
TRANSACTIONS ON DATA PRIVACY 4 (2011) 129–146

Efficient Protocols for Principal Eigenvec-
tor Computation over Private Data
Manas A. Pathak, Bhiksha Raj
Carnegie Mellon University, Pittsburgh, PA 15213, USA.

E-mail: manasp@cs.cmu.edu, bhiksha@cs.cmu.edu

Abstract. In this paper we present a protocol for computing the principal eigenvector of a collection
of data matrices belonging to multiple semi-honest parties with privacy constraints. Our proposed
protocol is based on secure multi-party computation with a semi-honest arbitrator who deals with
data encrypted by the other parties using an additive homomorphic cryptosystem. We augment the
protocol with randomization and oblivious transfer to make it difficult for any party to estimate prop-
erties of the data belonging to other parties from the intermediate steps. The previous approaches
towards this problem were based on expensive QR decomposition of correlation matrices, we present
an efficient algorithm using the power iteration method. We present an analysis of the correctness,
security, and efficiency of protocol along with experimental results using a prototype implementation
over simulated data and USPS handwritten digits dataset.

1 Introduction

Eigenvector computation is one of the most basic tools of data analysis. In any multivariate
dataset, the eigenvectors provide information about key trends in the data, as well as the
relative importance of the different variables. These find use in a diverse set of applications,
including principal component analysis [2], collaborative filtering [3] and PageRank [4].
Not all eigenvectors of the data are equally important; only those corresponding to the
highest eigenvalues are used as representations of trends in the data. The most important
eigenvector is the principal eigenvector corresponding to the maximum eigenvalue.
In many scenarios, the entity that actually computes the eigenvectors is different from the

entities that possess the data. For instance, a data mining agency may desire to compute the
eigenvectors of a distributed set of records, or an enterprise providing recommendations
may want to compute eigenvectors from the personal ratings of subscribers to facilitate
making recommendations to new customers. We will refer to such entities as arbitrators.
Computation of eigenvectors requires the knowledge of either the data from the individual
parties or the correlation matrix derived from it. The parties that hold the data may how-
ever consider them private and be unwilling to expose any aspect of their individual data
to either the arbitrator or to other parties, while being agreeable, in principle, to contribute
to the computation of a global trend. As a result, we require a privacy preserving algorithm
that can compute the eigenvectors of the aggregate data while maintaining the necessary
privacy of the individual data providers.

∗A preliminary version of this article appeared as [1].

129

130 Manas A. Pathak, Bhiksha Raj

The common approach to this type of problem is to obfuscate individual data through
controlled randomization [5]. However, since we desire our estimates to be exact, sim-
ple randomization methods that merely ensure accuracy in the mean cannot be employed.
Han et al. [6] address the problem by computing the complete QR decomposition [7] of
privately shared data using cryptographic primitives. This enables all parties to collabora-
tively compute the complete set of global eigenvectors but does not truly hide the data from
individual sources. Given the complete set of eigenvectors and eigenvalues provided by
the QR decomposition, any party can reverse engineer the correlation matrix for the data
from the remaining parties and compute trends among them. Canny [8] present a differ-
ent distributed approach that does employ an arbitrator, in their case a blackboard, however
although individual data instances are hidden, both the arbitrator and individual parties
have access to all aggregated individual stages of the computation and the final result is
public, which is much less stringent than our privacy constraints.

In this paper, we propose a new privacy-preserving protocol for shared computation of
the principal eigenvector of a distributed collection of privately held data. The algorithm
is designed such that the individual parties, whom we will refer to as “Alice” and “Bob”
learn nothing about each others’ data, and only learn the degree to which their own data
follow the global trend indicated by the principal eigenvector. The arbitrator, who we call
“Trent”, coordinates the computation but learns nothing about the data of the individual
parties besides the principal eigenvector which he receives at the end of the computation.
In our presentation, for simplicity, we initially consider two parties having a share of data.
Later we show that the protocol can be naturally generalized to N parties. The data may
be split in two possible ways: along data instances or features. In this work, we principally
consider the instance-split case. However, as we show, our algorithm is easily applied to
feature-split data as well.

We primarily use the power iteration method [7] to compute the principal eigenvector.
We will use a combination of randomization, homomorphic encryption [9] and oblivious
transfer (OT) [10] to enforce privacy on the computation. The algorithm assumes the parties
to be semi-honest. While they are assumed to follow the protocol correctly and refrain from
using falsified data as input, they may record and analyze the intermediate results obtained
while following the protocol in order to gain as much information as possible. It is also
assumed that no party collude with Trent as this will give Trent access to information.

The computational requirements of the algorithm are the same as that of the power iter-
ation method. In addition, each iteration requires the encryption and decryption of two k
dimensional vectors, where k is the dimensionality of the data, as well as transmission of
the encrypted vectors to and from Trent. Nevertheless, the encryption and transmission
overhead, which is linear in k, may be expected to be significantly lower than the calcu-
lating the QR decomposition or similar methods which require repeated transmission of
entire matrices. In general, the computational cost of the protocol is dependent on the
degree of security we desire as required by the application.

2 Preliminaries

2.1 Power Iteration Method

The power iteration method [7] is an algorithm to find the principal eigenvector and its
associated eigenvalue for square matrices. To simplify explanation, we assume that the
matrix is diagonalizable with real eigenvalues, although the algorithm is applicable to gen-

TRANSACTIONS ON DATA PRIVACY 4 (2011)

Privacy Preserving Protocols for Eigenvector Computation 131

eral square matrices as well [11]. Let A be a size N × N matrix whose eigenvalues are
λ1, . . . , λN .

The power iteration method computes the principal eigenvector ofA through the iteration

xn+1 =
Axn
‖Axn‖2

,

where xn is a N dimensional vector. If the principal eigenvalue is unique, the series ωn =
Anx0 is guaranteed to converge to a scaling of the principal eigenvector. In the standard
algorithm, `2 normalization is used to prevent the magnitude of the vector from overflow
and underflow. Other normalization factors can also be used if they do not change the limit
of the series.

We assume wlog that |λ1| ≥ · · · ≥ |λN | ≥ 0. Let vi be the normalized eigenvector cor-
responding to λi. Since A is assumed to be diagonalizable, the eigenvectors {v1, . . . , vN}
create a basis for RN . For unique values of ci ∈ RN , any vector x0 ∈ RN can be written
as x0 =

∑N
i=1 civi. It can be shown that 1

|λ1|nA
nx0 is asymptotically equal to c1v1 which

forms the basis of the power iteration method and the convergence rate of the algorithm is∣∣∣λ2

λ1

∣∣∣. The algorithm converges quickly when there is no eigenvalue close in magnitude to
the principal eigenvalue.

2.2 Homomorphic Encryption

A homomorphic encryption algorithm allows for operations to be perform on the encrypted
data without requiring to know the unencrypted values. If · and + are two operators and
x and y are two plaintext elements, a homomorphic encryption function E satisfies

E[x] · E[y] = E[x+ y].

In this work, we primarily use the asymmetric key Paillier cryptosystem [9] which provides
additive homomorphism as well as semantic security. We briefly describe the formulation
of Paillier cryptosystem below.

1. Key Generation: We choose two large prime numbers p and q, and let N = pq. Let
Z∗N2 ⊂ ZN2 = {0, 1, ..., N2− 1} denote the set of non-negative integers that have mul-
tiplicative inverses moduloN2. Select g ∈ Z∗N2 such that gcd(L(gλ mod N2), N) = 1,
where λ = lcm(p − 1, q − 1), and L(x) = x−1

N . Let (N, g) be the public key, and (p, q)
be the private key.

2. Encryption: For a plaintext message m ∈ ZN , the ciphertext is given by

E[m] = gmrN mod N2, (1)

where r ∈ Z∗N is a number chosen at random.

3. Decryption.
¯

For a ciphertext c ∈ ZN2 , the corresponding plaintext is given by

E−1[c] =
L(cλ mod N2)

L(gλ mod N2)
. (2)

Note that the decryption works irrespective of the value of r used during encryption.
Since r can be chosen at random for every encryption, the Paillier cryptosystem is proba-
bilistic, and therefore semantically secure. It can be easily verified that the following homo-
morphic properties hold for the mapping given by Equation (1) from the plaintext group
(ZN ,+) to the ciphertext group (Z∗N2 , ·).

TRANSACTIONS ON DATA PRIVACY 4 (2011)

132 Manas A. Pathak, Bhiksha Raj

3 Privacy Preserving Protocol

3.1 Data Setup and Privacy Conditions

We formally define the problem, in which multiple parties, try to compute the principal
eigenvector over their collectively held datasets without disclosing any information to each
other. For simplicity, we describe the problem with two parties, Alice and Bob; and later
show that the algorithm is easily extended to multiple parties.

The parties Alice and Bob are assumed to be semi-honest which means that the parties will
follow the steps of the protocol correctly and will not try to cheat by passing falsified data
aimed at extracting information about other parties. The parties are assumed to be curious
in the sense that they may record the outcomes of all intermediate steps of the protocol to
extract any possible information. The protocol is coordinated by the semi-honest arbitrator
Trent. Alice and Bob communicate directly with Trent rather than each other. Trent per-
forms all the intermediate computations and transfers the results to each party. Although
Trent is trusted not to collude with other parties, it is important to note that the parties do
not trust Trent with their data and intend to prevent him from being able to see it. Alice
and Bob hide information by using a shared key cryptosystem to send only encrypted data
to Trent.

We assume that both the datasets can be represented as matrices in which columns and
rows correspond to the data samples and the features, respectively. For instance, the indi-
vidual email collections of Alice and Bob are represented as matrices A and B respectively,
in which the columns correspond to the emails, and the rows correspond to the words. The
entries of these matrices represent the frequency of occurrence of a given word in a given
email. The combined dataset may be split between Alice and Bob in two possible ways. In
a instance-split, both Alice and Bob have a disjoint set of data instances with the same set
of features. The aggregate dataset is obtained by concatenating columns given by the data
matrix M =

[
A B

]
and correlation matrix MTM . In a feature-split, Alice and Bob have

different features of the same data. The aggregate data matrix M is obtained by concate-

nating rows given by the data matrix M =

[
A
B

]
and correlation matrix MMT . If v is an

eigenvector of MTM with a non-zero eigenvalue λ, we have

MTMv = λv ⇒ MMTMv = λMv.

Therefore, Mv 6= 0 is the eigenvector of MMT with eigenvalue λ. Similarly, any eigenvec-
tor of feature-split data MMT associated with a non-zero eigenvalue is an eigenvector of
instance-split data MTM corresponding to the same eigenvalue. Hence, we mainly deal
with calculating the principal eigenvector of the instance-split data. In practice the corre-
lation matrix that has the smaller size should be used to reduce the computational cost of
eigen-decomposition algorithms.

For the instance-split case, if Alice’s dataA is of size k×m and Bob’s dataB is of size k×n,
the combined data matrix will beMk×(m+n). The correlation matrix of size (m+n)×(m+n)
is given by

MTM =

[
ATA ATB
BTA BTB

]
.

TRANSACTIONS ON DATA PRIVACY 4 (2011)

Privacy Preserving Protocols for Eigenvector Computation 133

3.2 The Basic Protocol

The power iteration algorithm computes the principal eigenvector of MTM by updating
and normalizing the vector xt until convergence. Starting with a random vector x0, we
calculate

xi+1 =
MTM xi
‖MTM xi‖

.

For privacy, we split the vector xi into two parts, αi and βi. αi corresponds to the first m
components of xi and βi corresponds to the remaining n components. In each iteration, we
need to securely compute

MTMxi =

[
ATA ATB
BTA BTB

] [
αi
βi

]
=

[
AT (Aαi +Bβi)
BT (Aαi +Bβi)

]
=

[
ATui
BTui

]
(3)

where ui = Aαi + Bβi. After convergence, αi and βi will represent shares held by Alice
and Bob of the principal eigenvector of MTM .

Alice

Trent

Bob

E[Aαi +Bβi] = E[ui]

Aαi

E[Aαi]

Bβi

E[Bβi]

E[ui]

ATui

E[ui]

BTui

E[‖ATui‖2 + ‖BTui‖2]

‖ATui‖2

E[‖ATui‖2]

‖BTui‖2

E[‖BTui‖2]

αi+1 = ATui√
‖ATui‖2+‖BTui‖2

βi+1 = BTui√
‖ATui‖2+‖BTui‖2

Figure 1: Visual description of the protocol.

This now lays the groundwork for us to define a distributed protocol in which Alice and
Bob work only on their portions of the data, while computing the principal eigenvector of
the combined data in collaboration with a third party Trent. An iteration of the algorithm
proceeds as illustrated in Figure 1. At the outset Alice and Bob randomly generate com-
ponent vectors α0 and β0 respectively. At the beginning of the ith iteration, Alice and Bob
possess component vectors αi and βi respectively. They compute the product of their data
and their corresponding component vectors as Aαi and Bβi. To compute ui, Alice and Bob
individually transfer these products to Trent. Trent adds the contributions from Alice and
Bob by computing

ui = Aαi +Bβi.

He then transfers ui back to Alice and Bob, who then individually computeATui andBTui,
without requiring data from one other. For normalization, Alice and Bob also need to
securely compute the term

‖MTM xi‖ =
√
‖ATui‖2 + ‖BTui‖2. (4)

TRANSACTIONS ON DATA PRIVACY 4 (2011)

134 Manas A. Pathak, Bhiksha Raj

Again, Alice and Bob compute the individual terms ‖ATui‖2 and ‖BTui‖2 respectively and
transfer it to Trent. As earlier, Trent computes the sum

‖ATui‖2 + ‖BTui‖2

and transfers it back to Alice and Bob. Finally, Alice and Bob respectively update α and β
vectors as

ui = Aαi +Bβi,

αi+1 =
ATui√

‖ATui‖2 + ‖BTui‖2
,

βi+1 =
BTui√

‖ATui‖2 + ‖BTui‖2
. (5)

The algorithm terminates when the α and β vectors converge.

3.3 Making the Protocol More Secure

The basic protocol described above is provably correct. After convergence, Alice and Bob
end up with the principal eigenvector of the row space of the combined data, as well as
concatenative shares of the column space which Trent can gather to compute the principal
eigenvector. However the protocol is not completely secure; Alice and Bob obtain sufficient
information about properties of each others’ data matrices, such as their column spaces,
null spaces, and correlation matrices. We present a series of modifications to the basic
protocol so that such information is not revealed.

3.3.1 Homomorphic Encryption: Securing the data from Trent.

The central objective of the protocol is to prevent Trent from learning anything about either
the individual data sets or the combined data other than the principal eigenvector of the
combined data. Trent receives a series of partial results of the form AATu, BBTu and
MMTu. By analyzing these results, he can potentially determine the entire column spaces
of Alice and Bob as well as the combined data. To prevent this, we employ an additive
homomorphic cryptosystem introduced in Section 2.2.

At the beginning of the protocol, Alice and Bob obtain a shared public key/private key
pair for an additive homomorphic cryptosystem from an authenticating authority. The
public key is also known to Trent who, however, does not know the private key; While he
can encrypt data, he cannot decrypt it. Alice and Bob encrypt all transmissions to Trent,
at the first transmission step of each iteration Trent receives the encrypted inputs E[Aαi]
and E[Bβi]. He multiplies the two element by element to compute E[Aαi] · E[Bβi] =
E[Aαi + Bβi] = E[ui]. He returns E[ui] to both Alice and Bob who decrypt it with their
private key to obtain ui. In the second transmission step of each iteration, Alice and Bob
send E[‖ATui‖2] and E[‖BTui‖2] respectively to Trent, who computes the encrypted sum

E
[
‖ATui‖2

]
· E
[
‖BTui‖2

]
= E

[
‖ATui‖2 + ‖BTui‖2

]
and transfers it back to Alice and Bob, who then decrypt it to obtain ‖ATui‖2 + ‖BTui‖2,
which is required for normalization.

This modification does not change the actual computation of the power iterations in any
manner. Thus the procedure remains as correct as before, except that Trent now no longer

TRANSACTIONS ON DATA PRIVACY 4 (2011)

Privacy Preserving Protocols for Eigenvector Computation 135

has any access to any of the intermediate computations. At the termination of the algorithm
he can now receive the converged values of α and β from Alice and Bob, who will send it
in clear text.

3.3.2 Random Scaling: Securing the Column Spaces.

After Alice and Bob receive ui = Aαi +Bβi from Trent, Alice can calculate ui −Aαi = Bβi
and Bob can calculate ui − Bβi = Aαi. After a sufficient number of iterations, particularly
in the early stages of the computation (when ui has not yet converged) Alice can find the
column space of B and Bob can find the column space of A. Similarly, by subtracting
their share from the normalization term returned by Trent, Alice and Bob are able to find
‖BTui‖2 and ‖ATui‖2 respectively.

In order to prevent this, Trent multiplies ui with a randomly generated scaling term ri that
he does not share with anyone. Trent computes

(E[Aαi] · E[Bβi])
ri = E[ri(Aαi +Bβi)] = E[riui]

by performing element-wise exponentiation of the encrypted vector by ri and transfers riui
to Alice and Bob. By using a different value of ri at each iteration, Trent ensures that Alice
and Bob are not able to calculate Bβi and Aαi respectively. In the second step, Trent scales
the normalization constant by r2i ,

(
E
[
‖ATui‖2

]
· E
[
‖BTui‖2

])r2i = E
[
r2i
(
‖ATi u‖2 + ‖BTi u‖2

)]
.

Normalization causes the ri factor to cancel out and the update rules remain unchanged.

ui = Aαi +Bβi,

αi+1 =
riA

Tui√
r2i (‖ATui‖2 + ‖BTui‖2)

=
ATui√

‖ATui‖2 + ‖BTui‖2
,

βi+1 =
riB

Tui√
r2i (‖ATui‖2 + ‖BTui‖2)

=
BTui√

‖ATui‖2 + ‖BTui‖2
. (6)

The random scaling does not affect the final outcome of the computation, and the algorithm
remains correct as before.

3.3.3 Data Padding: Securing null spaces.

In each iteration, Alice observes one vector riui = ri(Aαi + Bβi) in the column space of
M = [A B]. Alice can calculate the null space H(A) of A, given by

H(A) = {x ∈ Rm|Ax = 0}

and pre-multiply a non-zero vector x ∈ H(A) with riui to calculate

xriui = rix(Aαi +Bβi) = rixBβi.

This is a projection of Bβi, a vector in the column space of B into the null space H(A).
Similarly, Bob can find projections of Aαi in the null space H(B). While considering the
projected vectors separately will not give away much information, after several iterations

TRANSACTIONS ON DATA PRIVACY 4 (2011)

136 Manas A. Pathak, Bhiksha Raj

Alice will have a projection of the column space of B on the null space of A, thereby learn-
ing about the component’s of Bob’s data that lie in her null space. Bob can similarly learn
about the component’s of Alice’s data that lie in his null space.

In order to prevent this, Alice pads her data matrix A by concatenating it with a random
matrix Pa = raIk×k, to obtain

[
A Pa

]
where ra is a positive scalar chosen by Alice. Simi-

larly, Bob pads his data matrix B with Pb = rbIk×k to obtain
[
B Pb

]
where rb is a different

positive scalar chosen by Bob. This has the effect of hiding the null spaces in both their data
sets. In the following lemma, we prove that the eigenvectors of the combined data do not
change after padding, while every eigenvalue λ of MMT is now modified to λ + ra + rb.
Please refer to appendix for the proof.

Lemma 1. Let M̄ =
[
M P

]
where M is a s × t matrix, and P is a s × s orthogonal matrix. If

v̄ =

[
vt×1
v′s×1

]
is an eigenvector of M̄T M̄ corresponding to an eigenvalue λ, then v is an eigenvector

of MTM .

While the random factors ra and rb prevent Alice and Bob from estimating the eigenvalues
of the data, the computation of principal eigenvector remains correct as before.

3.3.4 Oblivious Transfer: Securing Krylov spaces.

For a constant c, we can show that the vector ui = Aαi + Bβi is equal to cMMTui−1.
The sequence of vectors U = {u1, u2, u3, . . .} form the Krylov subspace (MMT)nu1 of
the matrix MMT . Knowledge of this series of vectors can reveal all eigenvectors of MMT .
Consider u0 = c1v1+c2v2+· · · , where vi is the ith eigenvector. If λj is the jth eigenvalue, we
have ui ∝ c1λ1v1+c2λ2v2+· · · . We assume wlog that the eigenvalues λ are in a descending
order, i.e., λj ≥ λk for j < k. Let uconv be the normalized converged value of ui which is
equal to the normalized principal eigenvector v1.

Let wi = ui − (uTi uconv)ui which can be shown to be equal to c2λ2v2 + c3λ3v3 + · · · , i.e., a
vector with no component along v1. If we perform power iterations with initial vector w1,
the converged vector wconv will be equal to the eigenvector corresponding to the second
largest eigenvalue. Hence, once Alice has the converged value, uconv , she can subtract it
out of all the stored ui values and determine the second principal eigenvector of MMT .
She can repeat the process iteratively to obtain all eigenvectors of MMT , although in prac-
tice the estimates become noisy very quickly. As we will show in Section 4, the following
modification prevents Alice and Bob from identifying the Krylov space with any certainty
and they are thereby unable to compute the additional eigenvectors of the combined data.

We introduce a form of oblivious transfer (OT) [10] in the protocol. We assume that
Trent stores the encrypted results of intermediate steps at every iteration. After comput-
ing E[riui], Trent either sends this quantity to Alice and Bob with a probability p or sends a
random vectorE[u′i] of the same size (k×1) with probability 1−p. As the encryption key of
the cryptosystem is publicly known, Trent can encrypt the vector u′i. Alice and Bob do not
know whether they are receiving riui or u′i. If a random vector is sent, Trent continues with
the protocol, but ignores the terms Alice and Bob return in the next iteration, E[Aαi+1] and
E[Bβi+1]. Instead, he sends the result of the last non-random iteration j, E[rjuj], thereby
restarting that iteration.

This sequence of data sent by Trent is an example of a Bernoulli Process [12]. An illustra-
tive example of the protocol is shown in Figure 2. In the first two iterations, Trent sends
valid vectors r1u1 and r2u2 back to Alice and Bob. In the beginning of the third iteration,
Trent receives and computes E[r3u3] but sends a random vector u′3. He ignores what Alice

TRANSACTIONS ON DATA PRIVACY 4 (2011)

Privacy Preserving Protocols for Eigenvector Computation 137

and Bob send him in the fourth iteration and sends back E[r3u3] instead. Trent then stores
the vector E[r4u4] sent by Alice and Bob in the fifth iteration and sends a random vector
u′2. Similarly, he ignores the computed vector of the sixth iteration and sends u′3. Finally,
he ignores the computed vector of the seventh iteration and sends E[r4u4].

r1u1 r2u2 u′1 r3u3 u′2 u′3 r4u4

Figure 2: An example of the protocol execution with oblivious transfer.

This modification has two effects – firstly it prevents Alice and Bob from identifying the
Krylov space with certainty. As a result, they are now unable to obtain additional Eigen-
vectors from the data. Secondly, oblivious transfer essentially obfuscates the projection of
the column space of B on to the null space of A for Alice, and analogously for Bob by
introducing random vectors. As Alice and Bob do not know which vectors are random,
they cannot completely calculate the true projection of each others data on the null spaces.
This is rendered less important if Alice and Bob pad their data as suggested in the previous
subsection.

Alice and Bob can store the vectors they receive from Trent in each iteration. By analyzing
the distribution of the normalized vectors, Alice and Bob can identify the random vectors
using a simple outlier detection technique. To prevent this, one possible solution is for
Trent to pick a previously computed value of rjuj and add zero mean noise ei, for instance,
sampled from the Gaussian distribution.

u′i = rjuj + ei, ei ∼ N (0, σ2).

Instead of transmitting a perturbation of a previous vector, Trent can also use perturbed
mean of a few previous rjuj with noise. Doing this will create a random vector with the
same distributional properties as the real vectors. The noise variance parameter σ controls
the error in identifying the random vector from the valid vectors and how much error do
we want to introduce in the projected column space.

Oblivious transfer has the effect of increasing the total computation as every iteration in
which Trent sends a random vector is wasted. In any secure multi-party computation,
there is an inherent trade-off between computation time and the degree of security. The
parameter p which is the probability of Trent sending a non-random vector allows us to
control this at a fine level based on the application requirements. As before, introducing
oblivious transfer does not affect the correctness of the computation – it does not modify
the values of the non-random vectors ui.

3.4 Extension to Multiple Parties

As we mentioned before, the protocol can be naturally extended to multiple parties. Let
us consider the case of N parties: P1, . . . , PN each having data A1, . . . , AN of sizes k ×

TRANSACTIONS ON DATA PRIVACY 4 (2011)

138 Manas A. Pathak, Bhiksha Raj

n1, . . . , k×nN respectively. The parties are interested in computing the principal eigenvec-
tor of the combined data without disclosing anything about their data. We make the same
assumption about the parties and the arbitrator Trent being semi-honest. All the parties ex-
cept Trent share the decryption key to the additive homomorphic encryption scheme and
the encryption key is public.

In case of a data split, for the combined data matrix M =
[
A1 A2 · · · AN

]
, the corre-

lation matrix is

MTM =

A
T
1 A1 · · · AT1 AN
...

. . .
...

ATNA1 · · · ATNAN

 .
We split the eigenvector into N parts, α1, . . . , αN of size n1, . . . , nN respectively, each cor-
responding to one party. For simplicity, we describe the basic protocol with homomorphic
encryption; randomization and oblivious transfer can be easily added by making the same
modifications as we saw in Sections 3.3. One iteration of the protocol starts with the ith

party computing Aiαi and transferring to Trent the encrypted vector E[Aiαi]. Trent re-
ceives this from each party and computes

∏
i

E [Aiαi] = E

[∑
i

Aiαi

]
= E[u]

where u =
∑
iAiαi, and product is an element-wise operation. Trent sends the encrypted

vector E[u] back to P1, . . . , PN who decrypt it and individually compute ATi u. The par-
ties individually compute ‖ATi u‖2 and send its encrypted value to Trent. Trent receives N
encrypted scalars E

[
‖ATi u‖2

]
and calculates the normalization term

∏
i

E
[
‖ATi u‖2

]
= E

[∑
i

‖ATi u‖2
]

and sends it back to the parties. At the end of the iteration, the party Pi updates αi as

u =
∑
i

Aiα
(old)
i ,

α
(new)
i =

ATi u√∑
i ‖ATi u‖2

. (7)

The algorithm terminates when any one party Pi converges on αi.

4 Analysis

4.1 Correctness

The protocol outlined in Section 3.2 is provably correct. The steps introduced in Section 3.3
do not modify the operation and hence the accuracy of the protocol in any manner.

4.2 Security

As a consequence of the procedures introduced in Section 3.3.2 the row spaces and null
spaces of the parties are hidden from each another. In the multiparty scenario, the protocol

TRANSACTIONS ON DATA PRIVACY 4 (2011)

Privacy Preserving Protocols for Eigenvector Computation 139

is also robust to collusion between parties with data, although not to collusion between
Trent and any of the other parties. If two parties out ofN collude, they will find information
about each other, but will not learn anything about the data of the remaining N − 2 parties.

What remains is the information which can be obtained from the sequence of ui vectors.
Alice receives the following two sets of matrices:

U = {u1, u2, u3, . . .}, U ′ = {u′1, u′2, . . .}

representing the outcomes of valid iterations and the random vectors respectively. In the
absence of the random data U ′, Alice only receives U . As mentioned in Section 3.3.4, ui =
(MMT)iu0 which is a sequence of vectors from the Krylov space of the matrix AAT +BBT

sufficient to determine all eigenvectors of MMT . For k-dimensional data, it is sufficient to
have any sequence of k vectors inU to determineMMT . Hence, if the vectors inU were not
interspersed with the vectors in U ′, the algorithm essentially reveals information about all
eigenvectors to all parties. Furthermore, given a sequence ui, ui+1, ui+2, . . . , ui+k−1 vectors
from U , Alice can verify that they are indeed from the Krylov space.1 Introducing random
scaling riui makes it harder still to verify Krylov space. While solving for k vectors, Alice
and Bob need to solve for another k parameters r1, . . . , rk.
Security is obtained from the following observation: although Alice can verify that a given

set of vectors forms a sequence in the Krylov space, she cannot select them from a larger set
without exhaustive evaluation of all k sets of vectors. If the shortest sequence of k vectors
from the Krylov space is embedded in a longer sequence of N vectors, Alice needs

(
N
k

)
checks to find the Krylov space, which is a combinatorial problem.

4.3 Efficiency

First we analyze the computational time complexity of the protocol. As the total number
of iterations is data dependent and proportional to

∣∣∣λ1

λ2

∣∣∣, we analyze the cost per iteration.
The computation is performed by the individual parties in parallel, though synchronized
and the parties also spend time waiting for intermediate results from other parties. The
oblivious transfer introduces extra iterations with random data, on average the number of
iterations needed for convergence increase by a factor of 1

p , where p is the probability of
Trent sending a non-random vector. As the same operations are performed in an iteration
with a random vector, its the time complexity would be the same as an iteration with a
non-random vector.

In the ith iteration, Alice and Bob individually need to perform two matrix multiplications:
Aαi and AT (Aαi + Bβi), Bβi and BT (Aαi + Bβi) respectively. The first part involves
multiplication of a k ×m matrix by a m dimensional vector which is O(km) operations for
Alice and O(kn) for Bob. The second part involves multiplication of a m × k matrix by a
k dimensional vector which is O(km) operations for Alice and O(kn) for Bob. Calculating
‖AT (Aαi+Bβi)‖2 involvesO(m) operations for Alice and analogouslyO(n) operations for
Bob. The final step involves only a normalization by a scalar and can be again done in linear
time, O(m) for Alice and O(n) for Bob. Therefore, total time complexity of computations
performed by Alice and Bob is O(km) + O(m) = O(km) and O(kn) + O(n) = O(kn)
operations respectively. Trent computes an element-wise product of two k dimensional
vectors Aαi and Bβi which is O(k) operations. The multiplication of two encrypted scalar
requires only one operation, making Trent’s total time complexity O(k).

1if the spectral radius of MMT is 1.

TRANSACTIONS ON DATA PRIVACY 4 (2011)

140 Manas A. Pathak, Bhiksha Raj

In each iteration, Alice and Bob encrypt and decrypt two vectors and two scalar normal-
ization terms which is equivalent to performing k + 1 encryptions and k + 1 decryptions
individually, which is O(k) encryptions and decryptions.

In the ith iteration, Alice and Bob each need to transmit k dimensional vectors to Trent
who computes E(Aαi + Bβi) and transmits it back: involving the transfer of 4k elements.
Similarly, Alice and Bob each transmit one scalar norm value to Trent who sends back
another scalar value involving in all the transfer of 4 elements. In total, each iteration
requires the transmission of 4k + 4 = O(k) data elements.
To summarize, the time complexity of the protocol per iteration is O(km) or O(kn) oper-

ations whichever is larger, O(k) encryptions and decryptions, and O(k) transmissions. In
practice, each individual encryption/decryption and data transmission take much longer
than performing computation operation.

5 Experiments

In this section, we analyze the results of experiments with a prototype system implement-
ing the privacy preserving protocol over simulated data and the USPS handwritten digits
dataset. We mainly evaluate the protocol for accuracy as compared to standardized eigen-
vector computation and execution time.

5.1 Implementation

We created a prototype implementation of the protocol in C++ and used the variable preci-
sion arithmetic libraries provided by OpenSSL [13] to implement the Paillier cryptosystem.
In the following experiments, we used the Paillier cryptosystem with 1024-bit keys. We
performed the experiments on a Intel Core 2 Duo machine with 3 GB RAM running 64-bit
Ubuntu.

5.1.1 Issues: Floating point numbers

The normalized eigenvectors typically contain floating point numbers and are central to
our data representation. Most cryptosystems have no natural way of encrypting and de-
crypting floating point numbers. We addressed this issue by using a simple fixed precision
representation. At each encryption operation, we multiply and floor a floating point num-
ber by a fixed constant that is a power of two for efficient arithmetic. After decryption, we
divide by the same factor to get restore the floating-point number. For a constant c,

E[cx] · E[cy] = E[c(x+ y)].

By doing this, we restrict the precision to a fixed quantity by choosing only the first few
digits (log10 c) after the floating point. If c is too large, there is a risk of overflow, which
we avoid by scaling the maximum allowable floating point numbers by 1

c . In practice, this
reduction in precision causes a trivially small error in the computation.

5.2 Simulated Data

In order to evaluate the protocol with a wide range of matrix sizes and configurations, we
experimented random data matrices sampled from uniform and Gaussian distributions as
described below.

TRANSACTIONS ON DATA PRIVACY 4 (2011)

Privacy Preserving Protocols for Eigenvector Computation 141

5.2.1 Accuracy

We used data matrices A and B each of size 1000 × 1000 sampled from the uniform distri-
bution. Similar to [6], we report the mean squared error (MSE) in calculating the principal
eigenvector calculated by our protocol as compared to standard calculation done by MAT-
LAB using the same input data matrices. If v = [αTβT]T and v′ is the principal eigenvector
calculated by MATLAB,

MSE =
1

m+ n

m+n∑
i=1

(v − v′)2.

We use the convergence threshold of 10−6 between iterations as the termination criteria,
i.e., in the ith iteration, ||αi+1−αi|| < 10−6 for Alice and ||βi+1−βi|| < 10−6 for Bob. For the
multiplicative factor c = 106, we observed an MSE of 1.7341×10−12. The protocol required
1078.94 s to execute till convergence, while the MATLAB execution took 2.64 s. We also
report the MSE for other input matrices sampled from the standard uniform and Gaussian
distributions in Table 1. We observe that the MSE in each case is negligible for practical
applications. As the eigenvector computation over the data sampled from Gaussian distri-
bution takes substantially more iterations to converge compared to the data sampled from
uniform distribution, the corresponding MSE is higher in the former case.

Data Distribution k m,m n MSE
Uniform 1000 500 500 8.7467× 10−16

Uniform 1000 1000 1000 8.6705× 10−16

Uniform 1000 2000 2000 8.4310× 10−16

Uniform 2000 1000 1000 8.4980× 10−16

Uniform 2000 2000 2000 8.3430× 10−16

Gaussian 1000 500 500 5.1531× 10−12

Gaussian 1000 1000 1000 9.6460× 10−12

Gaussian 1000 2000 2000 1.2306× 10−12

Gaussian 2000 1000 1000 5.6775× 10−12

Gaussian 2000 2000 2000 4.4545× 10−12

Table 1: Mean squared error in calculating principal eigenvector using the protocol.

5.2.2 Execution Time

We analyze the execution time of the protocol with the size of the data matrices. As the
number of iterations are data dependent, we report the average execution time per itera-
tion. We again use data matrices sampled from the uniform distribution.

We measured the execution times for data matrix A and B both having fixed number of
rows k = 1000 and varying number of columns m,n, and varying Paillier encryption key
sizes as shown in Table 2. The execution time is consistently observed to increase with
increasing encryption key size. It can be seen that the execution time per iteration increases
almost linearly with the number of data samples, but the rate of increase is very small.
This follows from our complexity analysis where the asymptotic computational cost is in
O(km) for Alice and O(kn) for Bob. As the encryption cost O(k) only depends on k, it
remains constant for a fixed value of k. The increase in execution time is only because of
the extra computation cost in this case.

TRANSACTIONS ON DATA PRIVACY 4 (2011)

142 Manas A. Pathak, Bhiksha Raj

m = n time (s) time (s) time (s)
256-bit 512-bit 1024-bit

1000 3.701 25.266 188.785
2000 3.843 25.348 188.925
3000 3.986 25.487 189.009
4000 4.118 25.559 189.082
5000 4.290 25.650 190.095

Table 2: Execution time per iteration for fixed k = 1000 and varying m and n using different
Paillier encryption key sizes.

In Table 3 we show the execution times for data matrix A and B both having fixed number
of columns m = n = 1000 and varying number of rows k. As before, the execution time
increases with the increasing encryption key size. It can also be seen that the execution time
per iteration increases linearly with k. This is coherent to our complexity analysis where we
saw that the asymptotic encryption cost of the protocol is linearO(k). The computation cost
also increases for increasing values of k as the asymptotic computational cost is O(km) for
Alice and O(kn) for Bob. Finally, we observe that the execution time increases sharply for
increasing values of k as opposed to increasing m and n. This indicates that the encryption
cost completely overwhelms the computation cost. This is summarized in Figure 3.

k time (s) time (s) time (s)
256-bit 512-bit 1024-bit

1000 3.701 25.266 188.785
2000 7.381 50.334 380.272
3000 11.073 75.505 569.799
4000 14.805 100.579 763.727
5000 18.710 125.752 957.811

Table 3: Execution time per iteration for fixed m = n = 1000 and varying k using different
Paillier encryption key sizes.

5.3 USPS Handwritten Digits Data

The USPS handwritten digits dataset2 consists of 1100 instances of each digits from ‘0’ to ‘9’
represented as 8-bit gray-scale images. We consider the scenario where the instances for a
digit are split between two users. Finding the principal eigenvector of this data is a useful
step in performing principal component analysis and other image processing tasks.

The data for a single digit can be represented as a matrix M of size 256 × 1100. We split it
into two matrices A and B each of size 256 × 550 (k = 256, m = n = 550). We report the
accuracy and execution time over this setup for the data instances representing the digit
‘0’, but the results can also be generalized for other digits due to similar nature of the data.

2This dataset can be downloaded from http://cs.nyu.edu/˜roweis/data.html

TRANSACTIONS ON DATA PRIVACY 4 (2011)

Privacy Preserving Protocols for Eigenvector Computation 143

Figure 3: Execution time per iteration using 1024-bit Paillier encryption. The plot on the
left represents the case with fixed k = 1000 and varying m and n. The plot on the right
represents the case with fixed m = n = 1000 and varying k.

5.3.1 Accuracy

We use the mean squared error (MSE) in calculating the principal eigenvector as compared
to the computation done by MATLAB as a metric of accuracy as before. We used 1024-bit
Paillier encryption and the convergence threshold of 10−6 and multiplicative factor c =
106. For the data representing the digit ‘0’, we observed an MSE of 1.1037 × 10−8. This
computation converged in 7 iterations and required an execution time of 385.765 s. We
observed the same MSE using 256-bit and 512-bit Paillier encryption. This error can be
considered as negligible for practical applications.

5.3.2 Execution Time

We observed the average per-iteration execution time of the protocol with different Paillier
encryption key-sizes. This is summarized in Table 4. As expected, the execution time for
the protocol using uniformly random data of the same size (k = 256, m = n = 550) was
approximately the same.

time (s) time (s) time (s)
256-bit 512-bit 1024-bit

0.923 6.417 55.109

Table 4: Execution time over USPS data for the digit ‘0’ using different Paillier encryption
key sizes.

TRANSACTIONS ON DATA PRIVACY 4 (2011)

144 Manas A. Pathak, Bhiksha Raj

6 Conclusion and Future Work

In this paper we proposed a protocol for computing the principal eigenvector of the com-
bined data shared by multiple parties coordinated by a semi-honest arbitrator Trent. The
data matrices belonging to individual parties and correlation matrix of the combined data is
protected and cannot be reconstructed. We used randomization, data padding, and obliv-
ious transfer to hide the information which the parties can learn from the intermediate
results. The computational cost for each party is O(km) where k is the number of features
and m data instances along with O(k) encryption/decryption operations and O(k) data
transfer operations. We observe similar behavior in experimental results using a prototype
implementation of the protocol over simulated data and USPS handwritten digits data.

Potential future work include extending the protocol to finding the complete singular
value decomposition, particularly with efficient algorithms such as thin-SVD [14]. Some
of the techniques like data padding, oblivious transfer we applied to increase the security
of the protocol can be used in other problems as well. We are working towards a unified
theoretical model for applying and analyzing these techniques in general.

While we considered privacy under the semi-honest model, we are also interested in ex-
tending it to the malicious model in the future. In this model, the parties are not assumed
to follow the protocol correctly and would try to gain as much information as possible,
e.g. a party might send zero instead of the norm ‖ATui‖ and use this to infer the norm
corresponding to the other party. Similarly, Trent might collude with a party and choose
to not apply random scaling, allowing one party to identify the column space of the other
data belonging to another party. The conventional method of ensuring that such malicious
behavior does not take place is through zero-knowledge proofs (ZKPs). Kantarcioglu and
Kardes [15] present simple two party protocols for equality, inner product, and set opera-
tions in the malicious model using primitives such as thresholded decryption [16]. While
these primitives form an attractive basis to design and theoretically analyze privacy pre-
serving algorithms, they are found to be many orders of magnitude expensive in practice
as compared to the corresponding non-private computation. Duan, et al. [17] present P4P,
which is a an alternative paradigm for designing protocols for computation involving it-
erations with additive updates with malicious parties using verifiable secret sharing (VSS)
over small fields. This results in very efficient private arithmetic operations and the cor-
responding ZKPs which can be used to create protocols that can scale to large amount of
data. Duan, et al. present an implementation of the privacy preserving protocol for SVD
in the P4P framework. We plan to apply some of these ideas to our implementation of the
principal eigenvector computation protocol and evaluate the performance as compared to
this method.

TRANSACTIONS ON DATA PRIVACY 4 (2011)

Privacy Preserving Protocols for Eigenvector Computation 145

References
[1] Manas Pathak and Bhiksha Raj. Privacy-preserving protocols for eigenvector computation. In

ECML/PKDD Workshop on Privacy and Security issues in Data Mining and Machine Learning, 2010.

[2] W. F. Massy. Principal component analysis in exploratory data research. Journal of the American
Statistical Association, 60:234–256, 1965.

[3] Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins. Eigentaste: A constant time
collaborative filtering algorithm. Information Retrieval, 4(2):133–151, 2001.

[4] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation rank-
ing: Bringing order to the web. Technical report, Stanford University, Stanford, CA, 1998.

[5] Alexandre V. Evfimievski. Randomization in privacy-preserving data mining. SIGKDD Explo-
rations, 4(2):43–48, 2002.

[6] Shuguo Han, Wee Keong Ng, and Philip S. Yu. Privacy-preserving singular value decomposi-
tion. In IEEE International Conference on Data Mining, pages 1267–1270. IEEE, 2009.

[7] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins University
Press, second edition, 1989.

[8] John Canny. Collaborative filtering with privacy. In IEEE Symposium on Security and Privacy,
2002.

[9] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
EUROCRYPT, 1999.

[10] Michael Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-81, Harvard
University, 1981.

[11] Granville Sewell. Computational Methods of Linear Algebra. Wiley-Interscience, second edition,
2005.

[12] Athanasios Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-Hill, second
edition, 1984.

[13] http://www.openssl.org/docs/crypto/bn.html.

[14] Matthew Brand. Fast low-rank modifications of the thin singular value decomposition. Linear
Algebra and its Applications, 415(1):20–30, 2006.

[15] Murat Kantarcioglu and Onur Kardes. Privacy-preserving data mining in the malicious model.
J. Information and Computer Security, 2(4):353–375, 2008.

[16] Ronald Cramer, Ivan Damgard, and Jesper B. Nielsen. Multiparty computation from threshold
homomorphic encryption. In EUROCRYPT, 2001.

[17] Yitao Duan, John Canny, and Justin Zhan. P4P: Practical large-scale privacy-preserving dis-
tributed computation robust against malicious users. In USENIX Security Symposium, pages
207–222, 2010.

7 Appendix

Lemma 1. We have,

M̄T M̄ =

[
MTM MTP
PTM I

]
.

Multiplying by the eigenvector v̄ =

[
vt×1
v′s×1

]
gives us

M̄T M̄

[
v
v′

]
=

[
MTMv +MTPv′

PTMv + v′

]
= λ

[
v
v′

]
.

TRANSACTIONS ON DATA PRIVACY 4 (2011)

146 Manas A. Pathak, Bhiksha Raj

Therefore,

MTMv +MTPv′ = λv, (8)

PTMv + v′ = λv′. (9)

Since λ 6= 1, Equation (9) implies v′ = 1
λ−1P

TMv. Substituting this into Equation (8) and
the orthogonality of P gives us

MTMv +
1

λ− 1
MTPPTMv =

λ

λ− 1
MTMv = λv.

Hence, MTMv = (λ− 1)v.

TRANSACTIONS ON DATA PRIVACY 4 (2011)

