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Abstract. Differential privacy has gained a lot of attention in recent years as a
general model for the protection of personal information when used and dis-
closed for secondary purposes. It has also been proposed as an appropriate
model for protecting health data. In this paper we review the current literature
on differential privacy and highlight important general limitations to the model
and the proposed mechanisms. We then examine some practical challenges to
the application of differential privacy to health data. The most severe limitation
is the theoretical nature of the privacy parameter ¢ . It has implications on our
ability to quantify the level of anonymization that would be guaranteed to pa-
tients, as well as assessing responsibilities when a privacy breach occurs. The
review concludes by identifying the areas that researchers and practitioners
need to address to increase the adoption of differential privacy for health data.

1 Background

We consider private data analysis in the setting of a trusted data custodian that
has a database consisting of rows of data (records). Each row represents infor-
mation about an individual. The custodian needs to publish an anonymized ver-
sion of the data, a version that is useful to data analysts and that protects the
privacy of the individuals in the database. The problem is known as privacy-
preserving data publishing.

Various approaches/models have been proposed in different research commu-
nities over the past few years [1]. These models depend on the background
knowledge of adversaries; as these adversaries can infer sensitive information
from the dataset by exploiting background information. Because of that de-
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pendence, disclosed data are not immune to attacks resulting from unforeseen
auxiliary information. It may not always be possible to define reasonable
bounds on the background information that an adversary may have.

Differential privacy is a fairly new privacy model that is gaining popularity. Its
appeal is that it makes almost no assumptions about the attacker’s background
knowledge. Differential privacy tries to ensure that the removal or addition of
any record in the database does not change the outcome of any analysis by
much. In other words, the presence of an individual is protected regardless of
the attacker’s background knowledge.

A previous attempt at a context-free privacy model was made by Dalenius in
1977. He articulated a privacy goal for statistical databases: anything that can be
learned from the database about a specific individual should be learned without access to
the database [2]. Attempts to formalize Dalenius’ notion centered around measur-
ing the adversary’s prior and posterior beliefs about a specific record in the da-
tabase, making sure that the change is small. This however contradicts the goal
of database release, which is to change or form beliefs about people/situations.
An example illustrating this is the Terry Gross height example from [3]:

“Suppose one’s exact height were considered a highly sensitive piece of in-
formation, and that revealing the exact height of an individual were a pri-
vacy breach. Assume that a database yields the average heights of women of
different nationalities. An adversary who has access to the statistical data-
base and the auxiliary information “Terry Gross is two inches shorter than
the average Lithuanian women’ learns Terry Gross’s height, while anyone
learning only the auxiliary information learns relatively little.”

According to Dalenius’ notion of privacy, learning Terry Gross’s height does
constitute a privacy breach even if Terry Gross did not participate in the data-
base. That motivated Dwork to come up with a different formulation, differen-
tial privacy: “the risk to one’s privacy...should not substantially increase as a result of
participating in a statistical database”[3]. Thus, an attacker should not be able to
learn any information about any participant that she cannot learn if the partici-
pant opts out of the database. Going back to the example above, since Terry
Gross’s height can be learned without her participation in the database, it does
not constitute a breach of privacy.

Research on differential privacy is growing rapidly and gaining popularity in
the computer science literature. It is even becoming challenging to justify con-
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ducting research on and making improvements to other privacy models that are
already in wide use. That partially led to extreme opinions around the notion of
differential privacy, from being completely inadequate and can never be used in
real life situation, to being the best and only viable privacy notion. It is for these
reasons that we believe it is beneficial to present an overview of the current
state-of-the-art on differential privacy and examine its applicability to the dis-
closure of health data. In doing so, we identify the areas in differential privacy
that need to be explored further before it can be applicable in the health field.

In private data analysis, two settings are possible: interactive and non-
interactive. In the interactive setting where the database is held by a trusted
server, users pose queries about the data, and the true answer to the queries is
modified to protect the privacy of the database participants. In the non-
interactive setting the data custodian either computes and publishes some statis-
tics on the data, or releases an anonymized version of the raw data.

In the first part of this paper, differential privacy is formally defined along
with some of its relaxations. Section 3 describes ways to achieve differential pri-
vacy for one query, Sections 4 and 5 discuss the challenges in setting the privacy
parameter and present some relaxed versions for differential privacy. Then the
leading research in the two data sanitization settings, interactive and non-
interactive, is presented and evaluated in Section 6, followed in Sections 7 and 8
by some conclusions on the general applicability of differential privacy on
health data.

2 Differential Privacy: The Principles

Generally speaking, differential privacy requires that the answer to any query
be “probabilistically indistinguishable” with or without a particular row in the
database. Precisely, given two databases that differ in exactly one row, a differ-
entially private algorithm will provide randomized outputs that follow almost
identical probability distributions on both databases. In other words, if an adver-
sary possesses background information about all records in the dataset except
one record v, s/he won't be able to infer the presence or absence of v with high
probability. The closeness of the randomized outputs on both databases is de-
termined by a privacy parameter ¢. Higher values of ¢ imply weaker privacy
guarantees. Formally:
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Given an arbitrary query f with domain ¢ and range P (f:p—>P), and two
databases D and D', drawn from population g, that differ in exactly one rec-

ord, if K, is a randomized function used to respond to query f, then K, gives
¢ -differential privacy if for any sc Range(K,)
Pr[K, (D) es]<e’Pr[K,(D") e5s]

In [4], the author refers to ¢ as the leakage. In [5], the authors interpret the ra-
Pk @) es] o, “knowledge gain ratio from one data set over the other”.
Pr[K, (D) es]

Differential privacy requires that the knowledge gain be bounded by e°. Even if
the participant removed her data from the database, the limited knowledge gain
implies that no output would become significantly more or less likely [6]. The
parameter ¢ is public. Values typically chosen in the literature are 0.01, or 0.1,
and sometimes [n2 or In3 [3], [6].

3 Achieving Differential Privacy

The notion of differential privacy has led to the introduction of several mecha-
nisms that preserve it. The development of further mechanisms is an active area
of research. In this section we explain how Laplace noise can be used to provide
a differentially private output for one query. Then, in Section 6 we outline some
of the leading mechanisms in the differential privacy literature.

In order to satisfy differential privacy for a query output, the authors in [4]
suggests the use of Laplace distributed noise: if r is the correct answer to a que-
ry f on a database D (i.e, f:9p—>P, Dep and f(D)=r), then a differentially
private mechanism would output the response r+y, where y is the noise
drawn at random from a Laplace distribution with mean 0 and scale Af/s. Af
represents the maximum value for || f(D)-f(D")| for all D",D'egp differing in
one row (Af =max,.,.|| f(D)- f(D")||, for all D",D'e e differing in one row).

Af is the global sensitivity of the query f over domain g, it is independent of
the database D, and one must consider all databases D'e ¢ to determine its val-
ue.

Note that this is unlike the traditional noise addition where the amount of
noise is proportional to the variance of the data. That shows a fundamental
characteristic of differential privacy which is that it seeks to protect even ex-
treme values; note that if the data is skewed, this results in high sensitivity, and
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the noise would be large compared to the variance of the data, leading to poten-
tially non-useful output [7].

The above mechanism cannot be applied to a query whose outcome is not real,
as adding noise to non-real values does not make sense. In [8], the authors pro-
pose a novel mechanism that could be applied to queries with any outcome: the
exponential mechanism. The authors assume the existence of a score function
that evaluates the quality of the query output (the score function could be the
utility of the output): Given a query f with range P (the range P could consist
of nominal, categorical or integer values), the mechanism assigns probabilities
to the different elements in P based on their scores, a higher score means a
more desired output and hence a higher probability. If such a score function
exists, then a differentially private output could be produced based on the sensi-
tivity of the score function. The authors argue that, similar to the Laplace mech-
anism, if the sensitivity of the score function is low, then high quality output can
be obtained. Alternative mechanisms that satisfy differential privacy have re-
cently surfaced. These will be discussed in Section 6.

4 Setting -

Setting a value for ¢ is not an easy task as it is not adequately covered in the
differential privacy literature. It is difficult for ordinary data holders to measure
the privacy protection of a dataset provided from a specific ¢ value. For exam-
ple, if a user wants to know the number of smokers who experienced heart at-
tacks in a given dataset, then what does a value of ¢£=0.01 mean? What does it
mean to have an information gain of ¢°*? Is this enough to protect the presence
(and hence identifiability) of smokers with heart attacks in the dataset? Does the
value of ¢ depend on the query, or on the universe of values?

In fact, there exists no experimental evaluation to guide the user on choosing
an appropriate ¢ value. Dwork considers the issue as “a social question and ...
beyond the scope” of her work [6], however she provides some recommended
values of: 0.01, or 0.1, and sometimes [n2, and In3 [3], [6]. Some papers used val-
ues such as:0.5,0.75, 1, 1.25, 1.5, 2 [9]-[11], and even 3, 4, 5, 6, 7, 8, 9,and 10 [12].

In a recent attempt at finding general guidelines for setting appropriate ¢ val-
ues, the authors in [13] found that ¢ cannot be defined in general but will al-
ways depend on the dataset in question. Similarly, the authors in [14], [15], state
that, given an ¢ value, the probability of re-identification is not fixed, it rather
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depends on data values in the data set and even on data for individuals outside
the data set.

In [13], the authors concluded that one needs to define a “practical privacy
standard” to be able to determine an appropriate value for ¢. The privacy
standard they use is “the risk of identifying an individual in the database”. A
value for ¢ is considered inappropriate if the risk of “revealing the presence of
an individual” is higher than acceptable.

5 Variants of Differential Privacy

5.1 Relaxations of Differential Privacy

A relaxed version of differential privacy, described in [16], (¢,0)-differential pri-
vacy requires that ¢ -differential privacy be satisfied with a probability of at least
1-5, in other words, ¢ -differential privacy can be violated for some tuples,
however the probability of that occurring is bounded by ¢. Formally:

For any two database, D and D', drawn from a population e, that differ in
exactly one record, if K, is a randomized function used to respond to an arbi-
trary query f, then K, gives (¢,0)-differential privacy if with probability 1-5,
for any s cRange(K,) the following holds:

Pr[K; (D) es]<e“Pr[K,(D") e5s]

An alternative and more popular relaxation is approximate differential privacy or

(¢,7) -differential privacy, it requires that for any sc Range(K;,)
Pr[K; (D) es]<e“Pr[K,(D") es]+r

There are no rules provided for setting a value for r. The decision is usually
left to the data custodian, however r is usually given a value less than 10 [17].

(¢,7) -differential privacy is similar to & -differential privacy but allows an ad-
ditive error factor of r [17]. They both can be satisfied by adding random noise

to query answers. However they differ in the noise distribution as well as the
sensitivity measurement [18].

5.2 Measuring Utility

There is no special utility definition that is adopted in the differential privacy
literature. Some of the popular approaches include («,0) -usefulness [19], [20],
relative error [10], absolute error [21], [22], error variance [10], [22], and Euclide-
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an distance [23], [24]. For Euclidean distance, the utility of the mechanism is the
expected Euclidean distance between the actual query answer and the output-

ted one. For the relative error, the utility is the ratio of the distance between the
|K; (D) - f(D)|

actual and outputted query answers to the actual query answer: D)

For the error variance, the utility is the variance of the Laplace mechanism: 5—22
More information on these and other utility measures can be found in [25], [26].
In what follows, we define (,0) -usefulness more precisely as it is popular in the
context of differential privacy, and effective in the overall estimation of utility
[19], [20], [27]:

A mechanism is («,0) -useful if every query output is within « of the correct
output with a probability of at least 1-9, i.e.:

PIIK, (D) - f(D)|<a]>1-4.

In the following, the term utility refers to («,0) -usefulness.

5.3 Counting and Predicate Queries

A basic class of queries is Counting queries. They allow the researcher to count
the number of individuals in the database that satisfy a certain predicate (exam-
ple: how many individuals have grey hair and are under 40 years?). Formally,
given a predicate @, where @(v) e{0,} for all records vegp, a query f:p -0 with

f(D)=> @(v) is a counting query. It follows that, for every counting query f,

veD

the sensitivity of f is 1. Multiple counting queries f,,..,f, can be represented

using one query F as follows: F(D)=(f/(D)..., f,(D)). In such case, the sensitivity
of F would be AF <3, =h [26].

Another class of commonly used queries is Predicate queries (also referred to as
statistical queries), these are normalized counting queries, in other words they
count the fraction of individuals in the database that satisfy a certain predicate.
Note that the sensitivity of one predicate query is 1/n when the database is of

size n, and the sensitivity of h predicate queries is s% [23], [26].
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6 Mechanisms of Differential Privacy

6.1 Interactive Differential Privacy

6.1.1 Mechanisms

Before presenting the interactive mechanisms, we present a negative result con-
cerning privacy from noise addition:

Result 1: Dinur and Nissim [28] showed that in a database consisting of bits, if
a user wants to know the sum of some random subsets of these bits, then no
private mechanism can provide accurate answers for many queries. In fact, no
private mechanism can answer k queries with error 0O(vk), because an adver-
sary would be able to use the queries” outputs to reconstruct 1-0(1) fraction of
the database, a condition referred to as “blatant non-privacy”.

Dwork introduced the first and most commonly used mechanism that pro-
vides ¢ -differential privacy in query-response situations, it is Dwork’s inde-
pendent Laplace mechanism [4]. In this mechanism, the data custodian adds
appropriate amounts of noise to each query answer as follows:

Noise is drawn at random from a Laplace distribution with mean 0 and scale
Af /& and added independently to each query response (Section 3), thus, making
sure that every query is perturbed appropriately. However since each query
answer leaks more information and reduces privacy, what is the privacy level of
several query outputs taken together? Dwork proved that the mechanism is
composable, i.e., given a sequence of differentially private computations: f,,..., f,
assigned budgets privacy «,....s, respectively (i.e., the noise added to the output
of f, is drawn at random from a Laplace distribution with mean 0 and scale

k
Af 1 &), then the overall computation has a worst case parameter of ) ¢ [4].
1

Given its composability, two standard approaches exist for the above mecha-
nism depending on whether the queries are known ahead of time or not:

If the queries f,,.., f, are known ahead of time, then the standard approach is
for the data custodian to assign a total privacy budget ¢, the user then can di-
vide the privacy budget among the different queries as needed (more important
queries can have higher budget and hence be less noisy). However it is im-
portant to note that the type of analysis (queries) that is of interest to the analyst
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is not usually known ahead of time, in fact sanitized data are usually shared
with several data analysts with different goals.

On the other hand, if the queries are chosen adaptively, i.e., if each query is
formulated after obtaining the result of the previous query/queries (which is a
more realistic scenario), then the approach is for the data custodian to have a
preset privacy budget ¢. That budget will decrease every time a query is an-
swered, and the custodian will keep on providing query answers until the
budget runs out. Since different users of the database may collude, there should
be one privacy budget for all users [3], [6]. Once the budget runs out, the data-
base has to shut down.

Now, assume that each query f,,ie{l..k} has sensitivity A, such that A<1, and
that we want to assign a budget & to each query f,. If a fixed utility is required

(supplied by fixed parameters «,0), then this sets a bound on the magnitude of

noise allowed per query (Laplace(é )), which in turn sets a bound on the value
&

k
¢=) & . Given the utility parameters «,0, this bound shows the interdepend-
1

ence between the two quantities: ¢ and k. In Dwork’s independent Laplace
mechanism this interdependence is as follows:

Result 2: Assume that the user is interested in predicate queries f,... f, (or any
set of low sensitivity queries such as sum or linear queries), and in having («.0) -
usefulness, if Laplace noise is added independently to every query output
(Dwork’s mechanism), then the privacy parameter ¢ (and hence the noise mag-
nitude) grows linearly with the number of queries k answered [4].

The result implies that in order to have sublinear noise (noise to the order
O(n°) with c<1) the mechanism cannot answer O(n) queries.

The mechanism above has bad implications on several fronts as described in
[11]: When the number of users is large, the budget per user becomes limiting as
lower budget requires larger noise to be added. Moreover, the issue of dividing
this budget among users presents another difficulty. Even when a small number
of users is expected, the budget can be limiting to creative research (for exam-
ple, data mining that is not driven by testing pre-defined hypotheses). That
drove research in the interactive setting to concentrate on ways to reduce the
noise magnitude per query, thus allowing more queries per budget:
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A line of research by Blum et al [19] tried to circumvent Result 1 by creating a
mechanism that can answer arbitrary many queries while preserving differen-
tial privacy. The catch is that, the queries whose output is useful belong to a pre-
defined “class of queries”:

Let R be a discrete set of data items, let D be a database of size n whose rows
are drawn from R (DeR"), now let C be a “concept” class, that is a set of com-
putable functions from R —{0,1}. The authors use the exponential mechanism [8]
to create a synthetic database D' that approximates outputs corresponding to all
concepts in C. In fact, for fixed usefulness parameters, the privacy parameter
grows proportional to the VC-dimension of C, a measure of the complexity of
C, which is approximately log, |C]|.

Result 3: If |C|=k, then for fixed usefulness parameters, the privacy parameter
¢ grows linearly with log,k .

Note that the database D' can be released, or can be used interactively to an-
swer queries.

Result 3 implies that utility can be guaranteed even for an exponential number
of queries, however the mechanism works only for discrete databases (R was
assumed to be discrete), generalizing it to non-discrete databases comes at the
expense of its usefulness [19], moreover it is non-efficient. In fact, it is superpol-
ynomial in the parameters of the problem (i.e., it is not bounded above by any
polynomial), making it impossible for practical applications. Another drawback
is that the mechanism solves the problem for the interactive database release
only when the type of analysis that is of interest to the analyst is known ahead
of time (set C should be known before D' can be generated).

In an attempt to overcome some of the above limitations, Dwork et al [29] pre-
sented a mechanism that is (¢ 7)-differentially private but with an improved
running time (polynomial in |R| and k). The mechanism’s utility is better than
the independent Laplace mechanism: for fixed usefulness parameters, the priva-
cy parameter ¢ grows linearly with oWn2™:¥y  However, the result applies
only in the non-adaptive case, i.e., the actual queries need to be known ahead of
time.

Similarly, in [23] and [30] the authors addressed the issue of reducing noise
and allowing more queries per a given budget, however the techniques require
that all queries be known ahead of time.
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In [17], the authors present a novel non-efficient mechanism, the median mecha-
nism, that interactively answers k predicate queries f,..., f, as they arrive while
guaranteeing (e,7r)-differential privacy. Their aim was to ameliorate the limita-
tion on the number of predicate queries that can be answered in an interactive
setting. The mechanism does that by determining the correlation between dif-
ferent queries on the fly. In essence, the authors prove that queries can be divid-
ed into hard and easy queries, where hard queries completely determine the
answers to the easy queries (up to a small error). In fact, they proved that, given
a set of queries f,,.., f_, and their outputs r,...r_, and given an easy query f,, the

majority of databases that produce consistent results on the previous query an-
swers r,..,r_,, would answer the current easy query f, accurately, thus, the out-
put of f, would be deducible from r,...r_,, and hence f, would not use the pri-
vacy budget. Moreover, they proved that among any set of k queries, there are
O(logklog| X |) hard queries and the rest are easy queries. The hard queries are
answered using Dwork’s independent Laplace perturbations, while the easy
queries are answered using the median result from databases that are consistent
with previous answers. The classification of queries into hard and easy is done
at a low privacy cost. The authors proved the following result:

Result 4: For fixed usefulness parameters, the privacy parameter ¢, grows lin-
early with O(log,klog, | X ) where X is the database domain.

That means that the median mechanism can answer exponentially more predi-
cate queries than Dwork’s independent Laplace mechanism. More importantly,
the privacy and utility guarantees hold even when the queries are chosen adap-
tively. However the setback is that the algorithm is non-efficient, its run time is
exponential in the problem’s parameters, and is hence unusable in practice. For
more information, the reader is referred to [17].

Recently, the authors in [31] presented a new efficient mechanism, the multipli-
cative weights mechanism, it achieves ¢ -differential privacy (rather than (¢,7)) and
for fixed usefulness parameters, the privacy parameter ¢ grows linearly with
o(k). In other words the algorithm achieves O(Jk) noise per query, while the
independent Laplace mechanism achieves O(k). Moreover it is efficient and
works for adaptively chosen predicate queries.
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6.1.2 Discussion

In the interactive setting, the challenge is to find a differentially private mecha-
nism that can (a) answer random queries (any type of queries), (b) answer a
large number of queries while providing non-trivial utility for each of the que-
ries, (c) be efficient, (d) achieve e -differential privacy (the stronger privacy
guarantee), and (e) answer queries adaptively. As discussed in the previous
sub-section, many algorithms attempted to achieve some of the above require-
ments only to fail in others.

Dwork’s independent Laplace mechanism [4] achieves requirements (a), (c),
(d) and (e), Blum at al presented an elegant mechanism in [19], that achieves (b)
and (d), Roth and Routhgarden presented the median mechanism [17] that
achieves (b), (d) and (e), and finally, Hardt and Rothblum presented the multi-
plicative weights mechanism [31] that achieves (b), (c), (d) and (e).

Therefore, the result in [17], [19] and especially [31] are striking in their gener-
ality, and succeeded considerably in relaxing the limit on the number of queries
per database. However their applicability is limited to counting/predicate que-
ries and only [31] can be used in general ([19] and [17] can only be used with
small size problems). On the other hand, the issue of assigning a budget for a
database (i.e., choosing a value for ¢) and the issue of dividing this budget
among the users was not tackled in any of these papers and still presents anoth-
er challenge in practical problems [11].

6.2 Non-Interactive Differential Privacy

Result 1 stated that no private mechanism can provide accurate answers for
many queries. This result has bad implications on the non-interactive approach,
because, contrary to expectations, any data release would provide accurate re-
sponses only to a class of pre-defined queries.
In differential privacy, non-Interactive noise-based mechanisms either:
¢ Release a new synthetic dataset that is composed of synthetic individuals
whose distribution mimics that of the original participants for some
pre-defined query set, or
¢ Release a perturbed version of the original dataset, usually in the form of
a contingency table.
In this sub-section, we survey the main available mechanisms for non-
interactive release. The mechanisms are divided into ones that rely solely on
noise addition, and the more recent ones that do not.
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6.2.1 Noise-Based Mechanisms

As mentioned in sub-Section 6.1, Blum, Ligett and Roth [19] studied database
releases from a learning theory perspective. Given a database D and a class of
concepts C (as defined in 5.1), the authors used the exponential mechanism to
release a synthetic database that is useful for all queries in class C. However,
the mechanism works only for discrete databases, is non-efficient, and requires
that the class C of queries be known ahead of time.

The author in [6] studied the problem of histogram release while satisfying dif-
ferential privacy. The histogram to be released is treated as the output of a spe-
cific query with sensitivity 1, the problem is the following:

Assume we have a database with n rows each describing one individual. As-
sume also that each row consists of k binary attributes:a,,..,a . Then the data-
base can be transformed into a contingency table, also known as a table of
counts or histogram. Contingency tables describe, for each setting of the k at-
tributes (which amounts to 2* settings), the number of rows satisfying this set-
ting. Table 2 shows the contingency table generated from the example shown in
Table 1.

Table 1. Medical Records

Age Gender HIV
1 20 M +
2 30 F -
3 20 M +

Table 2. Contingency Table

20,M,- 200M,+ | 20,F-| 20,E+ | 30M,- 30,M,+ | 30,F,-| 30+
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Table 3. « - Marginal table, o ={age,HIV}

20,+ 20,- 30,+ 30,-

The author shows how to add noise to each entry of this contingency table to
make it differentially private [6].

Since the contingency table is a histogram, its sensitivity is 1 (the addition or
removal of any database row affects the counts in one location by at most 1).
Hence we can add independently generated noise to the 2* cells of the contin-
gency table with distribution Laplace(l/¢) .

The problem with this approach is that the amount of noise generated when
computing marginals, i.e., queries that involve a large number of entries, (refer
to Table 3) could be large [6],[32]. For example, the variance of the 1-way table
described by any one attribute, is 2*s?. This is considered unacceptable espe-
cially when n<<2" [6]. In other words, for a count query that involves the sum
of a fraction of the entries in the noisy contingency table, the noise variance
could be around 0(2"). If the attributes a,,...a,, are not binary and have domains
of sizes w, ..o, respectively, then the contingency table size would be
o, xw,x..xo, which could be huge as databases often have several attributes
with large domains.

Alternatively, in [6], the author suggests that if low order marginals are suffi-
cient for data analysts (these are smaller tables of count projected to a subset of
the attributes, Table 3 shows an example of the marginal for the two attributes:
age and HIV), then the data custodian can release a set of say C marginals. Each
marginal has sensitivity 1, hence the amount of noise added to each cell of the
released marginals should be proportional to |C|/e. When n is large compared
to |C|/e, the authors suggest that this will yield good accuracy per cell. However,
with this approach, there will be inconsistencies between the different marginals
as noise is added independently.

Another (non-efficient) alternative introduced by [33] is to construct a synthet-
ic database that is positive and integral and that preserves all low order margin-
als up to a small error using Fourier transforms.

In [34], the authors evaluate the mechanism of [33] using three real-life data-
bases. They concluded that the method is not suitable for the large and sparse
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tables that are usually produced by large data custodians. Moreover, the au-
thors stated a preference for methods that use log linear models such as that of
[35]-[37].

6.2.2 Alternative mechanisms

Existing techniques that satisfy differential privacy rely almost exclusively on
noise addition to query outputs through the usage of Laplace noise or the expo-
nential mechanism. However, few alternatives that rely on other means in addi-
tion to noise have recently surfaced:

In [38] the authors introduced a new efficient mechanism to release set value
data while satistying ¢ -differential privacy and (a,0)-usefulness for counting
queries (where the value of ¢ is a function of ¢ and « ). Set-value data consists
of a set of records; each record consists of a set of items drawn from a universe
of items. An example is transaction data. The authors introduced a probabilistic
top down partitioning algorithm. The algorithm starts by creating a context-free
taxonomy tree and by generalizing all items under one partition. The algorithm
then, recursively, generates distinct sub-partitions based on the taxonomy tree.
The sub partitions have more specific representations, thus, splitting the records
into more specific disjoint sets. The choice of which partition to split is based on
the noisy partitions counts. Only (probabilistically) non-empty partitions are
chosen, thus, limiting the overall noise added and making this approach appeal-
ing when data is sparse. The authors experimentally evaluated their approach
against the histogram approach presented earlier [6] and showed that it pro-
vides better utility for counting queries. However the authors did not justify
their utility parameters, and did not study the interdependence between the
utility and privacy parameters. Moreover, the mechanism in [6] suffers from
high noise variance for set value data (being sparse and high dimensional) and
that renders its results of limited usefulness, and is therefore not a good stand-
ard for comparison.

In [32], the authors argue that contingency table release is not suitable for data
with high dimensions and large domains as the noise would be relatively large
compared to the cell counts, and that leads to a total destruction of utility. The
authors then present a novel method that generalizes the contingency table then
adds noise to the counts. The authors argue that the generalization step increas-
es the cell counts and thus, the counts become much larger than the noise add-
ed. The algorithm initially generalizes all records into one group, then iterative-
ly implements a sequence of specializations. At each iteration, the algorithm
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probabilistically selects an attribute to specialize based on some score value
(such as information gain). The algorithm terminates after a preset number of
specializations. The authors performed a comparison between their algorithm
and the top-down specialization approach of [39] that produces k -anonymous
data. The comparison was done for a fixed value of k=5, and for ¢ values 0.75,
1, 2, 3, and 4. They deduced that their algorithm performs slightly better for ¢
values 0.75 and 1, and noticeably better for the remaining ¢ values. However
the authors did not justify their choice for these ¢ values, and why these partic-
ular values should be compared to a 5-anonymity (why is any of these ¢ values
comparable to 5-anonymity?). Additionally although the authors state that a
typical ¢ value is less than 1 -in fact the recommended ¢ value is 0.01, or 0.1 [6],
[12]- they did not use these recommended values in their evaluation. Moreover,
the authors did not explain how to decide on an optimal generalization that
would produce counts that are high enough relative to the added noise given
the privacy budget .

Recently, the authors in [11] introduced a novel technique connecting k-
anonymity to differential privacy. The technique tries to achieve (¢,0)-
differential privacy by adding a random sampling step followed by a “safe” k -
anonymization. The authors show that when a random sampling step is applied
to the data followed by a generalization scheme that does not depend on the
database (like applying a fixed generalization scheme) followed by the suppres-
sion of all tuples that occur less than k times, then the database satisfies (¢,0)-
differential privacy.

The problem with this technique is that the usage of a data independent gen-
eralization may result in poor utility, in [40] the authors argue that adding a
random sampling step impacts the utility of the data as well.

Recently, several studies on the application of differential privacy have
emerged. However these studies concentrate on particular kinds of data such as
search logs [41], [42], on specific applications such as recommender systems
[43], private networks [44], and record linkage [45], or on certain type of low
sensitivity queries (queries with sensitivity <1, such as counting and statistical
queries) [10], [20], [46].

6.2.3 Discussion

In the non-interactive setting, researchers expect the data release to answer all
their queries accurately. Moreover, they prefer non-synthetic data; in fact re-
searchers and statisticians in several fields, such as the health sector, like to
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“look at the data”. Dwork mentions in [47] that “conversations with experts in
this field involve pleas for a noisy table that will permit highly accurate answers
to be derived for computations that are not specified at the outset”. Hence, in
general, the challenge is to release a non-synthetic dataset that can accurately
answer any query, and the release mechanism needs to be efficient.

However, no differentially private interactive mechanism can achieve all of the
above:

e In[19], [29], [31] the release can be used for a set of predicate que-
ries that should be known in advance. The data released is synthet-
ic, and contrary to the intuition on non-interactive data, the utility
of the data suffers with the size of the query set.

e In [6], [33], the release can be used for a set of count queries, and
the utility suffers when databases are large and sparse [36].

e In several other mechanisms, usability is only guaranteed for par-
ticular data types along with particular set of queries such as count
queries on set value data [38].

In fact Result 1 indicates that no efficient algorithm can output a noisy table
with acceptable utility to random queries. This result clearly states that the gen-
eral applicability of differential privacy will always be limited to a class of que-
ries. Current research presented big advances in the mechanism efficiency and
in the size of the query set with utilizable outputs. However, applications re-
main limited to queries with low sensitivity such as count and predicate queries.

On the other hand, it is important to note that, contrary to most mechanisms
that output noisy answers to submitted queries, the non-interactive mechanisms
(whether releasing synthetic data or a contingency table) guarantee consistency,
meaning that the answers to correlated queries will not be contradictory. For
example, two complementary counting queries will add up to the number of
participants in the published dataset.

6.3 Limitations of Differential Privacy

In line with the previous discussions, the literature has concentrated on the ap-
plication of differential privacy on count data. In fact, the options available in
differential privacy limit the user to a number of queries with low sensitivity.
Low sensitivity means that the output of these queries is not “severely affected”
by the removal or addition of any one record from/to the dataset (usually low
sensitivity implies Af <1)
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What about other queries? Recent articles [48] and [7] raise serious concerns
about the utility of differentially private algorithms when applied to numeric
data. They presented several examples on the application of Laplace noise for
numeric data and showed that the level of noise added can be so large making
the responses useless. In fact the level of noise is directly affected by the value of
Af and is independent of the actual database. Therefore, when the data is
skewed, this will result in a large Af value and subsequently a large noise vari-
ance (compared to the actual variance of the database). The authors concluded
that “Like Dalenius definition of privacy before it, differential privacy is an in-
teresting concept, but of little value in practice”[48].

The limited available experiments on differentially private mechanisms sug-
gest that in general - for numerical data - very low privacy is required to have
acceptable utility [3], [49]. In [50], the author suggests that the current formula-
tion of differential privacy focuses on achieving privacy rather than on preserv-
ing utility, and, as mentioned before, that is due to the fact that differential pri-
vacy seeks to protect even extreme values in the database domain (through af ).

Another limitation was mentioned by Muralidhar and Sarathy [7], [48], [51];
the authors stressed the difficulty in calculating queries’ sensitivity in unbound-
ed domains. That raises a question about not only the sensitivity calculation but
about differential privacy verification as well. These two questions have been
neglected in the literature, as illustrations are limited to queries with low and
domain-independent sensitivities.

Another set of severe limitations is related to setting and dispensing the priva-
cy budget, precisely, deciding on a value for the total budget ¢, deciding on the
number of users that will be allowed to query the dataset, and deciding on the
budget portion provided to each user:

¢ As mentioned before, the literature on the privacy parameter ¢ is mostly
theoretical, and there exists no experimental evaluations to guide the
data holder on choosing the right ¢ value, or to help him/her under-
stand what effect changing ¢ will have on the common notions of data
utility. In [52], the author complains that their research team is running
against the hurdle of choosing a good value for ¢ and quantifying the
“indistinguishability” language in the differential privacy guarantee.

e Assuming that the data holder was able to overcome the hurdles of de-
ciding on a total budget ¢, then deciding on the number of users that
will be allowed to query the dataset and on the budget per user is an-
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other problem as interest in the dataset is not always predictable, and
not all data uses require the same utility level.

e If the data holder was able to predict the number of potential users and
to divide the budget among the different users (referred to as local
budgets), then s/he still needs to decide on a strategy to allocate each
local budget to the user’s queries. A common approach is to allow each
user to select their queries” budgets. In such a case, they would be able
to give higher budgets to queries deemed more important. In these
cases, the data custodian will keep on providing query answers until
the budget runs out. However, (as iterated in Section 4), setting the
right budget for every query is not an easy task, as the correlation be-
tween intuitive privacy notions and ¢ is not clear. Moreover, queries
are not known to the user ahead of time (the formulation of new que-
ries usually depends on the output of previous ones) hence, deciding
on a budget for a current query with uncertainty about future queries
is challenging. Another approach that avoids the management of local
privacy budgets by users is the batch query answering mechanism pre-
sented in [18]. The set of queries are all submitted together as a batch
and the mechanism adapts to the particular set of submitted queries
and releases outputs that minimizes the square errors for these queries.
The problem with such a strategy is that the user needs to know all the
queries ahead of time.

Another approach that deals with local budget decomposition was pre-
sented in [53]. It discusses the problem in the field of spatial data. Typ-
ical queries in spatial applications are count queries (the queries re-
quest the number of individuals that fall within a given spatial region).
Given a total budget ¢, the authors present a way to publish a spatial
decomposition of the data using non-uniform noise parameters. To
elaborate, a spatial decomposition is a hierarchical decomposition of a
space into smaller areas. Building such a hierarchy privately requires
knowledge of data counts at each node (i.e., the number of data points
associated with the space that the node represents). Therefore, the spa-
tial decomposition can be translated into a set of interrelated count
queries, one count query for every node in the decomposition. The au-
thors calculate the maximum number of count queries needed to per-
form the decomposition. Then, they describe the best way to allocate
the total budget ¢ among these different queries in a way to achieve
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the best utility possible. The problem with this budget decomposition
is that it is tailored for this particular application. Moreover, it is utility
driven and does not discuss the privacy implicated by each parameter
(&) chosen.

Another major limitation was reported by [54]. The paper pointed out that dif-
ferential privacy works under the assumptions that individuals are independent
from each other. If this independence assumption is violated, then differential
privacy cannot adequately limit inference about individual participation in the
data set. The authors in [54] illustrate with an example from social networks
where the removal of one participant (record) might not hide evidence of
his/her participation: "Bob's participation in a social network can cause links to
form between pairs of Bob's friends" and thus, Bob’s participation "affects more
than just the tuple marked: Bob". In such cases, we are forced to take into con-
sideration the adversary’s background knowledge. Hence, for datasets with
correlated records, a stronger privacy notion is required. This limitation comes
in contrast with the highly valued property of differential privacy: its independ-
ence from the attackers background knowledge.

Finally, most existing differential privacy techniques assume the existence of
one dataset with one data holder. To the best of our knowledge, [55]-[57] are the
only papers to consider the problem of privately calculating the sum of numeri-
cal data held by different entities. Since aggregators wish to compute various
statistics on data, and since studies can require data from physically distributed
sources owned by different data holders, new techniques need to be developed
to deal with this challenging aspect.

7 Differential Privacy and Health Data

In what follows, we focus on health data release, and present the challenges that
differential privacy mechanisms must overcome before they can be widely
adopted for health information release. Then we discuss a recent application of
differential privacy on the health data.

7.1 Challenges

The disclosure of health data has a number of characteristics that need to be
considered in any practical mechanism used to preserve privacy. These charac-
teristics have to do with current practices and data sets, and the introduction of
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any new mechanism for privacy protective data disclosure or analysis would
have to address these issues before it can be adopted widely. The considerations
below are driven by our experiences creating health data sets for secondary
purposes over the last seven years, some of which have been documented, as
well as empirical studies of health data sharing practices and challenges [58]-
[68].

Health data contains categorical data (e.g., diagnosis codes, procedure codes,
drugs dispensed, laboratory tests ordered, and geographical information about
the patient and the provider), as well as numeric data (e.g., age in years, length
of stay in hospital, and time since last visit). Therefore both types of variables
need to be addressed. As noted earlier, the addition of Laplace noise to numeric
data can distort the values significantly.

Users of health data are accustomed to data publishing — which is where the
data is disclosed to the end user. There are multiple reasons. Health data is of-
ten messy, with data errors and sometimes unexpected distributions. Analysts
need to look at the data to determine the appropriate transformations to apply,
compute appropriate indices from the original data, and extract the appropriate
cohort of patients for the analysis. This is easiest to do when one has access to
the data directly. Furthermore, biostatisticians and epidemiologists will often
have a suite of analysis methods and tools that are commonly used, that they
have used for many years, that they understand, for which they can interpret
the results correctly, that are understood and accepted within the community as
valid for that type of problem and data, and for which they have code in lan-
guages such as SAS that they use. From a behavior change perspective, it would
be challenging to convince data analysts to abandon their current methods and
SAS code, which they may have been using for decades, in favor of an interac-
tive system that is less understood. Therefore, at least in the short term, a non-
interactive mechanism would be most suitable for this community.

The non-interactive mechanism that allows the computation of statistics with-
out publishing the data may be suitable in some circumstances. For example, in
the context of public health, on-going surveillance often relies on the computa-
tion of a well defined (and known a priori) set of statistics at regular intervals.
Similarly, performance or safety reporting (e.g., the number of eligible patients
that received appropriate screening and the rate of surgical site infections) in-
volves the computation of well defined statistics. Therefore, for surveillance and
performance reporting purposes differentially private statistics would be con-
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gruent with the process. In such cases the primary consideration would be data
utility of the differentially private statistics.

Beyond such applications, with well defined analytical needs, many other data
uses would require actual data publishing to meet the needs of the analyst
community.

Another important consideration is the law. The healthcare sector often has
specific privacy laws in many jurisdictions. Current health privacy statutes in
the US, Canada, and Europe do not specify the acceptable risk and often use the
“reasonableness” standard. In practice, one relies on precedent to justify the risk
thresholds that are used. For currently used privacy models, such as k-
anonymity, there is a significant amount of precedent for different values of k.
Data custodians have been releasing data for more than two decades, including
health data. During that period guidelines, policies, court cases, and regulatory
orders have come out which define what can be considered acceptable levels of
risk. A data custodian, if confronted in a court case or by a regulator for exam-
ple, can point to these precedents to justify their decisions. In the case of differ-
ential privacy, important parameters such as ¢ have no intrinsic meaning and
there are few existing precedents of actual health data releases to justify the
choice of any value. A data custodian needs to consider how they would justify
their choice in a dispute or litigation, and it is much easier to do so under cur-
rent models, such as k-anonymity, and risky (financially and reputationally)
under differential privacy.

Many fields in health data sets are correlated or have natural constraints. For
example, one treatment would often precede another, or certain drugs are given
in combination (or never given in combination). There are correlations among
drugs, and diagnoses, and between lab results and diagnoses. Independent dis-
tortions to the data that produce results that do not make sense erode the trust
of the data analysts in the data and act as barriers to the acceptability of the
techniques used to protect the privacy of the data. For example, if the distorted
data shows two drugs that are known to interact in a way that can be damaging
to a patient’s health, or a drug that would never be prescribed with a particular
treatment appear for the same patient, or a dose that does not make sense for a
patient, then the analysts will cease to trust the data. In practice this has created
challenges for introducing mechanisms that add noise to data because it is not
possible to guarantee that nonsense data cannot be output.

Reference deployments of differential privacy in practice are also important. A
powerful argument in convincing data analysts to use a data set that has been
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transformed in some way to deal with privacy concerns is to show them actual
examples where such data has produced useful and valid results. To our
knowledge, thus far, there have been limited real world disclosures of differen-
tially private health data, and consequently few examples of useful and valid
analytical results.

While not often explicitly considered when designing new mechanisms to pro-
tect data, convincing the public that stewardship of their data is being conduct-
ed in a responsible way is becoming a necessary objective. For instance, patients
and providers have expressed concerns about the disclosure and use of health
information, and there is evidence that patients adopt privacy protective behav-
iors when they have concerns about how their own information is being used or
disclosed, especially among vulnerable patient groups [69]. In practice this
means there is an on-going need to explain in non-specialist terms the parame-
ters of the privacy mechanisms used and how much protection they really pro-
vide. In the context of differential privacy, it is quite challenging to explain to a
patient the meaning of the ¢ value used to disclose or provide analytical access
to their data, for example. It is necessary to relate these parameters to more
common notions of privacy to allow easier communication to the public.

While the above observations are limited by our experiences, we believe they
represent real challenges that the differential privacy model and mechanisms
need to address to ensure wider acceptability and adoption within the health
domain.

7.2 Example of Health Application

In what follows, we present a recent application of differential privacy in the
health sector. This is the only health care application of differential privacy that
we are aware of. We will use it to illustrate the strengths and weaknesses that
were discussed in the previous subsection.

Cohort identification is commonly used in clinical datasets, it involves query-
ing the patient database to identify potential recruits for a clinical trial. Recruit-
ing a sufficient number of subjects in clinical trials is becoming increasingly
challenging, resulting in underpowered studies. This has been noted as a factor
in the inability to complete trials successfully [70]. Possible causes are the
marked increase in the total number of eligibility criteria and the rapid rise in
the number of subjects that need to be recruited [70], [71]. Consequently, the
number of trials moving to regions outside Canada and the US because of weak
subject recruitment has been growing [70], [72]-[74].
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One common way to identify potential recruits for a trial is to query a patient
database [71]. An investigator would run a query on such a database at a re-
cruiting site to identify the number of participants which would meet the eligi-
bility criteria. A study would have a certain threshold of patients that must meet
the eligibility criteria for the site to be considered suitable for the trial. If the
number of eligible patients is larger than the threshold then the sponsor will
consider the site for inclusion in the trial. Running these eligibility 'count' que-
ries would allow a sponsor to quickly identify candidate sites for a trial that
have a sufficiently large patient population. However, providing unrestricted
access to count queries on a database can reveal personal information. Existing
solutions to this problem (I2B2 and STRIDE [75], [76]) provide approximate
counts by adding Gaussian noise to the queries outputs. However, these meth-
ods do not offer enough formal privacy guarantees (they only consider privacy
loss from averaging the same query over time). In [77], the authors present a
novel mechanism for the cohort identification problem with the hope of provid-
ing stronger privacy guarantees, and higher utility. They use a modified version
of the exponential mechanism of [8] where they incorporate the users’ prefer-
ences with respect to the magnitude and direction of the perturbation (over or
under estimation). Briefly, the mechanism generates a distribution on the count
values. The distribution takes the user preferences into consideration, thus, a
more desired count value will have higher probability of being returned.

The authors presented a method for comparing the performance of their
mechanism with I2B2. To be able to perform the comparison, the authors chose
a budget for their mechanism and a parameter for the Gaussian noise in 12B2
that would guarantee a similar variance for the noisy counts in both mecha-
nisms. They found that their method returned the true counts more often than
I2B2 while guaranteeing differential privacy. However, it is not clear why
equating variances is effective in comparing the two mechanisms given that
their distributions are different. Furthermore, one could argue that I2B2 provid-
ed higher levels of privacy protection since it did not return the true counts as
often.

In tackling the query budgeting issue (budget per query), the authors propose
to have a set of predefined query budget levels, thus allowing users to choose
their queries” budgets from this predefined set. When the query is expected to
have a large count, higher budgets could be used. However, the authers did not
specify how these values can be set. Therefore, unless the data custodian has
sufficient understanding of these budget values and how much protection each
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value really provides, s/he will not be able to set these values without resorting
to another privacy standard (as described in Section 4).

On a similar note, the paper did not tackle the issue of choosing a total budget
¢ in general. However, they described a way to determine a value for ¢ based
on the privacy standard of 12B2. In other words, an ¢ value that guarantees the
same privacy level as 12B2 [75].

To conclude, this application provided a novel way to deal with a very im-
portant problem. Its novelty lies in the way it incorporates users preferences
with respect to the magnitude and direction of the perturbation as part of the
queries. However, the application did not address the basic problems with dif-
ferential privacy that were mentioned earlier.

8 Conclusions

In this paper we have provided a general overview of the state-of-the-art in dif-
ferential privacy and outlined some of the limitations of the model and the vari-
ous mechanisms that have been proposed to implement it. We have further
highlighted some practical limitations to the use of differential privacy for the
disclosure of health information today. At the same time, the highlighted limita-
tions identify elements of future research programs that could potentially lead
to more adoption of differential privacy in healthcare.

The healthcare community still needs to disclose data today. While existing
models have limitations, when applied properly they have met current legisla-
tion and regulations, and have provided a reasonable amount of protection of
patient data. Given that ceasing the disclosure of health information is neither a
realistic nor practical goal, until the theoretical and practical limitations, as well
as the healthcare specific considerations have been addressed, it would be pru-
dent for data custodians to continue using current methods for anonymizing
their data.
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Notation table
Notation
€ Total privacy budget
1y gy Local privacy budget (per query)
© Population
D,D,,D,,... Databases drawn from the population
v Record from the database
fof, b Queries
P Query range
KKy Ky, | Randomized function for queries f,f,, f,,.. respectively
s A value from the randomized query range
LTINS Values from the query range
Y Vi Yaroos Noise drawn from a Laplace distribution
A, AT, AR, .. Sensitivities of queries f,f, f,,.. respectively
(¢,7) Parameters for approximate differential privacy
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