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Abstract. Role engineering is the process of defining a set of roles that offer administrative benefit
for Role Based Access Control (RBAC), which ensures data privacy. It is a business critical task that
is required by enterprises wishing to migrate to RBAC. However, existing methods of role genera-
tion have not analysed what constitutes a beneficial role and as a result, often produce inadequate
solutions in a time consuming manner. To address the urgent issue of identifying high quality RBAC
structures in real enterprise environments, we present a cost based analysis of the problem for both
flat and hierarchical RBAC structures. Specifically we propose two cost models to evaluate the ad-
ministration cost of roles and provide a k-partite graph approach to role engineering. Existing role
cost evaulations are approximations that overestimate the benefit of a role. Our method and cost
models can provide exact role cost and show when existing role cost evaluations can be used as
a lower bound to improve efficiency without effecting quality of results. In the first work to ad-
dress role engineering using large scale real data sets, we propose RoleAnnealing, a fast solution space
search algorithm with incremental computation and guided search space heuristics. Our experimen-
tal results on both real and synthetic data sets demonstrate that high quality RBAC configurations
that maintain data privacy are identified efficiently by RoleAnnealing. Comparison with an existing
approach shows RoleAnnealing is significantly faster and produces RBAC configurations with lower
cost.

Keywords. Role Engineering, Role Based Access Control, Graph Optimization.

1 Introduction

Role based access control (RBAC) is an authorisation mechanism for protecting data pri-
vacy and enforcing security policies in enterprises that uses roles to manage user permis-
sions [6, 13]. RBAC is the primary alternative in enterprise environments to traditional
mandatory access control (MAC) and discretionary access control (DAC) methods due to
the huge administrative benefits it offers [5]. These benefits include increased flexibility of
authorisation management, robustness in privacy policy enforcement and decreased sus-
ceptibility to Trojan Horses.
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In RBAC, data is protected by assigning permissions to users through roles. Since roles
can be mapped to organisational functions, modification of an organisational function only
requires modification of the roles that are effected. Role assignment and revocation to and
from the user are also simplified under this model, allowing for easier management and
enforcement data privacy. Due to these benefits, multinational software corporation and
security software provider CA Technologies identifies RBAC as an integral part of any
privacy enabling, identity and access management initiative [15].

Migration to RBAC requires role engineering, the definition of a role infrastructure that ac-
curately reflects the internal functionalities of the working enterprise [2]. However, role
engineering is very difficult and is the most costly component of the role life-cycle [7].
Existing approaches have used scenario based, use-case and process driven techniques to
derive roles [4, 11, 12]. These processes require manual elicitation and as a result, are time
consuming, error prone and costly. While manual role elicitation has been successful in
some enterprises, most enterprises are uncertain about how to define roles and how to de-
termine which roles should be deployed. Automated role engineering processes that can
use existing permission assignments to assist with identification of potential roles are pre-
ferred. For example, customers of CA Technology’s Identity Management software which
provides an RBAC implementation for data privacy, often request automated role engi-
neering assistance during the initial migration phase.

The problem of finding the optimum number of roles has been shown to be NP-complete
and hard to approximate [3, 10, 14]. Subsequent studies have used heuristics and have fo-
cused on clustering techniques as well as graph based approaches [1, 3, 16, 17, 18]. Existing
data mining approaches are capable of generating a large numbers of roles, often exceeding
the number of users or permissions. Pruning or weighted selection is used to identify the
most practical roles. Graph methods map users, roles and permissions to vertices and their
relationships to edges. Greedy approaches to identify roles attempt to minimise the graph
representation according to cost metrics.

However, a major limitation with existing approaches is they are prone to local minima.
Existing approaches consider only the basic role relationships and not their effect on the
global cost. There are role relationships that have not been explored. While simple role
costs have been attempted, we show that these cost evaluations of individual roles are ap-
proximations that over estimate the benefit of a role and actually encourage local minima.

We are the first to formalise the cost components of the RBAC model using k-partite
graphs. This is also the first work to provide an algorithm that produces high quality roles
(in terms of minimising administration costs) on large-scale real data sets. In particular, we
make the following contributions:

1. We propose to model the RBAC problem using a k-partite graph, which allows for the
representation of both flat (tri-partite) and hierarchical roles (k-partite where k > 3).
Existing representations do not allow for the effective representation of hierarchical
roles in real enterprises.

2. We propose two schemes to evaluate the cost of managing roles in the enterprise.
The first focuses on the assignments of each role, which should be used when the
administration costs of the role are the most critical consideration of the enterprise.
The second cost model focuses on the cost of modifying users and permissions after
roles have been deployed, which should be used if there is dynamic change of users
and permissions in the enterprise.

3. We propose RoleAnnealing, an algorithm in the spirit of simulated annealing to pro-
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duce high quality RBAC configurations using k-partite role graph representations. To
improve performance we propose the following optimisations: guided solution search
to filter undesirable roles, incremental computation to reduce graph operations and
speed up cost calculations and role bounds to reduce role cost computation.

4. We test on both real and synthetically generated data. The results show RoleAnneal-
ing can efficiently produce exceptional results. RoleAnnealing is significantly more
efficient than direct application of simulated annealing and greedy algorithms.

The paper is organised as follows. Section 2 describes related work. We present our
model of role engineering using k-partite graphs in Section 3. Sections 4 and 5 will propose
two different schemes for evaluating role graph cost and exact role cost. We introduce
RoleAnnealing in Section 6 and use it to test and examine the cost models in Section 7,
where we also compare RoleAnnealing with an existing approach and discuss our findings.
Finally, Section 8 contains the conclusion and future work.

2 Related Work

Role Based Access Control (RBAC) is a security administration concept for maintaining
data privacy where users are assigned permissions through roles [6, 13]. Role engineering
is the process of identifying a set of roles that accurately reflect the internal functionalities
of an enterprise [2].

Early works for role elicitation were scenario based, use-case and process driven [4, 11, 12].
Permissions required for a scenario or process were grouped into a role; permissions that
were required in a particular use-case were placed into roles. However, automated and
semi-automated approaches are prefered as they have been shown to produce a 60% cost
saving during role development, a 50% cost saving during role maintenance [9].

From a theoretical point of view, it has been shown that finding the optimal number of
descriptive roles along with its variations are NP-Complete by Vaidya et al. and Lu et
al. [10, 14]. This important work has resulted in subsequent studies producing heuristics
and greedy algorithms for solution identification as the problems have also been shown to
be hard to approximate by Ene et al. [3].

Recent efforts have deployed data mining as well as graph based techniques to address
the role engineering problem. Association mining and a role cost concept to identify roles
was used by Colantonio et al. [1]. A large set of candidate roles is created using a lattice
technique. After all possible roles are created, roles are pruned according to a role cost.
However, roles are deleted using what we show to be the lower bound for the actual role
cost, incorrectly evaluating the value of a role and leaving roles that are not beneficial.

FP-trees for fast frequent pattern mining to identify frequent permission sets as roles was
proposed by Zhang et al. [17]. Roles are added based on a cost metric, which does not over
estimate role benefit. However, only a partial cost component is used for their cost metric.

Graph based approaches for role engineering have also been proposed. Graph optimi-
sation for minimising role nodes and edges with an iterative merging technique that is
order dependent has been proposed by Zhang et al. [16]. The process begins by inserting
users and permissions into the graph as nodes and user-to-permission assignments into
the graph as edges. A role based on each user’s permission assignment is created and in-
serted into the graph. Pairs of roles are then merged based on one of three scenarios. If the
roles are the same, they are merged into one role. If two roles exhibit partial ordering rela-
tions, an edge is created between two roles. If two roles have a common set of permissions
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and do not fall under the first two scenarios, a new role is created and partial ordering
relationships are created between the new role and the existing two roles. These merges
are performed iteratively until no more merges are possible. Only hierarchical RBAC is
permitted with this approach. The work has since been extended into exact and greedy
algorithms for graph optimisation of flat RBAC using cliques and graph theory by Ene et
al. [3].

However, there is currently no formal method for cost evaluation, existing approaches
have not fully analysed the effects of roles on the overall framework and exact role costs
have not been computed.

3 Problem Modeling

This section contains the terminology that we will use throughout the rest of the paper
and mappings of both flat and hierarchical RBAC concepts to matrix representation. We
then propose k-partite graph representation and analyse the costs of the k-partite graph in
relation to role engineering.

3.1 Notation

We use the following notations proposed by the National Institute of Standards and Tech-
nology (NIST) for RBAC [6]:

• USERS, ROLES and PRMS, the set of users, roles and permissions respectively where
permissions represent allowable operations on objects within the system.

• UA ⊆ USERS × ROLES, a many-to-many mapping of user-to-role assignments.

• PA ⊆ PRMS × ROLES, a many-to-many mapping of permission-to-role assignments.

• RH ⊆ ROLES × ROLES, a partial order on ROLES called the inheritance relation,
written as �, where r1 � r2 only if all permissions of r2 are also permissions of r1.

• RolePermissions(r), the set of all permissions either directly granted or indirectly in-
herited by role r.

• UserPermissions(u), the set of all permissions user u gets through his or her directly
assigned or indirectly inherited roles.

We will also discuss UP ⊆ USERS × PRMS, the underlying many-to-many mapping of
user-to-permission assignments which must be maintained to ensure data privacy.
|UserPermissions(u)| and |RolePermissions(r)| will also be referred to as the number of per-
missions of user u or role r.

The graph is a directed acyclic graph (DAG) represented as G = (V,E) where V = V (G)
is the set of vertices and E = E(G) is the set of edges. E is a set of ordered pairs; when
mapped to RBAC components the direction of the edges are user-to-permission u → p,
user-to-role u→ r, role-to-permission r → p and role-to-role r1 → r2 when r1 � r2. We say
v ∈ V and w ∈ V are connected if vw ∈ E and v → w, where v is the head, w is the tail. The
in-degree of a vertex v ∈ V will be denoted d−(v) and the out-degree of a vertex v ∈ V will
be denoted d+(v). The degree of vertex v ∈ V is d(v) = d−(v) + d+(v). In RBAC, graph
G = (U,R, P,EUR, ERR, ERP ) where U is the set of users, R is the set of roles, P is the set
of permissions, EUR are edges between U and R, ERR are edges between R and R, and
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ERP are edges between R and P . In the absence of roles, EUP represent edges between U
and P .

These graphs can often be separated into k-partite graphs where vertices are placed into
k levels and edges may only exist between levels.

In this paper, we do not consider sessions or separation of duty constraints. However, they
can be incorporated into our framework through temporal graphs or additional contraints
on roles.

3.2 Data Representation

Access control can be modeled as matrix A, a sparse matrix that shows permission assign-
ments of every user. A = [aij ] represents UP where aij = 1 implies user i has permission j
and aij = 0 implies user i does not have permission j.

In A, each row represents all the permissions assigned to a particular user and each col-
umn represents the users a particular permission has been assigned to. This matrix repre-
sents direct user-to-permission assignments. In RBAC, the intermediary concept of ROLES
is added. This addition of roles inserts a layer of abstraction between permissions and users
where roles are assigned to users (UA) and permissions are then assigned to roles (PA). This
addition of roles can be represented as a decomposition of A into a user-to-role matrix B
and a role-to-permission matrix C and a binary matrix multiplication operator ~.

A = B ~ C (1)

Where matrix B = [bij ] represents user-to-role assignments UA. bij = 1 implies user i has
role j and bij = 0 implies user i does not have role j. Matrix C = [cij ] represents role-to-
permission assignments PA. cij = 1 implies role i has been given permission j and cij = 0
implies role i has not been granted permission j. If aij = 1, the decomposition of A into B
and C should contain a bik = 1 and ckj = 1 for at least one role k. If aij = 0, bik = 0 and
ckj = 0 for all k. This ensures data privacy.

This single decomposition allows for the representation of one layer of roles between users
and permissions. When the role hierarchy RH exists, an additional matrix decomposition
can be used to represent relationships between roles. For example, the decomposition of
A with a partial ordering hierarchy could be represented as A = B ~ B′ ~ C where B′

represents role-to-role assignments. That is, B′ = [b′ij ] where b′ij = 1 implies ri � rj .
An example of ~ is boolean matrix multiplication or aij =

∨
k bik ∧ ckj where ∧ represents

the boolean and operation and
∨

represents the boolean or operator.
Matrices A, B and C can also be mapped to relations RA ⊆ U × P , RB ⊆ U × R and
RC ⊆ R × P respectively. Doing so allows for the usage of the natural join operator:
RA = RB on RC . Substantial effort has been dedicated into the research of the natural
join operation while limited need for an inverse join operation means the decomposition
operation remains relatively unstudied. However, it can be seen that the role engineering
problem is fundamentally an inverse join operation that needs to be performed according
to some minimisation constraints.

3.3 Modeling Role Engineering by k-Partite Graph

We map the role engineering problem to a k-partite graph, allowing for representation of
hierarchical roles as well as flat roles while maintaining the original data privacy.
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Figure 1: k-partite graph representations of access control

In the absence of a higher form of access control, user-to-permission assignments can be
represented as a bipartite graph G = (U,P,EUP ) (Figure 1(a)). The graph is a bipartite
graph (k = 2) with each user u and permission p represented as a vertex and each user
permission assignment up represented as an edge.

In the presence of roles, the simplest form of RBAC can include a single layer of roles
between users and permissions. This produces tripartite graph G = (U,R, P,EUR, ERP )
as shown in Figure 1(b). In this configuration, permissions no longer have to be directly
assigned to users. The insertion of roles does not disturb the existence of paths from users
to permissions; the user-to-permission assignments represented by the graph are not mod-
ified and data privacy is maintained. Insertion of roles into the graph allows a tripartite
graph (k = 3).

However, hierarchical RBAC cannot be modeled by this three tier representation. In hi-
erarchical RBAC, partial ordering RH relationships exist between roles, complicating both
the matrix and the graph representation. A partial ordering can be placed between any two
roles r1 � r2 if super role r1 contains all the permissions of subrole r2. This relationship
means the super role of the partial ordering no longer has to be directly assigned to the
permissions of the subrole; the permissions in the subrole are inherited by the super role.
Figure 2 is an example of roles in a flat hierarchy versus a two level hierarchy.

Any subrole is also the potential super role of another role, adding to the complexity of
role relationships. Multiple levels of roles could exist within the partial ordering, requiring
consideration of a k-partite graph G = (U,R, P,EUR, ERR, ERP ) for full RBAC represen-
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Figure 2: An example of flat roles vs. hierarchical roles in a partial ordering.

tation (Figure 1(c)). In this graph, vertices still represent ROLES, USERS and PRMS with
edges now representing the role hierarchy RH as well as UA and PA. Users access per-
mission assignments through roles, with roles now also capable of accessing permissions
through other roles. This additional role-to-role relationship means G can potentially be
separated into k levels depending on the number of levels of inheritance present in the
graph.

The size of k will depend on ROLES. Any RBAC configuration will have at least k = 3
levels. In the presence of the role hierarchy RH , the number of levels (k) can only be as
large as the number of permissions in the largest role.

Lemma 1. The number of levels required to model any RBAC graph is between 3 and the number of
permissions in the largest role +2 inclusive. That is, the range is [3,max(|(RolePermissions(r)|)+2]
where max(|(RolePermissions(r)|) is the size of the largest role.

Proof. When flat roles are inserted into the graph, RBAC is represented by a tripartite
graph; one level for users, one level for roles and one level for the permissions (k = 3).
When partial orderings are allowed, if r � r′, r and r′ belong to different levels. For role r1

with size |(RolePermissions(r1)| = s, a new role r2 with size |(RolePermissions(r2)| = s−1
such that r1 � r2 can be created. Role r3 can be created using r2 such that |(RolePermissions(r3)| =
|(RolePermissions(r2)|−1 = s−2 and r2 � r3. Using the same method, roles r1, r2, . . . rs can
be created such that r1 � r2 � · · · � rs where |(RolePermissions(rs)| = 1. A RBAC graph
with these roles r1, r2, . . . rs has s+2 levels, one for each of the roles in the connected partial
ordering, one level for users and one level for permissions. At most, the largest number of
role levels is equal to the size of the largest role and k = max(|(RolePermissions(r)|)+2.

However, it is very unlikely all of these roles exist. Usually k << max(|(RolePermissions(r)|)+
2. In some of the authors’ software deployment enterprise experience, 6 ≤ k ≤ 7.

3.4 Problem Definition

Since the purpose of RBAC is to reduce administration costs while maintaining data pri-
vacy, migrating from a bi-partite model of access control to a k-partite model for RBAC
should reduce the administration required while maintaining the same underlying user-
to-permission assignments. Reducing the complexity of the graph represents reducing the
administration required on the configuration.

Finding the most administratively beneficial roles is equivalent to finding the RBAC graph
with least administrative cost. However, the solution is not straight forward. When adding
roles, simply minimising the number of roles does not always reduce the administration
cost [3]. Reducing the number of edges, or role induced relationships, may increase the
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number of roles [16]. While modifying the graph structure to reduce costs, the existence
of paths between users and permissions must not be violated. This constraint ensures no
additional permissions are granted and no existing permissions are removed from users.

Clearly more analysis of individual roles and their relationships needs to be performed
when identifying cost models. Previously unconsidered is the effect of users and permis-
sions in the graph. While their presence may not be modified, their relationship with roles
should be studied. The presence of different roles dramatically effects how permissions are
assigned to users and as a result, the effectiveness or standalone cost of roles.

Finally, the administrative maintenance cost of the model should also be considered. The
average cost of modifying each user’s permissions is just as important as the final cost
of the model. After RBAC is established, it is expected the roles and role-to-permission
assignments remain more static than users and their role requirements. As a result, RBAC
modification during the addition and removal of users, permissions should be considered.

The goals of cost based role engineering graph optimisation can be formalised as follows:

1. Given USERS and PRMS and ROLES, identify how administration cost can be measured,
isolate different cost components and analyse their effect on the global infrastructure.

2. Given USERS and PRMS, find ROLES such that the graph representation of USERS, PRMS,
ROLES and their relationships has minimal cost in accordance with an administration re-
quirement metric.

3. Given a cost model for the graph representation of USERS, PRMS, ROLES and their rela-
tionships, find cost of individual roles with respect to the whole graph.

3.5 Overview of Cost Models

The purpose of mapping role engineering to k-partite graphs is to facilitate a more compre-
hensive analysis of RBAC configurations. We define the problem and formalise our goals in
order to create a clear objective for graph based role engineering. To evaluate our graphs,
we propose two cost models in the next sections. These cost models measure different
components of interest in real RBAC configurations.

The Role Edge Graph Cost Model focuses on the costs associated with roles and their role
relationships. This cost model uses a static instance of the enterprise and focuses on min-
imising the administration required to manage roles. This cost model would be used if the
enterprise’s main concern is to minimise the management of roles and their relationships,
and there is limited change in users and permissions

The Administration Graph Cost Model focuses on the cost of modifying the graph after
RBAC has been implemented. An enterprise would choose this model to evaluate their
RBAC configuration if their main concern is how to update user permissions when users
are added, removed or modified; and role permissions when resources are added, removed
or modified.

Both of the proposed cost models evaluate the cost of the entire graph as well as individual
roles.

4 Role Edge Graph Cost Model

We first propose a graph model that evaluates RBAC based on the number of roles and role
relationships in the configuration. Each role and role related assignment is a relationship
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that has to be administered and managed, as a result, each role and role related assignment
should be measured. Users and permissions remain constant during the role engineering
process, as a result, they do not directly need to be evaluated in the cost model. We evaluate
users and permissions through their relationships with roles. This is reflected in the Role
Edge Graph Cost Model.

4.1 Cost of a Graph

The first graph cost model we analyse is as follows:

cost(G) = c1|Vr|+ c2|E| (2)

Where c1 is the role cost constant, c2 is the user, permission or role assignment cost con-
stant, |Vr| is the number of vertices that represent roles in the graph and |E| is the number of
edges in the graph, each representing a user, permission or role assignment. In this model,
the vertices that represent USERS and PRMS are not included. Their presence remains con-
stant at any given instance in time. We discuss the modification of users and permissions
in Section 5.

Constants c1 and c2 represent the static cost of role administration and assignment admin-
istration respectively. The model does not differentiate between role-to-role, user-to-role or
user-to-permission assignments; they are each evaluated at a cost of c2. These parame-
ters are tunable based on external analysis, depending on how costly role management
and permission management is perceived. The impact of the magnitude of the c1 and c2
parameters is also discussed in our experimentation (Section 7) and analysis (Section 7.5).

Every role graph with k ≥ 2 levels can be evaluated using this model. Direct user-to-
permission graphs (k = 2), flat role graphs (k = 3) and hierarchical graphs (k > 3) can be
evaluated. When k = 2, |Vr| = 0 and the administration cost becomes the cost of assigning
permissions directly to users in the absence of roles c2|E|. When k > 2, the cost of roles
c1|Vr| and the cost of permission assignments in the presence of the roles c2|E| are eval-
uated. When k = 3, E includes user-to-role and role-to-permission assignments. When
k > 3, E includes user-to-role, role-to-role and role-to-permission assignments.

The balance between roles and how permissions are assigned can also be measured by
this model. When moving from k = 2 to k > 2, the number of edges should decrease while
the number of roles increases. An ideal number of roles is identified when adding more
roles does not produce a reduction in user-role, role-role or user-permission administration
requirements. At this point, removing roles will increase the number of user-role, role-role
or user-permission administration requirements.

4.2 Cost of a Role

When moving from one role graph solution to another, it is often more efficient to compute
the expected change in cost. In role engineering, there are two fundamental operations that
can be performed: removing a role and creating a role. The change in cost resultant from
both operations requires the evaluation of the role cost.

When using the Role Edge Graph Cost, the cost of a role should be computed as follows:

cost(r) = c1 + c2d(r)− c2[d−(r)× d+(r)] + c2|inherited| (3)

Where d−(r) is the number of users or roles that r can be assigned to, d+(r) is the number
of roles and permissions that can be assigned to r and d(r) = d−(r) + d+(r). |inherited|
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Figure 3: cost(r1) = 1 + 9− 20 + 0 = -10.
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(a) Graph cost = 18.
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(b) Graph cost = 17.

Figure 4: cost(r1) = 1 + 5− 6 + 1 = 1

is the number of connected tail vertices that each connected head vertex has already been
assigned through another role vertex.

In this evaluation, the cost of a role can be broken down into three parts: the additional
cost required to create the role (c1 +c2d(r)), the anticipated reduction in cost resultant from
the presence of the role (c2[d−(r) × d+(r)]) and the difference between actual reduction in
cost and anticipated reduction in cost (c2|inherited|).

The cost required to create the role is the cost of the role itself c1 and the number of users,
roles or permissions that can be assigned to this role c2d(r). The cost reduction is the num-
ber of user-to-permission, user-to-role or role-to-role assignments it saves. This reduction
is the anticipated number of assignment reductions (c2[d−(r)× d+(r)]) less the number of
assignments that have been made through other roles (c2|inherited|.)

Examples of graph costs and role cost using Equation 2 with c1 = 1 and c2 = 1 are shown
in Figures 3, 4 and 5.

Figure 3 demonstrates how the first two parts of the role cost can be evaluated. In Fig-
ure 3(a), d−(r1) = 4 and d+(r1) = 5. Without role r1, Figure 3(b) shows each of r1’s head
connected vertices requiring an edge to each of r1’s tail connected vertices. This is the
d−(r1)×d+(r1) cost saving. As a result, the cost of the role is cost(r1) = 1+9−4×5 = -10.
Removing role r1 from the graph in figure Figure 3(a) with cost = 10 produces graph Fig-
ure 3(b) with a cost = 20.

Computation of the additional cost required to create the role (c1 + c2d(r)) and the antic-
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(a) Graph cost = 15.
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(b) Graph cost = 16.

Figure 5: cost(r1) = 1 + 7− 12 + 3 = -1.

ipated reduction produced by the role (c2[d−(r) × d+(r)]) is sufficient when there are no
overlapping roles. That is, when permissions belong to at most one role. When permissions
can belong to more than one role, c2|inherited| needs to be considered.

In Figure 4, d−(r1) = 3 and d+(r1) = 2. However, in the absence of role r2, it can be seen
in Figure 4(b) that the permissions of role r4 are already inherited by user u3 through role
r2. The edge from user u3 to role r4 (c2|inherited|) is not required. As a result, the actual
cost of r1 = 1.

This situation also holds for flat RBAC when k = 3 as shown in Figure 5.

5 Administration Graph Cost Model

The Role Edge Graph Cost presented in the Section 4 evaluates the number of roles and
edges. While this can be an effective metric, all edges are evaluated equally. The cost
model also only evaluates the graph at that instance, without consideration of what ad-
ministration is required when updating the model. To allow for edge cost flexibility with
the consideration of ongoing maintenance costs after deployment, this section will propose
a cost model that separates the relationship costs of users, permissions and roles based on
the average update cost associated users and permissions.

5.1 Cost of a Graph

The two major components subject to modification after deployment are users and per-
missions with the number of roles minimal. The following represents the Administration
Graph Cost:

cost(G) = c1m(U) + c2|Vr|+ c3m(P ) (4)

Where c1 is a user cost constant, c2 weights the role cost, c3 is a permission cost constant,
m(U) is the administration cost of a user, m(P ) is the administration cost of a permission
and Vr is the number or role vertices.

Upon the assignment or removal of a user’s access rights, it is expected that the average
number of permission rights need to be created or deleted. The expected administration
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cost of a user can be defined as the average update cost of a user.

m(U) =

|U |∑
i=1

d(ui)

|U |

Where |U | is the number users and d(ui) the number of role or permission nodes connected
to user i.

The same applies for permissions. When a resource or a particular permission needs to
be removed, the average number of permission edges can be used as an indication of the
permission update cost.

m(P ) =

|P |∑
i=1

d(pi)

|P |

Where |P | is the number of permissions and d(pi) the number of user or role nodes con-
nected to permission i.

Each of the three components measures a desirable quality of the RBAC graph. The user
component ensures that each role is as descriptive of users as possible. The permission
component ensures roles are not overly repetitive and as distinct as possible. The role
component ensures that the number of descriptive roles chosen is minimal.

5.1.1 Alternative Cost of a Graph

In Equation 4, c2 is the fraction of users (or permissions) which need to have their complex-
ity reduced by one edge on average when introducing a new beneficial role. For example,
if there are 100 users and c2 = 1 (and c1 = c2 = c3), at least 100 user edges need to be
removed for a new role to be introduced.

An alternative form of Equation 4 is to scale the second term by the number of users and
permissions. i.e. divide c2 by the mean of |U | and |P |, i.e. (|U |+ |P |)/2, or

√
(|U | × |P |).

An alternative form of the equation is now as follows:

cost = c1m(U) + c2
|V |r√

(|U | × |P |)
+ c3m(P ) (5)

c2 is now the absolute number of user (or permission) edges which need to be removed
for the role to be considered beneficial. e.g. if c2 = 10, then adding a role needs to remove
10 user edges (e.g. be beneficial for 10 users), independent of the organisation size.

Approximately speaking, in Equation 4, c2 is the fraction of users (or permissions) which
need to be simplified for a role to be added, whereas in Equation 5, c2 represents the num-
ber of users (or permissions) which need to be simplified to add a role, i.e. the size of a
group for which it becomes administratively beneficial to create a role.

Equation 4 and 5 differ only in their role cost components. Since |U | and |P | are constants
for any instance of a given G (the number of users and permissions does not change),√

(|U | × |P |) is also a constant, making Equation 4 a more generic form of Equation 5. For
the rest of the paper, we will use Equation 4.

TRANSACTIONS ON DATA PRIVACY 7 (2014)



Efficient Graph Based Approach to Large Scale Role Engineering 13

5.2 Cost of a Role

As with the Role Edge Graph Cost, it is often more efficient to compute the change in cost
of adding or removing a role.

cost(r) = c1
du(r)− du(r)× d+(r)

|U |
+ c2 +

c3
dp(r)− d−(r)× dp(r)

|P |
+

c1
|inheritedu|
|U |

+ c3
|inheritedp|
|P |

(6)

Where d−(r) is the number of users or roles that r can be assigned to, d+(r) is the number
of roles or permissions that can be assigned to r, du(r) is the number of users that can be
assigned to r, dp(r) is the number of permissions that can be assigned to r and |inherited| is
the number of connected tail vertices that connected head vertex has already been assigned
through another role vertex.

In this evaluation, c1
du

(r)−du
(r)×d+

(r)
|U | represents change in cost associated with the av-

erage user update cost. du(r) is the number of new user-to-role edges that need to be
created and du(r) × d+(r) is the number of user related edges that is saved. c2 is the in-

crement to the role cost and c3
dp

(r)−d−
(r)×dp

(r)
|PRMS| represents the change to the permission

update cost component. dp(r) is the number of new role-to-permission edges that need to
be created and d−(r)× dp(r) is the number of permission related edges that are saved. To
ensure permissions that have been assigned through other roles are not included in the cost,
|inheritedu

|
|U | modifies the user maintenance cost and c3

|inheritedp
|

|P | modifies the permission
maintenance cost.

6 Algorithms

We propose RoleAnnealing, a framework for efficiently identifying administratively benefi-
cial RBAC configurations while ensuring data privacy. RoleAnnealing is an algorithm in the
spirit of simulated annealing that uses both exact role costs and role cost bounds to reduce
computation. To improve performance, we also propose incremental computation, guided
search, use of role bounds and separation of create role and delete role operations. As a
result, RoleAnnealing scalable algorithm that produces high quality RBAC configurations
for real enterprise environments.

Simulated Annealing is a probabilistic algorithm for finding the global optimum [8]. Given
infinite search time, the approach is guaranteed to reach the optimal solution. Given a short
search time, good results are still recoverable. The process starts with an arbitrary instance
of the problem and explores solution spaces close to the current instance. Unlike greedy
algorithms, the next inferior solution is not always rejected. Based on annealing principles,
we use a cooling function where during earlier stages of the simulation when the tempera-
ture is high, nearby solutions that increase the cost are accepted with high probability. As
the temperature decreases, jumps out from a gradual cost decline are made less likely.

In relation to role engineering, direct application of simulated annealing would be straight
forward, slow and potentially infeasible for large scale problems. Algorithm 1 represents
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Algorithm 1: SimulatedAnnealing - Direct application to Role Engineering
Require:
G - Current graph configuration
α - Inferior solution acceptance constant
Result:
G∗ - Best graph configuration identified by SimulatedAnnealing

1 begin
2 i = 0, G∗ = G
3 while more beneficial operations do
4 Gm = modify(G)
5 if cost(Gm) < cost(G) then
6 G = Gm

7 end
8 else
9 ∆ = cost(Gm)− cost(G)

10 p = e−α∆i // probability of accepting inferior model
11 r = randomNumber() // Generate random number between 0 and 1
12 if r < p then
13 if cost(G) < cost(G∗) then
14 G∗ = G
15 end
16 G = Gm

17 end
18 end
19 increment i
20 end
21 if cost(G) < cost(G∗) then
22 G∗ = G
23 end
24 end

the direct application of Simulated Annealing to the Role Engineering Problem. To im-
prove performance, additional optimisations and search space techniques can be used. We
propose incremental computation, bounds for role costs, guided solution search heuristics
and separation of create and delete operations; Algorithm 2 represents RoleAnnealing, an
improved and optimised approach for role discovery.

Both algorithms require G, the initial start state of the role graph; α, a constant that de-
termines acceptance probability of inferior solutions and a cost function for evaluating the
graph. The cost function can be the Role Edge Graph Cost, Administration Graph Cost or
any other well defined cost metric for role engineering. The result is G∗, the optimal or
near optimal role engineering graph solution. Depending on the allowable operations, G∗

can represent either flat RBAC or hierarchical RBAC.
In Algorithm 1 for SimulatedAnnealing, Line 4 modifies the graph G to produce graph
Gm. Depending on the cost of Gm, it is either accepted as an improvement (Line 6), proba-
bilistically accepted if it is an inferior solution (Line 8 – 16) or rejected. This SimulatedAn-
nealing application is computationally expensive. The most expensive components relate
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Algorithm 2: RoleAnnealing - Optimised with incremental computation and guided search
space heuristics
Require:
G - Current graph configuration
α - Inferior solution acceptance constant
Result:
G∗ - Best graph configuration identified by RoleAnnealing

1 begin
2 i = 0, G∗ = G
3 while more has beneficial operations do

// Phase 1 - Role Creation
4 role = guidedSearchForRoleToCreate() // create roles that have more

than 4 edges and permission sets that are intersects of
existing roles

5 ∆ = costLowerBound(role)
6 if ∆ ≤ 0 then
7 ∆ = costExact(op.role)
8 end
9 if ∆ < 0 then

10 G = createRole(G, role)
11 end
12 else
13 p = e−α∆i // probability of accepting inferior model
14 r = randomNumber() // Generate random number between 0 and 1
15 if r < p then
16 if cost(G) < cost(G∗) then
17 G∗ = G
18 end
19 G = modify(G, op)
20 end
21 end
22 increment i
23 end
24 if cost(G) < cost(G∗) then
25 G∗ = G
26 end

// Phase 2 - Role Deletion
27 for every role in G∗ do
28 if costExact(role) > 0 then
29 deleteRole(G∗, role)
30 end
31 end
32 end

to the modification of the graph. Randomly choosing a role node to delete or insert can
also be expensive.
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To improve on Algorithm 1, we propose RoleAnnealing which separates create and delete
role operations and uses incremental computation, role cost bounds and guided solution
space search techniques for fast identification of RBAC configurations (Algorithm 2). RoleAn-
nealing is performed in two phases; creation of roles in Phase 1 and deletion of roles in Phase
2.

In Phase 1, instead of randomly modifying the graph at every iteration, Line 4 of Algo-
rithm 2 uses guided search techniques to identify a role creation; the role should not already
exist in the graph and should have size of at least 2 and is assigned to at least two users or
roles. The permission sets of the roles are selected to be intersects of existing roles or a par-
ticular user’s permission set. Duplicate roles and roles containing single permissions will
never be beneficial and roles with randomly generated permission sets are very unlikely to
be of benefit. In this phase, only create operations are allowed; separating create and delete
operations significantly speeds up the annealing process.

The next step is to calculate the cost of the operation; this can be done using Equation 3
or 6. Both of these computations require the identification of the permissions that have been
assigned through other roles. This operation may require traversal of k−3 depth where k−3
is the number of levels of the role graph less one level for users, one level for permissions
and one for the role to create. This computation can be reduced with negligible effect on
the RoleAnnealing process through the analysis of the |inherited| component of Equations 3
and 6.

When using the Role Edge Graph Cost Model (Equation 2), |inherited| ≥ 0 so c1 +c2d(r)−
c2[d−(r)×d+(r)] ≤ cost(r), giving us a lower bound on role cost. In the worst case scenario,
|inherited| = d−(r)× d+(r) when every connected tail vertex has already been assigned to
every connected head vertex through another role and exact(r) = c1 + c2d(r). This gives
the upper bound on exact role cost.

Let lower(r) = c1 + c2d(r)− c2[d−(r)× d+(r)]. The upper and lower bounds on role cost
for the Role Edge Graph Cost Model are as follows:

lower(r) ≤ cost(r) ≤ c1 + c2d(r) (7)

A beneficial role produces a cost reduction; when cost(r) < 0. When evaluating a role, if
lower(r) > 0, cost(r) > 0 so cost of the role does not need to be computed to see that the
role is not beneficial. Only when lower(r) < 0 does cost(r) needs to be computed as it is
still possible that cost(r) > 0.

Similar concepts can be applied to the Administration Graph Cost Model. Since c1
|inheritedu

|
|U | +

c3 |inheritedp
|

|P | ≥ 0, c1
du

(r)−du
(r)×d+

(r)
|U | + c2 + c3

dp
(r)−dp

(r)×d−
(r)

|P | ≤ cost(r), giving a

lower bound for role cost. In the worst case situation, c1
|inheritedu

|
|U | + c3 |inheritedp

|
|P | =

c1
du

(r)×d+
(r)

|U | + c3
dp

(r)−dp
(r)×d−

(r)
|P | and cost(r) = c1

du
(r)
|U | + c2 + c3

dp
(r)
|P | . This gives us an

upper bound on role cost.

Let lower(r) = c1
du

(r)−du
(r)×d+

(r)
|U | + c2 + c3

dp
(r)−dp

(r)×d−
(r)

|P | . The upper and lower
bounds on role cost for the Administration Graph Cost Model are as follows:

lower(r) ≤ cost(r) ≤ c1
du(r)

|U |
+ c2 + c3

dp(r)
|P |

(8)

According this role cost, the administrative user cost component is reduced if du(r) +
|inheritedu| < du(r)×d+(r) and the administrative permission cost component is reduced
if dp(r) + |inheritedp| < dp(r)× d−(r).
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In general:

• When creating roles, cost(r) needs to be computed if lower(r) < 0 to avoid creating
roles that are not beneficial.

• When deleting a role, cost(r) need to be computed if lower(r) < 0 to avoid leaving
roles that should be deleted.

Existing methods that have used only the lower bound on role cost as the actual role
cost over estimate the benefit of roles and do not prune roles that are actually costly to
the infrastructure [1]. However, using a combination of lower bound and actual role cost
improves performance.

In Algorithm 2, Line 5 computes the lower bounds of the create role operation. Only if
∆ < 0 does the actual cost of the role need to be computed (Line 7). When the operation is
accepted, the modification the graph occurs either in Line 10 or probabilistically in Line 19.

When there are no more beneficial roles that can be created, a sequential check to see if
any roles that have been created can then be deleted is performed in Line 27–29.

7 Experimental Results

7.1 Setup

The RoleAnnealing approach for optimising a given cost model was evaluated on access
control on real data from undisclosed enterprise domains, real data from The Department
of Computer Science at The University of Melbourne and synthetic data where an hierar-
chical RBAC structure is known. All tests were run using a single core on a 2.38GHz Dell
Zeon E5440 Server.

The two real data sets that originate from an undisclosed domain (real data r1 and r2) are
obfuscated and contains user-to-role and role-to-permission assignments. The smaller of
the two data sets has 117 users, 25 roles and 23 permissions (r1). The larger data set has 327
users, 237 roles and 10378 permissions (r2). Using each data set, the original RBAC graph
Go consists of users, roles and permissions as nodes and user-to-role and role-to-permission
assignments as edges.

In the data from the Department of Computer Science and Software Engineering (real
data r3), there is no formal access control administration set up; users request permissions
to certain groups when required. All systems refer to a Unix groups access control system
where each group is considered an assignable permission to a user. There are 2039 users,
309 permissions and 1630 permission assignments. The RBAC graph Go contains the orig-
inal users and permissions as nodes with their user-to-permission assignments as edges.
To create the initial starting graph G using data r3 for RoleAnnealing, each user and permis-
sion is added as a node and each user-to-permission assignment is added as an edge. A
role with each user’s permission set is then added to G.

To further validate our approach, synthetic data s1, s2 and s3 was created using the data
generator for role engineering testing by Zhang et al. [19]. Given the number of users, roles,
permissions, average and variance of user-to-role assignments and average and variance
of user-to-permission assignments, the original graph Go with the desired qualities can be
generated.

Graph Go from the real data sets r1 and r2 as well as the synthetically generated data s1,
s2 and s3 contain the original roles. To create the initial starting graph for RoleAnnealing,
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we use the underlying user permission assignments (UP) and add a role with each user’s
permission set to create G.

RoleAnnealing starts with G as the initial configuration and performs operations that per-
mit role hierarchy RH relationships during each iteration. Roles identified by the final G∗

are then compared with the roles from the original Go.
Since the synthetic data is generated in a random manner, it is possible that Go does not

necessarily represent the most optimal infrastructure of the given data. It offers a good
representation but it may not be the absolute best representation. If two roles from G′ are
always assigned together, it would be more beneficial to merge these roles and assign them
as a single role. If a set of permissions is common between multiple roles, creation of a
role based on the overlapping permission set would be beneficial to the role hierarchy RH
architecture. When these situations occur, RoleAnnealing can infact identify these roles. As
a result it is possible for the G∗ produced by RoleAnnealing to have a lower cost than the
original Go.

7.2 Effectiveness

Table 1: RoleAnnealing results using Role Edge Graph Cost and Administration Graph Cost
on synthetically generated data and real data with c1 = c2 = c3 = 1 and α = 0.01

Role Edge Graph Cost Administration Graph Cost
Setup Graph Cost Details Graph Cost Details

Sy
nt

he
ti

c
D

at
a

100u cost(Go) = 654 |ROLESGo | = 10 cost(Go) = 17.04 |ROLESGo | = 10
s1 10r cost(G∗) = 578 |ROLESG∗ | = 52 cost(G∗) = 15.01 |ROLESG∗ | = 11

100p 26.14 seconds 3.94 seconds
500u cost(Go) = 2982 |ROLESGo | = 50 cost(Go) = 56.55 |ROLESGo | = 50

s2 50r cost(G∗) = 2816 |ROLESG∗ | = 134 cost(G∗) = 52.67 |ROLESG∗ | = 30
500p 3.03 minutes 2.26 minutes
1000u cost(Go) = 5767 |ROLESG0 | = 100 cost(Go) = 103.33 |ROLESGo | = 100

s3 100r cost(G∗) = 5576 |ROLESG∗ | = 245 cost(G∗) = 97.99 |ROLESG∗ | = 24
1000p 5.58 minutes 5.69 minutes

R
ea

lD
at

a

117u cost(Go) = 1103 |ROLESGo | = 25 cost(Go) = 34.86 |ROLESGo | = 25
r1 25r cost(G∗) = 272 |ROLESG∗ | = 18 cost(G∗) = 23.16 |ROLESG∗ | = 13

23p 3.43 seconds 11.94 seconds
3729u cost(Go) = 29112 |ROLESG0 | = 237 cost(Go) = 207.37 |ROLESG0 | = 237

r2 237r cost(G∗) = 28281 |ROLESG∗ | = 598 cost(G∗) = 97.26 |ROLESG∗ | = 23
10378p 7 hours 51.52 minutes 168 minutes
2039u cost(Go) = 1630 |ROLESGo | = 0 cost(Go) = 8.05 |ROLESGo | = 0

r3 no roles cost(G∗) = 1474 |ROLESG∗ | = 35 cost(G∗) = 8.05 |ROLESG∗ | = 0
1630p 1.09 minutes 3.58 seconds

Given the initial starting G of each of the data sets, RoleAnnealing (Algorithm 2) was per-
formed using both the Role Edge Cost (Equation 2) and the Administration Graph Cost
(Equation 4). We set c1 = c2 = c3 = 1 and α = 0.01. Modifying these parameters are
discussed in Section 7.2.1 and 7.2.2. The process was terminated after 1000 operations were
consecutively rejected. Each experiment was performed 10 times and Table 1 shows the
best result from each data set.

Using Role Edge Graph Cost (Equation 2), RoleAnnealing was able to identify RBAC con-
figurations of lower cost than the original configurations in all six data sets. The G∗ identi-
fied by RoleAnnealing often had a larger number of roles (s1, s2, s3, r2, r2). According to the
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Role Edge Graph Cost, the original configurations would benefit if roles are created using
intersects or supersets of the permissions in the original roles.

Creating roles using the overlapping intersects of two or more roles reduces the admin-
istration on role-to-permission relationships; permissions would only have to be directly
assigned to the intersect role, the intersect role is assigned to the original roles and the per-
missions are inherited. Creating roles that are a combination of existing roles can reduce
administration on user-to-permission relationships. Instead of assigning multiple roles to-
gether, only one role that contains these roles need to be assigned. RoleAnnealing using
Equation 2 can effectively identify these roles and creates them to reduce overall cost.

Using the Administration Graph Role Cost (Equation 4), RoleAnnealing can identify con-
figurations of lower cost and lower role quantity (s2, s3, r1, and r2). The Administration
Graph Role Cost focuses on the benefit to the administrators after the RBAC configuration
as been implemented. The subset of the roles that are identified using this cost are the roles
produce the most benefit. It is interesting that in r3, the configuration of most adminis-
trative benefit has no roles. There are no roles in the original data; r3 originates from an
educational domain where the RBAC model is not suitable.

The Role Edge Graph Cost identifies a slightly larger set of roles for administrators to
choose from. The Administration Graph Role Cost identifies a smaller set of roles; the top
roles that would be most beneficial to the configuration. Given any automated approach is
will be inspected by human administrators, these results offer good recommendations for
what roles should be implemented.

For most of the data (s1, s2, s3, r1 and r3), RoleAnnealing requires less than 30 minutes to
process, often significantly less. The largest data set r2 requires less than 8 hours with cost
function Equation 2 and less than 3 hours with cost function Equation 4. In some of the
author’s experiences, these are acceptable wait periods for role recommendations as such
computations are required infrequently. Manual processing to derive the the same results
would take significantly longer than our automated approach. r2 is a particularly large
data set; the original solution contains almost 30 000 user-to-role and role-to-permission
assignments that represents almost 600 000 user-to-permission assignments.

7.2.1 Effect of Acceptance Variable α

We also test RoleAnnealing with different values of inferior acceptance variable α. We use
the setup as described in Section 7.1 with Role Edge Cost Model (Equation 2) on data set
s3 and measure the cost of the graph in relation to RoleAnnealing processing time given
different α values. The results of our experimentation are shown in Figure 6, where the
values for α were 0.0001, 0.01 and 100.

Modifyingα effects the probability of accepting an inferior solution, as described in Line 13
of Algorithm 2.

p = e−α∆i

Where e is Euler’s constant, ∆ is the change in the graph and i is the iteration number.
If ∆ is large, p is smaller than what it would be if ∆ is small. As i increases during each
iteration, p decreases. When α = 0.0001, the probability of accepting an inferior solution
is high and many inferior solutions are accepted at the start of the algorithm. When α =
100, the probability of accepting an inferior solution is so small, it can be considered as
negligible. Only beneficial changes to the solution are accepted. As a result, the rate at
which RoleAnnealing approaches the synthetic optimum is faster when α is larger. This can
be seen in Figure 6. While in this particular data set the final results are similar, it is possible
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Figure 6: Processing times for RoleAnnealing, varying the value of α. As α increases,
probability of accepting inferior solutions decreases.

Table 2: Average RoleAnnealing results varying c1 and c2 parameters for cost(G) = c1|Vr|+
c2|E| using data s3

c1 c2 Result
1 15 |ROLESG∗ | = 217.7
1 10 |ROLESG∗ | = 222.8
1 5 |ROLESG∗ | = 218.1
1 1 |ROLESG∗ | = 190.9
5 1 |ROLESG∗ | = 94.1
10 1 |ROLESG∗ | = 90.9
15 1 |ROLESG∗ | = 91

that a higher α follows a suboptimal path to a local minimum. This is shown in Figure 7 of
Section 7.3 when no inferior solutions are accepted for data set r2.

In RoleAnnealing, decreasing the value of α will increase the probability of finding a better
optimal solution but will require more iterations to converge. Increasing the value of α
allows identification of good solutions sooner, although these solutions at higher α may
not be close to the optimal solution. An argument for acceptance of near optimal solutions
is in consideration of the constant change in enterprise environments. Instead of finding
the exact optimal solution for any given moment in time, find a near optimal solution that
will be effective and useful for larger periods of time.

7.2.2 Modifying Cost Constants

The RoleAnnealing framework is also capable of accepting, testing and comparing different
cost models. We use a similiar setup as described in Section 7.1 and Section 7.2 with data
set s3 and modify c1 and c2 using Role Edge Cost (Equation 2) and c1, c2 and c3 using
Administration Graph Cost (Equation 4). In these tests, we show the average result from 10
runs. The experimental results using Equation 2 are shown in Table 2 and the experimental
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Table 3: Varying c1, c2 and c3 parameters for cost(G) = c1m(U) + c2|Vr| + c3m(P ) using
data s3

c1 c2 c3 Result
1 1 1 |ROLESG∗ | = 23.5
10 1 1 |ROLESG∗ | = 23.8
1 10 1 |ROLESG∗ | = 0
1 1 10 |ROLESG∗ | = 23.7
1 10 10 |ROLESG∗ | = 0
10 1 10 |ROLESG∗ | = 23.3
10 10 1 |ROLESG∗ | = 0

results using Equation 4 are shown in Table 3
From the Role Edge Graph Cost results in Table 2, it can be seen that decreasing role

relationship constant c2 in relation to the role cost constant c1 and increasing the role cost
constant c1 in relation to the role relationship constant c2 can help reduce the number of
roles, favouring the roles that are most cost effective.

In the Administration Graph Cost results as shown in Table 3, it can be seen that modi-
fying the constants to weight different administration components can significantly effect
the results. When the role cost (c2) is too high, the cost of having a role is never justified.
As a result, no roles are identified in the final result. Modifying c1 and c3 shifts the weight-
ing between user cost and permission cost. While different roles can be found, a similar
number of roles is identified.

In all automated role engineering techniques, human analysis is expected to be performed
before implementation and deployment of any given infrastructure. Using RoleAnnealing
to produce a graph solution that offers a selection of roles gives administrators choice from
the best set of roles. Modifying cost parameters determines the number and quality of the
roles that are returned for inspection.

7.3 Efficiency

Straight forward SimulatedAnnealing requires several orders of magnitude more time than
RoleAnnealing. Instead of a direct comparison with SimulatedAnnealing, we compare RoleAn-
nealing with and without the following optimisations: incremental computation, guided
search, use of role bounds, probabilistic acceptance of inferior solutions and separation
of create role and delete role operations.
Each of these modified algorithms were tested using the set up described in Section 7.1

with the Role Edge Cost Model of Equation 2 on real data r2. Processing times for are in
Figure 7.

The most obvious improvement is that of incremental computation. Instead of calculat-
ing graph cost and operating on the graph during each iteration, RoleAnnealing updates
the cost components incrementally as well as calculates the change in cost at each iteration.
Only when the change in cost is beneficial or if an inferior solution is to be probabilistically
accepted, modification of the graph occurs.

At first, guided search does not significantly improve the quality of the result. However
when the configuration stabilises closer to the original data cost, better, guided choices for
roles are made and a final configuration with more desirable roles are identified faster.

As with guided search, using role bounds becomes more critical towards the later stages
of optimisation, when there are similar beneficial roles exist in the configuration. Exact
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Figure 7: Processing times for RoleAnnealing, with and without optimisations using data
r2

cost calculations of roles that are more connected with other roles become more costly, as a
result, the benefit of using role bounds increases.

Accepting inferior solutions causes RoleAnnealing to initially have solutions of higher
cost. However, doing so allows the chance of avoiding of potential local minima and final
solutions of lower cost can be identified.

Finally, we separated create role and delete role operations in RoleAnnealing. In Simu-
latedAnnealing, an operation or modification of a graph involves either deleting or creating
a role. However, analysis showed deleting a role during the iteration process was rarely
beneficial. As a result, only create role operations are performed during solution search
iterations in RoleAnnealing (Algorithm 2 lines 3–22) with delete operations to remove roles
that were useful during the role creation process but were not beneficial to the overall
RBAC configuration to later in the algorithm, after all beneficial roles have been created
(Algorithm 2 lines 27–29). This created a significant speed up in RoleAnnealing.

RoleAnnealing finds better solutions faster with incremental computation, guided search
heuristics, use of role bounds and probabilistic acceptance of inferior solutions.

7.4 Comparison with an Existing Approach

Using the Role Edge Cost Model, the results of RoleAnnealing can be compared with Iter-
ative Optimisation for graph based role engineering by Zhang et al. [16]. The algorithm
was run on the same data, using the same setup described in Section 7.1 and 7.2. Results of
the Iterative Optimisation are in Table 4. While Iterative Optimisation can produce graph
infrastructures of less administration cost than the same infrastructure without roles, it can
be seen that RoleAnnealing is superior. The test on data r2 was terminated after 29 hours
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Table 4: Iterative Optimisation Results using Role Edge Graph Cost on synthetically gener-
ated data and real data with c1 = c2 = c3 = 1.

Data Graph Cost Details
s1 cost(Go) = 654 |ROLESG∗ | = 384

cost(G∗) = 1675 74 minutes 19.13 seconds
s2 cost(Go) = 2982 |ROLESG∗ | = 1215

cost(G∗) = 6273 31 hours 44.38 minutes
s3 cost(Go) = 5767 |ROLESG∗ | = 1496

cost(G∗) = 8890 56 hours 40.39 minutes
r1 cost(Go) = 1103 |ROLESG∗ | = 57

cost(G∗) = 325 9.63 seconds
r2 cost(Go) = 29112 |ROLESG∗ | = 3739

cost(G∗) = 471754 Results as at 29 hours
r3 cost(Go) = 1630 |ROLESG∗ | = 421

cost(G∗) = 2179 14 minutes 27.28 seconds

due to insigificant rate of improvement. In general, the iterative approach requires more
processing time and produces suboptimal results. Reasons for some of these limitations are
as follows.

The iterative approach does not compute change of cost, performing each merge then
measuring the cost improvement. If there is no cost improvement, the graph is reverted.
RoleAnnealing uses change in cost as well as role cost bounds to reduce the required process-
ing time. Operations are only performed if they are accepted; less computation is required.

Iterative Optimisation merge operations are also exhaustive. Pairs of roles are continu-
ously checked for possible merge operations until no more operations are possible. For
example, RoleAnnealing required 1809 iterations to identify a graph with no further im-
provements for r3, using guided search heuristics to create roles that are most likely of
administrative benefit. On the same data, Iterative Optimisation required 7360 iterations
and trapped itself into a local minimum.

In Iterative Optimisation, a role cannot be deleted after it is created. The roles are merely
rearranged. The creation of a role may also decrease the benefit of another role. While
the operations are commutative, the effect on the cost model is not. This also results in
termination at a local minimum. Delete operations are included in RoleAnnealing to ensure
only the most beneficial roles remain.

Finally, RoleAnnealing also has pre-processing operations performed, merging roles and
users if they are identical before the optimisation begins. This reduces the size of the graph
and allows for more efficient modification during RoleAnnealing. Hierarchical relationships
are maintained automatically in the graph if the role hierarchy RH is permitted. If RH
is not, RoleAnnealing can also be constrained to produce non-hierarchical RBAC through
constraining the set of allowable of operations.

7.5 Discussion and Analysis

This research analyses the cost components of the RBAC infrastructure and proposes ef-
fective cost models with exact role costs with upper and lower bounds on role cost using
k-partite graph representation. In an ideal RBAC structure, there should be a minimal num-
ber of high quality roles. Where a high quality or an ideal role contains many permissions,
can be used by many users and is as distinct as possible. A role with more permissions and
more user assignments can save more direct user permission assignments. A distinct role
reduces redundancy and potentially reflects a business entity. Existing studies do not fully

TRANSACTIONS ON DATA PRIVACY 7 (2014)



24 Dana Zhang, Kotagiri Ramamohanarao, Rui Zhang, Steven Versteeg

analyse these role properties.
Our cost models attempt to evaluate this, with the Role Edge Graph Cost focusing on costs

of each RBAC component and the Administration Graph Cost focusing on maintenance
cost. This newly proposed Administration Graph cost is important after deployment, when
roles become relatively more stable and users and permissions within the structure are
modified with increased frequency.

Using the cost models, exact costs and bounds of individual role costs can be computed.
Using only the role bounds degrades role engineering results and using only exact role
calculations effects performance. We show when bounds can be used in conjunction with
costs through the introduction of upper and lower bounds on exact role cost. This improves
performance while causing no degradation to results.

To test the cost models, we propose RoleAnnealing, a comprehensive cost model frame-
work that is capable of evading local minima and producing a more suitable role set. It
performs faster and produces higher quality results than an existing greedy graph based
role engineering algorithm. While RoleAnnealing is an algorithm in the spirit of simulated
annealing, it is significantly different. Direct application of simulated annealing would not
scale for large role engineering problems. To address this, incremental computation as well
as guided solution search techniques are used. To improve efficiency further, role bounds
are used instead of exact role costs are used when they cause no degradation of results. We
show through experimentation how each of our optimisations benefits RoleAnnealing.

8 Conclusions and Future Work

In this paper, we formalise the role engineering problem as a k-partite graph problem and
propose two cost models that consider the structural components specific to the role engi-
neering domain. We compute costs of individual roles, and their upper and lower bounds,
and show when the bounds can be used for role evaluation to reduce computation.

The cost models are used as the basis for graph optimisation using RoleAnnealing, a sta-
tistical framework for optimising properties in large and complex systems based. Through
experimentation, we show RoleAnnealing identifies RBAC configurations of high quality
while maintaining data privacy. Testing on both real and synthetic data sets show RoleAn-
nealing to exhibit superior efficiency and effectiveness in comparison to straight forward
simulated annealing and other existing approaches.

While the proposed cost models coupled with the RoleAnnealing framework offer an ef-
fective method for identifying the optimal graph configuration for role engineering, we
are working on several different techniques to improve performance, such as reducing the
complexity of graph representation and speeding up how operations can be performed.
Future avenues for research include additional graph reductions before RoleAnnealing and
testing on skewed data for the possibility of data partitioning. Ways to partition the data
before RoleAnnealing is also an area for future research.
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