
Transactions on Data Privacy 6 (2013) 147–159

Analysis of Commercial and Free and
Open Source Solvers for the
Cell Suppression Problem

Bernhard Meindl∗,∗∗∗, Matthias Templ∗,∗∗,∗∗∗

∗data-analysis OG, Bergheidengasse 8/1/12 Vienna, 1130, Austria.

∗∗Vienna University of Technology, Wiedner Hauptstr. 7, Vienna, 1030, Austria.

∗∗∗Statistics Austria, Guglgasse 13, Vienna, 1110, Austria.

E-mail: bernhard.meindl@gmail.com, matthias.templ@gmail.com

Abstract. In this contribution, software tools that can be used to solve (mixed integer) linear
optimization problems are described and compared. These kind of problems occur for instance
when solving the secondary cell suppression problem (CSP) for which we tested the tools.

Especially, for the CSP fast and efficient tools are needed. While experience gained in different
projects on confidentiality regarding particular commercial or open-source tools, we aim to compare
the relevant tools at once based on this problem.

An overview of existing comparisons of both open-source and commercial solvers is given. Moreover,
the performance of different solvers is evaluated on the basis of solving multiple attacker problems
- a linear problem - in a case study. This problem class is important when dealing with the CSP.

Keywords. statistical disclosure limitation, secondary cell suppression, linear programming, soft-
ware

1 Introduction

Statistical agencies generally do not publish microdata to the public, but disseminate infor-
mation in form of aggregated data. Aggregated data are usually represented as statistical
tables with totals in the margins.

Anonymization of such tables provided to the public is a major task of statistical agencies.

Due to the linear relationships in tables it is not sufficient to protect tables by identifying
(primary) sensitive cells (that may lead to identify a person or establishment) and suppress-
ing its values. In order to avoid the recalculation or the possibility to gain good estimates
for sensitive cells, additional cells have to be suppressed or perturbed. The problem of
finding additional cells to be suppressed is called secondary cell suppression problem. Note
that also other but similar methods can be used to provide confidentiality in tables, such
as controlled tabular adjustment, but cell suppression is still the most popular choice for
statistical agencies, which can be proofed simple by looking at the published tables from
them.

147



148 Bernhard Meindl, Matthias Templ

The task to find and identify cells that are needed to be suppressed or changed in order
to protect the primary sensitive cells is complex and computer-intensive since in statistical
practice statistical tables are often hierarchical, multidimensional and/or linked.
The secondary cell suppression problem (CSP) [formally defined in, e.g., 6] consists of se-

lecting a set of non primary sensitive cells so that it is not possible for an attacker to calculate
values of any primary sensitive table cells within given bounds [see also 20]. Solving this
problem is a complex task, since tables are usually multidimensional and, in addition, the
variables used for tabulation can possess a hierarchical structure.

Due to the huge number of constraints and variables that are required when modeling
the CSP directly as a mixed linear integer problem, this approach is only feasible for small
problem instances. Therefore, proposed algorithms [20, 6] heavily depend on solving linear
programs to derive a solution to the CSP. The quality of the solution and the required time
needed to obtain solutions is of cruicial importance.

For this reason, it is clear that software highly depends on the choice of the underlying
linear program (LP) solver. Fortunately, various solvers exist that are able to solve specific
linear optimization problems.

In section 2 we give an overview of existing free and open source solvers as well as com-
mercial software. We go on and review the literature where the performance of different
LP-solvers is discussed in section 3. In section 4 we perform a small case study in which
we compare the performance of selected solvers (both free and commercial) given a specific
kind of problem class that is common when solving the secondary cell suppression problem.
Finally, we review and discuss results in section 5.

2 LP-solver

Available LP-solvers differ in many ways. They come with different licenses and of course
different features, for example in terms of how problems can be specified. Detailed infor-
mation on most available solvers, its licenses as well as brief information is available at
wikipedia [19, Linear Programming].

We now continue and list the most popular free and open source solvers below.

Popular and well-known free and open source solvers:

GLPK: the GLPK (GNU Linear Programming Kit) [12] is a free and open source software
written in ANSI C that allows to solve (mixed integer) linear programming problems.

LP SOLVE: lp solve [2] is also an open source solver that can be used to solve linear
(mixed integer) programs and is written in ANSI C.

CLP: is a solver created within the Coin-OR project [8, 4] written in C++ to tackle linear
optimization problems. The Coin-OR project aims at creating open software for the
operations research community. CLP is used in many other projects within Coin-
OR such as SYMPHONY (library to solve mixed-integer linear programs), CBC (an
LP-based branch-and-cut library) or BCP (framework for constructing parallel branch-
cut-price algorithms for mixed-integer linear programs).

Transactions on Data Privacy 6 (2013)



Analysis of Commercial and Free and Open Source Solvers 149

SCIP: [1] is a framework for solving integer and constraint programs which is available as a
C callable library or a standalone solver. SCIP has also open LP solver support which
means that it is possible to call a range of open source and commercial LP solvers. The
codebase of SCIP is freely available and the framework can be used without restrictions
for academic research but not for commercial use.

SoPlex: SoPlex [11] is a Linear Programming solver that is based on the revised simplex
algorithm and has been implemented in C++. The source code is publically available
and the solver can be used as a standalone solver or it can be embedded into other
programs using a C++ class library. The source code is released and the solver can
be used for free for academic research. For commercial use of the solver it is necessary
to obtain a licence.

All these solvers (with small exceptions regarding SoPlex and SCIP) can be used without
any restrictions in any software since the source code is released public domain and usually
very well documented. Thus it is possible to compile the solvers on different platforms and
architectures. It should also be noted that almost all open source programming kits also
have some kind of structured API [18, API] that can be used to exchange data between any
software product and a LP-solver. Additionally, for some LP-solvers the available API is
already exploited in a way that it is possible to call the solvers from R [16].

Popular and well-known commercial Lp-Solvers:

Cplex: The IBM ILOG CPLEX Optimization Studio [10] which is often referred to simply
as Cplex is an commercial solver designed to tackle (among others) large scale (mixed
integer) linear problems. Cplex is now actively developed by IBM. The software also
features several interfaces so that it is possible to connect the solver to different pro-
gram languages and programs. However, also a stand-alone executable is provided.
The optimizer is also accessible through modeling systems.

Xpress: The Xpress Optimization Suite [5] (also referred to simply as Xpress) is a com-
mercial, proprietary software that is designed to solve (among others) (mixed integer)
linear problems.
Xpress is available on most common computer platforms and also provides several
interfaces including a callable library APIs for several programming languages as well
as a standalone command-line interface.

Gurobi: The Gurobi Optimizer [7] is a modern solver for (mixed integer) linear as well
as other related (non-linear, e.g.) mathematical optimization problems. The Gurobi
Optimizer is written in C and it is available on all computing platforms and accessable
from several programming languages. Standard independent modelling systems can
be used to define and to model problems.

It is beyond the scope of this report to list all features of different optimization solvers in
detail. This information is documented in great detail on the corresponding product pages.
It is however safe to say that all solvers differ in terms of licenses, costs and also in the
way in which they can be called as well as in the algorithms that are incorporated to solve
(mixed integer) linear problems.

Transactions on Data Privacy 6 (2013)



150 Bernhard Meindl, Matthias Templ

Since the differences regarding the solvers are large, it is of great interest to obtain infor-
mation, for example, about problem sizes that can be solved in reasonable time even with
non-commercial solvers. This would help e.g. to derive suggestions for problem sizes with
respect to the the secondary cell suppression problem for which it might not be possible to
obtain solutions using any open source solvers and for which commercial solvers need to be
used.

More generally speaking, comparing the performance of different solvers on different plat-
forms applied to (difficult) standard problems has already been conducted. Therefore, we
now continue to summarize some results of such a study in the next section.

3 Review of performance comparisons

One of the most informative sources for performance comparison of different (mixed integer)
linear solvers applied to different problem classes is provided by Hans Mittelmann [14]. On
this webpage several instances of linear problems using serial and parallel solvers are bench-
marked using real world testcases from the Netlib repository [15].

In this section we will focus to analyze results for mixed integer problems, i.e. some (or
all) variables of a problem are of type integer (or binary). The reason for this approach is
that solving mixed integer linear programs using standard algorithms such as branch and
bound or branch and cut, various (relaxed) linear problems need to be solved too. Thus,
comparing the performance of different solvers for mixed integer linear problems also gives
hints about the performance of solvers when dealing with problems that only contain con-
tinuous variables.

On his webpage, Mittelmann provides benchmarks for mixed integer linear problems. The
testcases are taken from the MIPLIB library [3]. The problem instances available in this
library provide - among others - a set of real world mixed integer linear problems that differ
in complexity and can be used to compare different solvers. It should be noted that not only
the results but also log-files of the server run for each server and problem instance are made
available so that results can be reproduced since the settings used for each solver that has
been applied are known. Also, the system archictecture on which the testcases have been
run is reported. Furthermore results and running times are listed.

The benchmark test data set which is the base of the results discussed below consists of a
total of 87 problem instances that can be solved to optimality by at least one solver within
two hours on a high-end personal computer. All these problems can be classified into one of
the following categories:

• BP: all variables are binary

• IP: all variables are integer

• MBP: all variables are binary or continuous

• MIP: all variables are integer or continuous

We now want to try to summarize some of the results found without being too technical.
The aim of this section will be to outline main findings and trends of the benchmark com-

Transactions on Data Privacy 6 (2013)



Analysis of Commercial and Free and Open Source Solvers 151

parisons with respect to commercial vs. non-commercial or rather open source solvers.

The following data are based on data from the 28th of April 2013. The following solvers
have been used in the test on PC with an Intel Xeon X5680 processor with 2*6 cores,
32 gigabytes of RAM on a linux 64bit operating system. A total of 9 different solvers were
compared using a single thread1. The solvers are listed along with the corresponding version
numbers below:

• CPLEX (12.4.0.0)

• GUROBI (4.6.1)

• SCIP-C (2.1.1 using CPLEX as LP-solver)

• SCIP-L (2.1.1 using CLP as LP-solver)

• SCIP-S (2.1.1 using SoPlex as LP-solver)

• CBC (2.7.4)

• XPRESS (7.2.1)

• GLPK (4.47)

• LP SOLVE (5.5.2)

running time scaled running time instances solved solved (%)
CBC 1707.00 13.20 35 40.23

CPLEX 148.30 1.15 78 89.66
GLPK 3466.00 26.90 3 3.45

GUROBI 129.00 1.00 79 90.80
LP SOLVE 3034.00 23.40 5 5.75

SCIP-C 589.70 4.75 62 71.26
SCIP-L 1001.00 7.76 52 59.77
SCIP-S 770.50 5.79 62 71.26

XPRESS 167.00 1.29 78 89.66

Table 1: Results for different solvers applied to benchmark problem instances

Table 1 shows the main results. In this table the first column shows the solver used. In
the second column the running times (geometric mean for all corresponding instances, in
seconds) are shown for each solver. The maximal running time was limited to 60 minutes.
In cases in which a solver failed to find an optimal solution within the arbitarily chosen time
limit of one hour, we used this time limit in further calculations such as the computation
of the geometric mean of running times. Finally, the times were modified in a way that the
fastest solver (GUROBI in this example) was scaled to 1. Figure 1 displayes the perfor-
mance with respect to running times. In this case smaller values are of course better.

The third column of Table 1 displays the number of problem instances that have been
successfully solved by each solver and in the last column the corresponding percentage is

1data based on 4 and 12 threads are available too for a restricted set of solvers [14]

Transactions on Data Privacy 6 (2013)



152 Bernhard Meindl, Matthias Templ

0

10

20

GUROBI CPLEX XPRESS SCIP−C SCIP−S SCIP−L CBC LP_SOLVE GLPK
Solvers

sc
al

ed
 r

un
ni

ng
 ti

m
e

groups

1 − commercial solvers

2 − open−source solvers

scaled running time

Figure 1: Running times of several solvers applied to benchmark test data

listed. This information is shown graphically in Figure 2 in which higher percentages equal
better performance.

Figures 1 and 2 clearly show that commercial solvers (displayed in black) outperform open
source solvers (displayed in grey) not only in terms of running time but also with respect to
the percentage of solved problem instances when the results of all 87 problem instances are
used. It should be noted however that in some cases open source solvers provide an optimal
solution faster than commercial solvers. For example LP SOLVE was able to obtain an
optimal solution for problem instance ’eil33-2’ (http://miplib.zib.de/miplib2010.php)
in 65 seconds while it took GUROBI 124 seconds to derive an optimal solution to this prob-
lem. However, this instance can be considered as an easy to solve feasible problem with
constraints of size 32 columns and 4516 rows.

A very interesting fact is that GLKP and LP SOLVE only manage to calculate optimal
solutions for 3 or rather 5 of the 87 problem instances while closed source solvers (GUROBI,
XPRESS, CPLEX, SCIP-C) manage to obtain an optimal solution to at least 72% of the
instances within an hour. But even when using commercial and expensive solvers there is no
guarantee to obtain results for specific problems in adequate time. It is also worth to note
that the three purely closed source and commercial solvers (GUROBI, XPRESS, CPLEX)
are quite similar in their performance with respect to both running time and number of
problems solved.

In Section 4 we will now test the performance of GUROBI, CLPEX, SCIP-S, CBC, GLPK
and LP SOLVE in a small case study with special interest to the secondary cell suppression
problem. Because of licencing issues it was not possible to compare all 9 solvers but the
chosen 5 solvers represents state-of-the-art commercial and free solvers.

Transactions on Data Privacy 6 (2013)

(http://miplib.zib.de/miplib2010.php


Analysis of Commercial and Free and Open Source Solvers 153

0

20

40

60

80

GUROBI CPLEX XPRESS SCIP−C SCIP−S SCIP−L CBC LP_SOLVE GLPK
Solvers

pe
rc

en
t o

f s
ol

ve
d 

in
st

an
ce

s

groups

1 − commercial solvers

2 − open−source solvers

Solved Instances (%)

Figure 2: Percentage of solved instances for several solvers applied to benchmark test data

4 Case study

In this section we describe the set up of the case study we have performed using R and
discuss the results we have derived. The general idea was to perform the case study in a
similar way than it has been done by [14].

4.1 The CSP and the attacker’s problem

The focus is given on linear problems only since solving the secondary cell suppression prob-
lem requires to solve the so called Attacker’s problem [6] repeatedly. The Attacker’s problem
however does not require any variables in the problem to be integer or binary.

A multidimensional hierarchical table can be expressed by a data vector a = (a1, . . . , an),
constraints My = b and upper and lower bounds lbi < ai < ubi, with i = 1, . . . , n, the index
expressing the cells of a table. Note that the matrix M can become considerable large for
real-world problems. The aim is to find an optimal suppression pattern so that an attacker
can only calculate an suffiencient large upper and lower bound for primary suppressed cells.
For the mathematical notation of the object function and the notation of all constraints
we refer to [6]. The attacker itself knows the anonymised table including the complete
suppression pattern (SUP ), i.e. the attacker knows yi = ai∀i /∈ SUP and solves My = b to

obtain upper and lower bounds l̂bi < yi < ûbi whereas l̂bi ≤ lbi and ûbi ≥ ubi ,∀i, otherwise
the table is not save.

Typically, the secondary cell suppression problem is solved using a branch and bound or
branch and cut algorithm. Thus, the performance of solvers for linear problems is crucial.
To compare the performance of GLPK, LP SOLVE, CLP, GUROBI and CPLEX we set up
the case study as it is described now.

Transactions on Data Privacy 6 (2013)



154 Bernhard Meindl, Matthias Templ

4.2 Set up

Using sdcTable [13] we have randomly generated a total of 100 2-dimensional and 100 3-
dimensional problem instances. The problem instances differ with respect to the hierarchical
structure of the variables defining the tables. The dimensions feature up to 4 levels and differ
in the number of codes within each level. In section 4.4 we give a summary on key statistics
of the problem instances that have been generated.

In order to be able to measure time we have opted to take the approach to generate static
output-files in a standard format that can be used as an input for the linear program solvers
under consideration. These text files are read into the solver and the output-files are saved.
We then run code to solve all problems for each solver and measure the time it was needed
to solve the problems. However, we also note how many of these Attacker’s problem need
to be solved for a given problem instance in one run. This number equals to the two times
the number of primary sensitive table cells because the solution to the Attacker’s problem
gives the upper and lower bound that an attacker can derive for a specific primary sensitive
table cell given the structure of the table and (sensitive) bounds on suppressed table cells.

Thus, the time that is required for a specific solver to solve the Attacker’s problem for a
given problem instance is calculated as the time it took to solve the 2 problems related to
the lower and upper bound for a given cell times times the number of primary sensitive table
cells for the specific problem instance. This is of course a simplification step that has been
made.

In section 4.3 we give an overview of the system that has been used to perform this case
study. We also give information on the solvers that have been used.

4.3 System information and solver information

This case study has been performed on a dual-core system featuring an intel Core2 Duo.
Each of the two cores runs at a maximum speed of 2.40GHZ and has a 4096KB cache. The
system has 20GB of RAM and runs a 64-bit linux operating system with kernel 2.6.34. The
simulation script has been written in R and the computations have been performed using R

in version 2.13.0.

The linear solvers GLPK, LP SOLVE and CLP have been downloaded from the corre-
sponding webpages in their last versions (4.47 for GLPK, 5.5.2 for LP SOLVE and 1.14.6
for CLP) and have been compiled using the GNU Compiler Compilation gcc in version 4.5
using the default settings. CPLEX was downloaded in version 12.3.0.0 and an academic
license has been used that does not restrict the use of the solver in any way. GUROBI was
also used under an academic license in the latest stable version of the software, 4.6.1 in this
case.

In principle it would have been possible to include solvers with different versions to bench-
mark the performance changes between versions, but this work was clearly out of scope for
this contribution. We now go on to discuss some main features of the Attacker problems
that have been generated and were used in this case study.

Transactions on Data Privacy 6 (2013)



Analysis of Commercial and Free and Open Source Solvers 155

4.4 Lp-Problems

As it has already been indicated we considered a total of 200 problem instances for this case
study. 100 of these problem instances are based on problems with two dimensions and 100
problem instances are three-dimensional.

Min. 1st Qu. Median Mean 3rd Qu. Max.
nrConstraints 9 93.2 205 317.7 354.0 3072

nrVariables 24 238.2 498.5 788.5 893.2 7520
nrPrimSupps 1 4.8 12 19.4 21.5 190

Table 2: Summary statistics for 2-dimensional problem instances

Table 2 shows that the number of constraints that form the basis of the Attacker’s problem
range from 9 to 3072 for the two-dimensional problem instances while the number of variables
goes from 24 to 7520 with the mean being 788.5. The mean number of primary sensitive
table cells in these problem instances is 19.4 with the minimum being 1 and the maximum
being 190 primary suppressed table cells.

Min. 1st Qu. Median Mean 3rd Qu. Max.
nrConstraints 144 1119 3068 4877 7272 19800

nrVariables 438 3186 8387 13240 19680 53930
nrPrimSupps 5 40 126 214.4 320 853

Table 3: Summary statistics for 3-dimensional problem instances

One can observe from Table 3 that the average number of constraints with the mean being
4877 is larger than for the two-dimensional problem instances. This is however an obvious
fact since the number of constraints represents the complexity of the underlying table, also
for the Attacker’s problem.

One can also observe that the number of variables ranges from 438 to 53930 with the mean
number of variables being 13240. The mean number of primary sensitive table cells given
three-dimensional problem instances is 214.4 and therefore higher as for the two-dimensional
test cases (19.4).

In Section 4.5 we will now discuss the results that were obtained when solving the simulated
problems with 5 different linear program solvers.

4.5 Results

Tables 4, 5 and 6 compares the running times that it took each of the five linear program
solvers to find solutions to the 200 two-dimensional, 200 three-dimensional and all 400 prob-
lem instances. The reason that a total of 400 problem instances had to be solved when only
200 problem instances have been generated is that in order to solve the Attacker’s problem
for a given table cell and problem instance it is required to both minimize and maximize
any given problem.

Transactions on Data Privacy 6 (2013)



156 Bernhard Meindl, Matthias Templ

Data on running times have been scaled in a similar way as it has been done by [14]. The
running time of the fastest solver has been scaled to one and the running times of the other
linear solvers were scaled to reflect this scaling.

It should be noted that every solver was able to provide a solution to each problem. Thus
it was not necessary to introduce some kind of penalty time. All aggregated results that are
listed in the following tables correspond to observed running times.

We can learn from Table 4 that CPLEX had the best performance which means the fasted
running time. It took the other commercial solver (GUROBI) 4 times as long to compute
solutions for the two-dimensional test-cases than CPLEX. The performances of GLPK and
CLP ar comparable to each other, however the running times are considerably slower than
the performance of CPLEX. The results also show that LP SOLVE had by far the worst
performance, even for this quite simple two-dimensional problem instances.

glpk lpsolve clp gurobi cplex
total 180.1 2861.9 273.9 73.6 20.9

scaled 9 137 13 4 1

Table 4: Total (in seconds) and scaled running times for 2-dimensional problem instances

Table 5 lists results of scaled running times for the generated three-dimensional problem
instances. One can see that also for this class of problems CPLEX performed best. What
is interesting is that even though GUROBI performed better than the three remaining
open source solvers, the performance of GLKP is quite comparable to GUROBI. Both CLP
and especially LP SOLVE performed worse than the two commercial solvers and also when
compared to GLKP.

glpk lpsolve clp gurobi cplex
total 48405 979876 666792 38634 236

scaled 205 4149 2823 164 1

Table 5: Total (in seconds) and scaled running times for 3-dimensional problem instances

Table 6 shows scaled aggregated performances for all two- and three-dimensional problem
instances together. The interpretation of the results is of course similar to the discussion of
the results above - done with respect to two- and three-dimensional test cases seperately.

The second best performance next to CPLEX was once again by GUROBI, the second
commercial solver. LP SOLVE once again performed worst, with CLP being only a bit
better. GLPK was had the best performance of the open source solvers but still was clearly
slower than CPLEX and also GUROBI.

The results we have now discussed clearly indicate that open source solvers perform worse
than standard commercial solvers when applied to instances of the Attacker’s problem. In
Section 5 we will not continue to talk about possible implications of the small case study
that has been conducted.

Transactions on Data Privacy 6 (2013)



Analysis of Commercial and Free and Open Source Solvers 157

glpk lpsolve clp gurobi cplex
total 48585 982737 667066 38708 257

scaled 189 3822 2594 151 1

Table 6: Total (in seconds) and scaled running times for all problems

5 Discussion

Comparing the free solvers, GLKP was significantly faster than LP SOLVE and CLP in our
case study but is slowest in [14] (see section 3). In addition, we obtained huge differences
in the 3-dimensional case between commercial solvers, whereas CPLEX was considerable
faster. This is also in contradiction to results from [14] that we presented in section 3. We
conclude no general tests may reasonable to evaluate the cell suppression problem, i.e. the
application shown in this paper let us give different conclusions.

The main conclusion obtained from this case study is that with real world scaled problem
sizes, commercial solvers outperform open source solvers in solving the secondary cell sup-
pression problem. This conclusion is not new since for example τ -Argus [9] already depends
on XPRESS to calculate solutions for the CSP. However, small problems can be solved us-
ing free and open source solvers as well, since here the time needed to solve the problem
is reasonable anyway, although the best free solver that has been compared (GLKP) is sig-
nificantly slower than the commercial ones (which is in contradiction to a similar study by
[17]). However, the reality especially in National Statistical Offices is that most problems
experts in this field are dealing with are large.

Of course it would be benefical if open source solvers were available that have similar per-
formance than commercial solvers since commercial products are expensive. However, this is
not (yet) the case. So NSIs will have to either invest money and buy licenses for commercial
solvers such as CPLEX, GUROBI or XPRESS or they will face problems in either obtaining
solutions for given cell suppression problems or at least obtaining solutions in reasonable
time.

The implications for further development of software are quite clear as well. New and
improved software that tackles to find solutions to the secondary cell suppression problem
should be written in a modular way. This would mean that any solvers can be plugged in.
This would reduce the dependence on specific solvers since any commercial or open source
solver could be used to solve the required (mixed integer) linear problems that occur when
solving the CSP.

Ideally, such an approach would allow NSI’s that already have licenses for commercial
solvers to use those as well as NSI’s that do not want to invest money on commercial soft-
ware could still try to get solutions for given problems. If software is designed in a clear,
abstracted way it will also be possible to expand the software tool easily in order to use
additional solvers in case new solvers emerge.

It should however be made clear to any user of a software that using only free and open
source solvers such as GLKP, CLP or LP SOLVE will likely not lead to a fast solution of

Transactions on Data Privacy 6 (2013)



158 Bernhard Meindl, Matthias Templ

their problem if any. An additional reason that has not been studied in the small case study
for this contribution is that most of the available open source linear program solvers do not
allow to use them in parallel way on multi cpu-systems. This is a further drawback since
machines with 20+ cpu cores are getting cheaper and not using the available processing
power is of course bad. Commercial solvers such as CPLEX and GUROBI do a much better
job in this setting too, as it was for example shown by Mittelmann [14] for mixed linear
integer test cases.

Interfaces to the discussed solvers are provided by the R package sdcTable [13] that is
distributed for free at the comprehensive R archive network.

Acknowledgement: This work was funded by Eurostat and Statistics Netherlands within
the project ESSnet on common tools and harmonised methodology for SDC in the ESS. Visit
http://neon.vb.cbs.nl/casc/ESSNet2index.htm for more information on the project.
We would like to thank two anonymous reviewers for their constructive and helpful reviews.

References

[1] T. Achterberg. SCIP - a framework to integrate Constraint and Mixed Integer Pro-
gramming. Technical Report 04-19, Zuse Institute Berlin, 2004.

[2] M. Berkelaar, K. Eikland, and P. Notebaert. lp solve 5.5, open source (mixed-integer)
linear programming system. Software, 2004. URL http://lpsolve.sourceforge.net/

5.5/.

[3] T. Berthold, G. Gamrath, D. Steffy, and T. Koch. Mixed Integer Problem Library.
Software, 2012. URL http://http://miplib.zib.de/.

[4] CoinOR. COmputational INfrastructure for Operations Research. Software, 2012. URL
http://www.coin-or.org.

[5] Fico. Xpress Optimization Suite. Software, 2012. URL http://www.fico.com/en/

Products/DMTools/Pages/FICO-Xpress-Optimization-Suite.aspx.

[6] M. Fischetti and J-J. Salazar. Solving the cell suppression problem on tabular data
with linear constraints. Management Science, 47(7):1008–1027, 2001.

[7] Gurobi Optimization Inc. Gurobi Optimizer. Software, 2012. URL http://www.

gurobi.com/welcome.html.

[8] L.R. Heimer. The Common Optimization Interface for Operations Research: Promoting
open-source software in the operations research community. IBM Journal of Research
and Development, 47, 2003.

[9] A. Hundepool. tau-ARGUS - a software designed to protect statistical tables, 2012. URL
http://neon.vb.cbs.nl/casc/tau.htm. software version 3.5.0.

[10] IBM. IBM ILOG CPLEX Optimization Studio. Software, 2012. URL http://www-01.

ibm.com/software/integration/optimization/cplex-optimization-studio/.

[11] Konrad-Zuse-Zentrum für Informationstechnik Berlin. The Sequential object-oriented
simPlex. Software, 2002. URL http://soplex.zib.de/.

Transactions on Data Privacy 6 (2013)

http://neon.vb.cbs.nl/casc/ESSNet2index.htm
http://lpsolve.sourceforge.net/5.5/
http://lpsolve.sourceforge.net/5.5/
http://http://miplib.zib.de/
http://www.coin-or.org
http://www.fico.com/en/Products/DMTools/Pages/FICO-Xpress-Optimization-Suite.aspx
http://www.fico.com/en/Products/DMTools/Pages/FICO-Xpress-Optimization-Suite.aspx
http://www.gurobi.com/welcome.html
http://www.gurobi.com/welcome.html
http://neon.vb.cbs.nl/casc/tau.htm
http://www-01.ibm.com/software/integration/optimization/cplex-optimization-studio/
http://www-01.ibm.com/software/integration/optimization/cplex-optimization-studio/
http://soplex.zib.de/


Analysis of Commercial and Free and Open Source Solvers 159

[12] A. Makhorin. The GNU Linear Programming Kit (GLPK). GNU Software Foundation,
2000. URL http://www.gnu.org/software/glpk/glpk.html.

[13] B. Meindl. sdcTable: Methods for SDC (statistical disclosure control) in tabular data,
2012. URL http://cran.r-project.org/package=sdcTable. R package version
0.10.2.

[14] H. Mittelmann. Benchmarks for optimization software. http://plato.asu.edu/

bench.html, 2011.

[15] Netlib. Testcases for real world LP instances. Software, 2012. URL ftp://ftp.netlib.

org/lp/data/index.html.

[16] R Development Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2011. URL http://www.

R-project.org/. ISBN 3-900051-07-0.

[17] J-J. Salazar. On open source software for statistical disclosure limitation. In Joint UN-
ECE/Eurostat work session on statistical data confidentiality, Manchester, UK, 2009.

[18] Wikipedia. Application programming interface — Wikipedia, the free encyclopedia,
2012. URL http://en.wikipedia.org/wiki/API. [Online; accessed 11-February-
2012].

[19] Wikipedia. Linear programming — Wikipedia, the free encyclopedia, 2012. URL http:

//en.wikipedia.org/wiki/Linear_programming. [Online; accessed 11-February-
2012].

[20] L. Willenborg and T. de Waal. Statistical Disclosure Control in Practice. Springer,
1996.

Transactions on Data Privacy 6 (2013)

http://www.gnu.org/software/glpk/glpk.html
http://cran.r-project.org/package=sdcTable
http://plato.asu.edu/bench.html
http://plato.asu.edu/bench.html
ftp://ftp.netlib.org/lp/data/index.html
ftp://ftp.netlib.org/lp/data/index.html
http://www.R-project.org/
http://www.R-project.org/
http://en.wikipedia.org/wiki/API
http://en.wikipedia.org/wiki/Linear_programming
http://en.wikipedia.org/wiki/Linear_programming

	Introduction
	LP-solver
	Review of performance comparisons
	Case study
	The CSP and the attacker's problem
	Set up
	System information and solver information
	Lp-Problems
	Results

	Discussion

