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Abstract. We compare the disclosure risk criterion of ϵ-differential privacy with a criterion based on
probabilities that intruders uncover actual values given the released data. To do so, we generate fully
synthetic data that satisfy ϵ-differential privacy at different levels of ϵ, make assumptions about the
information available to intruders, and compute posterior probabilities of uncovering true values.
The simulation results suggest that the two paradigms are not easily reconciled, since differential
privacy is agnostic to the specific values in the observed data whereas probabilistic disclosure risk
measures depend greatly on them. The results also suggest, perhaps surprisingly, that probabilistic
disclosure risk measures can be small even when ϵ is large. Motivated by these findings, we present
an alternative disclosure risk assessment approach that integrates some of the strong confidential-
ity protection features in ϵ-differential privacy with the interpretability and data-specific nature of
probabilistic disclosure risk measures.
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1 Introduction

Organizations seeking to share microdata, i.e., data on individual records, with others are
obligated to protect the confidentiality of data subjects’ identities and sensitive attributes.
Even when direct identifiers such as names and addresses have been removed, data sub-
jects still might be at risk. For example, ill-intentioned users—henceforth called intruders—
might be able to link records in the released data file to records in other databases (that
contain direct identifiers) by matching on common characteristics. Hence, it is prudent for
organizations to assess the risks of unintended disclosures of confidential information and
to release data in ways that have acceptable risks (while being useful for broad classes of
analyses).
Both the statistical science and computer science communities have developed a variety

of criteria and methods for quantifying disclosure risks. In this article, we consider a crite-
rion developed by the cryptography community, ϵ-differential privacy (Dwork, 2006). This
criterion, which promises strong guarantees of confidentiality, has been a focus of intense
research in both communities. For example, a variant of differential privacy was used to
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assess and ensure confidentiality protection in the U.S. Census Bureau’s OnTheMap micro-
data product (Machanavajjhala et al., 2008), which enables users to make maps of where
people live and work. Other examples of research related to releasing microdata that sat-
isfy ϵ-differential privacy include Blum et al. (2008), Barak et al. (2007), Abowd and Vilhuber
(2008), and Charest (2010).
To our knowledge, there have been few numerical comparisons of ϵ-differential privacy

and statistical disclosure risk measures; the most closely related works are by Abowd and
Vilhuber (2008), Wasserman and Zhou (2010) and Sarathy and Muralidhar (2011). In this
article, we explore relationships between ϵ-differential privacy and statistical disclosure
risk measures for microdata, by which we mean measures based on probabilities that in-
truders could learn information about data subjects given the released data and a set of
assumptions about the intruder’s knowledge and behavior (e.g., Duncan and Lambert,
1986, 1989; Fienberg et al., 1997; Reiter, 2005a; Reiter and Mitra, 2009). Using illustrative
simulations, we reach several findings with relevance to disclosure risk assessment and
data release. First, whereas differential privacy is agnostic to the specific values in the sam-
pled data, probabilistic disclosure risk measures depend greatly on them. This difference
makes a general mapping between the two paradigms elusive. Second, depending on the
characteristics of the data, probabilistic disclosure risk measures can be small even when ϵ
is relatively large. For example, in some simulation scenarios the probabilistic disclosure
risk measures were small even when ϵ = 1000, whereas in other scenarios the probabilistic
disclosure risk measures were small only when ϵ < 10. Additionally, in some scenarios
decreasing ϵ from ten to one did not noticeably decrease the probabilistic disclosure risk
measures (but significantly worsened the quality of the synthetic data). Motivated by these
findings, we also present an alternative disclosure risk assessment approach that integrates
some of the strong privacy protection in ϵ-differential privacy with the interpretability and
data-specific nature of probabilistic disclosure risk measures.
The remainder of the article is organized as follows. In Section 2, we briefly review ϵ-

differential privacy and probabilistic disclosure risk measures. In Section 3, we present
the simulation design and results. In Section 4, we present the proposal for the alternative
disclosure risk assessment approach. In Section 5, we conclude with a discussion of issues
related to releasing differentially private microdata.

2 Disclosure Risk Measures

Throughout the text, we use Yj to denote the data value for the jth record, where j =
1, . . . , n. We let D = (Y1, . . . , Yn) be the collected data, which we assume to be complete.
The goal is to release a version of D, which we call D∗, that has acceptable disclosure risks
according to some criteria. For simplicity, we presume each Yj is a scalar quantity, although
the ideas here extend conceptually to multivariate data.

2.1 ϵ-Differential Privacy

A randomized function f : D → f(D) gives ϵ-level differential privacy for D if

1. ∀ possible data sets D1,D2 that differ on at most one element, and

2. ∀S ⊆ Range(f(D)),
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we have
p(f(D1) ∈ S)

p(f(D2) ∈ S)
≤ exp(ϵ). (1)

The definition is interpreted for microdata releases by considering f to be the data gen-
erator and f(D) to be possible datasets that could result; we refer readers to Abowd and
Vilhuber (2008) for details.
Differential privacy represents a strong guarantee of confidentiality. In a differentially

private dataset, even an intruder with access to all but one record in D does not learn much
(where much is governed by the value of ϵ) about that unknown record. The confidentiality
guarantee holds regardless of the intruder’s prior knowledge about D. Further, it holds for
arbitrary D, in that ϵ-differential privacy is a property of the method used to create D∗

rather than the actual values of D or D∗. When differential privacy is satisfied, the data
disseminator need not hide information about the process used to generate D∗, except of
course for actual values of D. As a negative, however, it can be difficult to ensure that
non-trivial randomizers f satisfy the conditions of ϵ-differential privacy when releasing
complex D∗.

2.2 Probabilistic Disclosure Risk Measure

We suppose that an intruder seeks to learn the value of Yj for some record j in D. Let A
represent the information known by the intruder about records in D. Let S represent any
information known by the intruder about the process of generating D∗. For example, the
data disseminator might tell the public that D∗ is created by aggregating certain categories,
or that values in D∗ are simulated from particular statistical models. Given (D∗, A, S), the
intruder’s density for Yj is

p(Yj | D∗, A, S) ∝ p(D∗ | Yj , A, S)p(Yj | A,S). (2)

Here, p(Yj | A,S) is the intruder’s prior distribution on Yj based on (A,S), and D∗ serves
to sharpen the intruder’s prior beliefs about Yj . We note that these probabilities are specific
to the released data and original data; hence, they do not conform to the definition of
differential privacy which considers all possible released and original datasets.
These probabilities can be manipulated to form a variety of disclosure risk measures. For

example, a metric could be based on the distance between the posterior mode or expecta-
tion computed with (2) and the actual Yj . The probabilities in (2) also can form the basis of
identification disclosure risk measures (Skinner and Shlomo, 2008), e.g., by following the
approach outlined in Drechsler and Reiter (2008).
Probabilistic risk measures like (2) have appealing features. They are readily interpretable

and facilitate targeted disclosure protection strategies: records with high probabilities are
at higher risks of disclosure. They enable investigation of risk under different scenarios for
A and S, which helps data disseminators understand a full picture of potential risks and
the impacts of disclosure treatment. Probabilistic disclosure risk measures can incorpo-
rate uncertainty due to random sampling of D (Reiter, 2005a; Drechsler and Reiter, 2008).
However, because specification of intruder’s knowledge is required, the probabilistic risk
measures may not accurately portray risk when intruders know more than is specified in
A. Additionally, it can be challenging to compute (2) with complex D∗.
To facilitate comparisons of ϵ-differential privacy and probabilistic measures, we set A and
S to mirror differential privacy requirements as closely as possible. Specifically, we assume
that the intruder knows exact values of all records except one record j; we label this dataset
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D−j . We also assume that the data disseminator releases all details about the nature of the
data generation procedure; this is clarified further below in the context of synthetic data
generation.

3 Simulation Studies

We compare ϵ-differential privacy and probabilistic measures using a simple but informa-
tive simulation scenario. For j = 1, . . . , n = 1000, let Yj be a draw from a Bernoulli random
variable with probability p, and let D = (Y1, . . . , Yn). We consider four separate scenarios
in which p ∈ {.001, .3, .5, .999}. We generate D∗ based on the framework of fully synthetic
data (Rubin, 1993; Raghunathan et al., 2003; Reiter, 2005b; Reiter and Raghunathan, 2007;
Drechsler et al., 2008; Caiola and Reiter, 2010). To ease computation and since our primary
focus is on risk comparisons, we let each D∗ comprise a single rather than multiple syn-
thetic datasets. With multiple datasets, data disseminators would have to factor in the
additional information available to intruders in both the selection of ϵ and the computation
of (2); see Reiter and Mitra (2009) for discussion of the latter.

3.1 Generating and Analyzing Differentially Private Synthetic Data

The synthetic data generation approach outlined in Raghunathan et al. (2003) does not nec-
essarily result in D∗ with a pre-specified level of ϵ-differential privacy. We therefore use
a synthetic data generator akin to that of Abowd and Vilhuber (2008), which guarantees
ϵ-differentially private synthetic data. For any D, we generate D∗ by simulating ns = 1000
new values of Yj from their posterior predictive distribution based on a Beta(αϵ, βϵ) prior
distribution for p, i.e.,

p(Y ∗
j | D,αϵ, βϵ) = Bernoulli

(∑n
j=1 Yj + αϵ

n+ αϵ + βϵ

)
. (3)

Here, αϵ and βϵ do not represent prior beliefs about p as is usual in Bayesian modeling.
Rather, they are set to make the synthesis process approximately invariant to values in
D at a level implied by ϵ. As αϵ and βϵ get larger, the influence of the observed data on
the posterior predictive distribution weakens, resulting in decreased ϵ levels. It can be
shown that, for any ϵ > 0 under the Bernoulli model, setting αϵ = βϵ = 1

eϵ/ns−1
induces

ϵ-differential privacy when releasing D∗; see Appendix A for details.
The analyst of D∗ should account for the manner in which the data were generated when

making inferences for parameters (p in these simulations). Here we do so via a Markov
Chain Monte Carlo (MCMC) algorithm like the one developed by Charest (2010). This
algorithm requires analysts to know the values of αϵ, βϵ, and n. We assume that these are
part of S, along with the form of the posterior predictive distribution (but not

∑
j Yj) in (3).

For any (D,D∗), we measure the utility of D∗ with a criterion based on expected squared
error loss,

U(D,D∗) = log10
E((p0 − p)2 | D∗)

E((p0 − p)2 | D)
. (4)

Here, p0 is the true value of p per the simulation design, and the expectations are over the
posterior distribution of p given the appropriate data; see Appendix B for computational
details. The larger the value of U(D,D∗), the lower the quality of inferences about p0 from
D∗. We use log base 10 purely to facilitate graphical displays of the simulation results. As
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we shall see, the utility at small ϵ is significantly worse than the utility at large ϵ, even when
viewed on the log scale.

3.2 Evaluations of Absolute Probabilistic Disclosure Risk

For each value of p0 and each value of ϵ ∈ {1000, 100, 10, 2, .2, .01}, we generate ten pairs of
(D,D∗) to ensure that findings do not reflect unusual simulation events. For each (D,D∗),
we compute the probabilistic disclosure risk, Rj = Pr(Yj = 1 | D∗, D−j , S), for one record
with true Yj = 1. If D does not contain any records with Yj = 1, we instead compute
Pr(Yj = 0 | D∗, D−j , S) for one record with Yj = 0. For illustrative purposes, we assume
that Rj > .5 represents an unacceptably high risk in absolute terms. Of course, some
data disseminators might prefer lower absolute risk thresholds; the choice of threshold is
not central to the findings in this subsection. For all scenarios, we set the intruder’s prior
distribution to p(Yj = 1 | D−j , S) = .5. Hence, values of Rj ≈ .5 indicate that the intruder
has learned little about Yj from D∗. Setting p(Yj = 1 | D−j , S) = w ̸= .5 results in similar
interpretations centered around w rather than .5.
With this simulation design, Rj is computed as follows. Let X =

∑n
j=1 Yj ; let X−j =∑

k∈D−j
Yk; and, let X∗ =

∑n
j=1 Y

∗
j be the sum of the synthetic values. We have

Rj =
P (D∗ | Yj = 1, D−j , αϵ, βϵ)P (Yj = 1 | D−j , αϵ, βϵ)∑1
y=0 P (D∗ | Yj = y,D−j , αϵ, βϵ)P (Yj = y | D−j , αϵ, βϵ)

=
Bin(X∗, n, p =

X−j+1+αϵ

n+αϵ+βϵ
)P (Yj = 1)

Bin(X∗, n, p =
X−j+1+αϵ

n+αϵ+βϵ
)P (Yj = 1) +Bin(X∗, n, p =

X−j+αϵ

n+αϵ+βϵ
)P (Yj = 0)

, (5)

where Bin(a, b, c) is the probability of a for a binomial distribution with b trials and prob-
ability of success c, and where P (Yj = y) = P (Yj = y | D−j , αϵ, βϵ). We use binomial
probabilities since the specific ordering of the values in D∗ does not carry any information.
We note that intruders also could multiply the n probabilities as ordered in D∗. The result
would be identical to (5), since the binomial coefficient cancels from (5).
Figure 1 displays plots of Rj versus UD,D∗ for the 60 datasets when p0 = .5. Figure 2

displays the analogous plot when p0 = .001. Taking both plots together, it is clear that
the ϵ-level required to ensure Rj ≈ .5 varies with the value of p0. When p0 = .001, setting
ϵ = 1000 results in several D∗ with Rj near an unacceptably high .90, whereas setting ϵ < 10
results in D∗ with Rj in the vicinity of .5. When p0 = .5, there is little incremental risk in
these datasets even when ϵ = 1000. Of course, for any D there could be some D∗ for which
the risks are unacceptably large; hence, it is important to compute Rj for any D∗ under
consideration for release. We note the variability in Rj for any given ϵ arises because the
measure is specific to the generated (D,D∗), which differ across replications.
These results can be understood further as follows. As α and β get larger (ϵ decreases),

they dominate X−j and n, so that p in (5) goes to αϵ

αϵ+βϵ
. Thus, for small ϵ, for any X∗

(and implicitly p0) we have Bin(X∗, n, p) ≈ Bin(X∗, n, αϵ

αϵ+βϵ
). As a result, the bino-

mial likelihoods in (5) cancel, and we are left with Rj =
P (Yj=1)

P (Yj=1)+P (Yj=0) = P (Yj = 1).
Thus Rj converges to the intruder’s prior probability, so that the synthetic data tell the in-
truder almost nothing about the real data, as is required in differential privacy. Since we
set P (Yj = 1) = .5, Rj converges to .5 for small ϵ, regardless of p0.
When p is near zero or one, the variance of the binomial distribution gets very small. Small

changes to p in (5), which would arise when adding to X−j , can cause significant changes
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p0\ϵ 1000 100 10 2 .2 .01
.001 .125 .036 .0101 .00372 .000578 3.13e-05
.3 .00718 .00702 .00578 .00328 .000576 3.13e-05
.5 .00655 .00643 .00543 .00321 .000575 3.13e-05

.999 .0983 .0350 .0100 .00372 .000578 3.13e-05

Table 1: Expected increase in risk for various (p0, ϵ) combinations using p(Yj |A,S) = .5.
Expected risk increases are small for p0 near .5, even for large ϵ.

in the probabilities of generating particular synthetic datasets. For example, consider when
ϵ = 1000 and αϵ = βϵ = .58. Suppose that X−j = 0 and Yj = 1, which easily could happen
when p0 = .001. We have p(X∗ = 3 | n = 1000, p = .58

1001.16 ) = .018 and p(X∗ = 3 |
n = 1000, p = 1.58

1001.16 ) = .135, which results in Rj = .135
.135+.018 = .88. We observed this

situation once in our simulations with p0 = .001, which is apparent in Figure 2. However,
when p0 = .5 the mass of the binomial distribution is spread out, so that there is very
little change in the probabilities of particular synthetic datasets when we change p in (5)
by adding to X−j . Hence, Rj is generally close to P (Yj = 1) when p0 is near 0.5. This
logic holds even if we use unequal values of (αϵ, βϵ) to engender ϵ-differential privacy with
small ϵ.
To quantify these trends without relying only on a modest number of simulated datasets,

we introduce the expected increase in risk for releasing D∗; that is, how much Rj increases
over the prior probability that Yj = 1. Specifically, for any data generation procedure and
possible p0, we compute

ERj =
∑

All X,X∗

(max(Rj , p(Yj |A,S))− p(Yj |A,S))p(X∗, X|p0). (6)

Here, the use of the maximum discards cases where Rj < p(Yj |A,S), i.e., when the in-
truder’s posterior belief about Yj is less accurate than the prior belief. For our simulations,
we have

p(X∗, X|p0) = p(X∗|X,S)p(X|p0) = Bin(X∗, n, p =
X + αϵ

n+ αϵ + βϵ
) ∗Bin(X,n, p = p0). (7)

This probability is easily computed: simply loop over all possible (X,X∗), computing (5)
for each combination to obtain Rj . As before, for cases when X = 0, we set Yj = 0 when
computing Rj .
Table (1) displays ERj for each (p0, ϵ) combination, using p(Yj = 1|A,S) = 0.5. The results

confirm the trends in Figure 1 and Figure 2. Regardless of p0, as ϵ decreases the quantities
all converge to zero, since X (and therefore p0) has almost no effect on X∗ (and therefore
Rj) for small ϵ. At ϵ = 1000, we expect an increase in risk of less than .01 when p0 = 0.5,
but an increase of .125 when p0 = .001.
These results, in addition to results based on other values of p0 and w not displayed here,

suggest that populations with p0 near zero or one, i.e., some data values are rare, tend to
produce scenarios with higher probabilistic disclosure risks. With small p0, it is possible
that a generated D contains only a single (or very few) observations with Y = 1. When ϵ is
large and D∗ contains at least one record with a simulated Y equal to one, the likelihood in
(2) is much larger for Yj = 1 than Yj = 0, which results in a high Rj . A similar phenomenon
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Figure 1: Absolute probabilistic disclosure risks Rj versus data utility U(D,D∗) when p0 =
.5. Each point represents a single (D,D∗) pair. Ten data sets are simulated for each ϵ level.
Since p(Yj = 1 | D−j , S) = .5, Rj ≈ .5 indicates the intruder learns very little from D∗.

occurs when p0 = .999. This typically is not an issue when p0 = .5, because here any
particular Yj does not have much influence on the posterior predictive distribution in (3).

In these simulations, setting ϵ to be very small seriously degrades inferences while pro-
viding only marginal reductions in probabilistic disclosure risks. For example, setting ϵ < 1
resulted in basically the same values of Rj as when ϵ = 2; but, setting ϵ < 1 reduces U(D,D∗)

significantly compared to ϵ = 2, even when viewed on the log scale. The simulated values
of U(D,D∗) range from 2 to 2.7 (roughly 100 to 500 before taking log10) when ϵ = .01 and
from .25 to 1.1 (roughly 2 to 13 before taking log10) when ϵ = 2. Further, when p0 = .5 the
data disseminator that sets ϵ ≥ 100 arguably loses little in terms of probabilistic disclosure
risk protection while gaining enormously in terms of data quality. Thus, the choice of ϵ has
a strong influence on utility as well as confidentiality, and the degree of its influence de-
pends on the nature of D. This suggests that data disseminators using differential privacy
could benefit from evaluating trade offs between risk and utility of different ϵ when gener-
ating D∗. For example, in the simulation scenarios data disseminators could use larger ϵ for
populations with p0 ≈ .5. We note that releasing m > 1 synthetic datasets such that the col-
lection satisfies ϵ-differential privacy generally would exacerbate the problems with data
utility, since the data disseminator would need to use ϵ/m when generating each dataset.
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Figure 2: Absolute probabilistic disclosure risks Rj versus data utility U(D,D∗) when p0 =
.001. Each point represents a single (D,D∗) pair. Ten data sets are simulated for each ϵ
level. The squares represent replicates of D having all values equal to zero, so that we
instead compute risks for one record with Yj = 0. Since p(Yj = 1 | D−j , S) = .5, Rj ≈ .5
indicates the intruder learns very little from the data.
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3.3 Evaluations of Relative Probabilistic Disclosure Risk

Absolute disclosure risk measures like (2) are sensitive to the specification of p(Yj |A,S).
For example, when the intruder sets p(Yj = 1|D−j , S) = .9999, her posterior probabil-
ity will be relatively large for most D and D∗. Likewise, when the intruder sets p(Yj =
1|D−j , S) = .0001, her posterior probability will be relatively small for most D and D∗. We
note that ϵ-differential privacy does not suffer from this sensitivity, since it computes a ratio
of probabilities over all possible sets of intruder prior knowledge.
We believe that it is prudent to evaluate confidentiality protection schemes accounting for

sensitivity to intruders’ prior information. We propose to do so with a relative probabilistic
disclosure risk, defined generically for a given prior distribution p(Yj | A,S) as

RRj = p(Yj | D∗, A, S)/p(Yj | A,S). (8)

This represents the amount intruders can learn from D∗ beyond their prior beliefs as en-
coded in p(Yj | A,S). We note that, for any p(Yj | A,S), RRj is bounded above when Yj

is discrete since p(Yj | D∗, A, S) reaches a maximum of one. In our simulations, RRj is
simply Rj from (5) divided by the prior probability.
Figures 3 and 4 display plots of the values of RRj and Rj over a dense grid of possible

values of prior beliefs w for the two simulation scenarios in Section 3.2. When p0 = .5, RRj

never exceeds 1.25 regardless of ϵ and w. For these data, D∗ does not offer much additional
information about Yj . This story changes when p0 = .001. Here, for small w and ϵ ≥ 100,
RRj can exceed two, indicating that the intruder has doubled their posterior probability
that Yj = 1 by using D∗. When w is near one, the magnitude of ϵ has little impact on RRj .
Once again, these results suggest that data disseminators using differential privacy may
benefit from considering the population characteristics when selecting ϵ.

4 Alternative Disclosure Risk Assessment Approach

Since Rj and RRj can depend greatly on the nature of the released and original data for
given ϵ, it is reasonable to consider alternatives to differential privacy that are specific to
the data at hand. However, we also would like to incorporate the idea of (nearly) arbitrary
intruder knowledge from differential privacy in these measures. In this section, we outline
a statistical risk assessment approach that aims to do so.
Arguably, neither (2) nor (8) are adequate alone, in that data disseminators might care

about both the absolute disclosure risk and amount of information gained from D∗. For
example, the data disseminator might decide that is acceptable for RRj ≤ 10 as long Rj ≤
.10; that is, it is willing to let the intruder learn up to ten times as much information over
her original beliefs (but not more) by using D∗ as long as the absolute probabilistic risk
does not exceed 10%. Similarly, the data disseminator might decide that it is acceptable for
Rj ≥ .90 as long as RRj ≤ 1.05; that is, the data disseminator does not mind if intruders
have high absolute risks of disclosure if D∗ does not drive where those risks come from,
i.e., the intruder’s prior distribution explains the high Rj .
We propose that data disseminators consider RRj and Rj jointly as follows. First, for any
Yj , the data disseminator determines acceptable regions of the RRJ ×Rj space. For exam-
ple, the data disseminator might accept high RRj for very low values of Rj , but not accept
high values of RRj for values of Rj ≥ .2. Second, for the candidate D∗, the data dissem-
inator evaluates (RRj , Rj) for a range of intruder prior distributions, for example making
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Figure 3: Plots of relative (RRj) versus absolute (Rj) probabilistic disclosure risks when
p = .5. Each line represents a single (D,D∗) pair, with RRj and Rj computed by letting
P (Yj = 1 | D−j , S) range over 1000 equally spaced values in (0, 1).
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Figure 4: Plots of relative (RRj) versus absolute (Rj) probabilistic disclosure risks when
p = .001. Each line represents a single (D,D∗) pair, with RRj and Rj computed by letting
P (Yj = 1 | D−j , S) range over 1000 equally spaced values in (0, 1). Dotted lines represent
replicates of D having all values equal to zero, so that we instead compute risks for one
record with Yj = 0.
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graphical displays akin to those in Figure 3 and Figure 4. Third, the data disseminator de-
termines which, if any, values of w lead to unacceptable joint risks. If all prior distributions
result in acceptable (RRj , Rj), the candidate D∗ can be considered safe with respect to the
confidentiality of Yj . If some prior distributions result in unacceptable (RRj , Rj), the data
disseminator either can (i) construct and evaluate other candidates D∗, for example reduc-
ing ϵ in our context, or (ii) decide to live with the risk, for example if the data disseminator
deems the value of w unlikely to justify in practice. When multiple D∗ satisfy the joint risk
criteria, the data disseminator can select the generation procedure with the greatest utility,
e.g., the largest ϵ in our setting. We note that this approach does not satisfy differential
privacy; rather, it is an alternative that seeks to combine the assumption of strong prior
knowledge by the intruder with the interpretability and data-specific relevance of statisti-
cal risk measures.

In theory, this approach could be scaled up to more realistic settings, although doing so
would involve computational challenges. For typically multivariate Y , the data dissemi-
nator must compute p(D∗|D−j , Yj , S) for the true Yj , which is computationally intensive in
high dimensions and with complex D∗ generators. In addition, to compute the normaliz-
ing constant in (2), the data disseminator must compute this likelihood for other possible
values of Yj . The data disseminator also must specify prior distributions on the potentially
very large space of possible values of Yj . Finally, the data disseminator would need to re-
peat all of this for all records j considered at risk and combine results in an interpretable
manner, e.g., the fraction of times that records are not in the acceptable regions.

While these are serious challenges, there may be reasonable, approximate solutions to
some of them. For example, when specifying prior distributions for Yj , one approach is
to put a point mass on the actual Yj and distribute the remaining probability uniformly
over the other possible values of Yj (or even just over D−j as an approximation to all other
possible values of Yj and hence to the normalizing constant). Or, it may be possible to
determine some “worst case”alternatives to the actual value of Yj , e.g., a record with com-
pletely different components of Yj than the truth, and perform the evaluation using only
those worst case alternatives. With regard to evaluation for many j, the computations are
trivially parallelizable, so that this should not be a barrier even for large files.

This alternative approach possesses some of the advantages of differential privacy in that
(i) it protects against an intruder with access to all but one record, and (ii) it protects against
an intruder with arbitrary prior information about the specific variables in Yj . The ap-
proach has some of the advantages of probabilistic risk measures in that (i) it is specific to
D∗ and D and is not estimated over datasets that were not observed, which arguably are
irrelevant, (ii) it results in record-level risk measures, and (iii) it can be adapted to incorpo-
rate identification disclosure risks and random sampling. However, the data disseminator
must specify intruder knowledge about which variables comprise Yj , which could range
from knowing everything to knowing only certain key variables. Additionally, we suspect
that the data disseminator would have to keep secret the acceptable regions of Yj . Releas-
ing them along with ϵ could leak information about Yj ; for example, intruders could try
different values of Yj until finding one that results in satisfactory regions. We speculate
that this would be a challenging attack to implement in practice for data generated from
posterior predictive distributions because of the randomness inherent in D∗. Nonetheless,
this is a weakness from the perspective of differential privacy.
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5 Discussion

Much of the literature on differential privacy focuses on interactive output perturbation
rather than noninteractive microdata release. We chose to examine the connections be-
tween differential privacy and statistical disclosure risk measures with microdata genera-
tion rather output perturbation for two reasons. First, the most prominent application of
differential privacy (more precisely, ϵ − δ differential privacy) to date in a real-world con-
text is the creation of OnTheMap (Machanavajjhala et al., 2008). This uses a multinomial
distribution with prior distributions altered to have differential privacy, which is an exten-
sion of the binary synthesizer that we use. We are not aware of any output perturbation
systems being heavily used for the release of public use data. Second, we are skeptical
that interactive output perturbation systems, at least with current differential privacy tech-
nology, can be used for large-scale, public use data dissemination. They have to enforce a
finite number of queries, which seems to us a serious drawback for public use datasets in
which thousands of individuals may each make hundreds of queries. Differentially private
microdata, on the other hand, do not suffer from this limitation.
Reviewers of this manuscript questioned whether or not it is possible to generate synthetic

data that are differentially private and analytically useful in genuine settings. Although
OnTheMap offers an existence proof, we agree with the reviewers that it is extremely chal-
lenging to do so, especially for data with many mixed continuous and categorical variables,
data in which estimands based on small samples are of key interest, and data with com-
plex dependencies. There is a long way to go before differentially private synthetic data
generation becomes feasible for highly complex datasets. We note, however, that one can
generate synthetic microdata (or other microdata) without formally incorporating differ-
ential privacy by sampling from predictive distributions, as has been done, for example,
in the public use synthetic Longitudinal Business Database (Kinney et al., 2011). Indeed,
finding a risk measure for such products motivated the methods in Section 4.
In the simulations, we used the simple setting of binary data primarily to minimize the

complexities of data generation. The simulations indicate that the level of ϵ corresponding
to particular levels of statistical disclosure risk depends on the properties of the observed
data. We are confident that this conclusion will hold in larger and more complex datasets.
However, we are not certain what values of ϵ will generate reasonable statistical disclosure
risk levels in particular complex datasets: it could be large or small values. Additionally,
the risks depend on the nature of the data synthesizer. For example, synthesis models
that include many high order interactions be very sensitive to the original data, whereas
synthesis models without those interactions may not be.
We believe that ideas from ϵ-differential privacy and statistical disclosure risk measures

can be usefully combined in disclosure risk assessment. The proposed alternative risk as-
sessment paradigm in Section 4 represents a step in that direction, and we hope that it
generates additional research on integrating the cryptographic and statistical perspectives
on risk assessment.
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Appendix A: Proof that Simulation Scheme Induces ϵ-Differential
Privacy

Theorem 1. Let D = {x1, ..., xn} be a vector of n binary values, and let XD be the sum
of elements in D. Let the randomizer function f : D → f(D) be such that f(D) = D∗ =
{x∗

1, ..., x
∗
ns
} is a vector of ns synthetic binary values (not necessarily the same as n) gener-

ated as x∗
i

iid∼ Bern
(

XD+αϵ

n+αϵ+βϵ

)
, where αϵ, βϵ ∈ R+. Let XD∗ be the sum of elements in the

generated D∗.
For any ϵ > 0, if αϵ = βϵ = 1

eϵ/ns−1
, then releasing f(D) = D∗ maintains ϵ-level differ-

ential privacy. In other words, for any possible D1, D2 that differ by at most one element
(meaning |XD1 −XD2 | ≤ 1 in this case) and for any XD∗ ,

log

(
P (XD∗ |XD1 , αϵ, βϵ)

P (XD∗ |XD2 , αϵ, βϵ)

)
≤ ϵ

Proof: We prove this in two steps:

1. Showing for a fixed α and β that we have

ϵ = max
D∗,D1,D2

(
log

(
P (XD∗ |XD1 , α, β)

P (XD∗ |XD2 , α, β)

))
= ns ∗ log

(
1 +min(α, β)

min(α, β)

)
. (9)

2. Solving for the value of α = β that corresponds to the value of ϵ.

Step 1. Let α, β > 0. The only way a single element of D can be different is by switching a 0
to 1 (or vice versa). Hence, all possible D1 and D2 that differ by one element are considered
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by examining XD1 = X+1, XD2 = X and XD1 = X , XD2 = X+1 for all X ∈ [0 : n−1]. Let
e1 = P (XD∗ |X + 1, α, β), and let e0 = P (XD∗ |X,α, β). The first expression in (9) becomes

max

(
max

XD∗∈[0:ns],X∈[0:n−1]

(
log

(
e1
e0

))
, max
XD∗∈[0:ns],X∈[0:n−1]

(
log

(
e0
e1

)))
,

which is the same as

max

 max
XD∗∈[0:ns],X∈[0:n−1]

(
log

(
e1
e0

))
,

1

min
XD∗∈[0:ns],X∈[0:n−1]

(
log
(

e1
e0

))
 . (10)

When finding the values of X and XD∗ that maximize or minimize log
(

P (XD∗ |X+1,α,β)
P (XD∗ |X,α,β)

)
,

we can consider the quantity P (XD∗ |X+1,α,β)
P (XD∗ |X,α,β) for simplicity, as the log is a monotonically

increasing function. We have

P (XD∗ |X + 1, α, β)

P (XD∗ |X,α, β)
=

( n
XD∗)(

X+1+α
n+α+β )XD∗ (

n−(X+1)+β
n+α+β )ns−XD∗

( n
XD∗)(

X+α
n+α+β )XD∗ (n−X+β

n+α+β )ns−XD∗

=
(

X+1+α
X+α

)XD∗ (
n−X−1+β
n−X+β

)ns−XD∗

. (11)

Note that
(

X+1+α
X+α

)
> 1 >

(
n−X−1+β
n−X+β

)
. Thus, if we want to maximize (11), we set XD∗ =

ns and try to maximize
(

X+1+α
X+α

)
, which is done with X = 0. Conversely, if we want

to minimize (11), we set XD∗ = 0 and try to minimize
(

n−X−1+β
n−X+β

)
, which is done with

X = n− 1. Substituting these values into (10), we have

ϵ = log

(
max

((
1 + α

α

)ns

, 1/

(
n− (n− 1)− 1 + β

n− (n− 1) + β

)ns
))

= log

(
max

((
1 + α

α

)ns

,

(
1 + β

β

)ns
))

= ns ∗ log
(
1 +min(α, β)

min(α, β)

)
This proves that for a given α and β, the DP level will be ϵ = ns ∗ log

(
1+min(α,β)
min(α,β)

)
.

Step 2. Set α = β, and find the α that satisfies the condition for the given ϵ. We have

ϵ = ns ∗ log(
1 + α

α
)

eϵ/ns =
1 + α

α

α ∗ eϵ/ns − α = 1

α =
1

eϵ/ns − 1
.

Thus, when αϵ = βϵ =
1

eϵ/ns−1
, the randomizer function offers ϵ-level differential privacy.
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Appendix B: Details of Methods for Utility Analysis

In any utility analysis, we require the posterior distribution of p given D∗ and S, where S
is the information about the synthesis model (including αϵ, βϵ, and the generating distri-
bution for D∗). Since the sum of the observations in D∗ is a sufficient statistic for p, it is
equivalent to compute p(p|X∗, S). This posterior distribution is not analytically tractable,
so we sample from it using MCMC. We make the sampling process easier by drawing
samples from the augmented posterior p(p,X|X∗, S). We write the MCMC for the generic
prior distribution, p ∼ Beta(α, β); we set α = β = 1 in the simulation studies. The MCMC
proceeds as follows.

1. Pick initial values for p and X , which we label p(0) and X(0). We choose p(0) from a
unif(0, 1) and X(0) from a uniform distribution on the integers from 0 to n.

2. For t = 1, . . . , T , iteratively draw from the two full conditional distributions as fol-
lows.

2.1. Draw X(t) ∼ p(X|X∗, p(t−1), S). This is not a closed form distribution, so we
use a Metropolis-Hastings step. The proposal distribution, Q, is a one step random
walk, i.e., the probability of proposing X ′ when the chain is currently at X is

Q(X → X ′) =

 1/2 if X ′ = X + 1
1/2 if X ′ = X − 1
0 otherwise

for 2 ≤ X ≤ n − 1, and Q(X = 0 → X ′ = 1) = Q(X = n → X ′ = n − 1) = 1. The
ratio for accepting X ′ is thus

r = min

(
1,

p(X ′|X∗, p(t−1), S)Q(X ′ → X)

p(X|X∗, p(t−1), S)Q(X → X ′)

)
= min

(
1,

p(X∗|X ′, S)p(X ′|p(t−1))Q(X ′ → X)

p(X∗|X,S)p(X|p(t−1))Q(X → X ′)

)
= min

(
1,

Bin(X∗, n, X′+αϵ

n+αϵ+βϵ
) ∗Bin(X ′, n, p(t−1)) ∗Q(X ′ → X)

Bin(X∗, n, X+αϵ

n+αϵ+βϵ
) ∗Bin(X,n, p(t−1)) ∗Q(X → X ′)

)
.

We accept or reject X ′ according to p(X(t) = X ′) = r and p(X(t) = X(t−1)) = 1− r.

2.2. Draw p(t) ∼ p(p|X(t), X∗, S). With X fixed, from standard Bayesian theory
we have p(p|X(t)) = Beta(X(t) + α, n−X(t) + β). Hence, p(t) can be drawn directly
from this Beta distribution.

These are all relatively fast computations, so that T can be made as large as one hundred
thousand without much computation time. We used a burn in period of B = 1000, resulting
in the samples p(B+1), . . . , p(T ) from p(p|X∗, S).
After obtaining samples from the posterior distribution of p, we seek to compute the nu-

merator and denominator of the utility measure, U(D,D∗). Recall that p0 is a constant. To
compute the numerator, E((p0 − p)2|D∗), we substitute the samples p(B+1), . . . , p(T ) into
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T∑
t=B+1

(p(t) − p0)
2/(T − (B + 1)), where T = 100, 000 and B = 1, 000. We compute the

denominator, E((p0 − p)2|D), via analytical results. We have

E((p0 − p)2|D) = E(p2|D)− 2p0E(p|D) + p20. (12)

From standard Bayesian theory, with a uniform prior distribution on p, the posterior dis-
tribution of p given D is Beta(1 +X,n −X + 1). Since the expected value and variance of
a Beta(a, b) distribution are a

a+b and ab
(a+b)2(a+b+1) , respectively, we can substitute a = 1+ x

and b = n−X + 1 and solve for all the moments in (12).
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