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Abstract. Supervised descriptive rule discovery techniques like subgroup discovery are quite pop-
ular in applications like fraud detection or clinical studies. Compared with other descriptive tech-
niques, like classical support/confidence association rules, subgroup discovery has the advantage
that it comes up with only the top-k patterns, and that it makes use of a quality function that avoids
patterns uncorrelated with the target. If these techniques are to be applied in privacy-sensitive scenar-
ios involving distributed data, precise guarantees are needed regarding the amount of information
leaked during the execution of the data mining. Unfortunately, the adaptation of secure multi-party
protocols for classical support/confidence association rule mining to the task of subgroup discovery
is impossible for fundamental reasons. The source is the different quality function and the restriction
to a fixed number of patterns – i.e. exactly the desired features of subgroup discovery. In this paper,
we present new protocols which allow distributed subgroup discovery while avoiding the disclo-
sure of the individual databases. We analyze the properties of the protocols, describe a prototypical
implementation and present experiments that demonstrate the feasibility of the approach.

1 Introduction

The question of the privacy of data can be an important aspect in the real-world appli-
cation of data mining. In privacy-sensitive scenarios, in particular those with distributed
data, a failure to guarantee certain privacy-preserving constraints means that data mining
can not be applied at all. As an example, consider the case of competing mail order com-
panies. To a large part, these companies make money by knowing their customers better
than their competitors do. On the other hand, they lose money due to fraud. Typically, the
risk of disclosing sensitive customer information by far outweighs the chances of reducing
expenses by a joint fraud detection effort. Only privacy-preserving data mining techniques
will allow an analysis of fraud patterns over all companies.

In applications like the above, descriptive techniques like rule mining are very popular,
as they have the potential to provide more insight than numerical methods like SVMs or
neural networks. Actually, protocols have been proposed that allow secure association
rule mining over distributed databases [11, 26]. These, however, rely on the classical sup-
port/confidence framework, which has been observed to have effects undesired in some
settings [27, 4, 10]: In particular, there is a danger to come up with huge amounts of rules
which are not significant or do not express a correlation.

For this reason, several alternative (non-secure) rule mining approaches have been pro-
posed, that deviate from the classical support/confidence framework. These include sub-
group discovery [12] and correlated itemset mining [18], which are sometimes subsumed
under the name supervised descriptive rule discovery [19]. The key differences compared
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to classical support/confidence association rule mining are (i) the different quality func-
tion used to assess the patterns, and (ii) the intention to collect only a small set of k pat-
terns instead of collecting all patterns satisfying some minimal threshold constraint. In-
terestingly, some recent association rule mining algorithms deviate from the classical sup-
port/confidence approach and also search for the top-k rules, applying quality functions
similar to those used in subgroup discovery [17, 27, 10].

Unfortunately, it is impossible to adapt existing secure protocols for classical support/confi-
dence association rule mining, like [11], to the task of subgroup discovery. The reason lies
in the different quality function. The existing protocols rely on the property that in the
support/confidence framework every globally large itemset must be locally large at least at one
of the sites. However, an analogous property does not hold for the quality functions used
in subgroup discovery: the globally best rules are not guaranteed to also be among the
locally best rules of any site, neither exactly nor approximately [23, 29]. A second source of
problems is the restriction to the top-k subgroups, which has the effect that it only becomes
clear whether a subgroup is part of the result once all subgroups have been considered.

In this paper, we present secure protocols for the task of top-k subgroup discovery on
horizontally partitioned data. In this setting, all sites use the same set of attributes and the
quality of every subgroup depends on all databases. The approach finds patterns in the
union of the databases, without disclosing the local databases. To the best of our knowl-
edge, this is the first secure approach that tackles any of the above-mentioned supervised
descriptive rule discovery tasks.

The remainder of this paper is structured as follows: After a discussion of related work
in Section 2, we review of some basic definitions in Section 3. Thereafter, we present a
top-1 subgroup discovery protocol in Section 4. We prove that it is secure in Section 5.
Subsequently, we present protocols for collecting sets of subgroups in Section 6, where
we also present a greedy approach to speedup the computation. Finally, we describe a
prototypical implementation in Section 7, before we conclude in Section 8.

2 Related Work

Privacy-preserving data mining has emerged to address the situation when the use of data
mining techniques is desired, but the data to be mined may not be disclosed or brought to-
gether for privacy considerations. The work presented in this paper falls into the category
of approaches based on secure multi-party computation [21, 8]. Here, the premise is that the
data is distributed over different parties, and the goal is to obtain data mining results with-
out revealing the (private) data of one party to another. Data publishing issues, which are
concerned with the amount of private information which can be deduced from a published
set of patterns or data records (e.g. [22, 2]), are not considered here.

Secure multi-party computation originates in Yao’ famous millionaires problem [30]: two
millionaires want to find out who is richer without revealing the precise amount of their
wealth. Yao has presented a generic solution that allows the secure evaluation of any two-
party functionality [31, 15]. The solution is based on the encryption and secure evaluation
of circuits. This technique has shown to be very useful to securely compute some sub-
functionality, and has been applied for that purpose in several settings. While in principle,
this generic solution could be used to securely compute any kind of (two-party) data min-
ing task simply by using an appropriate circuit, this naive approach would result in huge
circuits whose inputs would be entire databases – an approach which is not feasible in prac-
tice [21]. Another limitation of the approach is that it only considers two-party problems.
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While there also exist generic constructions for the multi-party case, these have additional
drawbacks which prevent their use in most applications [21].

For these reasons, custom secure multi-party solutions have been developed for many
different data-mining problems. These include privacy-preserving protocols for decision
tree induction [14], for nearest neighbor search [24] or for support vector machine classifi-
cation [32]. The work most similar to ours is clearly the privacy-preserving association rule
mining algorithm presented in [11].

Obviously, a nearby question is whether this approach can be extended to subgroup dis-
covery. This, however, is not the case. The reason lies in the different quality function.
The protocol proposed in [11] relies on the support/confidence framework, where every
globally large itemset must be locally large at least at one of the sites. This allows the use
of a distributed Apriori-style approach, similar to [5]. This approach is not possible for
subgroup discovery due to its different quality function: In subgroup discovery, the global
quality of every subgroup depends on all private databases, and, as shown by Scholz [23],
the globally best subgroups are not guaranteed to also be among the locally best rules of
any site, neither exactly nor approximately. Due to this fundamental difference, distributed
Apriori-style approaches like [5, 11] are not possible for subgroup discovery.

This brings us to the related work in the area of subgroup discovery. Although many dif-
ferent subgroup discovery algorithms have been proposed, to the best of our knowledge
the only approach dealing with distributed subgroup discovery is the distributed global sub-
group mining protocol by Wurst and Scholz [29]. In this approach, every (non-prunable)
candidate subgroup is allocated to one site which is responsible for its processing. The
processing of the subgroups (may) include polling the local support counts from all partic-
ipating sites. To speedup the computation, the authors propose pruning based on partially
available counts: a special kind of optimistic estimate pruning [28] based on the supports
polled from a subset of all sites.

The distributed global subgroup mining protocol of Wurst and Scholz, however, does not
consider issues like privacy or secure multi-party computation and hence there are no ob-
vious guarantees concerning the amount of information disclosed during the computation.
In fact, sophisticated pruning strategies like pruning based on partially available counts rely
on the disclosure of private information (i.e. of local supports) and thus violate the concept
of secure computation. But even if such pruning strategies are disabled, the standard (non-
secure) top-k subgroup discovery approaches cannot be applied in the context of secure
multi-party computation. The problem is that in order to collect only the top-k subgroups,
they make use of an increasing quality threshold which changes in view of the best sub-
groups collected so far. This approach, however, reveals information about the quality of
the subgroups visited (resp. about their quality ordering), which again violates the concept
of secure computation.

3 Preliminaries

In this section, we will briefly go over the most important notions from secure multi-party
computation and subgroup discovery.
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3.1 Privacy-Preserving Data-Mining and Secure Multi-Party Computa-
tion

The following section reviews the most important definitions of secure multi-party compu-
tation. The presentation is based on Goldreich [8], with some simplifications as we consider
a less general scenario.

3.1.1 Multi-Party Computation

A multi-party problem, or task, is casted by specifying a mapping from sequences of inputs
(one input per party) to sequences of outputs (one output per party). We refer to this
mapping as the desired functionality, denoted f : ({0, 1}∗)S → ({0, 1}∗)S , where S denotes
the number of parties. That is, f is a mapping of the combined input x̄ = (x1, . . . , xS) to the
combined output (f1(x̄), . . . , fS(x̄)): the first party with input x1 wishes to obtain f1(x̄), the
second party with input x2 wishes to obtain f2(x̄), etc. Clearly, the output of every party
can depend on all inputs, x1, . . . , xS .

3.1.2 A Definition of Secure Computation

In this paper, we consider multi-party computation in the semi-honest model, arguably the
most commonly used model in privacy-preserving data-mining (e.g. [14, 24, 11]). The semi-
honest model assumes that every party follows the protocol properly with the exception
that it keeps a record of all intermediate computations and messages. One motivation for
the semi-honest model is that parties who want to mine data for their mutual benefit will
follow the protocol to get correct results. A second argument motivating the use of the
semi-honest model is that records of the messages exchanged during the execution of a
protocol are likely to be available anyway through some standard logging of the operating
system, which makes “totally honest” behavior hard to enforce while semi-honest behavior
may be assumed in many setting.

Intuitively, a protocol π securely computes a functionality f if whatever a semi-honest
party can obtain after participating in the protocol could be obtained from the input and
output available to that party. This is formalized according to the simulation paradigm,
which requires that every party’s view in a protocol execution can be simulated given only
its input and output. As the actual execution may involve messages based on random
numbers, the simulator does not need to generate exactly what is seen during the actual
execution. The following definition makes this precise:

Definition 1. Let f = (f1, . . . , fS) be a deterministic S-ary functionality and π be a multi-
party protocol for computing f . For a party i, let viewπ

i (x̄) denote its view, i.e. its input xi

and the sequence of messages it has received. We say that π securely computes f in the pres-
ence of semi-honest adversaries without collusion if there exist probabilistic polynomial-
time algorithms Si, 1 ≤ i ≤ S, also called simulators, such that for every party the view is
computationally indistinguishable from the simulation:

{(Si(xi, fi(x̄))}x̄∈({0,1}∗)S ≡C {viewπ
i (x̄)}x̄∈({0,1}∗)S (1)

Here, ≡C denotes computational indistinguishability. Loosely speaking, the simulations
are computationally indistinguishable from the views if two cannot be reliably distinguish-
ed, i.e. if for every polynomial-time distinguisher D the probability that D distinguishes
a view and the simulation decreases super-polynomially in the length of the input. For
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our purpose, the most important fact is that any random number in a view is computa-
tionally indistinguishable from another random number drawn from the same probability
distribution. More details can be found in [8].

3.1.3 Yao’s Generic Circuit Solution

Yao has presented a generic solution that allows the secure evaluation of any two-party
functionality [31, 15]. The solution is based on the encryption and secure evaluation of
circuits. A detailed description of the circuit encryption scheme can be found in the excel-
lent presentation of Lindell and Pinkas [15]. While encrypted circuits typically cannot be
used directly to solve a data mining task (among others, because there are more than two
participating sites), they can be very useful to securely compute some sub-functionality.

3.2 Subgroup Discovery

Subgroup discovery is a supervised descriptive rule learning task. In this paper, we only
consider binary labeled data, thus a subgroup description can be seen as the antecedent of a
rule whose consequent is the positive class.

Formally, let A = A1, . . . , Am be a sequence of m sets we refer to as attributes. Beside
these attributes, there is a special binary set {+,−} called the label. A data record over A is
an m + 1-tuple D = (a1, . . . , am, l) ∈ A1 × · · · × Am × {+,−}. A database D over A is a
multiset of data records over A. We use the expression D+ to denote the sub-multiset of all
+-labeled data records in D. Formally, thus D+ = {(a1, . . . , am, l) ∈ D | l = +}. Similarly,
D− denotes the sub-multiset of all −-labeled data records in D.

The subgroup description language considered here is the language of conjunctions of
attribute/value equality constraints. We formalize this as follows: a constraint over A is an
expression (Ai = v) with i ∈ {1, . . . ,m} and v ∈ Ai. The language of subgroup descriptions
over A, denoted by LA, is then the power set of constraints over A. In the following, we
drop the index A because it is always clear from the context. Given a subgroup description
s ∈ L, we call the number of constraints it is built of its length, denoted by length(s).

We will now turn to the semantics of subgroup descriptions: a data-record (a1, . . . , am, l) ∈
D satisfies a subgroup description s ∈ L, if for all (Ai = v) ∈ s it holds that ai = v. The
support set of s in D (or simply the “subgroup”), denoted by D[s], is then the sub-multiset
of D containing the data records that satisfy s.

The “interestingness” of a subgroup description is measured by a quality function, which
is a mapping from a database and a subgroup description to the reals. The idea is that
high function values indicate interesting patterns. In this paper, we consider the Piatetsky-
Shapiro quality function, which is (factor) equivalent to the weighted relative accuracy [13].
This function, which is arguably one of the most common subgroup quality functions, is
defined as follows:

q(D, s) = n(D, s) (p(D, s)− p0(D)) . (2)

Here, n(D, s) = |D[s]| denotes the size of the subgroup, p(D, s) = |D+[s]| / |D[s]| the fraction
of records with positive label in the subgroup and p0(D) = |D+| / |D| the fraction of positive
records in the overall population. Subgroup discovery is concerned with finding high-
quality subgroups, as precised in the next section.
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4 A Protocol for Secure Top-1 Subgroup Discovery

We assume that there are S ≥ 2 sites (or parties) participating in the computation, each
holding a private database Di (1 ≤ i ≤ S) built over the same set of attributes. Instead of
directly considering the task of top-k subgroup discovery, we first consider a specialization
of this problem, namely finding a single subgroup of maximum quality. We will describe
later (in Section 6), how given a solution to this task, we can iteratively collect a set of k
subgroups.

4.1 The Task of Top-1 Subgroup Discovery

The task of finding a single subgroup of maximum quality can be seen as the special case of
the top-k task where k = 1. Beside the subgroup description, we want to learn its quality,
because this tells us whether the subgroup describes a significant phenomenon or merely
a manifestation of noise in the data. The task we consider is thus the following:

Task 1. Top-1 Subgroup Discovery Given private databasesD1, . . . ,DS at Sites 1 to S (each
built over the same set of attributes) together with a length limit L, calculate and distribute
a maximum quality subgroup description smax of length≤ L together with its quality. That
is, compute a pair 〈smax, qmax〉 ∈ L ×R such that

qmax = max
{s∈L|length(s)≤L}

q(D, s),

length(smax) ≤ L and q(D, smax) = qmax.

Here, the quality function q (defined in Equation 2) is evaluated wrt. the disjoint union of
the local databases, D =

⊕S
i=1Di.

It turns out that Task 1 is unexpectedly hard: First, as shown by Scholz [23], the globally
best rules may perform poor at all local sites, and moreover the local quality of a subgroup
can arbitrarily deviate from its global quality (no matter whether a relative or an absolute
definition of support is applied). The consequence is that separately analyzing one (or all)
local databases is of no help in finding the best global subgroup. This has the effect that
existing distributed association rule mining protocols, which rely on the fact that every
globally large itemset must be locally large at least at one of the sites [5, 11], cannot be
adapted to the task of subgroup discovery. As a result, Wurst and Scholz have proposed
a distributed global subgroup mining protocol [29] which computes the global quality of
every subgroup essentially by polling the local support counts from all participating sites.

In the context of secure computation, we face an additional difficulty: the standard ap-
proach of non-secure top-k subgroup discovery algorithms – keeping track of the best sub-
groups observed so far together with their quality during the traversal of the search space
[28, 9, 29] – results in a security leak. The reason is, loosely speaking, that the sequence
of increments of the best quality cannot be simulated from the outcome. This sequence,
however, reveals a lot of information about the data, as it induces a partial order over the
quality of all subgroups visited during the exploration of the search space. For this rea-
son, we compute the maximum-quality subgroup in two steps, by subsequently solving
the following two sub-tasks:

• first, we compute the maximum of all subgroup qualities, that is, the value qmax. This
is done in a way that only the maximum becomes known, but no ordering between
subgroup qualities;
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• second, we use this quality to securely find a maximum-quality subgroup.

We will discuss these two steps in Sections 4.2 and 4.3, respectively, before we present the
overall protocol in Section 4.4. The relation of the task of top-k subgroup discovery will be
considered later, in Section 6.

4.2 Computing the Maximum Quality

Our solution to the first sub-task works as follows: In a first phase, the sites collectively
traverse the space of subgroup descriptions. For every subgroup description, the protocol
ensures that Site 1 obtains a random value ri, and Site S a second value q̃i + ri, where
q̃i represents the quality of the subgroup (actually, q̃i is an integer-valued multiple of the
subgroup quality, as explained below). The motivation for the distributed storage of ri and
q̃i + ri is that none of the parties must learn the value q̃i. In a second phase, Site 1 and
Site S use the garbled qualities q̃i + ri and the offsets ri to securely calculate the maximum
quality. We remark that the first phase is inspired by the garbled quality calculation in [6],
while the second phase shares some similarity with the maximum computation in [14].

4.2.1 Computing the Garbled Qualities q̃i + ri.

We will now describe these two phases in more detail. We first observe that the Piatetsky-
Shapiro quality (Equation 2) can be rewritten as follows [7]:

q(D, s) =
∣∣D+[s]

∣∣ (1− p0(D))−
∣∣D−[s]

∣∣ p0(D).

Given that D =
⊕S

i=1Di, this means that the quality can be expressed as a sum of local
values:

q(D, s) =
S∑

i=1

(∣∣D+
i [s]

∣∣ (1− p0(D))−
∣∣D−

i [s]
∣∣ p0(D)

)
. (3)

All that is required to compute the local summands is the value p0(D). Moreover, all sum-
mands are multiples of 1/ |D|, because p0 is a multiple of 1/ |D|. Thus, assuming that every
site has knowledge of |D|, we can reduce the computation to arithmetics on integers. In
fact, the q̃i mentioned earlier are simply the integers obtained by multiplying the quality of
the i-th subgroup and |D|. As final observation, we note that the values of the integers q̃i

do not exceed |D|2.
Based on these observations, we realize the computation of the values ri and q̃i + ri at

Sites 1 resp. S as follows: Site 1 generates a random number ri uniformly distributed in
[0, . . . , M], where M is a some power of 2 constant such that M > |D|2. Site 1 adds it local
support, (

∣∣D+
1 [si]

∣∣ (1− p0)−
∣∣D−

1 [si]
∣∣ p0) · |D| to ri, and sends the sum (modulo M) to Site 2.

Sites 2 to (S-1) add their local support and send the result to the next site. Finally, Site S
obtains the result, which according to Equation 3 corresponds to q̃i + ri.

4.2.2 Obtaining the Maximum

Once the first phase of the computation is completed, Site 1 has a list of values r1, ..., rR, and
Site S another list q̃1 +r1, ..., q̃R +rR, where R denotes the number of subgroup descriptions
visited during the traversal. In the second phase, only two sites are involved. This is an
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important difference to the first phase, as it means that now we could apply a generic two-
party solution like Yao’s encrypted circuit scheme [31].

However, due to the potentially very large number of inputs this may result in an in-
feasibly large circuit, so we reduce the problem to smaller subproblems: We successively
shorten the two lists by iteratively replacing two values by one at both Sites 1 and S. Thereby,
we take care that while the length of the two lists decrease, together they still allow the
reconstruction of qmax. This is done by replacing two values rα, rβ at Site 1 by a new random
value r′, and the two corresponding values rα + q̃α, rβ + q̃β at Site S by r′+max(q̃α, q̃β). The
use of a new random number r′ is important, as it will allow us to prove that the parties
learn nothing new during the replacements1. The replacements take place until only one
pair of values remains, whose difference reveals the quality qmax. Figure 1 illustrates the
overall idea.

Figure 1: Maximum Quality Calculation

To put the above into action, all we
need is a secure solution for the follow-
ing functionality: Provided Site 1’s in-
put (rα, rβ , r′) and Site S’s input (rα +
q̃α, rβ + q̃β), calculate the combined output
(⊥, (max(q̃α, q̃β) + r′) mod M), i.e. Site 1
learns nothing and Site S learns the garbled
maximum. Here, all inputs and outputs are
integers in [0, ..., M].

We realize this functionality using an en-
crypted circuit [31]. A detailed descrip-
tion of the circuit encryption scheme is be-
yond the scope of this paper (see the excel-
lent presentation in [15] for details). The
bottom line is that given some boolean
circuit, this scheme allows to generate an
encrypted representation of that circuit,
together with an encoding table for the
boolean input gates. Given this represen-
tation, plus cryptographic keys represent-
ing a particular set of boolean inputs, it is
possible to calculate the (plain) value of the
boolean outputs - but no additional infor-
mation beyond that.

Using this encryption scheme, Site 1 pro-
ceeds as follows: First, it generates a boolean circuit that computes the above functionality.
The circuit has input wires for the boolean representation of rα, rβ , q̃α + rα, q̃β + rβ and
r′, and the output wires represent (max(q̃α, q̃β) + r′) mod M. The circuit calculates the
output using some inverters and ripple-carry adders, a well-known type of digital circuit.
Site 1 generates the encrypted representation of the circuit and sends the circuit (without
the encoding table) to Site S, together with the keys representing its own input bits. Now
all that Site S needs to calculate the output are the keys representing its own input. For
this purpose, we make use of an additional (“third”) party, T : Site 1 sends the encoding
table for the inputs of Site S to Site T . Site S sends its (plain) input bits to Site T and ob-

1Simply dropping one of the pairs would not be secure, as it would reveal which subgroup has the higher
quality. For similar reasons, we cannot store an encrypted representation of the subgroup description together
with its garbled quality.
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tains the corresponding cryptographic keys. Given this information, Site S can evaluate
the encrypted circuit and thus obtain (r′ + max(q̃α, q̃β)) mod M. None of the parties learn
anything else than the result, as we will prove in Section 5. We remark that if S > 2, the
role of Site T can be implemented by one of the sites 2, ..., (S − 1), e.g. Site 2, after some
minor preprocessing.2

4.3 Computing a Maximum Quality Subgroup

Once the maximum quality qmax is computed, it is straightforward to solve Task 1 and
compute a maximum quality subgroup. Basically, all that has to be done is to check, for
every subgroup si, whether qi ≥ qmax, which is equivalent to q̃i + ri ≥ ri + qmax · |D|.
The first subgroup satisfying this inequality is returned as outcome. The values q̃i + ri are
known at Site S after execution of Protocol 1, and moreover the values ri, qmax and |D| are
known at Site 1, so all that is needed is to securely compute the greater-or-equal test. This
test, however, is equivalent to Yao’ famous millionaires problem [30], and many solutions
exist for this task (e.g. [25]).

4.4 The Protocol

We now have all ingredients for a secure solution for Task 1. Protocol 1 assumes the length
limit L as input, together with local database Di, i, 1 ≤ i ≤ S.

First, the sites securely calculate |D| and |D+|. As |D| is the sum of the local |Di|, this
reduces to the secure calculation of a sum of local values – a standard task in multi-party
computation, for which efficient protocols exist (see e.g. [6]). Same for |D+|. The values
|D| and |D+| are distributed to all sites, which will enable them to calculate p0 and hence
the local values in Equation 3. Next, Site 1 and Site S initialize a local queue, Q1 resp. QS .
These will be used to store the values r1, ..., rR (at Site 1) resp. q̃1 + r1, ..., q̃1 + rR (at Site S).

Thereafter, the protocol iterates over all subgroup descriptions (Line 4.4 to 4.4). This is
orchestrated by Site 1, which makes use of an iterator iter to generate all subgroup descrip-
tions satisfying the length limit. The iterator traverses the space of subgroup descriptions
in a canonically depth-first, left-to-right order, according to the lexicographic order of the
constraints. It supports the following functionality resp. methods: (i) check if there is at
least one more subgroup description left to be considered (“hasNext”), and (ii) retrieve
the next subgroup description (“next”) .

Using this iterator, Site 1 generates the next subgroup description si and informs all sites
that si is the next subgroup description to be considered. Next, the parties collectively
calculate ri and q̃i + ri. As discussed earlier, the latter value is computed by iteratively
adding the local support and sending the intermediate result to the next site. The values ri

resp. ri + q̃i are separately stored in the queues Q1 and QS at Sites 1 and S, respectively.
When the second loop starts at Line 4.4, all candidate subgroups have been considered.

The protocol will now determine a pair of values ri∗ , (ri∗ + q̃i∗) such that q̃i∗ is maximal.
This is done by iteratively replacing (a pair of) pairs at Sites 1 and S simultaneously by (a
pair of) single values. To this end, in every iteration of Line 4.4 a new encrypted circuit is
generated at Site 1, which is evaluated afterwards by Site S, resorting to a third party T
(which can optionally be implemented by Site 2 as discussed earlier). The loop ends when
only one pair of values remains, which allows the calculation of the quality qmax.

2All that is required is that before the circuits are generated, Site 1 and Site S replace every ri by ri + r′
i, where

r′
i is a newly generated random value. This prevents the third party from drawing conclusions by relating the

observed inputs from Site S with the intermediate sums observed earlier.
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Protocol 1 Top-1 Subgroup Discovery
INPUT: length limit L and local databases D1, . . . ,DS

1: Site 1 initiates the secure calculation of |D| and |D+| and broadcasts the result
2: Site 1 creates a local iterator iter and a queue Q1, Site S creates a local queue QS

3: while hasNext(iter) do
4: Site 1 calculates and broadcasts si = next(iter)
5: Site 1 generates a random number ri uniformly in [0, . . . , M], enqueues ri inQ1, adds

its local support (
∣∣D+

1 [si]
∣∣ (1− p0) −

∣∣D−
1 [si]

∣∣ p0) · |D| to ri and sends the result (mod
M) to Site 2

6: Sites 2, ..., S − 1 add their local support to the intermediate sum and send the result
(mod M) to the next site

7: Site S adds its local support to the sum and enqueues the result, q̃i + ri (mod M), in
QS

8: end while

9: while Q1 contains more than 1 value do
10: Site 1 dequeues rα and rβ from Q1, generates a random number r′ uniformly in

[0, . . . , M] and enqueues r′ in Q1

11: Site 1 generates and encrypts a circuit that computes (max(q̃α, q̃β)+r′) mod M) from
rα, rβ , q̃α + rα, q̃β + rβ and r′. It sends the circuit to Site S together with the crypto-
graphic keys corresponding to the input bits for rα, rβ and r′.

12: Site 1 sends the encoding table for the remaining inputs to Site T
13: Site S dequeues (rα + q̃α) and (rβ + q̃β) from QS , asks Site T for the corresponding

cryptographic keys, evaluates the encrypted circuit and enqueues the result, (r′ +
max(q̃α, q̃β) mod M), in QS

14: end while

15: Sites 1 and S calculate qmax by exchanging the two remaining values
16: for every subgroup descriptions si do
17: if q̃i + ri ≥ ri + qmax · |D| then return 〈si, qmax〉
18: end for

OUTPUT: smax and qmax (same output at all sites)

Once the figure qmax is calculated, the protocol re-iterates over all subgroups (in Line 4.4)
until a subgroup with maximum quality is met. This subgroup is returned as result to-
gether with its quality, and the execution ends.

5 Analysis of the Protocol

5.1 Privacy

We will now show that Protocol 1 is secure, as precised by the following theorem:

Theorem 1. Protocol 1 privately solves Task 1, revealing only |D| and |D+| (in the semi-honest
model, assuming no collusion).
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Proof. We have to specify how every site can simulate its view given the result, the leaked
information and its own input. Recall that the simulation does not need to generate the
exact same sequence of messages – it suffices that its output is computationally indistin-
guishable from the view (which involves messages based on random numbers).

The simulator generates execution traces following the algorithmic skeleton of Protocol 1,
i.e. by iterating over the subgroup descriptions. This ensures that the simulations have
the same overall structure as the views. We will now go over every line of the protocol
involving communication and describe how the simulator can generate data computation-
ally indistinguishable from the observed messages. To this end, we will describe how the
simulator generates such data in a first paragraph “(S)”, before we prove that this data is
computationally indistinguishable from the actual messages in a second paragraph “(I)”.

Line 4.4: (S) The protocol computes |D| and |D+| using an existing secure-sum sub-protocol,
e.g. [6]. Goldreich’s Composition Theorem [8] says that given secure protocols for sub-tasks,
they can be dealt with in a transparent way: all we need to show is that the simulator can
predict the outcome of the sub-protocol. Given that |D| and |D+| is part of the simulator’s
input, it can output these very values. (I) The values in the view and in the simulation are
computationally indistinguishable because they are identical.

Line 4.4: (S) The simulator generates the next subgroup using the iterator iter. (I) The
subgroup in the view and in the simulation coincide, because the traversal is performed in
a canonical way.

Lines 4.4 to 4.4: (S) Sites 2 to S generate a random number uniformly in [0, . . . , M]. (I)
Given that ri was randomly generated uniformly in [0, . . . , M], the local sum in the view
is also uniformly distributed in [0, . . . , M]. Hence, it is computationally indistinguishable
from the random number in the simulation, because two random numbers generated from
the same distribution are computationally indistinguishable [8].

Lines 4.4 to 4.4: The execution of these lines result in the following messages: (i) Site S
receives an encrypted circuit representation together with a set of cryptographic keys that
allow the evaluation of the circuit; (ii) Site T receives an encoding table, plus the values
(rα + q̃α) and (rβ + q̃β).

(S) For Site S, the simulator generates a new encrypted circuit, and uses its representation
to simulate the circuit in the view. As simulation of the input r′, it uses the encryption table
to encode the bits of a newly generated random number generated uniformly in [0, . . . , M].
To simulate the other inputs, it uses the encryption table to encode some arbitrary boolean
values. For Site T , the simulator generates an encrypted circuit and uses the encoding table
as simulation of the table in the view. Moreover, it generates two random numbers as
simulation of the two inputs from Site S.

(I) For Site S, recall that all can be extracted from an encrypted circuit, given a particular
set of input keys, is the outcome [15]. The outcome of the circuit in the view is a random
number uniformly distributed in the domain [0, . . . , M], which is independent from all val-
ues observed so far (recall that Site 1 generates a new random offset in every iteration).
The same is true for the circuit in the simulation, thus the view and the simulation are
computationally indistinguishable. For Site T , the encoding table in the view is computa-
tionally indistinguishable from that in the simulation because both essentially consist of a
set of cryptographic keys generates by the same cryptographic key generation mechanism.
The inputs from Site S in the view are computationally indistinguishable from the random
numbers in the simulation because both are uniformly distributed in [0, . . . , M], and are
independent from all values observed so far.

Line 4.4: (S) The simulator generates qmax, which it is part of its input. (I) obvious.
Line 4.4: (S) Again, due to the composition theorem the simulator only has to generate the
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result of the test (plus, optionally, smax). This is straightforward, given that smax is part of
the input. (I) obvious.

5.2 Complexity Analysis

We will now turn to the runtime complexity of our protocol. As usual in subgroup discov-
ery, the critical factors are the number of attributes and the length limit for the subgroup
descriptions: the number of subgroup descriptions visited is bounded by |C|L , where L
is the length limit and |C| the number of attribute-value constraints. For every subgroup
considered, the cost for the quality and optimistic estimate calculation is linear in the num-
ber of records (if conditional datasets are used). While much of the computation can be
done in parallel, the transmission of the messages in the first while-loop is carried out se-
quentially. Each message involves numbers less than M, hence their length is bound by
O(log(M)) = O(log(|D|)). Summarizing, the runtime complexity of the first while-loop is
thus O(|D|+ S · log(|D|)) per subgroup.

Beside these calculations, the protocol involves the creation, transmission and evaluation
of encrypted circuits (in the second while-loop). For every subgroup, these tasks have
complexity O(log(M)) = O(log(|D|)), because all input to the circuit are integers less than
M, and the number of gates in ripple-carry adders and inverters is linear in the number of
bits. In terms of O(.) complexity, the cost for the circuits is thus dominated by the quality
calculation. Altogether, the complexity of our protocol is thus O(|C|L · (|D|+ S · log(|D|))).

For comparison, let us consider the complexity of centralized approaches, like [9]. For
each subgroup considered, these also have costs which are linear in the size of the dataset.
Moreover, the number of subgroups to be considered is O(|C|L) in worst-case.3 Thus, for
a constant number of parties, the worst-case runtime of our protocol is the same as for a
centralized, non-secure approach: O(|C|L · |D|).

6 Protocols for other Subgroup Discovery Tasks

In this section, we will consider the task to collect not only a single subgroup, but a set of k
subgroups. Beside the classical top-k subgroup discovery task, we will consider a second
approach that collects k subgroups while avoiding redundancy among those subgroups.
Besides protocols that allow collecting a set of subgroups, we will present a heuristic pro-
tocol which allows finding subgroups much faster than with Protocol 1, at the price that
the optimality of the result is not guaranteed.

6.1 Top-k Subgroup Discovery

It is straightforward to extend our approach to a solution for the top-k subgroup discovery
task. All we need to do is to iteratively collect the next highest-quality subgroup not in
the set of subgroups collected so far. Doing so requires only a minor modification of the
iterator, ensuring that all subgroups collected so far will be ignored during subsequent
search space traversals. Protocol 2 makes this precise.
This protocol leaks the same information as Protocol 1:

3We remark that for many datasets, the number of subgroups considered in non-secure approaches can be
considerably reduced by the use of pruning techniques [28, 9]. These branch-and-bound techniques, however,
cannot circumvent the worst-case complexity of the approach.
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Protocol 2 Top-k Subgroup Discovery
INPUT: integer k, length limit L and local databases D1, . . . ,DS

1: The sites collectively execute Protocol 1. The resulting subgroup and quality are stored
in the variables s1 and q1

2: for i = 2 to k do
3: The sites collectively execute Protocol 1, using a modified iterator which skips the

subgroup descriptions {s1, . . . , si−1}. The result is stored in si and qi

4: end for
OUTPUT: {〈s1, q1〉, . . . , 〈sk, qk〉} (same output at all sites)

Corollary 2. Protocol 2 only reveals |D| and |D+| (in the semi-honest model, assuming no collu-
sion).

Proof. The corollary follows directly from Goldreich’s composition theorem and the fact
that all si are part of the result.

6.2 The Weighted Covering Scheme

An issue with the above solution is that there is a risk that the subgroups all characterize
a similar portion of the data and hence, that there is some redundancy in the result. A
classical approach to avoid running into this problem is the weighted covering scheme [13].
The idea is to iteratively search for the maximum subgroup, however using a definition
of quality that accounts for record weights. After every iteration, the weights of the records
covered by the subgroup collected so far is decreased by multiplication with some rational
number. This results in a definition of quality which is equivalent to the following:

qw(D, s) =
S∑

i=1

(∣∣D+
i [s]

∣∣w (1− p0(D)w)−
∣∣D−

i [s]
∣∣w p0(D)w

)
. (4)

Here, |D|w denotes the sum of the weights of the records in D, and similarly p0(D)w =
|D+|w / |D|w.

All that needs to be done to implement the weighted covering scheme is thus to make use
of this quality definition instead of that in Equation 3. Given that Equation 4 is a sum of lo-
cal values, and that these values are rational numbers which can be computed locally given
the set of subgroups collected in the previous iterations, the adaptation is thus straightfor-
ward. Protocol 3 specifies how to securely collect k subgroups according to the weighted
covering scheme.
Again, this protocol leaks the same information as Protocol 1:

Corollary 3. Protocol 3 only reveals |D| and |D+| (in the semi-honest model, assuming no collu-
sion).

Proof. As before, this follows directly from Goldreich’s composition theorem and the fact
that all si are part of the result.
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Protocol 3 Weighted Covering
INPUT: integer k, length limit L and local databases D1, . . . ,DS

1: The sites collectively execute Protocol 1 to find s1 and q1

2: for i = 2 to k do
3: All sites calculate the weights of their records based on {s1, . . . , sdi−1}, the set of

subgroups collected so far
4: The sites collectively execute Protocol 1, using the modified definition of quality from

Equation 4. The result is stored in si and qi.
5: end for

OUTPUT: {〈s1, q1〉, . . . , 〈sk, qk〉} (same output at all sites)

6.3 Pruning

The cryptographic techniques used in our protocol, in particular the circuit encryption and
evaluation, are computationally very expensive operations. The effect is that even if accord-
ing to the complexity analysis from Section 5.2 the protocols scale similarly to non-secure
solutions in the worst case, their execution time is several orders of magnitude higher in
practice (as we will show in Section 7.2). To cope with this issue, we will now consider the
use of pruning techniques within our approach.

Unfortunately, pruning is problematic from the perspective of secure multi-party compu-
tation. In fact, the incorporation of any strategy which avoids visiting parts of the search
space based on intermediate computation results in a security leak: The reason is that whether
a branch is pruned or not can clearly be observed by all participants. However, this in-
formation cannot be predicted solely based only on the information about top-1 subgroup.
Hence, it is not possible to simulate an execution trace involving pruning, which violates
the definition of secure computation.

This consideration implies that the use of optimistic estimate pruning [28]—a standard
technique in non-secure subgroup discovery—is not without problems in our secure set-
ting. In fact, optimistic estimate pruning is particularly problematic, as it typically prunes a
high number of branches. Thus, it is not easy to quantify how much information is leaked,
or, considered from a different perspective, it is difficult to quantify how much informa-
tion would be needed to simulate an execution trace. Beside this issue, even if optimistic
estimate reduces the runtime, it will still be much higher than for a centralized approach.
The same reasoning applies to pruning approaches based on the theory of closed itemsets
[20, 3].

For this reason, in this section we consider a different pruning approach, namely a greedy
search. This search strategy finds the best subgroup of length 1, and from here only con-
siders specializations of the best subgroup found in the previous levels. This approach
has two advantages: First, instead of considering O(|C|L) subgroups, it only considers
O(|C| · L) subgroups (again L denotes the length limit and |C| the number of attribute-
value constraints). Moreover, compared to optimistic estimate pruning, this technique has
the advantage that the amount of information leaked can precisely be quantified: essen-
tially, it consists of information about L − 1 subgroups. Of course, the price is that the
result is no longer guaranteed to be optimal.

The greedy search is specified in Protocol 4. As already mentioned, at level i the protocol
only considers specializations of the best subgroup found at level i − 1. The result of the
protocol is the subgroup with the highest quality thereby visited (the longest subgroup
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description needs not have the highest quality, which means that the result needs not be
the subgroup found at the last level).

Protocol 4 Greedy Top-1 Subgroup Discovery
INPUT: length limit L and local databases D1, . . . ,DS

1: The sites collectively execute Protocol 1 with length limit 1 to find s̃1 and q̃1

2: for i = 2 to L do
3: The sites collectively execute Protocol 1 with length limit i, using a modified iterator

which only considers specializations of s̃i−1. The resulting subgroup and quality are
stored in the variables s̃i resp. q̃i.

4: end for
OUTPUT: 〈s̃i∗, q̃i∗〉, such that i∗ = arg maxi=1,...,L q̃i (same output at all sites)

Corollary 4. Protocol 4 only reveals |D|, |D+|, a set of L subgroups s̃1, . . . , s̃L such that s̃1 =
arg maxs∈L|length(s)=1 q(D, s) and s̃i = arg maxs∈L|s⊃s̃i−1∧length(s)=i q(D, s) (for i = 2, . . . , L), and
the qualities of the subgroups s̃1, . . . , s̃L (in the semi-honest model, assuming no collusion).

Proof. Due to the composition theorem, the simulator only needs to simulate the messages
involving the s̃i and their quality. This is precisely the leaked information listed in the
corollary.

Of course, it is possible to combine the greedy protocol with the weighted covering ap-
proach to obtain a set of subgroups.

7 Implementation and Experimental Evaluation

In this section, we will briefly describe our prototypical implementation and report on
some experiments.

7.1 Prototypical Implementation

Our prototype was implemented in Java. For the encryption of the circuits, we used the
AES cipher with 128 bit keys implemented in the lightweight API of the crypto-library
Bouncycastle (http://www.bouncycastle.org). To compute secure sums, we used the se-
cure sum protocol described in [6]. For secure comparisons, we used the efficient solution
for Yao’ millionaires problem described in [25].

7.2 Experimental Evaluation

We investigated two questions: first, how does the runtime of our protocol compare to the
runtime of non-secure (centralized) subgroup discovery algorithms? And second, which
part of the protocol is critical for the runtime. To this end, we evaluated the performance
of our implementation on different datasets from the well-known UCI repository [1]. The
datasets and their characteristics are listed in Table 1. All datasets where randomly split
into three parts, which were used as local datasets. The experiments were performed on
three Core 2 Duo E8400 PCs with 2GB RAM, connected by an Ethernet LAN. The length
limit, L, was set to 3.
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dataset credit-g nursery sick soybean
number of constraints 58 27 66 133
number of records 1000 12960 3772 683

Table 1: Datasets

7.2.1 Comparison of the Different Approaches

Figure 2 shows the result of the comparison of our two secure protocols with a non-secure
algorithm. As representative for the latter class of approaches, we chose the algorithm Dp-
Subgroup [9]. The figure shows that compared with this algorithm, both secure protocols
are slow. Protocol 1 (labeled as “SecureSD” in the figure) is actually slower by more than
four orders of magnitude. Protocol 4 (“GreedySD”) is considerably faster, but still about
two orders of magnitude slower than the non-secure algorithm DpSubgroup.

Figure 2: Runtime of the prototype

A different yet interesting issue is how good the subgroups found by the protocols are,
compared with a non-secure solution. For Protocol 1, the result is exactly the same, as
shown in Theorem 1. So the question is how well the greedy algorithm performs. Clearly, a
representative investigation of the qualitative performance of greedy vs. exhaustive search
is not the focus of this paper. Nevertheless, we note that in all our experiments, the greedy
top-1 protocol found one of the top-2 subgroups (as found by the exhaustive top-k pro-
tocol). This shows that even though the greedy approach typically won’t find the exact
solution, it often comes up with interesting subgroups.

7.2.2 The Costs of the Encrypted Circuits

Finally, we investigate the costs of the different parts of our secure protocols. Figure 3 com-
pares the runtime of the following two components of Protocol 1: the while loop involving
the encryption and evaluation of the circuits is labeled as “Circuits”. All the rest, in par-
ticular the quality computation and comparison, is labeled as “Qual. calc.”. The figure
reveals that the loop involving the encrypted circuits is by far the most expensive part of
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the computation, consuming more than 95% of the total runtime.

Figure 3: Share of the runtime spent for circuit encryption and evaluation

7.2.3 Summary of the Results

Summarizing, the experiments show that our approach is applicable in practice. The run-
time is sufficient to process data sets of realistic size in a few hours (or minutes, if the
greedy approach is adopted). This is quite often sufficiently fast for practical use. In sce-
narios where a failure to guarantee privacy means that data mining can not be applied at
all, the users may very well be willing to invest more time if that allows finding valuable
patterns which could not be obtained otherwise.

8 Conclusions

In many pattern mining settings, the data to be analyzed is sensitive, which makes the
use of privacy-preserving techniques mandatory. Although approaches exist to securely
find association rules in distributed data, these cannot be adapted to supervised descrip-
tive mining tasks like subgroup discovery. The source for the difficulties are precisely the
features that distinguish subgroup discovery from classical association rule mining: (i) the
different quality function, and (ii) the aim to collect only k patterns.

In this paper, we have presented new secure protocols that allow secure subgroups dis-
covery on horizontally partitioned data. While the basic protocol only solves the top-1 sub-
group discovery task, it can be iterated to collect a set of k subgroups. We have analyzed
the properties of our protocol and have shown that it leaks only little information, namely
the size of the database and the share of positive records. Moreover, we have reported on a
prototypical implementation and runtime experiments with that implementation.

In the experiments it has become clear that the improvements in security and privacy
come at the price of a high runtime. While the worst-case complexity of our algorithm
is the same as for a non-secure solution (i.e. exponential in the length limit), in practice
it is much slower than the latter. One key reason is the high computational overhead for
the generation and evaluation of the encrypted circuits. As resort, we have considered a

TRANSACTIONS ON DATA PRIVACY 4 (2011)



164 Henrik Grosskreutz, Benedikt Lemmen and Stefan Rüping

modified protocol which applies a greedy search. While this approach comes at a price (the
solution is not guaranteed to be optimal and the information leakage is somewhat higher),
it allows to reduce the runtime by several orders of magnitude. This can allow the use of
privacy-preserving subgroup discovery in settings where the first protocol would be too
slow.

One question worth further investigation is the effective severity of information leaks
caused by pruning techniques. Clearly, knowledge about e.g. optimistic estimates tells
something about the private data, but it is not really clear how much. In particular, does it
allow to reconstruct (part of) the data? This question is closely related to the so-called task
of inverse frequent set mining [16]. Another interesting question is whether the protocols pre-
sented in this paper can be adapted to other quality functions used in supervised descrip-
tive rule discovery. Yet another question is whether it is possible to devise a custom-made
protocol for the secure maximum computation as replacement for our (costly) encrypted
circuit solution. Finally, it would be desirable to extend the security guarantees to collud-
ing parties. One standard approach in the cryptographic community to deal with collusion
issues is to divide the information into different parts, and to use different routes for the
different calculations (e.g. [11]). We leave the investigation of these issues to future work.
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