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Abstract. The advent of database services has resulted in privacy concerns on the part of the client
storing data with third party database service providers. Previous approaches to enabling such a
service have been based on data encryption, causing a large overhead in query processing. A dis-
tributed architecture for secure database services is proposed as a solution to this problem where
data is stored at multiple servers. The distributed architecture provides both privacy as well as fault
tolerance to the client. In this paper we provide algorithms for (1) distributing data: our results in-
clude hardness of approximation results and hence a heuristic greedy algorithm for the distribution
problem (2) partitioning the query at the client to queries for the servers implemented by a bottom
up state based algorithm. Finally the results at the servers are integrated to obtain the answer at the
client. We provide an experimental validation and performance study of our algorithms.
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1 Introduction

Database service providers are becoming ubiquitous these days. These are companies
which have the necessary hardware and software setup (data centers) for storage and re-
trieval of terabytes of data [8, 14, 25]. As a result of such service providers, parties wanting
to store and manage their data may prefer to outsource data to these service providers.
The parties who outsource their data will be referred to as clients hereafter. The service
providers storing data will be referred to as servers.

There is a growing concern regarding data privacy among clients. Often, client data has
sensitive information which they want to prevent from being compromised. Examples of
sensitive databases include a payroll database or a medical database. To capture the notions
of privacy in a database, privacy constraints are specified by the client on the columns of
the sensitive database. We use the notion of privacy constraints as described in [3, 23]. An
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example of a privacy constraint is (age, salary) which states that age and salary columns of
a tuple must not be accessible together at the servers. The clients also have a set of queries
also known as the workload that need to be executed on a regular basis on their outsourced
database.

Most existing solutions for data privacy rely on encrypting data at the server, so that only
the client can decrypt it (see for example [16, 17]). Unfortunately, it is hard to run general
queries on encrypted data efficiently. If the server cannot execute parts of a query, it sends
a fraction of the encrypted database back to the client for further filtering and processing,
clearly an expensive proposition.

Instead, Reference [3] suggests using two (multiple) service providers in order to store
the data. The advantage of using two servers is that the columns can be split across the
two servers to satisfy privacy constraints without encrypting the split columns. Thus, in
order to satisfy privacy constraints, columns can either be split across servers or stored
encrypted. Thus the goal of any decomposition algorithm is to partition the database to
satisfy the following.

• None of the privacy constraints should be violated.
• For a given workload, minimum number of bytes should be transferred between the

servers and the client.

We explain both of the above points in detail in the next section. The problem of finding
the optimal partition structure for a given set of privacy constraints and query workload
can be shown to be intractable. We apply heuristic search techniques based on greedy hill
climbing approach to come up with nearly optimal solutions.

The organization of the paper is as follows. After the introduction in Section 1 we provide
the system architecture in Section 2. We then provide theoretical intractability results for
the schema decomposition problem in Section 3. In Section 4 we provide cost estimation
and SQL query answering algorithms, which we use in Section 5 to provide a practical
heuristic for the partitioning problem. In Section 6 we provide experimental results on a
synthetic and a personal data example and we conclude with related work in Section 7.

2 System Architecture
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Figure 1: Distributed Architecture for a Secure Database Service

The general architecture of a distributed secure database service, as illustrated in Figure
1, is described more in [3]. It consists of a trusted client as well as two or more servers that
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provide a database service. The servers provide reliable content storage and data manage-
ment but are not trusted by the client to preserve content privacy.
Some relevant terms are described here before going into further details.

• Data Schema This is the schema of the relation the client wishes to store on the server.
As a running example, consider a company desiring to store relation R with the follow-
ing schema.
R (Name, DoB, Gender, ZipCode, Position, Salary, Email, Telephone)

• Privacy Constraints: These are described a collection of subsets of columns of a relation
which should not be accessible together. Single column constraint means that the col-
umn should be encrypted. The company may have the following privacy constraints
defined:
{Telephone}, {Email}, {Name, Salary},
{Name, Position},{Name, DoB},
{DoB, Gender, ZipCode},{Position, Salary}, {Salary, DoB}

• Workload: A workload W is a set of queries that will be executed on a regular basis on
the client’s data.

• Tuple ID (TID): Each tuple of the relation is assigned a unique tuple ID. The TID is
used to merge data from multiple servers when executing a query on the data. The use
of TID will become more explicit in the query plans described next.

• Partitions:There are two servers to store the client database. The schema and data are
partitioned vertically and stored at the two servers.
A partition of the schema can be described by three sets R1 (attributes of R stored on
Server 1), R2 (attributes of R stored on Server 2) and E(set of encrypted attributes stored
on both servers). It is important to note that (R1

⋃
R2

⋃
E) = R and it is not necessar-

ily the case that R1

⋂
R2 = {} . We denote a decomposition of R as D(R).An example

decomposition D(R) of R is given here.
Partition 1 (R1): (TID, Name, Email, Telephone, Gender, Salary)
Partition 2 (R2): (TID, Position, DoB, Email, Telephone, ZipCode)
Encrypted Attributes (E): Email, Telephone

• Query Execution Plans in Distributed Environment: When data is fragmented across
multiple servers, there are two plan types used frequently to execute queries on data
stored on these servers.
Centralized Plans: On execution of a query, data from each server is transmitted to the
client and all further processing is done at the client side. In some cases, multiple re-
quests can go the each server but data from one server is never directly sent over to the
other servers.
Semi join Plans: As an alternative to centralized plans, it maybe more efficient to con-
sider semi join plans. Here, TIDs are passed from one server to the other to reduce the
amount of traffic flow to the client.

• Encryption Details: Encryption of columns can either be deterministic or non-deterministic.
A deterministic encryption is one which encrypts a column value k to the same value
E(k) every time. Thus, it allows equality conditions on encrypted columns to be exe-
cuted on the server. Our implementation assumes encryption on columns to be deter-
ministic.

• Column Replication: When columns of a relation are encrypted, then they can be
placed in any of the two servers since they will satisfy all privacy constraints. It is ben-
eficial to store the encrypted columns on both servers to make query processing more
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efficient. Non encrypted columns can also be duplicated as long as privacy constraints
are also satisfied. Replication will result in lesser network traffic most of the time. To
prevent associations semantic security with randomized encryption can be used at the
price of higher query processing cost.

• Cost Overhead: We model the cost as the number of bytes transmitted on the network
assuming that this supersedes the I/O cost on the servers and processing cost on the
client. Cost overhead is the parameter used to determine the best possible partitioning
of a relation. It measures the number of excess bytes transferred from the server to the
client due to the partition.
Cost Overhead(D(R)) = X − Y ,
where X = Bytes transmitted when executing workload W on a decomposition D(R) of
R at two servers,
Y = Bytes transmitted when executing workload W on relation R at one server with no
fragmentation.

The problem can now formally be defined as follows.
We are given: (1) A data schema R; (2) A set of privacy constraints P over the columns of
the schema R; (3) A workload W defined as a set of queries over R.; We have to come up
with the best possible decomposition D(R) of the columns of R into R1, R2 and E such
that:
(1) All privacy constraints in P are satisfied. These can either be satisfied by encrypting
one or more attributes in the constraint or have at least one column of the constraint at
each of the servers. Encrypting columns has its disadvantages as discussed before so we
give priority to splitting columns as a way to satisfy privacy constraints.
(2)The cost overhead of D(R) for the workload W should be the minimum possible over all
decompositions of R which satisfy P . Space is not considered as a constraint and columns
of relations are replicated at both servers as long as they satisfy privacy constraints.

3 Intractability of Schema Decomposition

In this section, we provide hardness of approximation results for the schema decompo-
sition problem. These results are not essential to understand the rest of the paper. They
provide a formal reasoning why simplified versions of the schema decomposition prob-
lems are hard to approximate.
A standard framework to capture the costs of different decompositions, for a given work-
load W , is the notion of the affinity matrix [24] M , which we adopt and generalize as follows:
• The entry Mij represents the performance “cost” of placing the unencrypted attributes

i and j in different fragments.
• The entry Mii represents the “cost” of encrypting attribute i across both fragments.
We assume that the cost of a decomposition may be expressed simply by a linear combi-

nation of entries in the affinity matrix. Let R = {A1, A2, . . . An} represent the original set of
n attributes, and consider a decomposition of D(R) = 〈R1, R2, E〉, where R1 is at Server 1,
R2 at Server 2 and E the set of encoded attributes. Then, we assume that the cost of this de-
composition C(D) using [3] is

∑
i∈(R1−E),j∈(R2−E) Mij +

∑
i∈E Mii. ( For simplicity, we do

not consider replicating any unencoded attribute, other than the tupleID, at both servers.
The hardness results hold nonetheless. )

In other words, we add up all matrix entries corresponding to pairs of attributes that
are separated by fragmentation, as well as diagonal entries corresponding to encoded at-
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tributes, and consider this sum to be the cost of the decomposition.
Given this simple model of the cost of decompositions, we may now define an optimiza-

tion problem to identify the best decomposition:
Given a set of privacy constraints P ⊆ 2R and an affinity matrix M , find a decomposition D(R) =
〈R1, R2, E〉 such that
(a) D obeys all privacy constraints in P , and
(b)

∑
i,j:i∈(R1−E),j∈(R2−E) Mij +

∑
i∈E Mi is minimized.

We model the above problem with a graph theoretic abstraction. Each column of the
relation is modeled as a vertex of the graph G(V,E), whose edges weights are Mij and
vertex weights are Mii. We are also given a collection of subsets P ⊆ 2R, say S1, . . . , St

which model the privacy constraints. Given this graph G(V,E) with both vertex and edge
non-negative weights, our goal is to partition the vertex set V into three subsets - E (the
encrypted attributes), R1 (the attributes at Server 1) and R2 (the attributes at Server 2).
The cost of such a partition is the total vertex weight in E, plus the edge weight of the cut
edges from R1 to R2. However, the constraint is that none of the subsets S1, . . . , St can be
fully contained inside either R1 or R2. The closely related minimum graph homomorphism
problem was studied in [5].

3.1 Minimum Cut when there are Few Sets Si

There is an algorithm that solves the general problem, but this algorithm is efficient only in
special cases, as follows.

Theorem 1. The general problem can be solved exactly in time polynomial in
∏

i |Si| = nO(t)

by a minimum cut algorithm, so the general problem is polynomial if the Si consist of a constant
number of arbitrary sets, a logarithmic number of constant size sets, O(log n/ log log n) sets of
polylogarithmic size, and (log n)

ε sets of size e(logn)1−ε

for a constant number of distinct 0 < ε < 1.

Proof. One may try in all possible ways to select for each Si either one element to go to E or
two elements to go to R1, R2 respectively. Merge together the identified elements of each
of E,R1, R2 next, remove the identified elements in E, and now we are looking for a min
cut between the identified R1, R2 given by vertices that go to E and edges that join R1, R2.
In fact we may turn the edges into vertices by putting a middle vertex of the appropriate
weight on each edge, so we are looking for a min-vertex cut, which is polynomial. Thus
the complexity is polynomial in

∏
i |Si| = nO(t) because of the initial number of possible

choices.

3.2 Minimum Hitting Set when Solutions do not Use R2

When edges have infinite weight, no edge may join R1 and R2 in a solution.
In the hitting set problem we are asked to select a set E of minimum weight that intersects

all the sets in a collection of sets Si.

Theorem 2. For instances whose edges form a complete graph with edges of infinite weight the
problem is equivalent to hitting set, and thus has Θ(log n) easiness and hardness of approximation.

Proof. We may not cross the cut R1, R2 as this would give infinite cost. We may thus assume
that only E,R1 will be used. Each set Si must then have at least one element in E, so a
solution is valid only if E hits all the sets Si, and the cost is the sum of the vertex weights
in the hitting set E.
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3.3 The case |Si| = 2 and Minimum Edge Deletion Bipartition

When vertices have infinite weight, no vertex may go to E.
In the minimum edge deletion bipartition problem we are given a graph and the aim is to select

a set of edges of minimum weight to remove so that the resulting subgraph after deletion
is bipartite. This problem is constant factor hard to approximate even when the optimum
is proportional to the number of edges, as shown by Hastad [19], can be approximated
within a factor of O(log n) as shown by Garg, Vazirani, and Yannakakis [11], and within an
improved factor of O(

√
log n) as shown by Agarwal et al. [2].

The next three results compare the problem having |Si| = 2 to minimum edge deletion
bipartition.

Theorem 3. If all vertex weights are infinite (so that E may not be used), the sets Si are disjoint
and have |Si| = 2, and all edge weights are 1, then the problem encodes the minimum edge deletion
bipartition problem and is thus constant factor hard to approximate even when the optimum has
value proportional to the number of edges.

Proof. Encode each vertex v of G as Sv = {av, bv}, and encode each edge vw of G as the
two edges joining Sv, Sw given by avbw, bvaw. The side of the bipartition for v depends on
whether av or bv goes to R1, and an edge vw is removed if v, w go to the same side, in which
case we pay for both avbw, bvaw across the cut R1, R2. Thus the problem is equivalent to
the minimum edge deletion bipartition.

Theorem 4. If all vertex weights are infinite (so that E may not be used), the sets Si have |Si| = 2,
then the problem may be approximated in polynomial time by a minimum edge deletion bipartition
instance giving an O(

√
log n) approximation.

Proof. If two sets Si share an element, say Si = {a, b} and Sj = {a, c}, then we may merge
b and c. We may thus assume the Si are disjoint. Now represent Sv = {av, bv} by a vertex
v, and if Sv, Sw are joined by edges we must pay at least one for these edges, unless these
edges are (1) contained in avbw, bvaw or (2) contained in avaw, bvbw. In case (1) we join vw
by an edge, and in case (2) we introduce a new vertex u and form a path vuw of length 2.
This encodes the problem as a minimum edge deletion bipartition problem up to a constant
factor, so an O(

√
log n) approximation exists. The problem with edge weights is similarly

solved by subtracting weights joining Si and Sj until we fall in cases (1) or (2) above.

Theorem 5. If all vertex weights are 1, there are no edges, and the sets Si have |Si| = 2, then the
problem encodes minimum edge deletion bipartition and is thus hard to approximate within some
constant even for instances that have optimum proportional to the number of vertices.

Proof. If we consider the sets Si as edges, this is the problem of removing the least number
of vertices to make the graph bipartite. We know hardness for removing edges to make the
graph bipartite. To translate to vertices, separate each vertex of degree d into d vertices, one
for each adjacency, and connect these d vertices with a constant degree expander graph,
where each edge of the expander graph is replaced with constant number of parallel paths
of length two. Thus if less than half the vertices of the same expander graph get removed,
this corresponds to removing a proportional number of edges.

We now approximate the general problem with sets Si having |Si| = 2. The performance
is similar to the minimum vertex deletion problem.
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Theorem 6. The general problem with sets Si having |Si| = 2 can be solved with an approximation
factor of O(

√
n) by directed multicut.

Proof. Represent each vertex v of weight x by four vertices av, bv, cv, dv joined by arcs
avbv, cvdv of capacity x. Represent each Si = {u, v} by arcs bucv, duav, bvcu, dvau of infi-
nite capacity. Represent each edge uv of weight y by arcs buav, ducv, bvau, dvcu of capacity
y. Finally look for a multicut that separates the sources av from the corresponding sinks dv .
Removing an arc for a vertex x corresponds to assigning x to E, and after removing arcs
corresponding to uv, the vertices form by reachability two components R1 for arcs avbv and
R2 for arcs cvdv . The multicommodity flow result of Gupta [15] for directed multicut gives
the O(

√
n) bound.

3.4 The case |Si| = 3 and Intractability

The problem with |Si| = 3 becomes much harder to approximate, compared to the O(
√
n)

factor for |Si| = 2.

Theorem 7. If all vertex weights are 1, there are no edges, and the sets Si have |Si| = 3, then the
problem encodes not-all-equal 3-satisfiability and it is thus hard to distinguish instances of zero cost
from instances of cost proportional to the number of vertices.

Proof. If there are are no edges and the sets Si have size |Si| = 3, then the problem en-
coded is not-all-equal 3-satisfiability by corresponding sets R1 and R2 to values 0 and 1
respectively. Even satisfiable instances of not-all-equal 3-satisfiability have a constant fac-
tor hardness on the number of variables participating in unsatisfied clauses by a solution.
We conclude that a constant fraction of such variables must be assigned to E even if a
zero cost solution exists. The hardness of approximation of non-all-equal satisfiability for
number of variables instead of clauses is obtained by making multiple copies of the same
variable for multiple clauses, and joining these with a constant degree expander graph.
Each edge xy of the expander graph represents a path of length two xzy, where xz and
zy represent x �= z and z �= y over {0, 1} respectively. We represent x �= y with clauses
{x, t, y}, {x, u, y}, {x, v, y}, {t, u, v}. The result thus follows from the result for not-all-equal
satisfiability of Hastad [19].

We examine the tractability when the sets Si are disjoint.

Theorem 8. If all vertex weights are infinite (so that E may not be used), the sets Si are disjoint
and have |Si| = 3, and all edge weights are 1, then the problem encodes not-all-equal 3-satisfiability
and it is thus hard to distinguish instances of zero cost from instances of cost proportional to the
number of edges.

Proof. A clause of not-all-equal satisfiability may be viewed as a set Si = {xi, yi, zi}. We
assume these Si are disjoint and join copies of variables in different clauses by a clique.
If the not-all-equal 3-satisfiability problem has a solution, a solution of zero cost exists for
our problem. The number of clauses satisfied in a not-all-equal satisfiability problem is
constant factor hard to approximate even on instances that are satisfiable. Therefore in
a solution to our problem a constant fraction of the sides chosen for the elements of the
Si would have to be changed between R1 and R2 to obtain a consistent solution to not-all-
equal 3-satisfiability that fails a constant fraction of the clauses. If we replace each clique by
a constant degree expander graph, then each of the elements of Si that would be changed
between R1 and R2 pays a constant, as at most half of the elements of the expander graph
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for a clique are changed. Thus we pay cost proportional to the number of edges when the
optimal cost is zero by hardness of approximation of not-all-equal 3-satisfiability shown by
Hastad [19].

Theorem 9. The problem with vertices of infinite weight and edges of weight 1, sets Si with |Si| = 3
forming a partition with no edges within an Si, the graph H1,2,3,1′,2′,3′ with no edges joining
S = {1, 2, 3} and S′ = {1′, 2′, 3′} allowed, can be classified as follows:
(1) If only additional H from K0 are allowed, the problem is constant factor approximable;
(2) If only additional H from K0 and K1 are allowed, the problem is O(

√
log n) approximable;

furthermore as long as some graph from K1 is allowed, the problem is no easier to approximate than
minimum edge deletion bipartition, up to constant factors.

(3) If only additional H from K0,K1 and K2 are allowed, the problem is O(log n) approximable;
(4) If some additional H from K3 is allowed it is hard to distinguish instances with cost zero from

instances with cost proportional to the number of edges.

Proof. We prove (4). The case of H11′,2,2′,3,3′ was proven in the preceding theorem. The case
of H11′,22′,3,3′ simulates H11′,2,2′,3,3′ by considering H11′′,22′′,3,3′′ , H1′′1̂,3′′3̂,2′′,2̂, H1̂1′,2̂2′,3̂,3′ .
The case of H11′2′,2,3,3′ simulates H11′,2,2′,3,3′ by considering H11′′2′′,2,3,3′′ , H1′′2′′1′,2′,3′,3′′ .
This proves (4).

We next prove (1). Any occurrences of H1231′,2′,3′ , H1231′2′,3′ , H1231′2′3′ must pay in a solu-
tion, so we may remove these and pay cost proportional to the number of these. The graphs
H121′2′,3,3′ , H121′2′,33′ are equivalent up to constant factors, so we consider just H121′2′,33′ .
If 12 are combined in H121′2′,33′ and 13 are combined in H131′′3′′,22′′ , then at least one of
these two graphs must pay, so for each set S = {1, 2, 3} we may consider the number a12
of graphs combining 12, the number a13 of graphs combining 13, and the number a23 of
graphs combining 23, and remove the least two of a12, a13, a23 number of graphs (say re-
move the graphs for combinations 13 and 23 and keep the graphs for combinations 12).
This incurs another constant factor of the optimum. Finally every S has only one combina-
tion 12, so we may assign 12 to R1 and 3 to R2 at zero cost. This proves (1).
We next prove (2). Define Ĥ11′,22′,3,3′ by H11′′,22′′3′′,3, H1′1′′,2′2′′3′′,3′ . Thus Ĥ11′,22′,3,3′ is
H11′,22′,3,3′ plus the condition that 11′ and 22′ go to R1 and R2 respectively or to R2 and
R1 respectively. We may remove occurrences of the first three graphs H in K0 by paying
cost proportional to the number of such H as before. The last two H in K0 and the two
H in K1 can be simulated by Ĥ = Ĥ11′,22′,3,3′ , as they are superpositions of several copies
of Ĥ under various permutations of the elements of S and S′, and superpositions may be
avoided by concatenating two copies of Ĥ to obtain Ĥ again. We may thus suppose that
Ĥ is the only graph that occurs. Suppose the role of 3 in Ĥ for S = {1, 2, 3} is played in
different groups by 1, 2, 3, so that we have Ĥ11′,22′,3,3′ , Ĥ11′′,33′′,2,2′′ , Ĥ22̂,33̂,1,1̂. Then one of
these three must pay, so we may remove for S the one group that occurs in the least number
of such graphs (say keep the first to with the role of 3 played by 2 or 3 and remove the ones
where the role of 3 is played by 1). The cost payed is proportional to the number of such
graphs removed, incurring a constant factor approximation. We may finally assume that
only Ĥ12′,21′,3,3′ , Ĥ13′,31′,2,2′ occur. If Ĥ11′,22′,3,3′ occurs, it can be simulated as Ĥ12′′,21′′,3,3′ ,
Ĥ1′2′′′,2′1′′,3,3′ . Thus we may say that 1 crosses in such occurrences with either 2 or 3, and
so the instance can be solved at zero cost if and only if the graph whose vertices are the Si

and the edges are the Ĥ12′,21′,3,3′ joining them is bipartite. The problem thus reduces to the
minimum edge deletion bipartition problem and is solvable in time O(

√
log n). It can be

shown that as long as some graph in K1 is allowed, the problem is no easier than minimum
edge deletion bipartition, up to constant factors. This proves (2).
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We finally prove (3). Suppose first only H11′,22′,33′ occurs. This graph permutes 123 into
1′2′3′ in some way. We may compose such permutations and come back to S = {1, 2, 3}. If
123 comes back as 231, then the instance has no solution of zero cost. If this never happens,
say 123 only comes back as 213, then we may map 1, 2 to R1 and 3 to R2, obtaining a
solution of zero cost. We may thus represent each such S by six vertices corresponding
to the six permutations 123, 132, 213, 231, 312, 321, and match the six permutations for S =
{1, 2, 3} to the six permutations for S′ = {1′, 2′, 3′}. On this graph with six vertices for each
S, we may look for a multicut separating each pair 123, 231 for each S. This can be done by
the algorithm of Garg, Vazirani, and Yannakakis [11] with an O(log n) approximation. This
proves the case of H11′,22′,33′ alone.
We complete the proof of (3). The first three sets H of K0 pay as from before and are

removed at a constant factor approximation. The last two sets H of K0 and the two sets
H of K1 can be simulated by Ĥ11′,22′,3,3′ defined as from before. The part of the problem
involving only H11′,22′,33′ can be solved with an O(log n) approximation, by removing the
corresponding multicut. Now if a set S is connected directly to d other Si, then create
d copies of S, one for each Si, and join the copies of S with a constant degree expander
graph involving edges between this copies having H11′,22′,33′ . Finally for each occurrence
of Ĥ11′,22′,3,3′ at S = {1, 2, 3} (there is now at most one such occurrence at S) ask for a mul-
ticut separating 1, 2 for such S, as 1, 2 must go to R1, R2 respectively or R2, R1 respectively.
This is again done with an O(log n) approximation by the algorithm of Garg, Vazirani, and
Yannakakis [11]. This completes the proof of (3).

We finally note that for dense instances with n vertices, m edges and sets Si of constant
size, we may apply the techniques of Alon et al. [7] to solve the problem within an additive
ε ·m in time 2Õ(n2/(ε2m))O(n2) for m = |E(G)|.

4 Cost Estimation

Since algorithms with theoretical guarantees are hard to obtain for our data partition prob-
lem (Section 3), we develop instead a heuristic search strategy that finds good, although
not optimal, solutions.
Figure 2 illustrates our approach to finding good partitions. At the core is a hill climb-
ing module that tries to improve on an existing partition. This module starts with an ini-
tial, simple partition (Section 5) that satisfies the privacy constraints, and then makes local
changes to the partition that still satisfy the constraints. To decide if a partition is better
than the current one, the hill climbing module must compare their costs. For this compar-
ison, it uses two modules: (1) the translation engine that given a workload query and a
partition, determines the execution plan (what sub-queries are sent to the servers); and (2)
the query cost estimator that estimates the cost of a given plan.

4.1 Query cost estimator

We limit the type of queries as defined by the grammar in Figure 3. The grammar specifies
the valid predicates that we support as part of the WHERE clause of a SQL query.

In order to perform cost estimation, we collect and maintain statistics of the data. For a
given relation R, we maintain the following information.
T (R): Number of tuples in R
S(R, a): Size in bytes of attribute a in R
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 Estimator
Schema, Statistics

Query
Cost Query Cost

Engine

Query, Partition
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Query for Server 2 

Query for Server 1
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Privacy
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Schema Table

Decomposition

Initial
Partition

Hill
Climbing

Figure 2: Components of the Partitioning Algorithm

S ::= 〈Σ, a, c〉
Σ ∈ P → Predicate

Predicate 	 F ::= (F1 ∧ F2) | (F1 ∨ F2) | a = c |
a ≤ c | c ≤ a | c1 ≤ a ≤ c2 |
a1 = a2

a ∈ A = { T.x, T.y, ... }
c ∈ Z = { ...,−1, 0, 1, ... }

Figure 3: Syntax of the Boolean Predicate

V (a): Number of distinct values of a in R
Let F be a boolean predicate which is given by the grammar in Figure 3. We use ρ(F ) to
denote the selectivity of the formula F . ρ(F ) is computed recursively using the semantics
given in Figure 4.

The attributes in the SELECT clause of the query decide the size in bytes of each result
tuple. Query cost, QC(q) represents the size estimation for query q and SL(q) is the set of
attributes in the SELECT clause for q. The cost estimate for a partition is computed as the
sum of the cost estimate of the two queries.
QC(q) = (

∑
i∈SL(q) S(R, i)) ∗ T (R) ∗ ρ(F )

4.2 Translation and Execution Engine

The translation engine is the system component which generates SQL queries for the de-
composition D(R) of R, given a SQL query on R. The partitioned queries generated by the
engine can now be fed to the query estimator discussed in the previous section to obtain
cost estimates for each query. The type of plan used is an important factor which decides
the form of the resulting queries. For the purposes of this paper, we generate queries for
centralized plans.
This problem of deciding which server to use to access data is better known are data lo-
calization in distributed databases theory as discussed in [24]. Replication and encryption

TRANSACTIONS ON DATA PRIVACY 5 (2012)



Distributing Data for Secure Database Services 263

ρ(F ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
V (a) if a = c

c−min(a)+1
max(a)−min(a)+1 if a ≤ c

max(a)−c+1
max(a)−min(a)+1 if c ≤ a

c2−c1+1
max(a)−min(a)+1 if c1 ≤ a ≤ c2

1
max(V (a1),V (a2))

if a1 = a2
1− (1− ρ(F1))(1− ρ(F2)) if F = F1 ∨ F2

ρ(F1)× ρ(F2) if F = F1 ∧ F2

Figure 4: Semantics of the Boolean Predicate

add more complexity to the localization process. For example, if an attribute is available
at both servers, one decision to make is which copy must be accessed. Range queries on
encrypted attributes will require the entire column to be transmitted to the client for de-
cryption before determining the results of the query. Decisions like which copy to access
cannot be determined locally and individually for each condition clause.
We propose a technique which computes the where clauses in the decomposed queries in
two steps. We define two types of state values, W and S each of which provide information
as to which servers to access for the query execution. We process the WHERE clause to get
W and then process the SELECT clause to get S. In the final step, we use both these values
and the corresponding select and condition list to determine the decomposed queries. We
use the schema R and decomposition D(R) defined in section 2. Most of the steps that fol-
low are part of query localization which is to decide which part of the query is processed
by which server.

4.2.1 WHERE clause processing

The basic units of the WHERE clause are conditional clauses where operators could be >,
< or = as per the grammar defined above. Each of these basic units are combined using the
AND or the OR operator. The entire clause itself can be effectively represented by a parse
tree. Such a parse tree has operators as non-leaf nodes and operands as leaf nodes.
Bottom Up State Evaluation:
Bottom up evaluation of the parse tree starts at the leaf nodes. Each node transmits to its
parent, its state information. The parent operator (always a binary operator) will combine
the states of its left and right subtrees to generate a new state for itself.
State Definitions:
Each node in the tree is assigned a state value. Let W be the state value of the root of the
parse tree. The semantics of the state value are as follows.
0: condition clause cannot be pushed to either servers;
1: condition clause can be pushed to Server 1;
2: condition clause can be pushed to Server 2;
3: condition clause can be pushed to both servers;
4: condition clause can be pushed to either servers.
As we proceed to determine the state values for all nodes, we need to consider nodes with
state value 0 as a special case. All child attributes for a node with state value 0 are added
to the select list of the query.
There are three cases to consider for a non-leaf node.
Case 1: The parent node is one of the operators >, <, =.
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Table 1: AND operator state table
0 1 2 3 4

0 0 3 3 3 3
1 3 1 3 3 1
2 3 3 2 3 2
3 3 3 3 3 3
4 3 1 2 3 4

Table 2: OR operator state table
0 1 2 3 4

0 0 0 0 0 0
1 0 1 0 0 1
2 0 0 2 0 2
3 0 0 0 3 3
4 0 1 2 3 4

For such a parent node, the child nodes are attributes of relations or constant values. If
the condition is an attribute-value clause, the state of the parent is the state value of the
attribute. The state value of the attribute in turn is determined by the location of that
attribute. If the condition is an attribute-attribute clause (a1 = a2 or a1 < a2 etc), the state
of the parent is:
0 if the state values of the attributes are (1,2) or if they are on the same server but one of the
attributes is encrypted.; 1 if the state values of the attributes are (1,1) or (1,4) ; 2 if the state
values of the attributes are (2,2) or (2,4) ; 4 if the state values of the attributes are (4,4)
Case 2: The parent node is the AND operator
Table 1 represents the state determination of an AND parent node given the state values
of its two children. The row in the table is the state of the first child, the column is the state
of the second child and the table entry is the state of the parent. For example, (4,3) implies
a state 3 for the parent using the AND table.
Case 3: The parent node is the OR operator. Table 2 represents the state determination of
an OR parent node given the state values of its two children.

4.2.2 SELECT clause processing

The select part of each query can be a set of attributes of the updated relations in the
schema. The select clause processing generates a state S and two sets of attributes A1 and
A2. S represents the following cases.
1: Requires access to Server 1 only; 2: Requires access to Server 2 only; 3: Requires access
to both servers; 4: Requires access to any of the two servers.
A1 and A2 are the attributes in the select clause that are present on Server 1 and Server 2
respectively. If the attribute is present on both servers, it will be contained in A1 and A2.

4.2.3 Final Query Decomposition step

The final step is to generate the two queries Query 1 (to be sent to Server 1) and Query 2(to
be sent to Server 2). We use the state value of the root node obtained from the WHERE

TRANSACTIONS ON DATA PRIVACY 5 (2012)



Distributing Data for Secure Database Services 265

clause processing W and the SELECT clause state value S.There are five cases depending
on the state value of the root node .
W = 0:
There are no where clauses in Query 1 and Query 2 since none of the conditions can be
pushed to the servers.
W = 1 or 2:
For state value 1, Query 2 does not contain any where clause.Similarly, for state value 2,
Query 1 does not have any where clause.
W = 3 - Top Down processing of Clauses:
We perform a top-down processing of the tree. We start at the root operator and proceed
downwards as long as we encounter state 3. We thus stop when we are sure whether to
include the clause as part of Query 1 (state value 1), Query 2(state value 2) , Query 1/Query
2 (state value 4) or not to include it at all(state value 0).
W = 4:
The where clauses can be pushed completely to any one of the two servers.

Let us build on the running example from Section 2 to see how all this fits in to solve the
problem as a whole. Consider a slightly more complicated client query.
SELECT Name, DoB, Salary FROM R
WHERE (Name =’Tom’ AND Position=’Staff’) AND (Zipcode = ’94305’ OR Salary
> 60000)
Let the predicates in the query be assigned P1 (Name = ’Tom’), P2(Position=’Staff’), P3(Zipcode=’94305’)
and P4(Salary>60000) The parse tree and the corresponding state values are shown in Fig-
ure 5.

AND

AND

2 2

3
  OR

  P4 P3 P2 P1

0

  11

  W=3

Figure 5: State Computation for the Predicate

Query1: SELECT TID, name, salary
FROM R1 WHERE Name=’Tom’
Query2: SELECT TID, dob, zipcode
FROM R2 WHERE Position=’Staff’
The query plan is also shown here in Figure 6 detailing out the steps that need to be
performed for executing this query.
In the plan, T ,N ,S and D stand for TID, Name, Salary and DoB attributes of schema R
respectively. At the client side, results of Query1 and Query2 are joined on attribute TID.
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The predicates P3 and P4 are then applied to the results followed by a projection on the
select attributes.

T1<� SELECT[P1](R1)

T4<�PROJECT[T,D,Z](T2)

T5<�

T2 <� PROJECT[T,N,S](T1)

T3<�SELECT[P2](R2)

(T2 JOIN[T2.T=T4.T] T4)

T6<� SELECT[P3 OR P4](T5)

PROJECT[N,D,S](T6)

Figure 6: Distributed Query Plan

5 Partitioning Algorithms

Hill-climbing is a heuristic in which one searches for an optimum combination of a set of
variables by varying each variable one at a time as long as the objective value increases.
The algorithm terminates when no local step decreases the cost. The algorithm converges
to a local minima.

An initial fragmentation of the database is considered which satisfies all the privacy con-
straints.

Initial Guess: The initial set of encrypted attributes is obtained using the weighted set
cover given in Algorithm 1.

Algorithm 1 Initial Attributes For Encryption
Encrypted = { Attributes in singleton privacy constraints}
CanConsider = { Remaining attributes occurring in atleast one privacy constraint }
RemConstraints = { All non singleton privacy constraints }
while RemConstraints is not Empty do

(Re)Assign weights to all elements in CanConsider based on workload encryption cost
Pick attribute e, from CanConsider, with minimum weight /(divided by) number of
constraints it appears in.
Add e to Encrypted
Delete all privacy constraints in RemConstraints that contain e
Delete e from CanConsider

end while
The result is the attribute set Encrypted.
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Hill Climbing Step: The hill climbing algorithm is applied after the initial encryption as
shown in Algorithm 2.

Algorithm 2 Local Search Heuristic to Reduce Cost
while Privacy Constraints are Satisfied and Cost Reduces do

Try decrypting an encrypted column and placing it at Server 1.
Try decrypting an encrypted column and placing it at Server 2.
Try decrypting an encrypted column and placing it at both servers
Try encrypting an decrypted column and placing it at both servers.

end while

From the steps in the local search heuristic, the one which satisfies privacy constraints and
results in minimum network traffic is considered as the new fragmentation and the process
repeats. The iterations are performed as long as we get a decomposition at each step which
improves over the existing decomposition using the cost metric discussed before.

In order to compare the results produced by our hill climbing strategy with the optimal
solution, we also implemented a brute force algorithm. This algorithm considers all pos-
sible partitions that satisfy the privacy constraints and selects the one with minimal cost.
Note that for a relation with n columns there are 4n possible fragmentations possible and
very few of them will satisfy all the privacy constraints. (The “4” arises because there are
4 choices for each attribute: store decrypted at server 1 or 2 or both, or store encrypted at
both servers.)

6 Experimental Results

6.1 Details of Experimental Setup:

We execute our code on a single relation R in all experiments. The number of attributes in
R was varied from 1 to 30. The number of tuples in R was between 1000 and 10,000. Note
that for our experiments we do not actually need the data, only the statistics that describe
the data. Thus, the results we obtain for this setting are applicable to relations of a larger
(or smaller) size.

As we vary the number of attributes, we generate privacy constraints over it randomly
with the following properties. We generate as many privacy constraints as the number
of attributes in the relation. Privacy constraints vary in size from one to the number of
attributes in the relation. The attributes that are part of each constraint are selected at
random from the available attributes without replacement.

Another important parameter is the workload. We generated 25 workloads containing a
fixed number of queries( 5 in our case) for different number of attributes of the relations.
So, for a relation with fixed number of attributes, we generate about 125 queries (25*5)
divided into twenty five workloads. For each query, the parts that were varied were the
attribute set in the SELECT clauses and the conditions in the WHERE clause.We selected a
subset of SQL which mapped to our grammar defined in Section 4. Each condition clause
C was of the form (xOPy) where OP was chosen at random to be >, < or =. x’s were
chosen from the columns of R while y was chosen from the domain of x after choosing x.
The C ′s themselves were combined by choosing one of OR, AND. The other parameters
that were randomly chosen were the number of condition clauses, the number of attributes
in the SELECT clause and the actual attributes in the SELECT clause itself.
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6.2 Synthetic Data Generation

We conduct experiments to demonstrate how well hill climbing compares with brute force.
For each algorithm, we vary the number of attributes N from 1 to 6. For the hill climbing
experiment we use ten different workloads for each N and each workload was composed
of five queries. While we can obtain results for hill climbing for larger N , the brute force
approach starts to get intractable. Hill climbing starts to move away from the optimal
solution with increasing N . For 3 attributes, hill climbing is around 20 percent away from
brute force but for 6 attributes, this percentage goes up to around 140.

Next, we study the behavior of hill climbing in terms of the number of iterations it takes to
converge. We vary the number of attributes N for the relation from 1 to 30 for these exper-
iments. The number of workloads for each N is 10 and similar to the previous experiment,
we have 5 queries per workload.

Figure 7 shows the number of workloads for which the hill climbing converged . We note
that the number of workloads requiring more than 10 iterations is less than 2 percent of the
workloads.
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Figure 7: Hill Climbing Iterations

We now show the improvements achieved by the hill climbing over the initial partition.
The improvement percentage is defined as:
Perc. Improvement = (Cfp − Cip)/Cip * 100
where Cfp = Cost estimate for the final partition of R returned by Hill Climbing for a given
workload W and set of privacy constraints P ; and Cip = Cost estimate of the initial partition
given as input to the hill climbing algorithm for the same workload W and set of privacy
constraints P .
Figure 8 illustrates that the number of workloads with greater than 20 percent difference
from the initial solution keeps decreasing with increasing percentages. Despite this fact,
more than 50 percent of the workloads have a percentage improvement of over 25 percent.

6.3 Personal Data Example

We run experiments for the real world example discussed earlier in the paper in Section
2. The schema R is the same with 8 attributes and 8 privacy constraints. The workloads
are generated at random as discussed in the previous subsection. Figure 9 depicts that
for about 50 percent of the workloads, the percentage difference of the final result of hill
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Figure 8: Performance Gain using Hill Climbing

climbing from the initial partition is about 5 percent. Thus, given privacy constraints of the
form listed for this example, it is easier to guess a reasonably valid and optimal decompo-
sition for the schema. We also find that hill climbing terminates sooner ( fewer number of
iterations as compared to the synthetic data case) with close to 50 percent of the workloads
terminating in a single iteration.
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Figure 9: Personal Data Example - Performance Gain using Hill Climbing

6.4 Varying Distributions of Privacy Constraints Generation Task

We had previously generated a synthetic dataset for the privacy constraints and the work-
load where all parameters were generated uniformly at random. For this experiment, we
use a relation with 8 columns and 1000 tuples. There are 8 privacy constraints generated
for the relation. There is a percentage weight parameter governing the generation of con-
straints which applies to the first three columns of the relation. For example, if percentage
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weight is set to 20, then 60 percent (20*3) of the time, one of the first three columns will
be selected as a participant in the generated privacy constraint. So, setting this weight to
around 12 results in a uniform distribution and as it goes above 33, we get a heavily bi-
ased set of privacy constraints on these three columns. We generate 30 workloads for each
weight value that we desire to test. Figure 10 shows the average number of iterations
as we vary the weight from 10 to 34 percent. It can be seen that as the bias on the three
attributes increases, we get to the final result in fewer number of iterations. Fewer itera-
tions are required because most of the privacy constraints are concerned with these three
attributes and are independent of the others so we have fewer options to choose for these
three attributes.
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Figure 10: Average Iterations with varying privacy constraints distribution

7 Related Work

There is a wide consensus that privacy is a corporate responsibility [21]. In order to help
and ensure corporations fulfill this responsibility, governments all over the world have
passed multiple privacy acts and laws, for example, Gramm-Leach-Bliley (GLB)Act [13],
Sarbanes-Oxley (SOX) Act [26], Health Insurance Portability and Accountability Act (HIPAA) [20],
SB1386 [1] are some such well known U.S. privacy acts. Many use cases complying with
these laws require organizations to encrypt the data in case it is hosted by an external ser-
vice provider.

As discussed in the introduction, the outsourcing of data management has motivated the
model where a DBMS provides reliable storage and efficient query execution, while not
knowing the contents of the database [17]. Schemes proposed so far for this SaaS model
[16] (Software as a Service) encrypt data on the client side and then store the encrypted
database on the server side [16, 18, 6]. However, in order to achieve efficient query pro-
cessing, all the above schemes only provide very weak notions of data privacy. In fact a
server that is secure under formal cryptographic notions can be proved to be hopelessly
inefficient for data processing [22].

After our original work [3] on using a combination of distribution and encryption for
secure databases, our colleagues at Stanford University have developed partially [9] and
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complete homomorphic encryption algorithms [12]. This allows arithmetic operations on
ciphertext without decrypting to plaintext. Homomorphic encryption along with deter-
ministic hashing primitives drastically improves SQL processing on encrypted data in the
SaaS model.

[3, 23, 10] define privacy constraints and describe the architecture for secure database
services. In this paper, we build on this architecture and develop algorithms to split the
schema among the servers and perform distributed query processing for a subset of SQL
(both are absent in [23]). K-anonymity [4] maintains aggregates while changing microdata
for data publishing. This scheme maintains microdata intact for OLTP workloads also.
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