minimum utility loss
among all the examined generalized items. Next, the algorithm assigns (d, f) to ĩ, in step
22, and updates D̃, p and H (steps 23-26). Specifically, the generalized item (d, f) replaces d,
and the values of d and f in H are updated. Since the support of p remains less than k after
generalizing d to (d, f), the loop of step 15 is executed again. Now, PCTA considers a, b, e,
and (d, f) for generalization and constructs (a, b) that has the minimum utility loss. While
p is updated to (a, b)e(d, f), it still has a support of less than k, and thus PCTA performs
another iteration of the loop of step 15. In the latter, p is updated to {(a, b)(d, e, f)}, which
has a support of 3. Thus, in step 27, p is removed from PQ and, in step 28, the anonymized
dataset of Fig. 1(e) is returned. Figure 6 illustrates the anonymization process.

� �

��

��

��

��

��

��

��

��

��

�� ��

��

��

��

��

��

��������������

��������

	

�
��

��
�
�
�

��
�

��

��

���������
��������
�������
���������
�
�� ����!��
����������

���"� �#�����

��� �"� ��� �#� ��� ��� ���

Figure 6: Anonymizing the data of Fig. 1(a) using PCTA

Cost analysis. Assuming that we have |P| privacy constraints and each of them has |p|
items, PCTA takes O(|P|× |p| × (N + |I|2)) time. This is because we need O(|P|× log(|P|))
time to build PQ and O(|P|×|p|×(log(|I|)+N+|I|2)) time for steps 3−27. More specifically,
the lazy updating strategy for the items of p in steps 5− 11 takes O(|p| × log(|I|)) time, the
support computation of p in step 12 takes O(|p| × N) time, and the while loop in step 15
takes O(|p| × (|I| − 1) + (|p| − 1)× (|I| − 2) + . . .+ 1× 1) ≈ O(|p| × |I|2) time.

4.2 UPCTA algorithm

In this section, we present UPCTA (Utility-guided Privacy-constrained Clustering-based
Transaction Anonymization), an algorithm that takes into account both privacy and utility

TRANSACTIONS ON DATA PRIVACY 5 (2012)

238 Aris Gkoulalas-Divanis, Grigorios Loukides

requirements when anonymizing transaction data. Specifically, given an original dataset
D, sets of utility and privacy constraints P and U , respectively, and parameters k and s,
UPCTA selects the privacy constraint p ∈ P that is supported by the most transactions in
D, among the privacy constraints whose support is in (0, k) (splitting ties arbitrarily), and
generalizes and/or suppresses items in p to satisfy it. Different from PCTA, generalization
in UPCTA is performed in accordance with the utility constraint set U , while suppression
is also employed when generalization alone is not sufficient to protect p. The process is
repeated for all privacy constraints until P is satisfied.
UPCTA begins by initializing the original dataset D̃ to D, and a priority queue PQ, which

orders its elements in decreasing order of support, to the set containing all the privacy
constraints in P (steps 1-2). Then, it selects the privacy constraint p provided by PQ.top()
(step 4) and updates its items to reflect the cluster merging operations and/or suppressions
that may have occurred in previous iterations (steps 5 − 13). If p is supported by at least
k or none of the transactions of D̃, it is removed from PQ, as it is satisfied (steps 14-15).
Otherwise, UPCTA keeps merging clusters until either p is satisfied or further merging
would violate the set of utility constraints U (steps 17− 31).
Specifically, the algorithm first identifies the utility constraint up in which im belongs and

then selects the best cluster merging decision, among the clusters that affect the support
of p (steps 20-25). That is, a merging that has the lowest UL sore and does not violate U .
When the best pair of clusters that can be merged is found, UPCTA performs their merging
by generalizing this pair of items to construct a new generalized item ĩ (step 26). Following
that, the affected transactions in D̃, the items in p and those in u, and the hashtable H are
all updated to reflect the merging operation (steps 27-31). Steps 17− 31 are repeated until p
is satisfied or until every utility constraint in U contains a single item (or generalized item).
If p is not satisfied after UPCTA exits from the loop of step 17, no further generalization

that satisfies U is possible, and we apply suppression (steps 33-40). In steps 33-34, the
algorithm identifies the item (or generalized item) im that is contained in p and has the
minimum support in D̃ (breaking ties arbitrarily), and the utility constraint u that contains
im. Then, it removes im from u, D̃, and p, and updates H to reflect the suppression of im
(steps 35-38). Next, UPCTA checks if the number of suppressed items exceed s% (step 39).
In this case, it notifies data owners that the utility constraint set U has been violated and
terminates (step 40), otherwise it proceeds to checking whether p is now satisfied. After
protecting p, UPCTA removes it from PQ (step 41) and continues to examining the next
element of PQ, if there is one. Finally, the dataset D̃ is returned (step 42).
The example below illustrates how UPCTA works.

Example 9. Consider applying UPCTA on the dataset of Fig. 1(a), using a set of privacy
constraints P = {p1, p2}, where p1 = {b, e, f} and p2 = {g}, a set of utility constraints
U = {u1, u2, u3, u4}, where u1 = {a}, u2 = {b, c}, u3 = {d, e, f}, and u4 = {g}, and the
parameters k and s to be 3 and 15%, respectively. Both p1 and p2 are inserted into PQ, and
UPCTA retrieves p2, because it is supported by more transactions than p1 in the dataset of
Fig. 1(a). Since p2 is not satisfied, the algorithm attempts to generalize the item g contained
in it. As the utility constraint u4 = g, and 2 transactions of the dataset of Fig. 1(a) support
p2, the algorithm has to suppress g. After that, p1, the next privacy constraint retrieved
by PQ, is considered. This privacy constraint is not satisfied, u3 = {d, e, f}, and both e
and f are contained in p1. Consequently, UPCTA considers all possible cluster merging
operations that do not violate U for the items in p1 (i.e., generalizing b with c, e with d or
f , and f with e or d), and constructs the generalized item (d, f), which has the lowest UL
score. Then, UPCTA assigns (d, f) to ĩ and updates D̃, p, u3, and H . Next, the clustering

TRANSACTIONS ON DATA PRIVACY 5 (2012)

Utility-Guided Clustering-based Transaction Data Anonymization 239

Algorithm 2 UPCTA(D,U ,P, k, s)

input: Dataset D, set of utility constraints U , set of privacy constraints P , parameters k and s

output: Anonymous dataset D̃
1. D̃ ← D
2. PQ← privacy constraints of P
3. while (PQ ̸= ∅)
4. p← PQ.top()
5. foreach (im ∈ p) //lazy updating strategy
6. if (H(im) = ∗) //im has been suppressed in a previous iteration
7. p← p\im
8. else if (H(im) ̸= im) //im has been generalized in a previous iteration
9. ˜im ← H(im)

10. if (˜im ∈ p)
11. p← p\im
12. else
13. p← (p\im) ∪ ˜im
14. if (sup(p, D̃) ≥ k or sup(p, D̃) = 0) //p is protected
15. PQ.pop()
16. else // apply utility-guided generalization and/or suppression to protect p
17. while (sup(p, D̃) ∈ (0, k) and ∃u ∈ U s.t. it contains at least 2 items, one of which is in p)
18. µ← 1 // maximum UL score
19. foreach (im ∈ p)
20. up ← the utility constraint from U that contains im
21. if (u contains at least 2 items, one of which is in p)
22. is ← arg min

∀ir∈H,ir ̸=im
UL((im, ir))

23. if (UL((im, is)) < µ)
24. µ← UL((im, is))
25. σ ← {im, is}
26. ĩ← (im, is) // generalize σ (cluster merging)
27. update transactions of D̃ based on σ

28. p← (p ∪ {̃i})\σ
29. u← u ∪ ĩ\σ
30. foreach (ir ∈ σ)
31. H(ir)← ĩ

32. while (sup(p, D̃) ∈ (0, k)) // apply suppression to protect p
33. im ← argmin

∀ir∈p
sup(ir, D̃)

34. u← the utility constraint from U that contains im
35. u← u\{im}
36. p← p\{im}
37. Remove im from all transactions of D̃
38. H(im)← ∗ //update H to reflect the suppression of im
39. if more than s% of items are suppressed
40. Error: U is violated
41. PQ.pop()

42. return D̃

merging operation that has the minimum utility loss and does not violate u2 is performed,
since p1 is still not satisfied and u2 = {(d, f), e}. This results in creating (d, e, f) and in
updating p1, u2, and H . After that, UPCTA generalizes b to (b, c), since p1 is not satisfied

TRANSACTIONS ON DATA PRIVACY 5 (2012)

240 Aris Gkoulalas-Divanis, Grigorios Loukides

and u1 = {(b, c), e}. At this point, the privacy constraint p2 = {(b, c,), (d, e, f)} is satisfied
and the dataset of Fig. 1(f) is returned.

Cost analysis. Assuming that we have |P| privacy constraints and each of them has |p|
items, as well as |U| utility constraints, each of which has |u| items, UPCTA takes O(|P | ×
|p|× (log(|I|)+ |u|2+N × (|U|+ |u|+ |p|+N))) time. Specifically, we need O(|P|× log(|P|))
time to build PQ and O(|P|× |p|× (log(|I|)+ |u|2+N × (|U|+ |u|+ |p|+N))) time for steps
17− 40. This is because steps 5-13 take O(|p| × log(|I|)) time, step 14 takes O(|p| ×N) time,
and the while loops in steps 17 and 32 take O(|p|×|u|2) and O(|p|×N×(|U|+ |u|+ |p|+N))
time, respectively.

5 Experimental Evaluation

In this section, we present extensive experiments to evaluate the ability of our algorithms
to produce anonymized data with low information loss efficiently. Section 5.1 discusses
the experimental setup and the datasets we used. In Section 5.2, we evaluate PCTA against
Apriori [47] and COAT [29], in terms of data utility, under several different privacy re-
quirements, as well as in terms of efficiency. The results of this set of experiments confirm
that PCTA is able to retain much more data utility when compared to the other methods
under all tested scenarios, as: (1) it allows aggregate queries to be answered many times
more accurately (e.g., the average error for PCTA was up to 26 and 6 times lower than that
of Apriori and COAT respectively), and (2) it incurs an amount of information loss that is
smaller by several orders of magnitude, while being scalable with respect to both dataset
size and k. In Section 5.3, we compare UPCTA against COAT, the algorithm that, to the best
of our knowledge, is the only one that can take into account utility requirements. Our re-
sults show that UPCTA produces data that permit up to 3.8 times more accurate aggregate
query answering than those generated by COAT, incurs significantly lower information
loss, and scales similarly to COAT.

5.1 Experimental setup and data

To allow a direct comparison between the tested algorithms, we configured all of them
as in [29] and transformed the anonymized datasets produced by them by replacing each
generalized item with the set of items it contains. We used a C++ implementation of Apri-
ori provided by the authors of [47] and implemented COAT and our algorithms in C++.
All methods ran on an Intel 2.8GHz machine with 4GB of RAM and were tested using a
common framework to measure data utility that was built in Java.
We compared the amount of data utility preserved by all methods by considering three

utility measures: Average Relative Error (AvgRE) [12, 24], Utility Loss (UL) [29], and Nor-
malized Certainty Penalty (NCP) [48]. AvgRE captures the accuracy of query answering on
anonymized data. It is computed as the mean error of answering a workload of queries and
reflects the average number of transactions that are retrieved incorrectly as part of query an-
swers. To measure AvgRE, we constructed workloads comprised of 1000 COUNT() queries
that retrieve the set of supporting transactions of 5-itemsets, following the methodology
of [12,29]. The items participating in these queries were selected randomly from the gener-
alized items.
In our experiments, we used the datasets BMS-WebView-1 and BMS-WebView-2 (referred

to as BMS1 and BMS2 respectively), which contain click-stream data from two e-commerce

TRANSACTIONS ON DATA PRIVACY 5 (2012)

Utility-Guided Clustering-based Transaction Data Anonymization 241

sites and have been used extensively in evaluating prior work [12, 29, 47]. In addition, we
used 2 real datasets that contain de-identified patient records derived from the Electronic
Medical Record (EMR) system of Vanderbilt University Medical Center [40]. These datasets
are referred to VNEC and VNECKC and were introduced in [28]. The datasets we used have
different characteristics, shown in Table 2.

Dataset N |I| Max. size of T Avg. size of T
BMS1 59602 497 267 2.5
BMS2 77512 3340 161 5.0
VNEC 2762 5830 25 3.1

VNECKC 1335 305 3.1 5.0
Table 2: Description of used datasets

5.2 Evaluation of PCTA

In this section, we compare the PCTA algorithm to Apriori and COAT. For a fair compari-
son, COAT was configured to neglect the specified utility constraints i.e, to allow an item
to be mapped to any possible generalized item.

5.2.1 Data utility for km-anonymity

We first evaluated data utility assuming that combinations of up to 2 items need to be
protected. Thus, we set m = 2 and configured COAT and PCTA by using all 2-itemsets
as privacy constraints. We also used various k values in [2, 50]. Fig. 7 illustrates the result
with respect to AvgRE for BMS1 and Fig. 8 for BMS2. It can be seen that PCTA allows at
least 7 and 2 times (and up to 26 and 6 times) more accurate query answering than Apriori
and COAT respectively. Furthermore, PCTA incurred significantly less information loss
to anonymize data, as shown in Fig. 9, which illustrates the UL scores for BMS1. These
results verify that the clustering-based search strategy that is employed by PCTA is much
more powerful than the space partitioning strategies of Apriori and COAT.

 0

 5

 10

 15

 20

 25

 30

2 5 10 25 50

A
vg

R
E

k

Apriori
COAT
PCTA

Figure 7: AvgRE vs. k (BMS1)

 1

 2

 3

 4

 5

 6

2 5 10 25 50

A
vg

R
E

k

Apriori
COAT
PCTA

Figure 8: AvgRE vs. k (BMS2)

 1e+010

 1e+015

 1e+020

 1e+025

 1e+030

 1e+035

 1e+040

2 5 10 25 50

U
L

k

Apriori
COAT
PCTA

Figure 9: UL vs. k (BMS1)

Another observation is that the performance of both Apriori and COAT in terms of pre-
serving data utility deteriorates much faster when k increases. This is mainly because these
algorithms create much larger groups of items than PCTA. Specifically, Apriori considers
fixed groups of items, whose size depends on the fan-out of the hierarchy, and general-
izes together all items in each group, while COAT partitions items based on the utility loss
incurred by generalizing a single item in a group.
Next, we assumed that combinations of 1 to 3 items need to be protected using k = 5.

Figure 10 illustrates the result with respect to AvgRE for BMS1. Observe that the amount of

TRANSACTIONS ON DATA PRIVACY 5 (2012)

242 Aris Gkoulalas-Divanis, Grigorios Loukides

 0

 5

 10

 15

 20

 25

 30

1 2 3

A
vg

R
E

m

Apriori
COAT
PCTA

Figure 10: AvgRE vs. m
(BMS1)

 1
 100000
 1e+010
 1e+015
 1e+020
 1e+025
 1e+030
 1e+035
 1e+040

1 2 3

U
L

m

Apriori
COAT
PCTA

Figure 11: UL vs. m (BMS1)

 1
 1e+010
 1e+020
 1e+030
 1e+040
 1e+050
 1e+060

1 2 3

U
L

m

Apriori
COAT
PCTA

Figure 12: UL vs. m (BMS2)

information loss incurred by all methods decreases as a function of the number of items
attackers are expected to know, as more generalization is required to preserve privacy.
However, PCTA outperformed Apriori and COAT in all cases, permitting queries to be
answered with an error that is at least 8 times lower than that of Apriori and 1.6 times lower
than that of COAT. Similar results were obtained when UL was used to capture data utility,
as can be seen in Figs. 11 and 12 for BMS1 and BMS2, respectively. This demonstrates
that protecting incrementally larger itemsets as Apriori does, leads to significantly more
generalization compared to applying generalization to protect that items in each privacy
constraint as in the PCTA algorithm.

5.2.2 Data utility for privacy constraints with various characteristics

For this set of experiments, we constructed 5 sets of privacy constraints: PR1,...,PR5, com-
prised of 2-itemsets, and we assumed that they need protection with k = 5. Each set
contains a certain percentage of randomly selected items, which is 2% for PR1, 5% for PR2,
10% for PR3, 25% for PR4, and 50% for PR5. The AvgRE scores for all tested methods, when
applied on BMS1, are shown in Fig. 13.

 0

 5

 10

 15

 20

PR1 PR2 PR3 PR4 PR5

A
vg

R
E

Privacy Requirements

Apriori
COAT
PCTA

Figure 13: AvgRE vs. PR
(BMS1)

 1e+015

 1e+020

 1e+025

 1e+030

 1e+035

 1e+040

PR1 PR2 PR3 PR4 PR5

U
L

Privacy Requirements

Apriori
COAT
PCTA

Figure 14: UL vs. PR (BMS1)

 1e+010
 1e+015
 1e+020
 1e+025
 1e+030
 1e+035
 1e+040

PR6 PR7 PR8 PR9

U
L

Privacy Requirements

Apriori
COAT
PCTA

Figure 15: UL vs. PR (BMS1)

Since Apriori does not take into account the specified privacy constraints, its performance
remains constant in this experiment and is the worst among the tested algorithms. PCTA
outperformed both Apriori and COAT, achieving up to 26 times lower AvgRE scores than those
of Apriori and 2.5 times lower than those of COAT. Furthermore, the difference in AvgRE scores
between PCTA and COAT increases as policies become more stringent, which confirms the
benefit of our clustering-based strategy. The ability of PCTA to preserve data utility better
than Apriori and COAT was also confirmed when UL was used, as shown in Fig. 14.
Next, we constructed 4 sets of privacy constraints PR6,...,PR9 that are comprised of 1000

itemsets and need to be protected with k = 5. A summary of these constraints appears in

TRANSACTIONS ON DATA PRIVACY 5 (2012)

Utility-Guided Clustering-based Transaction Data Anonymization 243

Table 3. Figure 15 illustrates the NCP scores for BMS1 and Fig. 16 the UL scores for BMS2.
As can be seen, PCTA consistently outperformed Apriori and COAT, being able to incur
less information loss. This again demonstrates the ability of the clustering-based strategy
employed in PCTA to preserve data utility.

Privacy Constraints % of items % of 2-itemsets % of 3-itemsets % of 4-itemsets

PR6 33% 33% 33% 1%

PR7 30% 30% 30% 10%

PR8 25% 25% 25% 25%

PR9 16.7% 16.7% 16.7% 50%

Table 3: Summary of sets of privacy constraints PR6, PR7, PR8 and PR9

 1e+020

 1e+030

 1e+040

 1e+050

 1e+060

PR6 PR7 PR8 PR9

U
L

Privacy Requirements

Apriori
COAT
PCTA

Figure 16: UL vs. PR (BMS2)

 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2
 0.22
 0.24
 0.26

2 5 10 25 50

N
C

P

k

Apriori
COAT
PCTA

Figure 17: NCP vs. k (BMS1)

 1e+080

 1e+100

 1e+120

 1e+140

 1e+160

 1e+180

2 5 10 25 50
U

L

k

Apriori
COAT
PCTA

Figure 18: UL vs. k (BMS2)

5.2.3 Data utility for complete k-anonymity

We evaluated the effectiveness of the methods when privacy is enforced through complete
k-anonymity, which requires protecting all items of a transaction. To achieve this, we con-
figured Apriori by setting m to the size of the largest transaction of each dataset, and COAT
and PCTA by generating itemsets using the Pgen algorithm introduced in [29]. As shown in
Figs. 17 and 18, which present results for NCP and UL respectively, PCTA performs better
than Apriori and COAT, while Apriori and COAT incur much information loss particularly
when k is 10 or larger. In fact, in these cases, these algorithms created generalized items
whose size was much larger than those constructed by PCTA. This again shows that PCTA
is more effective in retaining information loss.

5.2.4 Efficiency

We used BMS1 to evaluate the runtime efficiency of PCTA, assuming that all 2-itemsets
require protection. We first tested scalability in terms of dataset size, using increasingly
larger subsets of BMS1. Since the size and items of a transaction can affect the runtime of
the algorithms, we require the transactions of a subset to be contained in all larger sub-
sets. From Fig. 19 we can see that PCTA is more efficient than Apriori, because it discards
protected itemsets, whereas Apriori considers all m-itemsets, as well as their possible gen-
eralizations. This incurs more overhead, particularly for large datasets. However, PCTA is
less efficient than COAT, as it explores a larger number of possible generalizations. Thus,
PCTA performs a larger number of dataset scans to compute the support of privacy con-
straints and measure UL during generalization.

TRANSACTIONS ON DATA PRIVACY 5 (2012)

244 Aris Gkoulalas-Divanis, Grigorios Loukides

Finally, we examined how PCTA scales with respect to k and report the result in Fig. 20.
Observe that Apriori becomes slightly more efficient as k increases, while the runtime of
both PCTA and COAT follows an opposite trend. This is because Apriori generalizes entire
subtrees of items, while both PCTA and COAT generalize one item (or generalized item)
at a time. Nevertheless, PCTA was found to be up to 44% more efficient than COAT. This is
attributed to the lazy updating strategy that it adopts. Since data needs to be scanned after
each item generalization, the savings from using this strategy increase as k gets larger, as
discussed in Section 4.1.

 0

 2

 4

 6

 8

 10

1K 10K 25K 50K

T
im

e
(s

ec
)

Dataset Size

Apriori
COAT
PCTA

Figure 19: Runtime vs. |D|

 0

 10

 20

 30

 40

 50

 60

5 25 50 100 200

T
im

e
(s

ec
)

k

Apriori
COAT
PCTA

Figure 20: Runtime vs. k

5.3 Evaluation of UPCTA

We now test UPCTA against COAT with respect to both data utility and efficiency. Both
algorithms were configured using the same utility constraints, k = 5, and s = 15%. We
do not report the results for Apriori and PCTA, because these algorithms do not guarantee
data utility. We assume 5 sets of utility constraints: UR1, . . . , UR5. Each of these sets
contains groups of a certain number of semantically close items (i.e., sibling leaf-level nodes
in the hierarchy). The mappings between each set of utility constraints and the size of these
groups are shown in Table 4. Note that UR1 is quite restrictive, since it requires a small
number of items to be generalized together. Thus, both algorithms had to suppress a small
percentage of items, which was the same for both algorithms and less than s, to satisfy UR1.

Utility size of group of
Requirement semantically close items

UR1 25

UR2 50

UR3 125

UR4 250

UR5 500

Table 4: Summary of sets of utility constraints UR1, UR2, ..., UR5

5.3.1 Data utility for km-anonymity

We first evaluated data utility when COAT and UPCTA were configured to achieve 52-
anonymity. Figs. 21 and 22 show the result with respect to AvgRE for BMS1 and BMS2,
respectively. Note that the AvgRE scores of UPCTA were lower (better) than those of COAT
by 61% for BMS1 and by 33% for BMS2 (on average). Furthermore, UPCTA outperformed

TRANSACTIONS ON DATA PRIVACY 5 (2012)

Utility-Guided Clustering-based Transaction Data Anonymization 245

COAT with respect to the UL measure, as can be seen in Figs. 23 and 24. These results sug-
gest that the clustering-based heuristic we propose enables UPCTA to produce anonymized
data that satisfy the specified utility requirements, permit more accurate query answering,
and retain more information than those generated by COAT.

 0

 2

 4

 6

 8

 10

UR1 UR2 UR3 UR4 UR5

A
vg

R
E

Utility Requirements

COAT
UPCTA

Figure 21: AvgRE vs. UR
(BMS1)

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

UR1 UR2 UR3 UR4 UR5

A
vg

R
E

Utility Requirements

COAT
UPCTA

Figure 22: AvgRE vs. UR
(BMS2)

 1e+010

 1e+015

 1e+020

 1e+025

 1e+030

 1e+035

UR1 UR2 UR3 UR4 UR5

U
L

Utility Requirements

COAT
UPCTA

Figure 23: UL vs. UR (BMS1)

 1e+010

 1e+015

 1e+020

 1e+025

 1e+030

 1e+035

UR1 UR2 UR3 UR4 UR5

U
L

Utility Requirements

COAT
UPCTA

Figure 24: UL vs. UR (BMS2)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

UR1 UR2 UR3 UR4 UR5

A
vg

R
E

Utility Requirements

COAT
UPCTA

Figure 25: AvgRE vs. UR
(BMS1)

 0

 0.5

 1

 1.5

 2

UR1 UR2 UR3 UR4 UR5

A
vg

R
E

Utility Requirements

COAT
UPCTA

Figure 26: AvgRE vs. UR
(BMS2)

5.3.2 Data utility for privacy constraints with various characteristics

Subsequently, we configured COAT and UPCTA using the set of privacy constraints PR5,
which is the most stringent among those considered in Section 5.2.2. The AvgRE scores for
BMS1 and BMS2 and sets of utility constraints UR1 to UR5 are reported in Figs. 25 and 26,
respectively. These results together with those of Figs. 27 and 28, which show the UL scores
for BMS1 and BMS2, confirm the superiority of UPCTA in retaining data utility. It is also
interesting to observe that the scores in both AvgRE and UL for UPCTA increase much less
than those for COAT. This is because UPCTA examines a larger number of generalizations
than COAT, which leads UPCTA to finding solutions with better data utility.
We also applied UPCTA and COAT using the set of privacy constraints PR9, which re-

quires protecting 50% of items selected uniformly at random (see Section 5.2.2). The results
with respect to AvgRE and UL are illustrated in Figs. 29 to 32, and they are qualitatively
similar to those of Figs. 25 to 28.

5.3.3 Data utility for complete k-anonymity

We compared UPCTA and COAT in terms of data utility when they enforce complete 5-
anonymity. As illustrated in Fig. 33, which shows the result for AvgRE and for BMS2, UP-
CTA outperformed COAT across all tested utility requirements, allowing up to 2.5 times
more accurate aggregate query answering. In addition, we observed that the higher level

TRANSACTIONS ON DATA PRIVACY 5 (2012)

246 Aris Gkoulalas-Divanis, Grigorios Loukides

 1e+010

 1e+015

 1e+020

 1e+025

 1e+030

 1e+035

UR1 UR2 UR3 UR4 UR5

U
L

Utility Requirements

COAT
UPCTA

Figure 27: UL vs. UR (BMS1)

 1e+010

 1e+015

 1e+020

 1e+025

 1e+030

UR1 UR2 UR3 UR4 UR5

U
L

Utility Requirements

COAT
UPCTA

Figure 28: UL vs. UR (BMS2)

 0

 0.5

 1

 1.5

 2

UR1 UR2 UR3 UR4 UR5

A
vg

R
E

Utility Requirements

COAT
UPCTA

Figure 29: AvgRE vs. UR
(BMS1)

 0

 0.5

 1

 1.5

 2

UR1 UR2 UR3 UR4 UR5

A
vg

R
E

Utility Requirements

COAT
UPCTA

Figure 30: AvgRE vs. UR
(BMS2)

1e+005

 1e+010

 1e+015

 1e+020

 1e+025

 1e+030

UR1 UR2 UR3 UR4 UR5

U
L

Utility Requirements

COAT
UPCTA

Figure 31: UL vs. UR (BMS1)

1e+005

 1e+010

 1e+015

 1e+020

 1e+025

 1e+030

 1e+035

UR1 UR2 UR3 UR4 UR5

U
L

Utility Requirements

COAT
UPCTA

Figure 32: UL vs. UR (BMS2)

of privacy provided by complete k-anonymity forced both algorithms to incur more infor-
mation loss compared to the case of PR9, which requires protecting only certain items. For
example, the mean of the AvgRE scores for COAT was 4.4 times larger when this algorithm
enforced complete 5-anonymity instead of PR9, while the same statistic for UPCTA was 4.8
times larger. The result with respect to UL for BMS2 are shown in Fig. 34 and confirm the
above observations.

 0

 2

 4

 6

 8

 10

UR1 UR2 UR3 UR4 UR5

A
vg

R
E

Utility Requirements

COAT
UPCTA

Figure 33: AvgRE vs. UR
(BMS2)

 1e+020
 1e+040
 1e+060
 1e+080
 1e+100
 1e+120
 1e+140
 1e+160

UR1 UR2 UR3 UR4 UR5

U
L

Utility Requirements

COAT
UPCTA

Figure 34: UL vs. UR (BMS2)

5.3.4 Data utility in electronic medical record publishing

Having examined the effectiveness of UPCTA using benchmark data, we proceed to inves-
tigating whether it can produce anonymized data that permit accurate analysis in a real-
world scenario, which involves publishing the VNEC and VNECkc datasets. Each trans-
action in these datasets corresponds to a different patient and contains one or more ICD-9
codes 2. An ICD-9 code denotes a disease of a certain type (e.g., 493.01 corresponds to Ex-

2ICD-9 is the official system of assigning health insurance billing codes to diagnoses in the United States.

TRANSACTIONS ON DATA PRIVACY 5 (2012)

Utility-Guided Clustering-based Transaction Data Anonymization 247

trinsic asthma with exacerbation), and, in most cases, more than one ICD-9 codes correspond
to the same disease (e.g, 492.00, 493.01, and 493.02 all correspond to Asthma).
The goal of publishing VNEC and VNECKC is to enable studies related to the 18 diseases

considered in [32] (i.e., data recipients need to be able to accurately determine the num-
ber of patients suffering a disease), while keeping information loss at a minimum to allow
general biomedical analysis. At the same time, the association between transactions and
patients’ identities, which is possible as ICD-9 codes are contained in publicly available
hospital discharge summaries [27], must be prevented. To examine whether COAT and
UPCTA can achieve both of these goals, we configured them by specifying a set of 18 util-
ity constraints, one for each disease. We also considered all ICD-9 codes a patient was
diagnosed with during a single hospital visit as potentially identifying following [28], and
used s = 2% and various k values in {2, 5, 10, 25}.
We first examined whether the anonymizations generated by COAT and PCTA satisfy

the specified utility constraint set. In fact, we found that anonymizations constructed by
both algorithms managed to accomplish this goal for all tested k values. Thus, we then
compared the amount of information loss incurred by the tested methods by measuring
AvgRE for a workload of 1000 COUNT queries asking for sets of ICD-9 codes supported by
at least 5% of the transactions in each dataset3. This type of queries is important in various
biomedical data analysis applications [37].

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 2 5 10 25

A
vg

R
E

k

COAT
UPCTA

Figure 35: AvgRE vs. k
(VNEC)

 0.2

 0.6

 1

 1.4

 2 5 10 25

A
vg

R
E

k

COAT
UPCTA

Figure 36: AvgRE vs. k
(VNECkc)

1E-006

1E-004

1E-002

 1

1E+002

 2 5 10 25

N
C

P

k

COAT
UPCTA

Figure 37: NCP vs. k (VNEC)

The results with respect to AvgRE for VNEC and VNECKC for various k values are shown
in Figs. 35 and 36, respectively. Observe that PCTA outperformed COAT for all tested k
values, being able to generate anonymizations that permit at least 2.5 and up to 3.8 times
more accurate querying answering. In addition, we investigated the amount of data utility
retained by the tested algorithms using the NCP and UL measures. Figs. 37 and 38 show the
results with respect to NCP for VNEC and VNECkc, respectively, while Fig. 39 illustrates
the UL scores for VNECkc. These results together with those of Figs. 35 and 36 demonstrate
that PCTA is significantly more effective than COAT at minimizing information loss.

5.3.5 Efficiency

In Fig. 40, we report the result for datasets constructed by selecting increasingly larger
subsets of BMS1 when both algorithms ran using UR2. The transactions in each subset were
selected uniformly at random but contained in all larger sets. COAT was more efficient
than UPCTA for all tested utility requirements, requiring 65% less time on average. This is
because it explores a larger number of possible generalizations than COAT, which increases
runtime significantly, as discussed in Section 5.2.4.

3The sets that are retrieved by the queries in the workload were selected randomly from the frequent itemsets
that were mined with minimum support threshold of 5%

TRANSACTIONS ON DATA PRIVACY 5 (2012)

248 Aris Gkoulalas-Divanis, Grigorios Loukides

 1e-005

 0.0001

 0.001

 0.01

 2 5 10 25

N
C

P

k

COAT
UPCTA

Figure 38: NCP vs. k (VNECkc)

1e+005

 1e+015

 1e+025

 1e+035

 1e+045

 1e+055

 2 5 10 25

U
L

k

COAT
UPCTA

Figure 39: UL vs. k (VNECkc)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1K 5K 10K 50K

T
im

e
(s

ec
)

Dataset Size

COAT
UPCTA

Figure 40: Runtime vs. |D|
(BMS1)

 0

 1

 2

 3

 4

 5

 6

 2 5 10 25 50

T
im

e
(s

ec
)

k

COAT
UPCTA

Figure 41: Runtime vs. k
(BMS1)

 0

 1

 2

 3

 4

 5

 6

UR1 UR2 UR3 UR4 UR5

T
im

e
(s

ec
)

Utility Requirements

COAT
UPCTA

Figure 42: Runtime vs. UR
(BMS1)

Then, we examined how UPCTA scales with respect to k. From Fig. 41, it can be seen
that both PCTA and COAT scale sublinearly with k, with UPCTA being more scalable due
to the lazy updating strategy it adopts. For instance, the runtime of COAT was 5.3 times
higher for k = 50 than what it was for k = 2, while the runtime of PCTA 4 times higher.
Also, we observed that COAT was more efficient than UPCTA for all k values. The reason
is that the latter algorithm examines more generalizations than COAT.
Last, the impact of considering different utility requirements on runtime was investigated.

As can be seen in Fig. 42, both algorithms needed more time as the specified utility re-
quirements get coarser, because the number of generalized items an item can be mapped
to increases. For example, the runtime of COAT and PCTA was 16.7 and 17.9 times higher
when these algorithms were configured with UR5 instead of UR1. PCTA was less efficient
than COAT across all tested utility requirements, for the reasons explained above.

6 Conclusions

Existing algorithms are unable to anonymize transaction data under a range of different
privacy requirements without incurring excessive information loss, because they are built
upon the intrinsic properties of a single privacy model. To address this issue, we introduced
a novel formulation of the problem of transaction data anonymization based on clustering.
The generality of this formulation allows the design of algorithms that are independent
of generalization strategies and privacy models, and are able to achieve high data utility
and privacy. We also proposed two algorithms that are based on clustering and can pro-
duce a significantly better result than the state-of-the-art methods in terms of data utility.
Specifically, PCTA employs generalization, while UPCTA uses a combination of general-
ization and suppression-based heuristics and is able to satisfy utility requirements that are
common in real-world applications.
We believe that this work opens up several important research directions, which we aim

TRANSACTIONS ON DATA PRIVACY 5 (2012)

Utility-Guided Clustering-based Transaction Data Anonymization 249

to pursue in the future. A first issue is how we can extend the proposed clustering-based
framework to produce an anonymized dataset that prevents both identity and sensitive
itemset disclosure. One way to achieve this is to assume a classification of items into pub-
lic and sensitive and then guarantee that an attacker who knows public, and potentially
some sensitive items as well, cannot associate an individual to their transaction and in-
fer all sensitive items. Another interesting issue is how we can incorporate other types of
utility requirements into the anonymization process, such as, for example, to mine certain
association rules from the anonymized data.

Acknowledgements

We would like to thank Manolis Terrovitis, Nikos Mamoulis and Panos Kalnis for providing
the implementation of the Apriori anonymization algorithm [47].

References

[1] National Institutes of Health. Policy for sharing of data obtained in NIH supported or con-
ducted genome-wide association studies. NOT-OD-07-088. 2007.

[2] Health insurance portability and accountability act of 1996 united states public law.

[3] M. Barbaro and T. Zeller. A face is exposed for aol searcher no. 4417749. New York Times, Aug
2006.

[4] R.J. Bayardo and R. Agrawal. Data privacy through optimal k-anonymization. In 21st ICDE,
pages 217–228, 2005.

[5] J. Byun, A. Kamra, E. Bertino, and N. Li. Efficient k-anonymity using clustering technique. In
DASFAA, pages 188–200, 2007.

[6] J. Cao, P. Karras, C. Raı̈ssi, and K. Tan. rho-uncertainty: Inference-proof transaction anonymiza-
tion. PVLDB, 3(1):1033–1044, 2010.

[7] C.C. Chang, B.Thompson, H. Wang, and D. Yao. Towards publishing recommendation data
with predictive anonymization. In 5th ACM Symposium on Information, Computer and Communi-
cations Security, pages 24–35, 2010.

[8] B. Chen, D. Kifer, K. LeFevre, and A. Machanavajjhala. Privacy-preserving data publishing.
Found. Trends databases, 2(1–2):1–167, 2009.

[9] J. Domingo-Ferrer and V. Torra. Ordinal, continuous and heterogeneous k-anonymity through
microaggregation. DMKD, 11(2):195–212, 2005.

[10] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu. Privacy-preserving data publishing: A survey
on recent developments. ACM Comput. Surv., 42, 2010.

[11] B. C. M. Fung, K. Wang, and P. S. Yu. Top-down specialization for information and privacy
preservation. In ICDE, pages 205–216, 2005.

[12] G. Ghinita, Y. Tao, and P. Kalnis. On the anonymization of sparse high-dimensional data. In
ICDE, pages 715–724, 2008.

[13] A. Gkoulalas-Divanis and G. Loukides. Revisiting sequential pattern hiding to enhance utility.
To appear in KDD, 2011.

[14] A. Gkoulalas-Divanis and V. S. Verykios. Exact knowledge hiding through database extension.
TKDE, 21(5):699–713, 2009.

[15] A. Gkoulalas-Divanis and V.S. Verykios. A free terrain model for trajectory k-anonymity. In
DEXA, pages 49–56, 2008.

TRANSACTIONS ON DATA PRIVACY 5 (2012)

250 Aris Gkoulalas-Divanis, Grigorios Loukides

[16] A. Gkoulalas-Divanis and V.S. Verykios. Hiding sensitive knowledge without side effects.
Knowledge and Information Systems, 20(3):263–299, 2009.

[17] A. Gkoulalas-Divanis and V.S. Verykios. Association rule hiding for data mining. Advances in
Database Systems series, vol. 41. Springer, 2010.

[18] A. Gkoulalas-Divanis, V.S. Verykios, and Mohamed F. Mokbel. Identifying unsafe routes for
network-based trajectory privacy. In SDM, pages 942–953, 2009.

[19] Y. He and J. F. Naughton. Anonymization of set-valued data via top-down, local generalization.
PVLDB, 2(1):934–945, 2009.

[20] V. S. Iyengar. Transforming data to satisfy privacy constraints. In KDD, pages 279–288, 2002.

[21] S. Jha, L. Kruger, and P. McDaniel. Privacy preserving clustering. In ESORICS, pages 397–417,
2005.

[22] A.F. Karr, C.N. Kohnen, A. Oganian, J.P. Reiter, and A.P. Sanil. A framework for evaluating the
utility of data altered to protect confidentiality. The American Statistician, 60:224 – 232, 2006.

[23] S. Kisilevich, L. Rokach, Y. Elovici, and B. Shapira. Efficient multidimensional suppression for
k-anonymity. TKDE, 22:334–347, 2010.

[24] K. LeFevre, D.J. DeWitt, and R. Ramakrishnan. Mondrian multidimensional k-anonymity. In
ICDE, page 25, 2006.

[25] J. Li, R. Wong, A. Fu, and J. Pei. Achieving -anonymity by clustering in attribute hierarchical
structures. In DaWaK, pages 405–416, 2006.

[26] K. Liu and E. Terzi. Towards identity anonymization on graphs. In 2008 SIGMOD, pages 93–106,
2008.

[27] G. Loukides, J.C. Denny, and B. Malin. The disclosure of diagnosis codes can breach research
participants’ privacy. Journal of the American Medical Informatics Association, 17:322–327, 2010.

[28] G. Loukides, A. Gkoulalas-Divanis, and B. Malin. Anonymization of electronic medical records
for validating genome-wide association studies. Proceedings of the National Academy of Sciences,
17:7898–7903, 2010.

[29] G. Loukides, A. Gkoulalas-Divanis, and B. Malin. COAT: Constraint-based anonymization of
transactions. Knowledge and Information Systems, 2011. To Appear, DOI: 10.1007/s10115-010-
0354-4.

[30] G. Loukides, A. Gkoulalas-Divanis, and J. Shao. Anonymizing transaction data to eliminate
sensitive inferences. In DEXA, pages 400–415, 2010.

[31] G. Loukides and J. Shao. Capturing data usefulness and privacy protection in k-anonymisation.
In SAC, pages 370–374, 2007.

[32] T.A. Manolio, L.D. Brooks, and F.S. Collins. A hapmap harvest of insights into the genetics of
common disease. Journal of Clinical Investigation, 118:1590–1605, 2008.

[33] A. Narayanan and V. Shmatikov. Robust de-anonymization of large sparse datasets. In IEEE
S&P, pages 111–125, 2008.

[34] M. Ercan Nergiz and Chris Clifton. Thoughts on k-anonymization. DKE, 63(3):622–645, 2007.

[35] M.E. Nergiz, C. Clifton, and A.E. Nergiz. Multirelational k-anonymity. TKDE, 21(8):1104–1117,
2009.

[36] S. R. M. Oliveira and O. R. Zaı̈ane. Protecting sensitive knowledge by data sanitization. In
ICDM, pages 613–616, 2003.

[37] C. Ordonez. Association rule discovery with the train and test approach for heart disease pre-
diction. IEEE Transactions on Information Technology in Biomedicine, 10(2):334–343, 2006.

[38] R. G. Pensa, A. Monreale, F. Pinelli, and D. Pedreschi. Pattern-preserving k-anonymization of
sequences and its application to mobility data mining. In 1st International Workshop on Privacy
in Location-Based Applications, 2008.

TRANSACTIONS ON DATA PRIVACY 5 (2012)

Utility-Guided Clustering-based Transaction Data Anonymization 251

[39] S. J. Rizvi and J. R. Haritsa. Maintaining data privacy in association rule mining. In VLDB,
pages 682–693, 2002.

[40] D. Roden, J. Pulley, M. Basford, G.R. Bernard, E.W. Clayton, J.R. Balser, and D.R. Masys. De-
velopment of a large scale de-identified dna biobank to enable personalized medicine. Clinical
Pharmacology and Therapeutics, 84(3):362–369, 2008.

[41] P. Samarati. Protecting respondents identities in microdata release. TKDE, 13(9):1010–1027,
2001.

[42] Y. Saygin, V.S. Verykios, and C. Clifton. Using unknowns to prevent discovery of association
rules. SIGMOD Record, 30(4):45–54, 2001.

[43] P. Sharkey, Hongwei H. Tian, W. Zhang, and S. Xu. Privacy-preserving data mining through
knowledge model sharing. In Privacy, security, and trust in KDD, pages 97–115, 2008.

[44] X. Sun and P. S. Yu. A border-based approach for hiding sensitive frequent itemsets. 5th IEEE
International Conference on Data Mining, page 8 pp., 2005.

[45] L. Sweeney. k-anonymity: a model for protecting privacy. IJUFKS, 10:557–570, 2002.

[46] M. Terrovitis, N. Mamoulis, and P. Kalnis. Local and global recoding methods for anonymizing
set-valued data. VLDB J. To appear.

[47] M. Terrovitis, N. Mamoulis, and P. Kalnis. Privacy-preserving anonymization of set-valued
data. PVLDB, 1(1):115–125, 2008.

[48] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A. W-C. Fu. Utility-based anonymization using local
recoding. In KDD, pages 785–790, 2006.

[49] R. Xu and D.C. Wunsch. Clustering. Wiley-IEEE Press, 2008.

[50] Y. Xu, K. Wang, A. W-C. Fu, and P. S. Yu. Anonymizing transaction databases for publication.
In KDD, pages 767–775, 2008.

[51] Z. Zheng, R. Kohavi, and L. Mason. Real world performance of association rule algorithms. In
KDD, pages 401–406, 2001.

TRANSACTIONS ON DATA PRIVACY 5 (2012)

