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Abstract. De-identified data has the potential to be shared widely to support decision making and re-
search. While significant advances have been made in anonymization of structured data, anonymiza-
tion of textual information is in it infancy. Document sanitization requires finding and removing
personally identifiable information. While current tools are effective at removing specific types of in-
formation (names, addresses, dates), they fail on two counts. The first is that complete text redaction
may not be necessary to prevent re-identification, since this can affect the readability and usability of
the text. More serious is that identifying information, as well as sensitive information, can be quite
subtle and still be present in the text even after the removal of obvious identifiers.

Observe that a diagnosis “tuberculosis” is sensitive, but in some situations it can also be identify-
ing. Replacing it with the less sensitive term “infectious disease” also reduces identifiability. That is,
instead of simply removing sensitive terms, these terms can be hidden by more general but semanti-
cally related terms to protect sensitive and identifying information, without unnecessarily degrading
the amount of information contained in the document. Based on this observation, the main con-
tribution of this paper is to provide a novel information theoretic approach to text sanitization and
develop efficient heuristics to sanitize text documents.

Keywords. Privacy, Text Anonymization

1 Introduction

Private data, such as medical records, can play significant roles in research. However,
under federal regulations, e.g., the Health Insurance Portability and Accountability Act
(HIPAA) [6], these records cannot be shared freely (unless de-identified) due to sensitive
or confidential information. This limits their use for research, e.g., to discover cures for
life threatening diseases. In general, document sanitization consists of two main tasks: (1)
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Identifying personally identifiable information, e.g., as defined by the HIPAA Safe Har-
bor rules, and (2) “hiding” the discovered identifiers. Unfortunately, medically relevant
terms can often be identifying. Conditions related to the disease (e.g., weight) can assist in
identification. Exacerbating the problem is that identifying information can be quite subtle,
for example the term “phantom pain” identifies the sufferer as an amputee. To truly sani-
tize documents requires hiding such relatively unique information, which may go beyond
obvious identifiers.

The first task has received much attention from the research community, and many com-
mercial products have been developed to detect personal identifiable attributes. As for
the second task, the main approach adopted by current text sanitization techniques is to
simply remove personal identifiers (names, dates, locations, diagnoses, etc.) to prevent
re-identification of text documents. It is not hard to see that if diagnoses and personal
medical histories are completely removed from pathology records, these records are no
longer readable, and even worse, may no longer contain sufficient information to support
research. This can be illustrated by the following example.

Suppose a phrase “Uses marijuana for pain” is contained in a medical report. The tra-
ditional techniques can sanitize this phrase by “blacking out” sensitive information, such
as the drug used or diagnosis, turn the phrase into the meaningless “uses —— for ——”.
This can cause sanitized texts to be no longer readable, and hence, document utility is un-
necessarily degraded. More specifically, let d refer to the sample text in Figure 1(a), where
Sacramento, marijuana, lumbar pain and liver cancer are the sensitive terms. Let d∗ refer
to the sanitized text in Figure 1(b), which is the result of removing sensitive words from
d. Clearly, d∗ is useless for analyzing disease. Let d† refer to the sanitized text in Figure
1(c), where sensitive words are replaced by more general terms (using the hypernym trees
presented in Figure 2, where a word w in a given tree has a broader meaning than its chil-
dren). d† contains much more information than d∗. However, it still protects both sensitive
and identifying information (removing specific identifying physical characteristics as well
as the sensitivity of the type of drug used) and preserves linguistic structure.

Based on this observation, the overall objectives of this paper are: (1) provide an informa-
tion theoretic approach to text sanitization, and (2) develop efficient algorithms to sanitize
text documents based on the proposed information theoretic measure.

A Sacramento resident purchased marijuana
for the lumbar pain caused by liver cancer.

(a) Sample text

A Sacramento resident purchased marijuana
for the lumbar pain caused by liver cancer.

(b) Sanitized text

A state capital resident purchased drug
for the pain caused by carcinoma.

(c) Semantic preserving sanitized text

Figure 1: A sample text and its sanitized versions
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Figure 2: Hypernym trees

1.1 Problem Overview

Our approach to text document privacy is as follows: given a threshold t and an ontology,
a sanitized text should be a plausible result of at least t base text documents. From this
point of view, we will develop information theoretic measures and algorithms to sanitize
text as shown in Figure 1(c). We make the following assumptions: Given a document and
an (possibly domain specific) ontology, we can identify a set of identifying/sensitive words
related to the document (e.g., using techniques developed in [1, 12, 15] or domain specific
knowledge). Since terms can be both sensitive and identifying, we do not distinguish them
- both are referred to as “sensitive”. In practice, unknown terms (those not in the ontology)
would be removed from the text, because they can be regarded as sensitive, since they are
quite likely to be unusual or even unique and thus potentially identifying. In our problem
domain, since sensitive words are the focal point, without loss of generality, we assume a
piece of text d only contains sensitive values.
The problem of generalizing text to eliminate sensitive identifying information was pre-

sented in our previous work [23]. This work expands [23] by adding a new section 4.2 and
example 3 focusing on improving semantics with multiple word senses. We propose a new
technique to preserve the sense of the word being sanitized in algorithm 2. We also replaced
the One Step Alternative Search algorithm presented in [23] with algorithm 5. Finally, we
have additional empirical results allowing some evaluation of the semantic quality of the
generalized text, based on the ground truth word sense provided by the Senseval dataset
[21].

The rest of the paper is organized as follows: Section 2 summarizes relevant current work
and points out the differences; Section 3 proposes an information theoretic measure ac-
cording to the concept of t-plausibility and analyzes the hardness of t-plausibility based
text sanitization problem; Section 4 proposes uniform t-plausibility measure and effective
and efficient text sanitization heuristics; Section 5 validates our analyses via experimental
results and Section 6 concludes the paper with future research directions.

2 Related Work

The existing work most related to ours is data anonymization and text de-identification.
The most common data anonymization technique is k-anonymity [13, 16]. Since then, there
has been extensive work done related to anonymizing structured information, i.e., datasets
of at least k tuples in relational format. The proposed work here focuses on sanitizing a
single text-based document without assuming access to a collection of related documents.
Clearly the presence of multiple identical text documents about different individuals is un-
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likely; and modifying similar documents so they are identical while still preserving some
semblance of semantics and readability requires a much deeper understanding of docu-
ments than Natural Language Processing is currently capable of. Therefore, applying k-
anonymity directly is not feasible.

There have been alternatives proposed that capture some of the spirit of k-anonymity. For
example, [19] requires that subsets of terms be k-anonymous, but not entire sets. Given the
assumption that an adversary has limited knowledge about an individual, this provides
comparable protection to k-anonymity. While this has been applied to search log queries
[18], it is not clear that this would be appropriate for regular text.

More common in text is de-identification, or redaction: finding and removing identify-
ing information. This work has mainly concentrated on de-identification of medical docu-
ments. The Scrub system [15] finds and replaces patterns of identifying information such
as name, location, Social Security Number, medical terms, age, date, etc. The replacement
strategy is to change the identified word to another word of similar type (e.g., an identi-
fied name is replaced with a fake name), and it is not clear whether the semantics of the
reports themselves reveal the individuals. Similarly, [17] provides a six-step anonymiza-
tion scheme that finds and replaces identifying words in (Norwegian) patient records with
pseudonyms.

In [4], the authors present schemes for removing protected health information (PHI) from
free-text nursing notes. Since the text in this case does not follow the syntax of natural
language construction, it poses challenges in recognition of PHI. The solution consists of
techniques such as pattern matching, lexical matching, and heuristics to find the PHI from
nursing notes. Moving away from purely syntactic based recognition of identifying in-
formation, MEDTAG [12], a specialized medical semantic lexicon, is used for finding per-
sonally identifying information in patient records. This system uses the semantic tags for
disambiguation of words, and also relies on manually written disambiguation rules to dif-
ferentiate between words that have different contextual meanings. The identifiers are then
removed from the medical records.

To our knowledge, there exists very little work that addresses the general problem of text
sanitization. A two-phase scheme that employs both sanitization and anonymization was
proposed in [14]. The sanitization step uses automatic named entity extraction methods to
tag the terms, and then replaces them with dummy values. This is equivalent to replacing
the selected terms with their corresponding categories. The anonymization phase is de-
fined based on k-anonymity and only applied on quasi-identifying words (i.e., words pre-
sumed to be combine with certain external knowledge to possibly identify an individual).
In [1], an ontological representation of a text document is used to find and remove sensi-
tive sentences. The pre-defined contextual restrictions act as the inputs, and also guide the
sanitization procedure. This results in the sensitive sentences being removed from the doc-
ument. Assuming the existence of an external database containing demographic informa-
tion, suppression-based methods were introduced in [3] to sanitized documents such that
the resulting documents cannot be linked to less than k records in the external database.
To summarize, existing work mainly focuses on how to find identifying words, and either

remove them or replace them with pseudonyms. The replacement strategies lack a theo-
retic foundation, and consequently, without a formal measurement, it is difficult to judge
the quality of sanitized documents. The work proposed here provides a theoretic measure
on the quality of sanitized documents from a privacy protection point of view. These mea-
sures provide formal reasoning on how and why a more general term is chosen to replace
sensitive information in a given document. In addition to the given document, the only
information available to us is a related ontology; and we do not use domain-specific in-
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formation extraction techniques. We use WordNet [11] in our examples/experiments to
retrieve the hypernym trees.

3 t-Plausibility Text Sanitization

Before presenting the concept of t-plausibility sanitization on text (t-PAT), we first intro-
duce key notations and terminologies in Section 3.1. The formal definition of t-PAT is pre-
sented in Section 3.2. Then we prove that t-PAT is NP-hard in Section 3.3. At the end of
this section, we present a pruning-based algorithm to find the optimal solution according
to the definition of t-PAT.

3.1 Basic Notations and Terminologies

For the remaining of this paper, the terms sanitization (sanitized) and generalization (gen-
eralized) are interchangeable. The term “base text” refers a text that has not been sanitized
in any way. Let d be a base text, d̄ be a sanitized text and d[i]

(
or d̄[i]

)
denote the ith term in

d
(
or d̄

)
(a term is a word, or phrase recognized by the ontology; where we use “word” it

could also be such a short phrase.) Because we merely consider sensitive words, most often,
d represents the set of sensitive words in the original text. For example, suppose the text
in Figure 1(a) is the original text, then we have d = [Sacramento, marijuana, lumbar pain,
liver cancer].

Definition 1 (Generalizable /).

1.1. We say that a wordwi is generalizable to w̄i (denoted aswi/w̄i) if bothwi and w̄i belong
to a same hypernym tree, and w̄i is a generalized word of wi. For example, Migraine /
Symptom from Figure 2.

1.2. We say that d is generalizable to d̄ (denoted as d / d̄) if |d| =
∣∣d̄∣∣ and d[i] / d̄[i] for

1 ≤ i ≤ m.

Since we only consider the base texts generalizable to some sanitized text, we always
assume that |d| =

∣∣d̄∣∣. Next, we list additional notations adopted throughout the paper.

• o = {o1, . . . , om}: Ontology represented as a set of hypernym trees related to each
word in d.
• d = {w1, . . . , wm}: A base text represented as a set of terms, where |d| = m, wi ∈ oi

for 1 ≤ i ≤ m. wi is equivalent to d[i].
• d̄ = {w̄1, . . . , w̄m}: A generalized text represented as a set of terms, where

∣∣d̄∣∣ = m,
w̄i ∈ oi and wi / w̄i. w̄i is equivalent to d̄[i].

In most situations, a set is considered as an ordered set. For instance o[i] is the hypernym
tree of the ith word in d (i.e., d[i]). Figure 2 contains four word hypernym trees used exten-
sively hereafter. The base values (sensitive values from the original text) are at the bottom
of the trees. Values in the non-leaf nodes can be generalized to any values on its path to
the root. For example, given the first tree in Figure 2, Sacramento can be generalized to
State capital, Capital and so on. State capital can be generalized to Capital, Seat, etc.

The integer value in the parentheses indicates how many base values can be generalized
to its related value; we refer to this as its volume. For instance, the value 32 associated
with Capital (i.e., the volume of Capital) indicates that there are thirty-two base values
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(including the four values shown at leaves) that can be generalized to Capital. Note that
the trees shown here are not the complete hypernym trees; some branches and levels are
omitted for clarity of illustration. These partial hypernym trees were manually extracted
from WordNet for purposes of the example. Based on the previously introduced notations,
we define the following functions:

1. W
(
w̄i, d, d̄, o

)
→
{
w1
i , . . . , w

ki
i

}
, the word domain function (W (w̄i) for short):

• Pre-condition: w̄i = d̄[i] and d / d̄ according to o.

• Post-condition: d[i] ∈
{
w1
i , . . . , w

ki
i

}
, wji / w̄i for 1 ≤ j ≤ ki and w1

i , . . . , w
ki
i are

base values in oi.1

Given a generalized word w̄i, it returns a set of all possible words at the same level of
d[i] that can be generalized to w̄i according to o.

2. Po
(
w′i, w̄i, d, d̄, o

)
→ Prob (w′i / w̄i), the local probability function (Po (w′i, w̄i) for short):

• Pre-condition: w′i ∈W
(
w̄i, d, d̄, o

)
• Post-condition: The probability that given w̄i (or d̄[i]), w′i is the original word.

Given a word w′i in the domain of w̄i, it returns the probability that w̄i is generalized
from w′i.

3. D
(
d, d̄, o

)
→
{
W
(
w̄1, d, d̄, o

)
× · · · ×W

(
w̄m, d, d̄, o

)}
, the text domain function (D(d̄)

for short):

• Pre-condition: d / d̄ according to o.

• Post-condition: D = {d1, d2, . . . , dk} and d ∈ D, where k =
∏m
i=1 ki and ki =∣∣W (

w̄i, d, d̄, o
)∣∣.

Given a text d, its generalized counterpart d̄ and an ontology, the function returns a
set of all possible texts that can be generalized to d̄ according to o. We call such set as
the domain of d.

4. P
(
d′, d, d̄, o

)
→ Prob

(
d′ / d̄

)
, the global plausibility function:

• Pre-condition: d′ ∈ D
(
d, d̄, o

)
• Post-condition: The probability that d is generalized from d′.

Given a text d′ in the domain of d, the function returns the probability that d′ can be
generalized to d̄. That is, P returns the probability that d′ is the original text.

Example 1. Refer to Figure 2, if w̄i = controlled substance, thenW (w̄i) returns {Morphine,
Marijuana}. Assuming a uniform distribution in W (w̄i) and w′i = marijuana, Po(w′i, w̄i) =

1
|W (w̄i)| = 1

2 . Let d = {marijuana, lumbar pain} and d̄ = {controlled substance, pain},
then D(d, d̄, o) returns d1 = {marijuana, lumbar pain}, d2 = {marijuana, migraine}, d3 =
{morphine, lumbar pain} and d4 = {morphine, migraine}. If we assume uniform distribu-
tion in both W (d̄[1]) and W (d̄[2]), for 1 ≤ i ≤ 4, P (di, d̄) = 1

4 . �

1Base values are defined as the values from the base level of the tree, and base level is defined by that of wi in
oi.
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3.2 Plausibility Sanitization on Text

Based on the previously introduced notations and terminologies, here we formally define
our text sanitization problem. Define the sanitization function f as

f : d, t, o→ d̄

which takes a text d, security parameter or threshold t and an ontology o as the input
and outputs d̄. The security parameter basically restricts the set of possible outputs and is
defined as follows:

Definition 2 (t-Plausibility). d̄ is t-plausible if at least t base texts (including d) can be
generalized to d̄ based on o.

This definition simply says that a sanitized text d̄ can be associated with at least t texts,
and any one of them could be the original text d. For instance, Let d̄ be the text in Figure
1(c). Based on the hypernym trees in Figure 2, |D(d̄)| = 96, and we say that d̄ can be
associated with 96 texts. If t ≤ 96, d̄ satisfies the t-plausibility condition. When a text is
sanitized properly, we should not be able to uniquely identify the original text. To prevent
unique identification, there should exist more than one text that could be the base text.
These texts are called plausible texts. The parameter t is defined as a lower bound on the
number of plausible texts related to a given generalized text. t can also be considered as the
degree of privacy that a sanitized text needs to guarantee. We assume t to be sufficiently
large to produce an expected number of plausible meaningful texts and discard plausible
meaningless texts.

Based on t, we define the text sanitization problem as an optimization problem. Since
our intuition relies on the concept of t-plausibility, we term the text sanitization problem as
t-Plausibility Sanitization on Text (t-PAT).

Definition 3 (t-PAT). Let t be a threshold, o be an ontology and d be a base text. The t-PAT
problem is to find a sanitized text d̄, such that d̄ is t-plausible and |D(d, d̄, o)| is minimal.

According to Definition 3, the t-PAT problem is to find a sanitization d̄ of d, such that
|D(d, d̄, o)|, is equal to t or the least upper bound of t. We next show that this text sanitiza-
tion problem is NP-hard.

3.3 Hardness of t-PAT

Theorem 1. t-PAT defined in Definition 3 is NP-Hard.

Proof. The reduction is from the subset product problem, which is defined as follows:
Given a set of integers I and a positive integer p, is there any non-empty subset I ′ ⊆ I such
that the product of numbers in I ′ equals p? This problem is proven to be NP-Complete [5].
We now show a reduction from the subset product problem to t-PAT. Assume that there
exists an algorithmA that solves t-PAT in polynomial time. For each wi (1 ≤ i ≤ m), define
a set Mi containing the volumes of the terms along the path from wi to w̄i, where w̄i ∈ oi
and wi / w̄i. The number of possible w̄i is limited by the depth of the hypernym tree. For
example, refer to Figure 2, let wi be the word Sacramento and w̄i be the word capital, then
Mi = {1, 4, 32}. The input to A are the sets M1, . . . ,Mm and the plausibility parameter t.
The solution of t-PAT is a set of m numbers {n1, . . . , nm} such that ni ∈Mi, and

∏m
i=1 ni is

equal to the least upper bound of t.
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The subset product problem can be solved using A as follows. The input to the subset
product problem is the set of integers I = {a1, . . . , am} and the product p. Construct m
sets by creating Mi = {ai, 1} for 1 ≤ i ≤ m and invoke A with inputs M1, . . . ,Mm and
p. A returns a set of m numbers {n1, . . . , nm}. If

∏m
i=1 ni = p, the subset product has an

answer. This can be obtained by looking at {n1, . . . , nm} returned by A. If ni = 1, ai is
not included in the subset. On the other hand, if ni = ai, the subset contains the element
ai. Suppose

∏m
i=1 ni > p, then there does not exist any subset in I such that the product

of the subset is p. Otherwise, A would have returned such a subset. Since the input and
output transformations can be performed in polynomial time, we can conclude that t-PAT
is NP-hard.

3.4 Exhaustive Search with Pruning Strategy

To solve t-PAT, we can simply enumerates all possible solutions and picks the best one. This
can be easily accomplished by a recursive formulation. However, the exhaustive search is
inefficient and intractable for large values of m. We present a pruning strategy that limits
the search space to improve search efficiency. ESearch Prune (Algorithm 1) is a recursive
procedure to generate combinations of generalizations of a set of words d = {w1, . . . , wm}
with the given ontology o = {o1, . . . , om}. The procedure takes a set d̄ (current generaliza-
tion up to ith word), the index i, the best value for t-PAT found so far as tc and its corre-
sponding generalization d̄c. When i < m, d̄ is a partial generalization on d. If |D(d̄)| > tc
then any superset d̄′ of d̄will be such that |D(d̄′)| > tc. This observation guides the pruning
process.

At step 2 of algorithm 1, hi denotes the height of the hypernym tree oi of word wi, and
w̄+j
i indicates the jth generalization (or hypernym) of wi on oi in ascending order from wi

to the root of the tree. wi = w̄+0
i is a special case. If i < m, for each generalization of wi

from w̄+j
i to w̄+hi

i , ESearch Prune is called again with i+ 1. Note that w̄+j
i is selected in an

ascending order such that w̄+j
i / w̄

+(j+1)
i . The recursion terminates when i equals m. When

this occurs, the set d̄ is used to calculate |D(d̄)|. If this |D(d̄)| is less than tc, but greater than
or equal to t then d̄ and |D(d̄)| are returned as the best solutions. Otherwise, tc and d̄c are
returned. Algorithm 1 lists the steps of a pruning based recursive procedure. It is invoked
as ESearch Prune(∅, 1,∞, ∅) and the returned values are the solutions to t-PAT.
While not efficient, this algorithm can be used for short texts, and provides a baseline

against which to measure efficient approaches.

4 t-PAT Revisited

The optimal solution to the t-PAT problem defined in Definition 3 may not be the best
solution in practice because it does not consider privacy protection of individual sensitive
words. It is possible that an optimal solution comes from heavily generalizing only a few
sensitive words. This can be illustrated by the following example.

Example 2. Refer to Figure 1 and Figure 2. Let d be the text in Figure 1(b). Suppose t = 32,
then the optimal solution d̄ based on Definition 3 is:

A capital resident purchased marijuana
for the lumbar pain caused by liver cancer.
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Algorithm 1 ESearch Prune(d̄, i, tc, d̄c) - The Exhaustive Search with Pruning for t-PAT

Require: d̄ a set containing i generalized words, i an index, tc the current least upper
bound on t, d̄c a generalization of d whose |D(d̄c)| = tc and d, o, t are implicit parame-
ters

1: if i < m then
2: for j = 0 to hi do
3: if |D(d̄ ∪ {w̄+j

i })| > tc then
4: return (tc, d̄c)
5: end if
6: (tc, d̄c)← ESearch Prune(d̄ ∪ {w̄+j

i }, i+ 1, tc, d̄c)
7: if tc = t then
8: return (tc, d̄c)
9: end if

10: end for
11: else
12: if t ≤ |D(d̄)| < tc then
13: return (|D(d̄)|, d̄)
14: end if
15: end if
16: return (tc, d̄c)

The volume of capital is 32 (there are 32 base values generalizable to capital.) This implies
that there are 32 possible texts can be associated to d̄. However, from a privacy preserving
point of view, this d̄ does not protect privacy as well as the following generalized text:

A state capital resident purchased drug
for the pain caused by carcinoma.

A solution is to require that every sensitive word be protected equally. If most of the sensi-
tive words are not generalized, then d̄ contains too much sensitive information.

We also need to address the question of semantic correctness of a generalization of text.
That is, each word has been generalized based on the correct sense used in the context.
A word can have multiple hypernym trees and hence be generalizable to more than one
sense depending on the context of the text. Different word sense disambiguation tools and
techniques can be used to manage such cases [7, 8], but word sense disambiguation is a
hard problem, with best-in-class techniques under 90% accuracy [8]. We present a way
to achieve a generalization based on the correct sense without the use of these tools, as
demonstrated in the following example.

Example 3. Let d = {resident}. We can see in Figure 3 the hypernym tree produced by
WordNet for all the senses of d when is used as a noun. Note that both hypernym trees
reach a common term after a few levels. From that point to the root of the generalization
tree they have the same terms. If we generalize to a common term between hypernym trees
(assuming that one exists) we will be more likely to preserve the correct sense used in the
context.

As shown in these examples, in practice, not only do we need to measure the quality of a
generalized text d̄ using the threshold t, but also we need to consider how d̄ can preserve
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Figure 3: Common Terms Graph

the privacy and semantics of every sensitive word. To achieve this goal, we next present
an information theoretic measure based on the uniform plausibility assumption - every
sensitive word needs to be protected equally. Then on Section 4.2 we proposed a method
that tries to preserve the correct meaning while generalizing as presented in example 3.
While these two measures improve the system and provide better results they also increase
computation during the search. Sections 4.3 and 4.4 present techniques and heuristics to
make the search tractable.

4.1 Uniform t-Plausibility and an Information Theoretic Measure

Uniform plausibility implies that each sensitive word need to be protected unbiasedly. Un-
der this uniform plausibility requirement, we can avoid situations where some words are
generalized too much and other words are not generalized at all. To materialize uniform
plausibility, we utilize the expected uncertainty of individual sensitive words as a measure.
We use entropy to model this uncertainty and to accomplish uniform plausibility. Details
are given next.

Let m be the number of words that need to be generalized in d, H be an entropy function
and α be a system parameter [0, 1] governing the tradeoff between global optimality and
uniform generalization. For 1 ≤ i, j ≤ m, the cost function C(d̄, t) is defined as:

α

m2

(
H(d̄)− log t

)2
+

1− α
m

m∑
i=1

(
H(w̄i)−

log t

m

)2

(1)

The intuition behind this is that the first term defines a global measure: how close the
generalized text d̄ is to the expected uncertainty defined by t. The second term defines a
local measure to achieve the uniform uncertainty (leading to uniform plausibility) among
all sensitive words. log t

m is the expected entropy of each sensitive word when the text is
properly generalized. Intuitively, the lower C, the better each sensitive word is protected.
Note that the denominators m2 and m are used as scaling factors so that the two terms are
relatively at the same scale. Detailed discussion on this issue is presented in Section 4.6.
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Next we show how to calculate the entropies of w̄i and d̄. H(w̄i) can be calculated as:

H(w̄i) = −
ki∑
j=1

Po(w
j
i , w̄i) logPo(w

j
i , w̄i) (2)

where ki = |W (w̄i)| is the number of words that can be generalized to w̄i. W is the word
domain function and Po is the local plausibility function. Both functions are defined in
Section 3.1. Similarly, H(d̄) can be calculated as follows:

H(d̄) = −
k∑
i=1

P (di, d̄) logP (di, d̄) (3)

where k = |D(d̄)|. D is the text domain function and P is the global plausibility function.
Both functions are defined in Section 3.1. If we assume that each word is independent.
P (di, d̄) can be calculated as follows:

P (di, d̄) =

m∏
j=1

Po(di[j], d̄[j]) (4)

Example 4. Let w̄i be the state capital in Figure 2, and assume uniform distribution in
W (w̄i). We can compute H(w̄i) = −

∑4
j=1

1
4 log 1

4 = 2. Let d̄ be the sanitized text in Figure
1(c) (i.e., d̄ = {state capital, drug, pain, carcinoma}). Let d be the original text in Figure
1(a) (i.e., d = {Sacramento, marijuana, lumbar pain, liver cancer}). Assume uniform dis-
tribution in each w̄i (or d̄[i]). Then P (di, d̄) = 1

4 ·
1
6 ·
(

1
2

)2
= 1

96 , and since P (di, d̄) = 1
96 for

1 ≤ i ≤ 96, H(d̄) = −
∑96
i=1

1
96 log 1

96 = 6.6.
Let α = 0.5 and t = 32. If d̄ = {capital, marijuana, lumbar pain, liver cancer},

C(d̄, t) =
1

8

4∑
i=1

(
H(w̄i)−

5

4

)2

=
1

8

(
15

4

)2

+
3

8

(
−5

4

)2

≈ 2.33

Nevertheless, if d̄′ = {state capital, drug, pain, carcinoma},

C(d̄′, t) =
1

8

4∑
i=1

(
H(w̄i)−

5

4

)2

=
1

8

(
3

4

)2

+
1

8

(
133

100

)2

+
2

8

(
−1

4

)2

≈ 0.31

Clearly, C(d̄′, t) is a much smaller cost than C(d̄, t). This matches the intuition behind Equa-
tion 1 and implies that d̄′ is a better sanitized text than d̄ from a privacy protection perspec-
tive. Indeed, we can observe that d̄′ achieves uniform plausibility better than d̄. �

As mentioned before, the optimal solutions presented in Section 3.4 do not take into ac-
count the concept of uniform plausibility. In other words, d̄ can be optimal according to
Definition 3, without all words in d being equally protected. This was shown in Example
2. Whether or not uniform plausibility is achievable depends on the structure of hypernym
trees. At least by minimizing C, we can achieve some degree of uniform plausibility. Our
objective here is defined by the following:
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Definition 4 (Uniform t-PAT). Give a text d, a set of hypernym trees o (related to d) and a
threshold t, find a d̄ of d, such that H(d̄) ≥ log t and C(d̄, t) is minimized.

4.2 Optimizing Semantics with Multiple Word Senses

It is common to find homonyms or homographs (words with the same spelling, same or
different pronunciation, but different meaning depending how the word is used in the
context) in any given text. The generalization of a word can change depending on the
sense that is being used in the context. We now give a detailed description of the method
presented in example 3, with a way to measure the correctness of the generalization based
on the sense.

4.2.1 Common Terms Method

Word sense disambiguation in English is a hard problem, with best-in-class methods ap-
proaching 83.0% accuracy on a coarse-grained all words task [8]. Instead of trying to guess
the proper sense, we utilize generalization to find a common hypernym, thus giving a cor-
rect generalization for multiple word senses. This is based on the uniform t-Pat approach,
but a hypernym tree is generated for each sense of the sensitive word to be generalized.
Each hypernym tree is then traversed looking for words in common or common terms be-
tween the hypernym trees, keeping track of some properties that makes a word a candidate
general word. The selection is based on the following observations:

1. The candidate word has to be present in at least two hypernym trees, otherwise it
would not be common between senses.

2. Only the levels considered by the generalization algorithm (usually half the height of
the tree) are considered in the search for common terms. This avoids the selection of
general terms close to the root. For example: selecting ”entity“ as common term, will
be present in all the hypernym trees but it will not preserve the semantics of the text.

3. The volume of a candidate word has to be greater than or equal to the one selected by
the generalization algorithm. That way the security of the generalization is preserved.

We define coverage factor as the probability that a candidate common term is present in
the senses of a word, that is, the number of senses of the sensitive word present in the
candidate generalization divided by the number of senses the sensitive word has. This
value depends on the number of senses a word has in the ontology, the way the senses are
added to a word in the ontology, and the ontology construction. In the future we plan to
apply domain specific ontologies to see the variation in term selection. Finally, since only
one word has to be selected for the generalization, the one with the largest coverage factor
is selected. For performance reasons, there is no need to search through all the words at all
levels of the hypernyms if they do not preserve the security of the generalization. That is
why after a generalization algorithm (Algorithms 1, 3, 4-5 or 4-6) has found the depth that
provides a close to optimal cost for the given sensitive word based on the threshold t, then
Common Terms Search performs a search on multiple hypernyms to find common terms
around the threshold.

We would expect that generalizing a word to common terms of the hypernym tree will
increase the chance that the word used can be interpreted in the correct sense in the con-
text. We make the assumption that if a word has been generalized based on the correct
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sense it will preserve the semantics of the text. The key steps of Common Terms Search are
provided in Algorithm 2.

Algorithm 2 Common Terms Search(w, v) - Search for common terms in all the hypernym
trees of a given word and select the best candidate
Require: w a sensitive word and v the required volume forw selected by the generalization

algorithm. It also requires the following structures / functions:
H = Set of hypernym trees of word w
T [i].s = List of senses satisfied by word i
vol(w) = Returns the volume of a given word w

1: for i = 0 to |H| do
2: h = Select a hypernym tree from H[i]
3: for j = 1 to |h|/2 do
4: if h[j] ∈ (H − h) and vol(h[j]) ≥ v then
5: T [h[j]].s.add(i)
6: end if
7: end for
8: end for
9: for i = 0 to |T | do

10: covFactor = |T [i].s| / |H|
11: if covFactor > max then
12: max = covFactor
13: bestWord = T [i]
14: end if
15: end for
16: return (bestWord)

4.2.2 Penalization of C Based on the Correct Sense

We will later evaluate the effectiveness of common terms search based on a “ground truth”
word sense corpus; we introduce the concept of the true vs. estimated cost now to better
clarify the impact of common terms search. For each sanitized word the cost function C is
updated according to the entropy of the general word. Each instance of a sensitive word
in the corpus is evaluated because each appearance can be related to a different sense but
the generalization is always the same. Every general word that is not present in the correct
sense hypernym tree of its respective sensitive word is replaced by the root of the tree and
the cost is updated. The cost function is modified to make the generalization sensitive
to the correct sense used in the context. We penalized the cost by measuring how often
the generalization is present in the hypernym tree of the correct sense. Since the root is a
common term by default, if the common term has not been found in the accepted region
we prune the search by selecting the root of the hypernym under the assumption that the
next common term is close to the root or the root itself. With this penalization we expect to
have a smaller cost using the common terms method since this method is considering the
semantics in its search. We will refer to this modification as the true cost Ĉ, the actual cost of
the generalization given the true sense of the word. We use this metric in our experiments
to show the error between the estimated cost C used in the algorithms to determine the best
generalization, and the optimal cost assuming the word sense was known.
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4.3 Search for Minimizing C(d̄, t) with Pruning

The exhaustive search approach enumerates all the possible solutions and picks the gen-
eralization d̄ that minimizes the cost metric C under the condition that H(d̄) ≥ log t. We
now present a pruning strategy that improves the efficiency of pure exhaustive search. Key
steps are provided in Algorithm 3. Similar to Algorithm 1, the recursive procedure builds
all possible combinations of generalizations of the words d = {w1, . . . , wm} based on the
set of hypernym trees o = {o1, . . . , om}. The procedure takes a set d̄ (current generalization
up to ith word), the index i, the current minimum cost tc and the generalization d̄c whose
cost is equal to tc. The end of recursion is reached when i equals m. When this occurs,
the cost C(d̄, t) of such generalization, as defined by d̄, is computed. This cost is compared
against the current minimum cost (tc), and if the new cost is lower than tc andH(d̄) ≥ log t,
the current generalization d̄ and its cost are returned.
When i < m, we apply the pruning criteria to decide whether further generalization

would give us a better solution with a cost less than tc. Let us assume that the cost metric
(Equation 1) is represented as C = C1 + C2, where C1 and C2 are the global and local mea-
sures respectively. Let d̄ be a partial anonymization on d. This implies that |d̄| < m. The
entropy of d̄ is calculated as H(d̄) by the Equation 3. Let d̄′ be a generalization and also be
a superset of d̄. Thus we have d̄ ⊂ d̄′, |d̄| < |d̄′| ≤ m and H(d̄′) ≥ H(d̄). We observe the
following properties on the cost function.

Observation 1 (Monotonicity property of C2). Given d̄ ⊂ d̄′, we have the following condi-
tion on the second term of the cost metric: C2(d̄′, t) ≥ C2(d̄, t).

Proof. Write C2(d̄′, t) = C2(d̄, t) + δ. Since
(
H(w̄i)− log t

m

)2

cannot be negative, we have

δ ≥ 0. This implies that C2(d̄′, t) ≥ C2(d̄, t).

This observation can be used to stop considering the supersets of a partial anonymiza-
tion d̄ when C2(d̄, t) is greater or equal to the minimum cost (tc) found so far. Given that
C1(S̄, t) ≥ 0, if C2(d̄) ≥ tc then the cost of a complete generalization consisting of d̄ must
exceed tc.

Observation 2 (Monotonic property of Cost metric). If H(d̄) ≥ log t, then the cost function
C(d̄′, t) ≥ C(d̄, t).

Proof. This basically says that the cost metric of a superset (d̄′) of a generalization (d̄) is
greater than or equal to the cost metric of its subset d̄ when H(d̄) ≥ log t. We establish this
by considering the first and second terms of C individually.

• The first term of the cost metric for d̄ is defined as C1 = (H(d̄) − log t)2 (ignoring the
coefficient). Since H(d̄) ≥ log t and H(d̄′) ≥ H(d̄), we have C1(d̄′, t) ≥ C1(S̄, t).

• From Observation 1, we know that C2(d̄′, t) ≥ C2(d̄, t).

Given the above properties of individual terms, it is clear that C(d̄′, t) ≥ C(d̄, t).

This observation is used to stop considering the supersets of a partial anonymization d̄
when C(d̄, t) is greater than the current minimum cost tc (given H(d̄) ≥ log t).

The pruning strategies avoid generating combinations clearly worse than the best solu-
tion. Algorithm 3 lists the steps of a pruning based recursive procedure. This procedure is
invoked as Uniform ESearch Prune(∅, 1,∞, ∅) and the returned values minimize the cost
function C. The pruning condition at steps 3-5 is based on Observation 2, and the pruning
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Algorithm 3 Uniform ESearch Prune(d̄, i, tc, d̄c) - Search for minimizing C with Pruning

Require: d̄ a partial generalization on d containing iwords, i an index, tc current minimum
cost, d̄c a partial generalization whose cost is tc and d, t, o implicit parameters

1: if i < m then
2: if H(d̄, t) ≥ log t then
3: if C(d̄, t) > tc then
4: return (tc, d̄c)
5: end if
6: end if
7: if C2(d̄, t) > tc then
8: return (tc, d̄c)
9: end if

10: for j = 0 to hi do
11: (tc,d̄c)← Uniform ESearch Prune(d̄ ∪ w̄+j

i , i+ 1, tc, d̄c)
12: end for
13: else
14: if C(d̄, t) < tc and H(d̄, t) ≥ log t then
15: return (C(d̄, t), d̄)
16: end if
17: end if
18: return (tc, d̄c)

condition at steps 7-9 is based on Observation 1. The notation hi and w̄+j
i introduced in

Section 3.4 indicate the height of oi and the jth generalization of wi.

4.4 Proposed Heuristics

Exhaustive search based algorithms are not practical in the average case. Thus, in this
section, we propose three heuristics to generate sanitized texts that possess the property
of uniform plausibility. The goal of the first heuristic (LUB Search) is to provide an up-
per bound on the worst case scenario according to the cost function C. If the estimated
upper bound is not optimal then we apply MStep Greedy Search (bidirectional search) or
Top Down Greedy Search (one direction search) in the hypernym tree to optimize the cost.
Since to use the cost function C, we need to know the Po(w′i, w̄i) value for eachw′i inW (w̄i),
for the rest of this section, we assume that words are uniformly distributed in each W (w̄i).
Let w̄−i and w̄+

i be the immediate hyponym and hypernym of w̄i on the hyponym tree
respectively.

LUB Search (Algorithm 4) consists of two main steps: finding an upper bound on C, and
performing greedy search to improve the upper bound cost. Steps 1-3 of Algorithm 4 find
a generalized text d̄ such that the optimal cost is always less than or equal to C(d̄, t). Steps
5-7 check the condition C(d̄, t) = 0. If the condition holds, we know that d̄ is the best
possible solution, and no further computation is needed. The condition δ = 0 (δ is the
maximum number of deviations allowed in greedy search) indicates that no greedy search
is performed and the current d̄ is returned. If neither condition holds, the algorithm will
continue to the greedy search phase. The procedure MStep Greedy Search at step 8 of
Algorithm 4 returns a generalized text that is either the same as d̄ or a better generalized
document according to Equation 1.
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Algorithm 4 LUB Search(d, t, o, δ) - The Least Upper Bound Search for uniform t-PAT
Require: A base document d, a threshold t, a set of hypernym trees o and δ a greedy search

threshold that limits the maximum number of deviations allowed
1: for all wi ∈ d do
2: Find a w̄i and H(w̄i) =

⌈
log t
m

⌉
3: end for
4: c← C(d̄, t)
5: if c = 0 ∨ δ = 0 then
6: return d̄
7: end if
8: (c, d̄)←MStep Greedy Search (δ, d̄, c, d̄)
9: return (d̄)

The key steps of MStep Greedy Search are provided in Algorithm 5. In this procedure, the
search space is constrained around the generalized text d̄with the number of steps confined
by the parameter δ. Our intuition is that the optimal solution is not far from d̄ (computed
at steps 1-3). For instance, if δ = 1, MStep Greedy Search exhaustively checks all possible
one-step deviations d̄c of d̄, and returns the one with the lowest cost and at the same time
the condition H(d̄c) ≥ log t

m must hold. Let w̄+
i and w̄−i be the immediate hypernym and

hyponym of w̄i on the hypernym tree oi respectively. One-step deviation on d̄ means that
we can generate two new generalized texts by simply changing one of w̄i (or d̄[i]) values to
w̄+
i or w̄−i . Let d̄−i denote d̄− {w̄i}; that is,

d̄−i = {w̄1, . . . , w̄i−1, w̄i+1, . . . , w̄m}

Both d̄−i∪{w̄+
i } and d̄−i∪{w̄−i } are one-step deviations of d̄. Base on the above description,

when δ = 1, the greedy strategy MStep Greedy Search generates 2m deviations of d̄, and
returns the best one.

On the other hand, when δ = 2, the MStep Greedy Search algorithm exhaustively checks
all possible two-step deviations d̄c of d̄, and returns the one with the lowest cost. Similar to
the one-step deviation, through two-step deviation we can generate a new generalized text
from d̄ by making at most two changes. For instance, we can generalize or de-generalize2 w̄i
twice, or we can generalize or de-generalize w̄i and w̄j once each. The outcome of two-step
deviation include those of one-step deviation. For the case of δ = 2, MStep Greedy Search
generates 2m2 candidates. In general, MStep Greedy Search generates

δ∑
j=1

2δ •
(
m

δ

)
, for 1 ≤ δ ≤ m

deviations of d̄. The parameter δ determines the additional cost for finding possibly a better
solution than d̄. The size of δ is determined by the user.

Steps 1-12 of MStep Greedy Search check all one-step deviations of d̄ and returns the best
one if δ = 1. When δ > 1, steps 16-19 will be executed to generate deviations of more than
one steps. For succinctness, some steps are omitted before the recursive calls. For instance,
we need to check if w̄i is on top or on the bottom of the hypernym tree, and hypernym trees
also need to be modified. We address these issues in the implementation.

2generalize means moving up in the hypernym tree and de-generalize means moving down in the hypernym tree
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Algorithm 5 MStep Greedy Search (d̄, δ, tc, d̄c)

Require: d̄ a text or a generalized text in the form of {w̄1, . . . , w̄m}, δ a limit on the maxi-
mum number of deviations allowed on d̄, tc indicating the best current value of C, and
d̄c the generalized text whose cost is tc

1: for i = 1 to |d̄| do
2: d̄′ ← d̄−i ∪ {w̄+

i }
3: if C(d̄′, t) < tc and H(d̄′) > log t then
4: tc ← C(d̄′, t)
5: d̄c ← d̄′

6: end if
7: d̄′ ← d̄−i ∪ {w̄−i }
8: if C(d̄′, t) < tc and H(d̄′) > log t then
9: tc ← C(d̄′, t)

10: d̄c ← d̄′

11: end if
12: end for
13: if δ = 1 then
14: return (tc, d̄c)
15: end if
16: for i = 1 to |d̄| do
17: (tc, d̄c)←MStep Greedy Search (δ − 1, d̄−i ∪ {w̄+

i }, tc, d̄c)
18: (tc, d̄c)←MStep Greedy Search (δ − 1, d̄−i ∪ {w̄−i }, tc, d̄c)
19: end for
20: return (tc, d̄c)

MStep Greedy Search approaches the global optimum as δ increases. But the run time
increases exponentially for large values of δ and m. Hence, we provide another vari-
ant of greedy search which has an efficient run time and optimum cost. This heuristic
can replace the MStep Greedy Search strategy directly in Algorithm 4. The main steps of
Top Down Greedy Search are given in Algorithm 6. After finding an upper bound, at each
iteration, m possible derivations like d̄−i∪{w̄−i } from d̄ are generated, and the one with the
best cost is chosen to replace d̄ greedily before next iteration. The algorithm stops when it
cannot take a step which reduces the cost function.

The two greedy search strategies are interchangeable in the LUB Search. Regardless of
which strategy is adopted, the LUB Search algorithm always guarantees the following:

Theorem 2 (Upper Bound on the LUB Search algorithm). Suppose that d̄ = LUB Search(d, t, o).
Then H(d̄) ≥ log t and C(d̄, t)−C∗ ≤ σ2, where C∗ is any minimal attainable cost according
to Equation 1 and σ is a limiting factor on the size of hypernym tree.

Before proving Theorem 2, we need the following lemmas about the entropy of w̄i and the
entropy of d̄.

Lemma 1. If words in W (w̄i) are uniformly distributed, then H(w̄i) = log |W (w̄i)|.

Proof. Since we assume words in W (w̄i) are uniformly distributed, for any word wji ∈

TRANSACTIONS ON DATA PRIVACY 5 (2012)



522
Balamurugan Anandan, Chris Clifton, Wei Jiang, Mummoorthy Murugesan, Pedro

Pastrana-Camacho, Luo Si

Algorithm 6 Top Down Greedy Search(d̄, d, t)

Require: d̄ a generalized text related to d and t is the privacy threshold
1: m← |d̄|
2: tc ← C(d̄, t)
3: repeat
4: stepf ← False
5: for j = 1 to m do
6: d̄′ ← d̄−j ∪ {w̄−j }
7: if C(d̄′, t) < tc and H(d̄′) ≥ log t then
8: tc ← C(d̄′, t)
9: d̄c ← d̄′

10: stepf ← True
11: end if
12: end for
13: if (stepf = True) then
14: d̄← d̄c
15: end if
16: until (stepf = False)
17: return (tc, d̄c)

W (w̄i), Po(w
j
i , w̄i) = 1

|W (w̄i)| . Let ki = |W (w̄i)|, and H(w̄i) can be rewritten as follows:

H(w̄i) = −
ki∑
j=1

Po(w
j
i , w̄i) logPo(w

j
i , w̄i)

= −
ki∑
j=1

1

|W (w̄i)|
log

1

|W (w̄i)|

= − log
1

|W (w̄i)|
= log |W (w̄i)|

Lemma 2. If words in W (w̄i) are uniformly distributed and d̄ = LUB Search(d, t, o), then
H(d̄) =

∑m
i=1H(w̄i).

Proof. Assuming uniform distribution inW (w̄i) and from previous analysis, we can rewrite
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P (di, d̄) as P (di, d̄) =
∏m
j=1

1
|W (w̄j)| . Let k =

∏m
i=1 ki, and H(d̄) is computed as:

H(d̄) = −
k∑
i=1

P (di, d̄) logP (di, d̄)

= −
k∑
i=1


m∏
j=1

1

|W (w̄j)|

log

m∏
j=1

1

|W (w̄j)|


= − k∏m

j=1 |W (w̄j)|
log

m∏
j=1

1

|W (w̄j)|

= − log

m∏
j=1

1

|W (w̄j)|
= −

m∑
j=1

log
1

|W (w̄j)|

=

m∑
j=1

log |W (w̄j)| =
m∑
j=1

H(w̄j)

Now, we can prove Theorem 2 using Lemma 1 and Lemma 2. First we prove the condition
H(d̄) ≥ log t and then we prove the second condition C(d̄, t)− C ≤ σ2.

Theorem 2. Refer to Algorithm 4. Steps 11-17 attempt to find a generalized text that has
lower cost than d̄ (computed at steps 1-3). In the worst case scenario, assume the d̄ is
returned from LUB Search(d, t, o). Then we have that for any 1 ≤ i ≤ m, H(w̄i) ≥ log t

m .
This implies H(w̄i)− log t

m ≥ 0. Then the following inequality holds:

m∑
i=1

(
H(w̄i)−

log t

m

)
≥ 0

m∑
i=1

H(w̄i)−
m∑
i=1

log t

m
≥ 0

m∑
i=1

H(w̄i) ≥ log t

According to Lemma 2, H(d̄) =
∑m
i=1H(w̄i). Therefore, H(d̄) ≥ log t. Now let C∗ be

a minimal attainable cost according to Equation 1. Because we want to derive an upper
bound on C(d̄, t), let C∗(d̄∗, t) = 0 and H(w̄i) >

log t
m . C∗(d̄∗, t) can be written as:

α

m2

(
H(d̄∗)− log t

)2
+

1− α
m

m∑
i=1

(
H(w̄∗i )− log t

m

)2

(5)

Let us assume the number of words that can be generalized to w̄i grows exponentially
with base 2σ as the height of the hypernym tree. (σ is the limiting factor and in practice,
σ = 3 is sufficient.) For instance, assuming w̄i is at level h of the hypernym tree oi, then
the size of W (w̄i) is about 2σh. On the other hand, if w̄′i is at level h + 1 of oi, then the
size of W (w̄′i) is about 2σ(h+1). Again if we assume uniform distribution in both W (w̄i)
and W (w̄′i), H(w̄′i) = H(w̄i) + σ. Because each w̄i in d̄ is at most one level above w̄∗i in
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d̄∗, H(w̄i) = H(w̄∗i ) + σ in the worst case. Based on Lemma 2 and Equation 1, the first
component of C(d̄, t) can be calculated as follows:

α

m2

(
H(d̄)− log t

)2
=

α

m2

(
m∑
i=1

H(w̄i)− log t

)2

=
α

m2

(
m∑
i=1

(H(w̄∗i ) + σ)− log t

)2

=
α

m2

(
m∑
i=1

H(w̄∗i )− log t+mσ

)2

=
α

m2
•m2σ2 = ασ2

Similarly, the second component of C(d̄, t) can be calculated as follows:

1− α
m

m∑
i=1

(
H(w̄∗i )− log t

m
+ σ

)2

=
1− α
m
•mσ2

= (1− α)σ2

Therefore, C(d̄, t) − C∗ = ασ2 + (1 − α)σ2 = σ2. Since we assume C∗ = 0 and 0 is the best
attainable minimal cost, for any minimal cost C∗, the equality C(d̄, t)− C∗ ≤ σ2 holds.

4.5 Complexity Analysis of LUB Search

Since LUB Search consists of two phases, we analyze the complexity of each phase in-
dependently. Assume the height of every hypernym tree is bounded by h. The main
cost of the first phase (steps 1-3 of Algorithm 4) is to find the upper bound. The upper
bound for each word can be found in log h steps, so the complexity of the first phase
is bounded by O(m log h). The complexity of the second phase is determined by either
MStep Greedy Search or Top Down Greedy Search.
As analyzed in Section 4.4, MStep Greedy Search’s complexity is bounded by O(mδ).

Therefore, complexity of LUB Search is O(m log h + mδ). In practice, the height of hy-
pernym trees is small, and thus the complexity of LUB Search is mainly affected by m, the
number of words in the document.

The complexity of Top Down Greedy Search is O(m log h), thus the complexity of LUB
Search is bounded by O(m log h) if we use Top Down Greedy Search as the greedy strategy.

In general, LUB Search with Top Down Greedy Search is more efficient in terms of com-
plexity, but the search space of this method is small as compared to MStep Greedy Search
method. We show further experimental analysis of these methods in Section 5.

4.6 The Cost Function C Revisited

In Equation 1, α determines the importance of each term in evaluating the cost. Thus, the
two terms should have similar scales or ranges; otherwise, it is hard to choose a suitable
value for α. Having this in mind, we normalize the first term with m2. This makes sense,
especially when words are uniformly distributed in each W (w̄i). Under the uniformity
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assumption, H(d̄) =
∑m
i=1H(w̄i) (Lemma 2). Let H(w̄) = 1

m

∑m
i=1H(w̄i), the first term can

be written as:

α

m2

(
H(d̄)− log t

)2
=

α

m2
m2

(
H(w̄)− log t

m

)2

= α

(
H(w̄)− log t

m

)2

Suppose
∑m
i=1

(
H(w̄i)− log t

m

)2

≈ m ·
(
H(w̄∗)− log t

m

)2

for some value H(w̄∗), then the
second term of Equation 1 can be written as:

1− α
m

m∑
i=1

(
H(w̄i)−

log t

m

)2

= (1− α)

(
H(w̄∗)− log t

m

)2

As shown in the above analysis, by usingm2 andm as the normalizing factors, the first and
the second terms of Equation 1 have comparable scales or value ranges. As a result, it is
reasonable to use α as a single parameter to adjust the significance of the two terms in the
cost function.

5 Empirical Analyses

In the experimental analysis, we validate the theoretic results presented in the previous
sections. We do not intend to directly use our proposed techniques on sanitizing large doc-
uments, however we would like to know the behavior of our system on real data and our
experimental setting fits this purpose. The three aspects of performance of the proposed
schemes that we are most interested in are: semantic preservation, running time of each al-
gorithm, and the impact of the heuristics vs. the optimal uniform solution. For evaluating
semantic preservation, we compare the meaning of the sanitized text with the original text
and determine how well the semantics are preserved (primarily through word sense com-
parison, but also by observing texts and providing human feedback). Note that in order
to provide a true evaluation and true cost Ĉ the data set should be labeled with the correct
sense being used in the context. Section 5.1 provides a description of the used data set to
run our experiments. For the running time evaluation, we measure the gain by pruning-
based search and heuristic search schemes over the exhaustive search. For the heuristics
evaluation, we measure the difference in generalization that is found by the exhaustive
search and the one found by the heuristic searchers.

5.1 Data Description

In order to provide semantic preservation measures, we needed a real data set with sense
labels for the sensitive words. Since we wanted to have an idea of how the system would
perform on real life data, the same data set was used to measure the effect of the heuristics
and running time. We used the English all words task data set of the Senseval 3 competition
[20]. The data set can be found at [21]. Five groups of 50 unique words each were created by
randomly selecting the words from the 477 nouns (out of 1060 total words) in the dataset.
These groups represented our sets of sensitive words. The results present the average,
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variance and error from these five groups. As mentioned in Section 2, we used the WordNet
[11] API to extract the hypernym trees for sensitive words.

5.2 Semantic Preservation

Measuring the ability to preserve semantics is a challenge, but we are able to evaluate
correctness of some generalizations using this data set. The experiments in this section
consisted of generalizing the different sets of words (mentioned above). For each set and
different values of t, sub-sets with sizes starting from 10 words incrementing by 10 up to 50
words were created generalizing each word using LUB Search (LUBS) with MStep Greedy
Search (MSGS) and with Top Down Greedy Search (TDGS). Both strategies using the

Common Terms Search (CTS). From now on mentioning the use of just MSGS or TDGS
implies the use of LUBS, and mentioning the use of CTS implies the use of MSGS or TDGS.
After a set of words is generalized and the cost of the generalization is computed, it is
processed for semantic evaluation as explained in Section 4.2.2.

5.2.1 The Best t Parameter

Figure 4 shows the lowest cost C generalizing m words in a set of size m and the lowest
cost C overall for a given set of words, not necessarily generalizing all the words in the set.
The t parameter ranges from 258 to 263 to produce the minimum cost. Each category was
done with and without the CTS algorithm using algorithms MSGS.

We can see how the cost depends on the number of words but also on the volume of each
word in the hypernym tree (using CTS). Note how with the CTS algorithm, max gener-
alization cost and lower cost are almost the same. This is because CTS generalizes more
words in a set than the base case, hence finding the lowest cost in the max generalization
will be similar to finding the lowest cost overall for a dataset of size m.
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Figure 4: t Range selection
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5.2.2 Relationship Between t and Generalization

Figure 5 shows how the generalization of a sensitive word is related to the correct sense
used in the context of the corpus given a value of t. Each of the observations in the box plots
(minimum, quartiles, maximum) represent the percentage of generalizations found in the
hypernym tree of the correct sense used in the context in the five sets of selected words. The
x axis shows a starting value for t and the t that produced the highest change in the number
of generalized words in the base case and the common terms respectively. In Figure 4 we
saw that a generalization using the common terms method has a higher cost, since it is
considering more words increasing the number of possible generalizations. However, from
figure 5 we can see that the common terms approach is more likely to generalize to a word
related to the correct sense used in the context than the base case.

5.2.3 Examples

While we have attempted to provide quantifiable analyses, the real proof is in the quality
(and reduction in identifiability/sensitivity) of the text. To this end, we now present an
example from the Senseval corpus. We show how a corpus fragment is generalized using
multiple variants of the algorithm. We considered the nouns in the corpus as sensitive
words.

Clean Corpus:
”...voters in the South have had an especially strong incentive to keep such Democrats in

office”
”...the GOP has captured a greater percentage of the major-party popular vote for president”
”...one of the computers took a three-foot trip sliding across the floor”
”Endless seconds wondering if those huge windows would buckle”
”I just felt another aftershock a few seconds ago.”
”...and only took 15 seconds.”
”Nobody witnessed the fall– just the sickening impact when his body smashed on the
pavement...”
”...this indicates that political philosophy leads congressional Republicans to pay less
attention to narrow constituent concerns.”
”I was just sitting down to meet with some new therapy clients...”
”In only one presidential election year prior to 1948 did more than 20% of the nation’s
congressional districts choose a different party ’s candidate for the White House than for
the House of Representatives.”
”There was a horrible smell of gas as I passed the Chevron refinery...”
”It must have been the sort of look that can call a bluff without saying a word.”
”Brakes howled and a horn blared furiously...”
”That’s why I – why I do a free job now and then.”
”But he decided he wouldn’t mind company in return for free drinks, even though he made
good money at his job.”
”...a Republican brand that believes in the minimalist state and in the virtues of private
markets over the vices of public action...”

Generalized Corpus:
”...voters in the South have had an especially strong incentive to keep such politicians

in office”
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Figure 5: Change in generalization for given t

”...the GOP has captured a greater percentage of the major-party popular concept for
corporate executive”
”...one of the computers took a three-linear unit trip sliding across the floor”
”Endless time units wondering if those huge windows would buckle”
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”I just felt another aftershock a few time units ago.”
”...and only took 15 time units.”
”Nobody witnessed the season– just the sickening impact when his body smashed on the
pavement...”
”...this indicates that political doctrine leads congressional politicians to pay less at-
tention to narrow constituent concerns.”
”I was just sitting down to meet with some new therapy cases...”
”In only one presidential election year prior to 1948 did more than 20% of the state’s con-
gressional districts choose a different party ’s candidate for the White House than for the
House of Representatives.”
”There was a horrible smell of state of matter as I passed the Chevron refinery...”
”It must have been the sort of countenance that can call a bluff without saying a word.”
”Brakes howled and a noisemaker blared furiously...”
”That’s why I – why I do a free occupation now and then.”
”But he decided he wouldn’t mind company in return for free drinks, even though he made
good money at his occupation.”
”...a politician brand that believes in the minimalist state and in the goods of private
markets over the vices of public action...”

Generalized Corpus by Common Terms Method:

”...voters in the South have had an especially strong incentive to keep such humans in of-
fice”
”...the GOP has captured a greater percentage of the major-party popular concept for
human”
”...one of the computers took a three-body part trip sliding across the floor”
”Endless amounts wondering if those huge windows would buckle”
”I just felt another aftershock a few amounts ago.”
”...and only took 15 amounts.”
”Nobody witnessed the change of location– just the sickening impact when his body
smashed on the pavement...”
”...this indicates that political belief leads congressional humans to pay less attention to
narrow constituent concerns.”
”I was just sitting down to meet with some new therapy beings...”
”In only one presidential election year prior to 1948 did more than 20% of the country’s
congressional districts choose a different party ’s candidate for the White House than for
the House of Representatives.”
”There was a horrible smell of fuel as I passed the Chevron refinery...”
”It must have been the sort of appearance that can call a bluff without saying a word.”
”Brakes howled and a device blared furiously...”
”That’s why I – why I do a free work now and then.”
”But he decided he wouldn’t mind company in return for free drinks, even though he made
good money at his work.”
”...a human brand that believes in the minimalist state and in the qualitys of private mar-
kets over the vices of public action...”
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Figure 6: Empirical Results

5.3 Run Times

We don’t expect the run time of our system to be consistent every time when tested with
real data. The reason is because the volume of each word is different even if datasets are of
the same size. Words with high volume affect the search space significantly. Here we show
the average run time (with standard error) of three runs.

The ESearch Prune (EP) algorithm, introduced in Section 3.4, performs exhaustive search
in the worst case. We measure how the pruning strategy improves the performance as
compared to the pure exhaustive search algorithm. Since the time complexity of Uni-
form ESearch Prune (UEP) follows the same trend as EP (α = 0.5), we summarize these
results in one figure validating the proposed pruning strategy. Figure 6(a) shows the time
complexity of UEP (similarly for EP), where the x-axis shows different sizes of d varying
from 10 to 50, and the y-axis shows the running time in seconds. The curves in the figures
correspond to different t values from 1024 to 16384. We observe that the running time in-
creases as the size of d increases because when |d| is large, the search space is also large.
This observation is consistent for all t values. When the size of d is fixed, the running time
increases as t increases since many generalized texts are checked before the pruning condi-
tion becomes effective. We were not able to report the running time of the pure exhaustive
search algorithm because of its inefficiency.
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Figure 6(b) reports the time complexity of LUBS with the MSGS strategy when t = 4096
(other values of t provide identical observation). As expected, when δ increases, an expo-
nential number of deviations are considered and hence the run time of the algorithm also
increases exponentially. Since MSGS does not utilize any pruning strategy, we do not ad-
vocate the use of large δ values. The runtime of TDGS increases linearly as the number of
sensitive words increases. When LUBS uses TDGS, the algorithm is as efficient as the case
when δ is equal to 0 or 1. We also measured the time complexity of LUBS with varying t
values. Since the height of each hypernym tree is constant, t does not affect the running
time of LUBS.

Figure 6(c) shows the running time of MSGS applying the CTS algorithm. As expected,
the run time will be higher with similar behavior, dominated by MSGS. This is due to the
consideration of all the hypernyms of a word, increasing the search space and hence the
running time.

5.4 Effect of Heuristics

Experiments are conducted to analyze the quality of the proposed heuristics. We first gen-
erated optimal solutions using UEP. Then we executed LUBS with the two greedy strate-
gies. For MSGS, we run with three δ values from 1 to 3. The same experiments are run
with three t values. Figures 6(d), 6(f) show the result of the base case algorithm, and fig-
ures 6(e) and 6(g) show the results of applying the CTS algorithm. All four figures present
similar results: The bottom curves indicate the optimal cost (the lowest cost). For the MSGS
heuristic, the bigger the δ, the better (or lower) the cost is. This is consistent with our the-
oretic reasoning. When δ is large, more possible deviations of d̄ will be searched, so it is
more likely to find a better result. The TDGS heuristic performs really well, and its result
is almost as good as the optimal solution. This matches our intuition that optimal solution
is spatially close around the upper bound d̄ generated at steps 1-3 of Algorithm 4. As men-
tioned in Section 4.4, even if MSGS checks more possible deviations of d̄ than TDGS (when
δ = 3), it does not examine spatially close deviations of d̄ as many as TDGS does. Since we
assume words in d are independent, the TDGS strategy performs better than MSGS.

5.4.1 Uniform t-PAT vs. t-PAT

We have shown that the solution to the t-PAT problem does not protect individual sensitive
word equally. Here we validate our claims through empirical results. We can see that
the solution provided by UEP outperforms the other heuristics by providing a lower cost
(closer to the optimal) regarding the true cost function Ĉ. It can be observed that MSGS
(δ = 3) performs worse than EP (UEP). The main reason is EP always minimize the first
term of the cost function, and the solution generated from MSGS is not very close to the
optimal. The results produced by the TDGS greedy strategy (in term of cost) are close to
UEP producing almost optimal solutions.

Figure 6(h) shows the variance of individual word entropy. The smaller the variance, the
better the uniform plausibility achieved. When |d| is large, more spatially close deviations
of d need to be searched for a better solution, but MSGS fails to do so since δ is fixed to 3.
The TDGS strategy achieves almost optimal uniform plausibility. The same conclusion can
be drawn from Figure 6(i) which shows the maximum entropy of individual words.

We conducted our experiments with different t and α values, and only show some results
with two different t values because the observations do not change with other t values. Re-
garding other α values (0.25 and 0.75), the variance analysis remains the same. The MSGS
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strategy is most affected by δ, and TDGS is extremely close to the optimal, the α value can
only affect its behavior very little, which depends on the structure of the hypernym trees
as well. Overall, the TDGS strategy works very well.

6 Conclusion: about Semantics?

In general, short texts have a limited number of sensitive words. Can we apply the pro-
posed approaches to sanitize a document? The answer is positive. However, there are some
caveats. First, since document length varies, choosing a value for t is difficult if we treat the
document as a very large piece of text. Also, to achieve uniform plausibility with the same
t value for all sensitive words in the document may not be desirable because the degree
of sensitivity may vary from word to word. A more natural way to sanitize the document
is to break it into text segments. E.g., we can use sentence, paragraph or section as a unit.
Then sensitive words can be identified and sanitize using various t values.

Identifying sensitive words is a challenging but a separate problem. There are frameworks
that have been proposed to solve the problem [1, 4, 15, 17]. These techniques are domain
specific, and additional documents may be required to train the learning algorithms. Also,
we can use taggers (e.g., Brill Tagger [2]) to tag the text to identify the nouns, since nouns
play significant roles in interpreting the meaning of natural language. We can treat most
nouns as sensitive words if no other options are available. Moreover, word sense disam-
biguation techniques [7, 8] may further improve results. Coreference resolution techniques
[22] may also be needed, to ensure that different references to the same entity are equiva-
lently generalized.

While we have given an information-theoretic measure of privacy and cost of anonymiza-
tion, what does this do to the text in practical terms? Fully evaluating this would require an-
alyzing this with real readers; such a human subjects study is well beyond the scope of this
paper. However, we here present an example, “Uses marijuana for phantom limb pain”, to
demonstrate both the privacy- and semantics- preserving qualities of our approach. This
example was chosen before we had developed the measures and algorithms, as an exam-
ple of text that is clearly sensitive (use of an illegal drug), highly individually identifiable
(phantom limb pain only occurs in amputees), and contains none of the quasi-identifiers
listed in the HIPAA Safe Harbor rules. Defining the words “and” and “for” as not being
identifying or sensitive (and thus not in need of generalization), and with α = 0.5 and
t = 10, the sentence sanitizes (using all approaches) to “uses soft drug for pain.” This
eliminates both sensitivity and identifiability, while preserving readability and much of the
semantics.

The propose sanitization model assumes independence between sensitive words and no
semantic relation analysis is done between them. We need to consider how term relation-
ships like correlation and causality can help to re-identify the original sensitive words [24].
The t-pat model needs to incorporate approximation methods for term relationship in an
efficient way to preserve the usability of our system.

While further evaluation and development is necessary, we believe that t-PAT provides
a valuable supplement to more traditional text sanitization methods, reducing both sensi-
tivity and identifiability of items that remain even after traditional (quasi-)identifiers have
been removed.
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