
TRANSACTIONS ON DATA PRIVACY 6 (2013) 69–85

Privacy Preserving Distributed DBSCAN
Clustering∗

Jinfei Liu1, Li Xiong1, Jun Luo2, Joshua Zhexue Huang2

1 Department of Mathematics & Computer Science, Emory University, 30322, USA
2 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, China

E-mail: jinfei.liu@emory.edu, lxiong@mathcs.emory.edu, jun.luo@siat.ac.cn and

zx.huang@siat.ac.cn

Abstract. DBSCAN is a well-known density-based clustering algorithm which offers advantages for
finding clusters of arbitrary shapes compared to partitioning and hierarchical clustering methods.
However, there are few papers studying the DBSCAN algorithm under the privacy preserving dis-
tributed data mining model, in which the data is distributed between two or more parties, and the
parties cooperate to obtain the clustering results without revealing the data at the individual parties.
In this paper, we address the problem of two-party privacy preserving DBSCAN clustering. We first
propose two protocols for privacy preserving DBSCAN clustering over horizontally and vertically
partitioned data respectively and then extend them to arbitrarily partitioned data. We also provide
performance analysis and privacy proof of our solution.

Keywords: Privacy Preserving; DBSCAN; Clustering; Secure Multi-Party Computation; Distributed
Data

1 Introduction

Consider a scenario in which each hospital has its own database of medical records. If the
data from different hospitals can be shared, we can mine the data and extract more mean-
ingful results than just using partial data independently. However, since medical records
are subject to privacy and confidentiality constraints, how to extract the knowledge from
the integrated data set without revealing one party’s data to other parties is the theme of
privacy preserving distributed data mining. Privacy preserving data mining, first intro-
duced by Agrawal et al. [2] (using perturbation techniques) and Lindell et al. [16] (using
Secure Multiparty Computation (SMC)) techniques), allows different parties to cooperate
in the extraction of knowledge without any of the cooperating parties having to reveal
their individual data items. In this paper, for the convenience of analysis, we only focus on
the two-party privacy preserving data mining (PPDM) algorithm. However, the two-party
algorithm can be extended to multi-party cases.

∗A preliminary version of this paper appeared in the Proceedings of the 2012 Joint EDBT/ICDT Workshops
[17].

69



70 Jinfei Liu, Li Xiong, Jun Luo, Joshua Zhexue Huang

Alice

Bob

B1

B2

B3

A

Figure 1: Bob could decide that A is in the small gray region.

DBSCAN (Density Based Spatial Clustering of Applications with Noise) [8] is a well-
known density-based clustering algorithm which offers several advantages compared to
partitioning and hierarchical clustering methods. First, DBSCAN does not require one to
specify the number of clusters in the data a priori, as opposed to k-means clustering algo-
rithm. Second, DBSCAN is better at finding arbitrarily shaped clusters and can even find
a cluster completely surrounded by a different cluster. Finally, DBSCAN has a notion of
noise or outliers and requires just two parameters (Eps and Minpts in this paper) and is
mostly insensitive to the ordering of the points in the database. Conclusively, it is of prac-
tical importance to design distributed protocols DBSCAN based clustering in a distributed
environment with sensitive data.

Kumar et al. [14] proposed protocols for the privacy preserving distributed DBSCAN clus-
tering. However, the privacy proofs of their protocols do not strictly follow the definition
of privacy in the semi-honest model [10]. More importantly, it poses significant privacy
risks of identifying individual records from other party. Considering a scenario as shown
in Figure 1. Bob has three records B1, B2, B3 and knows one of Alice’s record A is in their
neighborhood. So Bob knows that A is in the intersection of his three records’ neighbor-
hood (the gray area in Figure 1). It could happen that the intersection area is so small that
Bob could determine the location of the point A that is not far away from its true location.

In this paper, we present privacy preserving algorithms for DBSCAN clustering for hor-
izontally, vertically and arbitrarily partitioned data distributed between two parties. The
main contributions of our paper are:

1. We design a Multiplication Protocol (Subsection 4.1) based on Pailler’s Additive Ho-
momorphic cryptosystem [17].

2. We present a set of privacy preserving distributed DBSCAN clustering protocols uti-
lizing the above multiplication protocol over horizontally (Subsection 4.2), vertically
(Subsection 4.3), and arbitrarily (Subsection 4.4) partitioned data [17]. Compared to
the existing work [8], the only information disclosed in our protocols is that Bob only
knows there is a record owned by Alice in B1, B2, B3’s neighborhood respectively.
However, Bob does not know whether those three records are the same or not. There-
fore, Bob can not determine whether there is a record owned by Alice in the small
gray region.

3. We further present a new protocol with enhanced privacy than the above protocols
(Section 5). Compared to the protocols in the preliminary version [17] which reveal

TRANSACTIONS ON DATA PRIVACY 6 (2013)



Privacy Preserving Distributed DBSCAN Clustering 71

the number of points from the other party in the neighborhood of a point when decid-
ing whether the point is a core point, we address this disclosure in this new protocol.

4. We present formal performance and privacy analysis and demonstrate that our pro-
tocols are efficient in terms of communication and achieve adequate privacy.

The rest of the paper is organized as follows. We review some related work in Section
2. Section 3 introduces some background that will be used in this paper. The preliminary
algorithms for computing privacy preserving distributed DBSCAN clustering are given in
Section 4. Section 5 presents the new enhanced protocols addressing the disclosure problem
in the previous protocols. Section 6 concludes the paper with directions for future work.

2 Related Work

Privacy preserving data mining, first introduced by Agrawal et al. [2] and Lindell et al.
[16], could be roughly classified into two major categories: data mining on modified or
perturbed data [2] [9] [1] [15] and cooperative data mining on distributed private data [16]
[22] [13]. The initial idea of the former is to modify or perturb the data to mask private
information but in such a way that the perturbed data can be still mined. The key is how
to modify the data and how to recover the data mining result from the modified (“un-
private”) data.

The privacy preserving distributed data mining problem in the latter category is typi-
cally formulated as a secure multi-party computation problem [10]. Yao’s general protocol
for secure circuit evaluation [26] can be used to solve any two-party privacy preserving
distributed data mining problem in theory. However, since data mining problems usually
involve millions or billions of data items, the communication cost of this protocol renders it
impractical for these purposes. This is a good motivation to the search for problem specific
protocols that are efficient in terms of communication complexity. Therefore, as Goldre-
ich points out in [10], we do not recommend using the solutions derived by these general
results in practice; special solutions should be developed for special cases or data mining
algorithms for efficiency reasons. In many cases, including our solution described in this
paper, the more efficient solutions still make use of a general solution such as Yao’s, but
only to carry out a much smaller portion of the computation. The rest of the computation
uses other methods to ensure the privacy of the data. One such complementary approach
uses randomization techniques [7]. Although such solutions tend to be more efficient than
cryptographic solutions, they are generally less private or less accurate.

DBSCAN [8] is a well-known density-based clustering algorithm for discovering clusters
in large spatial databases with noise. It is significantly more effective in discovering clus-
ters of arbitrary shape than the partitioning methods such as the well known k-means [19]
and CLARANS [18] algorithm as well as hierarchical methods. Similar clustering algo-
rithms based on density are OPTICS [4] and DENCLUE [11]. While there are many privacy
preserving K-means algorithms [12] [23] [5], there is little literature considering the prob-
lem of privacy preserving distributed density-based clustering. A. Amirbekyan et al. [3]
and W. Xu et al. [24] only discussed the vertically partitioned data case. So far [14] is the
only both horizontally and vertically partitioned data work we are aware of but it did not
provide adequate privacy as we discussed above.

TRANSACTIONS ON DATA PRIVACY 6 (2013)



72 Jinfei Liu, Li Xiong, Jun Luo, Joshua Zhexue Huang

3 Preliminaries

In this section, we briefly review the DBSCAN clustering algorithm, and describe the con-
cept of horizontally, vertically and arbitrarily partitioned data. Some definitions borrowed
from cryptology, and two protocols that will be used in this paper are also given.

3.1 DBSCAN Algorithm

We briefly review the DBSCAN algorithm. Details are described in [8]. DBSCAN is a
density-based algorithm which can detect arbitrary shaped clusters. The key idea is that
for each point of a cluster, the neighborhood of which within a given radius (Eps) has to
contain at least a minimum number (MinPts) of points, i.e. the density in the neighborhood
has to exceed some threshold. Therefore, the critical step in this algorithm is to decide
whether the distance between two points is less than or equal to Eps. It is an easy task if
two points are owned by one party. Otherwise, we need to develop a private protocol to
compute the distance between two points that are owned by two parties.

We illustrate several definitions in DBSCAN algorithm [8] that will be used in the next
Section.

Definition 1. (density-reachable) A point p is density-reachable from a point q w.r.t. Eps
and MinPts if there is a chain of points p1, ..., pn, p1 = q, pn = p such that pi+1 is directly
density-reachable from pi.

Definition 2. (density-connected) A point p is density-connected to a point q w.r.t. Eps
and MinPts if there is a point o such that both p and q are density-reachable from o w.r.t.
Eps and MinPts.

Definition 3. (cluster) Let D be a database of points. A cluster C w.r.t. Eps and MinPts is
a non-empty subset of D satisfying the following conditions:

1. ∀ point p, q: if p ∈ C and q is density-reachable from p w.r.t. Eps and MinPts, then
q ∈ C. (Maximality)

2. ∀ point p,q ∈ C: p is density-connected to q w.r.t. Eps and MinPts. (Connectivity)

Definition 4. (noise) Let C1, ..., Ck be the clusters of the database D w.r.t. parameters Eps
and MinPts. Then we define the noise as the set of points in the database D not belonging
to any cluster Ci , i.e. noise =p ∈ D | ∀i : p /∈ Ci.

3.2 Partitioned Data

In the two-party distributed data setting, two parties (call them Alice and Bob) hold data
forming a (virtual) database consisting of their joint data. More specifically, the virtual
database D = {d1, d2, ..., dn} consists of n records. Each record di has m values for m
attributes (di,1, di,2, ..., di,m).

There are three formats for partitioned data:

• Horizontally Partitioned Data: each party owns a subset of records with full at-
tributes (see Figure 2).

• Vertically Partitioned Data: each party owns all records with partial attributes (see
Figure 3).

TRANSACTIONS ON DATA PRIVACY 6 (2013)



Privacy Preserving Distributed DBSCAN Clustering 73

d1

attr1 ... attrm

...

dl

dl+1

...

dn

attr2

...

...

...

...

...

...

... ... ...

d1,1 d1,2 d1,m

... ... ...

dl,1 dl,2 dl,m

dl+1,1 dl+1,2 dl+1,m

dn,1 dn,2 dn,m

Data owned by Alice

Data owned by Bob

Figure 2: Horizontally partitioned data.

d1

d2
...

dn

attr1 ... attrl attrl+1 ... attrm

d1,1

d2,1

...

dn,1

...

...

... ... ... ... ...

...

...

...

...

d1,l

d2,l

dn,l

d1,l+1

dn,l+1

d2,l+1

d1,m

d2,m

dn,m

Data owned by Alice Data owned by Bob

Figure 3: Vertically partitioned data.

• Arbitrarily Partitioned Data [12]: mixture of horizontally and vertically partitioned
data (see Figure 4).

3.3 Privacy Properties

Our desired outcome is that clusters are computed on Alice and Bob’s joint data. Alice
should learn the cluster number (or the NOISE record) for each data record that she owns
completely, and Bob should learn the cluster number (or the NOISE record) for each data
record that he owns completely. For records that are split between Alice and Bob, they
should both learn the cluster number.

In an ideal world, Alice and Bob would have access to a trusted third party who could
perform the necessary calculations. Alice and Bob would securely send their data to this
trusted party, which would then compute the cluster to which each object is assigned using
the appropriate clustering algorithm, and send the desired information to the party that
owns the object. However, trusted third parties are hard to find in the real world, and even
then, such trust may be misplaced. In this work, we do not rely on a third party. Instead,
we provide protocols by which Alice and Bob can carry out the functionality that would be
provided by the trusted third party without actually requiring such third party or requiring
the parties to send their data to each other.

TRANSACTIONS ON DATA PRIVACY 6 (2013)



74 Jinfei Liu, Li Xiong, Jun Luo, Joshua Zhexue Huang

=d1

d2

attr1 attr2 attr3 attr1 attr2

d1

d2

+ d1

d2

attr3

Data owned by Alice Data owned by Bob

attr4 attr4

d2,1 d2,2 d2,3 d2,4 d2,1 d2,2 d2,3 d2,4

d1,1 d1,2 d1,3 d1,4 d1,1 d1,2 d1,3 d1,4

Figure 4: Arbitrarily partitioned data =vertically partitioned data + horizontally parti-
tioned data.

3.4 Two-party Computation

A two-party protocol problem [10] is casted by specifying a random process that maps pairs
of inputs to pairs of outputs (one for each party). We refer to such a process as a functionality
and denote it as f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = (f1, f2). That is, for
every pair of inputs (x, y), the output pair is a random variable (f1(x, y), f2(x, y)) ranging
over pairs of strings. The first party (with input x) wishes to obtain f1(x, y) and the second
party (with input y) wishes to obtain f2(x, y). We often denote such a functionality by
(x, y) 7→ (f1(x, y), f2(x, y)).

3.5 Semi-honest Model

In any multi-party computation setting, a malicious adversary can always alter its input. In
the data mining setting, this fact can be very damaging since the adversary can define its in-
put to be the empty database. Then the output obtained is the result of the algorithm on the
other party’s database alone. For this work we assume that the adversary is semi-honest [10]
(also known as passive). That is, it correctly follows the protocol specification, yet attempts
to learn additional information by analyzing the transcript of messages received during the
execution. We remark that although the semi-honest adversarial model is weaker than the
malicious model (where a party may arbitrarily deviate from the protocol specification), it
is often a realistic one. This is because deviating from a specified program which may be
buried in a complex application is a non-trivial task. Further, the parties cooperate with
each other because they wish to mine the integrated data for their mutual benefit.

3.6 Definition of Privacy in the Semi-honest Model

Intuitively, a protocol is private if whatever can be computed by a party participating in the
protocol can be computed based on its input and output only. This is formalized according
to the simulation paradigm. Loosely speaking, we require that a party’s view in a protocol
execution be simulative given only its input and output. This then implies that the parties
learn nothing from the protocol execution itself, as desired.

We begin with the following notations:
• Let f = (f1, f2) be a probabilistic, polynomial-time functionality and let

∏
be a two-

party protocol for computing f .
• The view of the first (resp., second) party during an execution of

∏
on (x, y), denoted

by view
∏
1 (x, y)(resp., view

∏
2 (x, y)), is (x, r1,m1

1, ...,m
1
t ) (resp., (y, r2,m2

1, ...,m
2
t )) where r1

(resp., r2) represents the outcome of the first (resp., second) party’s internal coin tosses, and
m1
i (resp., m2

i ) represents the ith message it has received.

TRANSACTIONS ON DATA PRIVACY 6 (2013)



Privacy Preserving Distributed DBSCAN Clustering 75

• The output of the first (resp., second) party during an execution of
∏

on (x, y) is denoted
by output

∏
1 (x, y) (resp., output

∏
2 (x, y)), and is implicit in the party’s view of the execution.

Definition 5. Privacy with Respect to Semi-Honest Behavior
For a functionality f , we say that

∏
privately computes f if there exist probabilistic poly-

nomial time algorithms, denoted by S1 and S2, such that

{(S1(x, f1(x, y)), f2(x, y))}x,y∈{0,1}∗
c≡{(view

∏
1 (x, y), output

∏
2 (x, y))}x,y∈{0,1}∗ , (1)

{(f1(x, y), S2(y, f2(x, y)))}x,y∈{0,1}∗
c≡ {(output

∏
1 (x, y), view

∏
2 (x, y))}x,y∈{0,1}∗ , (2)

where
c≡ denotes computational indistinguishability.

Equations 1 and 2 state that the view of a party can be simulated by a probabilistic polynomial-
time algorithm given access to the party’s input and output only. We emphasize that the
adversary here is semi-honest and therefore the view is exactly according to the protocol
definition. See [10] for a full discussion.

Theorem 6. (Composition Theorem for the semi-honest model, two parties) [6]: Suppose that g is
privately reducible to f and that there exists a protocol for privately computing f . Then there exists
a protocol for privately computing g.

3.7 Paillier’s Additive Homomorphic Properties

We briefly describe the Paillier’s additive homomorphic cryptosystem [20] and its homo-
morphic properties which will be used in our protocols.

Key generation
•Choose two large prime numbers p and q randomly and independently of each other such
that gcd(pq, (p− 1)(q − 1)) = 1.
• Compute n = pq and λ = lcm(p− 1, q − 1).
• Select random integer g where g ∈ Z∗n2 .
• Ensure n divides the order of g by checking the existence of the following modular multi-
plicative inverse: µ = (L(gλ mod n2))−1 mod n, where function L is defined as L(u) = u−1

n .
• The public encryption key is (n, g) and private decryption key is (λ, u).
Encryption
• Let m be a plaintext to be encrypted where m ∈ Zn.
• Select random r where r ∈ Z∗n.
• Compute ciphertext as: c = gmrn mod n2.
Decryption
• Ciphertext c ∈ Z∗n2 .
• Compute plaintext: m = L(cλ mod n2)µ mod n.

Homomorphic properties
• Homomorphic addition of plaintexts:

D(E(m1, r1)E(m2, r2) mod n2) = (m1 +m2) mod n

• Homomorphic multiplication of plaintexts:

D(E(m1, r1)m2 mod n2) = m1m2 mod n

TRANSACTIONS ON DATA PRIVACY 6 (2013)



76 Jinfei Liu, Li Xiong, Jun Luo, Joshua Zhexue Huang

3.8 Yao’s Millionaires’ Problem Protocol (YMPP)

We also briefly describe the Yao’s Millionaires’ Problem Protocol (YMPP) which will be
used in our protocol. Alice has i millions and Bob has j millions, where 1 < i, j < n′ and n′

is the limit value of i, j. Yao’s millionaires’ problem [25] decides whether i < j, such that
this is also the only thing they know in the end. The protocol is described in Algorithm 1.

Algorithm 1 Yao’s Millionaires’ Problem Protocol
Input:Alice inputs i, Bob inputs j.
Output:Alice and Bob know whether i < j and cannot get any more information about the
wealth of the other party.

1: Bob picks a random N -bits integer, and computes privately the value of Ea(x); call the
result k.

2: Bob sends Alice the number k − j + 1;
3: Alice computes privately the values of yu = Da(k − j + u) for u = 1, 2, ..., n′.
4: Alice generates a random prime p of N/2 bits, and computes the values zu = yu(mod
p) for all u; if all zu differ by at least 2 in the mod p sense, stop; otherwise generates
another random prime and repeat the process until all zu differ by at least 2; let p, zu
denote this final set of numbers;

5: Alice sends the prime p and the following n′ numbers to B : z1, z2, ..., zi followed by
zi + 1, zi+1 + 1, ..., zn′ + 1; the above numbers should be interpreted in the mod p sense.

6: Bob looks at the j-th number (not counting p) sent from Alice, and decides that i ≥ j if
it is equal to x mod p, and i < j otherwise.

7: Bob tells Alice what the conclusion is.

4 Privacy Preserving Distributed DBSCAN Clustering

In this section, we first introduce our Multiplication Protocol, then extend the single party
DBSCAN algorithm of [8] to privacy preserving distributed DBSCAN clustering on hori-
zontally, vertically and arbitrarily partitioned data, respectively. We also provide analysis
of the communication complexity and privacy proofs of our protocols.

4.1 Multiplication Protocol

Multiplication Problem can be described as: Alice inputs private number x and Bob inputs
private number y, Alice (but not Bob) is to get the result u = xy + v, where v is a random
number known only to Bob. Alice should not be able to derive the value of y from u and
the execution of the protocol. Similarly Bob should not be able to get the result of xy or the
value of x.

Multiplication Problem is a special case of scalar products problems, but the known scalar
products protocols are not fit for the Multiplication Problem. In our method, Paillier’s ad-
ditive homomorphic encryption schemes [20] are used to solve the Multiplication Problem.
First, Alice generates a key pair. Then, both Alice and Bob transform their inputs to positive
integers. After that, Alice sends the disguised data and the public key to Bob, Bob repeats
multiplying the disguised data and adds a random number to disguise it, then returns it to
Alice. Finally, Alice can use the private key to decode the value and get the desired result
(details are given in Algorithm 2).

TRANSACTIONS ON DATA PRIVACY 6 (2013)



Privacy Preserving Distributed DBSCAN Clustering 77

Algorithm 2 Multiplication protocol
Input:Alice inputs x, Bob inputs y.
Output:Alice gets u = xy + v where v is a random number known to Bob
only.

1: Alice generates a pair keys (EA, DA) in homomorphic encryption schemes.
2: Alice and Bob collaborate to select a random r ∈ Z∗n.
3: Alice sends EA(x, r), EA and r to Bob.
4: Bob generates a random v.
5: Bob computes u′ = (EA(x, r))y × EA(v, r).
6: Bob sends u′ to Alice.
7: Alice computes u = DA(u′).

4.1.1 Correctness Proof

u′ = (EA(x, r))y × EA(v, r)

Based on the Pallier’s homomorphic properties,

u = DA(u′) = DA((EA(x, r)y × EA(v, r)) = xy + v

Lemma 7. Multiplication Protocol is secure.

Proof. We start by presenting a simulator for the Alice’s view. In the protocol, the only
information Alice received from Bob is the u′ in Step 6. Alice can simulate the y and v
by y′ and v′ generated from a single random number with uniform random distribution.
That is, on Alice’s view, the simulated view (EA(x, r))y

′ × EA(v′, r) is computationally
indistinguishable from the u′ that Alice had received in Step 6.

We now turn to the Bob’s view. Bob receives an encryption key EA and a encrypted value
EA(x). Bob can simulate the encryption key by generating a single random number from
a uniform random distribution and the encrypted value can also be simulated simply by
generating a random from an uniform distribution.

The simulator for both runs in linear time, which meets the requirement of a polynomial
time simulation.

4.2 Privacy Preserving Distributed DBSCAN Clustering over Horizon-
tally Partitioned Data

Distance protocol for horizontally partitioned data. We first present a distance protocol
(HDP) for evaluating the distance between two horizontally split records. Consider the
horizontally partitioned data as shown in Figure 2. Let dy (l + 1 ≤ y ≤ n) denote one
record of Bob and dx (1 ≤ x ≤ l) denote one record of Alice. The purpose of this protocol
is to let Alice know whether dist(dx, dy) is smaller than Eps, without obtaining any knowl-
edge about Bob’s dy,1, dy,2, ..., dy,m and Bob could not obtain any knowledge about Alice’s
dx,1, dx,2, ..., dx,m. We can evaluate whether dist(dx, dy)2 < Eps2, so that dist(dx, dy) < Eps
can be obtained.
(dist(dx, dy))2 = (dy,1 − dx,1)2 + (dy,2 − dx,2)2 + ...+ (dy,m − dx,m)2

=

Owned by Alice︷ ︸︸ ︷
d2x,1 + d2x,2 + ...+ d2x,m +

TRANSACTIONS ON DATA PRIVACY 6 (2013)



78 Jinfei Liu, Li Xiong, Jun Luo, Joshua Zhexue Huang

Owned by Alice and Bob︷ ︸︸ ︷
d2y,1 + d2y,2 + ...+ d2y,m − 2(dx,1dy,1 + ...+ dx,mdy,m)

For the part owned by Alice and Bob,

d2y,1 + d2y,2 + ...+ d2y,m − 2(dx,1dy,1 + ...+ dx,mdy,m)

Alice generates m random numbers r1, r2, ..., rm such that

r1 + r2 + ...+ rm = 0

then
(d2y,1 + d2y,2 + ...+ d2y,m)− 2{dx,1dy,1 + ...+ dx,mdy,m}

= (d2y,1 + d2y,2 + ...+ d2y,m)− 2{dx,1dy,1 + r1 + ...+ dx,mdy,m + rm}

Alice and Bob use the Multiplication Protocol to let Bob get dx,1dy,1+r1+...+dx,mdy,m+rm.
Then Alice and Bob use the Protocol YMPP to decide whether dist(dx, dy)2 ≤ Eps2.

Lemma 8. Protocol HDP is secure.

Proof. Besides the Protocol YMPP, the only communication is that Alice sends r1, r2, ..., rm
to Bob. In Bob’s view, he could simulate the r′1, r′2, ..., r′m by generating m random numbers
from a uniform random distribution. The simulator runs in linear time, which meets the
requirement for a polynomial time simulation.

4.2.1 DBSCAN Algorithm for Horizontally Partitioned Data

Algorithm 3 DBSCAN(SetOfPointsOfAlice, SetOfPointsOfBob, Eps, MinPts)
1: Party Alice DOES:
2: //SetOfPointsOfAlice is UNCLASSIFIED
3: ClusterId:=nextId(NOISE);
4: For i FROM 1 TO SetOfPointsOfAlice.size DO
5: Point:=SetOfPointsOfAlice.get(i);
6: IF Point.ClusterId=UNCLASSIFIED THEN
7: IF ExpandCluster(SetOfPointsOfAlice, SetOfPointsOfBob, PointOfAlice, PointOfBob, ClusterId, Eps,

MinPts) THEN
8: ClusterId:=nextId(ClsuterId);
9: END IF;

10: END IF;
11: END FOR;
12: END;
13: Party B DOES: repeats step 1 to 12 by replacing Alice for Bob and Bob for Alice.

The details of the DBSCAN algorithm for horizontally partitioned data are given in Algo-
rithm 3. SetOfPointsOfAlice is either the completed database of Alice’s or a discovered
cluster from a previous run of Alice. Eps and MinPts are the global density parame-
ters. A call of SetOfPointsOfAlice. regionQuery (PointOfAlice, Eps) returns the Eps-
Neighborhood of PointOfAlice in SetOfPointsOfAlice as a list of points. The function
SetOfPointsOfAlice. get(i) returns the i-th element of SetOfPointsOfAlice. The most
important function used by DBSCAN is ExpandCluster which is presented in Algorithm 4.
SetOfPointsOfBobPermutation is SetOfPointsOfBob. But in each iteration, the points’
order is permutated randomly. Therefore, Alice only knows there is a point of Bob (but

TRANSACTIONS ON DATA PRIVACY 6 (2013)



Privacy Preserving Distributed DBSCAN Clustering 79

does not know which point of Bob) in neighborhood of one of her points. In this way, the
situation in Figure 1 can be avoided. What should be noted is that in Steps 3 and 13, only
Alice knows whether the point in SetOfPointsOfBobPermutation is seed. Otherwise,
Bob could decide Alice in a small intersection region as we argued in Figure 1. Explain
above again by replacing Alice for Bob and Bob for Alice.

Algorithm 4 ExpandCluster(SetOfPointsOfAlice, SetOfPointsOfBob, PointOfAlice,
PointOfBob, ClusterId, Eps, MinPts) : Boolean
1: Party Alice DOES:
2: seedsA:=SetOfPointsOfAlice.regionQuery(PointOfAlice,Eps);
3: seedsB :=SetOfPointsOfBobPermutation.regionQuery(PointOfAlice,Eps);//Alice and Bob cooperatively use Protocol HDP
4: IF seedsA.size+seedsB .size<MinPts THEN
5: SetOfPointsofAlice.changeClusterId(PointOfAlice,NOISE);
6: RETURN False;
7: ELSE
8: SetOfPointsOfAlice.changeClusterIds(seedsA,ClusterId);
9: seedsA.delete(PointOfAlice);

10: WHILE seedsA 6= Empty DO
11: currentP:=seedsA.first();
12: resultA:=SetOfPointsOfAlice.regionQuery(currentP,Eps);
13: resultB :=SetOfPointsOfBobPermutation.regionQuery(currentP,Eps);//Alice and Bob cooperatively use Protocol HDP
14: IF resultA.size+resultB .size≥MinPts THEN
15: FOR i FROM 1 TO resultA.size DO
16: resultAP:=resultA.get(i);
17: IF resultAP.ClusterId IN {UNCLASSIFIED,NOISE} THEN
18: IF resultAP.ClusterId=UNCLASSIFIED THEN
19: seedsA.append(resultAP);
20: END IF;
21: SetOfPointsOfAlice.changeClusterId(resultAP,ClusterId);
22: END IF; //UNCLASSIFIED or NOISE
23: END FOR;
24: END IF; //result.size≥MinPts
25: seedsA.delete(currentP);
26: END WHILE; //seedsA 6= Empty
27: RETURN True;
28: END IF;
29: END; //ExpandCluster
30: Party B DOES: repeats step 1 to 29 by replacing Alice for Bob and Bob for Alice.

4.2.2 Communication Complexity and Privacy

For each record di (1 ≤ i ≤ n), it has m components. Assume that each component is
represented by c1 bits. Communication is involved when the two parties are engaged in
the Multiplication Protocol to judge the core point. The communication complexity of each
Multiplication Protocol is O(c1). Assume that each number in Protocol YMPP is repre-
sented by c2 bits. Hence, it requires a communication of O(c1ml(n− l)+ c2n

′l(n− l)) bits to
execute the algorithm, where n′ = |u| and l is the number of records owned by one party.

Theorem 9. Algorithm 3 privately computes the privacy preserving distributed DBSCAN cluster-
ing over horizontally partitioned data assuming semi-honest, revealing the number of points from
the other party in the neighborhood of this point.

Proof. Step 3 and Step 13 are the only two steps of Algorithm 4 requiring communication.
As Lemma 8 has been proved that protocol HDP is private, by applying the composition
theorem (Theorem 6), we can conclude that the privacy preserving distributed DBSCAN
clustering over horizontally partitioned data is private.

TRANSACTIONS ON DATA PRIVACY 6 (2013)



80 Jinfei Liu, Li Xiong, Jun Luo, Joshua Zhexue Huang

4.3 Privacy Preserving Distributed DBSCAN Clustering over Vertically
Partitioned Data

Distance protocol for vertically partitioned data. We first present a distance protocol
(VDP) for evaluating the distance between two vertically split records. Consider the verti-
cally partitioned data as shown in Figure 3. Let dy denote one record and dy,1, dy,2, ..., dy,l
are owned by Alice while dy,l+1, dy,l+2, ..., dy,m are owned by Bob. Let dx (x 6= y) denote
another record and dx,1, dx,2, ..., dx,l owned by Alice while dx,l+1, dx,l+2, ..., dx,m are owned
by Bob. The purpose of this protocol is to let Alice and Bob know whether dist(dx, dy)
smaller than Eps. At the same time, Alice (Bob) knows nothing about Bob’s (Alice’s) data,
respectively. In order to determine

(dist(dx, dy))2 =

Owned by Alice︷ ︸︸ ︷
(dx,1 − dy,1)2 + ...+ (dx,l − dy,l)2 +

Owned by Bob︷ ︸︸ ︷
(dx,l+1 − dy,l+1)2 + ...+ (dx,m − dy,m)2≤ Eps2

Bob obtained
Eps2 − {(dx,l+1 − dy,l+1)2 + ...+ (dx,m − dy,m)2}

then use Protocol YMPP, Alice and Bob could decide whether dist(dx, dy) ≤ Eps.

4.3.1 DBSCAN Algorithm for Vertically Partitioned Data

Algorithm 5 DBSCAN(SetOfPoints, Eps, MinPts)
1: //SetOfPoints is UNCLASSIFIED
2: ClusterId:=nextId(NOISE);
3: For i FROM 1 TO SetOfPoints.size DO
4: Point:=SetOfPoints.get(i);
5: IF Point.ClusterId=UNCLASSIFIED THEN
6: IF ExpandCluster(SetOfPoints, Point, ClusterId, Eps, MinPts) THEN
7: ClusterId:=nextId(ClsuterId);
8: END IF
9: END IF

10: END FOR
11: END

The details of the DBSCAN algorithm for vertically partitioned data are given in Algo-
rithm 5. SetOfPoints is either the completed database or a discovered cluster from a previ-
ous run. Eps andMinPts are the global density parameters. A call of SetOfPoints.regionQuery(Point, Eps)
returns the Eps-Neighborhood of Point in SetOfPoints as a list of points. The function
SetOfPoints.get(i) returns the i-th element of SetOfPoints. The most important function
used by DBSCAN is ExpandCluster which is presented in Algorithm 6.

4.3.2 Communication Complexity and Privacy

For each record di, it has m components. Communication is involved when the two parties
are engaged in the Protocol YMPP to judge the core point. Assume that each number in
Protocol YMPP is represented by c2 bits. The communication complexity of each YMPP is
O(c2n

′) where n′ = |u| and there are O(n2) times of executing YMPP if we implement DB-
SCAN without spatial index. Hence, it requires a communication of O(c2n

′n2) bits totally.

TRANSACTIONS ON DATA PRIVACY 6 (2013)



Privacy Preserving Distributed DBSCAN Clustering 81

Algorithm 6 ExpandCluster(SetOfPoints, Point, ClusterId, Eps, MinPts) : Boolean
1: seeds:=SetOfPoint.regionQuery(Point,Eps); //Alice and Bob cooperatively use Protocol VDP.
2: IF seeds.size<MinPts THEN //no core points
3: SetOfPoints.changeClusterId(Point,NOISE);
4: RETURN False;
5: ELSE
6: SetOfPoints.changeClusterIds(seeds,ClusterId);
7: seeds.delete(Point);
8: WHILE seeds 6= Empty DO
9: currentP:=seeds.first();

10: result:=SetOfPoints.regionQuery(currentP,Eps); //Alice and Bob cooperatively use Protocol VDP.
11: IF result.size≥MinPts THEN
12: FOR i FROM 1 TO result.size DO
13: resultP:=result.get(i);
14: IF resultP.ClusterId IN {UNCLASSIFIED, NOISE} THEN
15: IF resultP.ClusterId=UNCLASSIFIED THEN
16: seeds.append(resultP);
17: END IF;
18: SetOfPoints.changeClusterId(resultP, ClusterId);
19: END IF; //UNCLASSIFIED or NOISE
20: END FOR;
21: END IF; //result.size≥MinPts
22: seeds.delete(currentP);
23: END WHILE; //seeds 6= Empty
24: RETURN True;
25: END IF;
26: END; //ExpandCluster

Theorem 10. Algorithm 5 privately computes the privacy preserving distributed DBSCAN clus-
tering over horizontally partitioned data assuming semi-honest, revealing the number of points in
the neighborhood of this point.

Proof. The key privacy of the algorithm 6 is the comparison of dist(dx, dy) with Eps. This
is guaranteed by Protocol YMPP. By applying the composition theorem (Theorem 6), we
can conclude that the privacy preserving distributed DBSCAN clustering over vertically
partitioned data is secure. The only information revealed is the output which must be
known by Alice and Bob.

4.4 Privacy Preserving Distributed DBSCAN Clustering Algorithm over
Arbitrarily Partitioned Data

In arbitrarily partitioned data, there is not necessarily a simple pattern of how data are
shared between the parties. For each record di (1 ≤ i ≤ n), Alice knows the values for
a subset of the attributes, and Bob knows the values for the remaining attributes. That is,
each di is partitioned into disjointed subsets Alicedi and Bobdi so that Alice knows Alicedi
and Bob knows Bobdi . Although extremely patchworked data is infrequent in practice, the
generality of this model can make it better suited to practical settings in which data may be
mostly, but not completely, vertically or horizontally partitioned.

As discussed in subsection 3.1, the key of DBSCAN is to judge dist{di, dj} ≤ Eps for two
records dx, dy owned by Alice and Bob, respectively. For example, in Figure 4, the problem
is to let Alice and Bob cooperate to decide

V ertically partitioned︷ ︸︸ ︷
(A2,1 −A1,1)2 + (B2,2 −B1,2)2 +

Horizontally partitioned︷ ︸︸ ︷
(B2,3 −A1,3)2 + (B2,4 −A1,4)2≤ Eps2

For the vertically partitioned data, (A2,1 − A1,1)2 = Alicev is owned by Alice and (B2,2 −
B1,2)2 = Bobv is owned by Bob. For the horizontally partitioned data, we could process

TRANSACTIONS ON DATA PRIVACY 6 (2013)



82 Jinfei Liu, Li Xiong, Jun Luo, Joshua Zhexue Huang

them using the Protocol HDP. That is, the horizontally partitioned data could be divided
into data owned by Alice (Aliceh) and data owned by Bob (Bobh). Then Alice and Bob use
Protocol HDP to let Bob get (B2,3 − A1,3)2 + (B2,4 − A1,4)2 = Bobh. Along with Bobv , Bob
knows Bobh + Bobv . Since Alice knows Alicev , Alice and Bob could decide dist{di, dj} ≤
Eps by using Protocol YMPP.
Since the arbitrarily partitioned data could be decomposed into horizontally and vertically

partitioned data, with Theorem 6, the algorithm for the arbitrarily partitioned data is the
combination of algorithms for horizontally and vertically partitioned data. Hence, we do
not repeat the algorithm here.

5 Enhanced Protocol of Privacy Preserving DBSCAN Clus-
tering over Horizontally Partitioned Data

In this section, we present an enhanced protocol with improved privacy for the protocol in
Subsection 4.2. As it is stated in Theorem 9, the privacy preserving distributed DBSCAN
clustering algorithm over horizontally partitioned data reveals the number of points in
the neighborhood of a point. This enhanced protocol only reveals whether the number
of the other party’s points in his/her point’s neighborhood is greater than Minpts minus
||his/her points in this point’s neighborhood||.

If Alice wants to decide whether the point is a core point, she only needs to know the
distance between kth smallest Dist2{A,Bi}’s Bi and A is less than or equal to Eps, where
k equals to MinPts minus ||her points in this point’s neighborhood||. Hence, this problem
is decomposed into two sub-problems. One is how to compare the distances securely. The
other one is how to find the kth order statistic.

For how to compare the distances securely, assume Alice has one point A and Bob has n
points B1, B2, ..., Bn. The distance between Alice A and Bob Bi, 1 ≤ i ≤ n is:

Dist2{A,Bi} = (A1 −Bi1)2 + (A2 −Bi2)2 + ...+ (Am −Bim)2

= (A2
1 +A2

2 + ...+A2
m)− (2A1Bi1 + 2A2Bi2 + ...+ 2AmBim) + (B2

i1 +B2
i2 + ...+B2

im)

= (A2
1 +A2

2 + ...+A2
m,−2A1,−2A2, ...,−2Am, 1) · (1, Bi1, Bi2, ..., Bim, B2

i1 +B2
i2 + ...+B2

im)

Then use the Multiplication Protocol,

u1 = Dist2{A,B1}+ v1

u2 = Dist2{A,B2}+ v2

· · · · · ·

un = Dist2{A,Bn}+ vn

Alice knows u1, u2, ..., un and Bob knows v1, v2, ..., vn. Alice and Bob could use the Protocol
YMPP to decide whetherDist{A,Bi} is greater thanDist{A,Bj} as follows, where 1 ≤ i 6=
j ≤ n.

Dist{A,Bi} −Dist{A,Bj} = (v1 − u1)− (v2 − u2) = (v1 − v2)− (u1 − u2)

Alice and Bob could use the Protocol YMPP to decide whether (v1−v2)−(u1−u2) is greater
than 0, i.e., whether Dist{A,Bi} is greater than Dist{A,Bj}.

TRANSACTIONS ON DATA PRIVACY 6 (2013)



Privacy Preserving Distributed DBSCAN Clustering 83

Then this problem turns to how to find the kth smallest Dist{A,Bi}, 1 ≤ i ≤ n in an
array. We illustrate two different algorithms. The first algorithm is appropriate when the
k is small. The algorithm scans the Dist{A,Bi}, 1 ≤ i ≤ n, the first iteration finds the
smallest Dist{A,Bi}, 1 ≤ i ≤ n, then deletes the Dist{A,Bsmallest} and iteratively to find
the smallest in the rest of Dist{A,Bi}, i 6= smallest. So the iteration continues until finding
the kth smallest number. The time complexity is O(kn), which is a good time complexity
for a small k. Though k is often very small, we here also illustrate an algorithm appropriate
when the k is greater, quick sorted based algorithm [21]. The worst time complexity is just
like that of quick sort Θ(n2). The balanced time complexity is O(n+ n/2 + n/4 + ...+ 1) =
O(n).

When Alice knows the kth smallest Dist2{A,Bi}’s Bi. Alice and Bob could use the Proto-
col YMPP to decide whetherDist{A,Bi} is smaller than or equal toEps. If theDist{A,Bi} ≤
Eps, then the point A is a core point. The entire protocols are as follows (Algorithm 7):

Algorithm 7 DBSCAN(SetOfPointsOfAlice, SetOfPointsOfBob, Eps, MinPts)
1: Party Alice DOES:
2: //SetOfPointsOfAlice is UNCLASSIFIED
3: ClusterId:=nextId(NOISE);
4: For i FROM 1 TO SetOfPointsOfAlice.size DO
5: Point:=SetOfPointsOfAlice.get(i);
6: IF Point.ClusterId=UNCLASSIFIED THEN
7: IF EnhancedExpandCluster(SetOfPointsOfAlice, PointOfAlice, ClusterId, Eps, MinPts) THEN
8: ClusterId:=nextId(ClsuterId);
9: END IF;

10: END IF;
11: END FOR;
12: END;
13: Party B DOES: repeats step 1 to 12 by replacing Alice for Bob and Bob for Alice.

Algorithm 8 EnhancedExpandCluster(SetOfPointsOfAlice, SetOfPointsOfBob, PointOfAl-
ice, PointOfBob, ClusterId, Eps, MinPts) : Boolean
1: Party Alice DOES:
2: IF PointOfAlice is not a core point THEN//Use Updated Protocol.
3: SetOfPointsofAlice.changeClusterId(PointOfAlice,NOISE);
4: RETURN False;
5: ELSE
6: SetOfPointsOfAlice.changeClusterIds(seedsA,ClusterId);
7: seedsA.delete(PointOfAlice);
8: WHILE seedsA 6= Empty DO
9: currentP:=seedsA.first();

10: IF currentP is a core point THEN //Use Updated Protocol.
11: FOR i FROM 1 TO resultA.size DO
12: resultAP:=resultA.get(i);
13: IF resultAP.ClusterId IN {UNCLASSIFIED,NOISE} THEN
14: IF resultAP.ClusterId=UNCLASSIFIED THEN
15: seedsA.append(resultAP);
16: END IF;
17: SetOfPointsOfAlice.changeClusterId(resultAP,ClusterId);
18: END IF; //UNCLASSIFIED or NOISE
19: END FOR;
20: END IF; //result.size≥MinPts
21: seedsA.delete(currentP);
22: END WHILE; //seedsA 6= Empty
23: RETURN True;
24: END IF;
25: END; //ExpandCluster
26: Party B DOES: repeats step 1 to 29 by replacing Alice for Bob and Bob for Alice.

TRANSACTIONS ON DATA PRIVACY 6 (2013)



84 Jinfei Liu, Li Xiong, Jun Luo, Joshua Zhexue Huang

5.1 Communication Complexity and Privacy

For each record di(1 ≤ i ≤ n), it has m components. Assume that each component is
represented by c1 bits. Communication is involved when the two parties engage in the
Multiplication Protocol to finish Alice and Bob’s secret sharing Dist{A,Bi}. The commu-
nication complexity of each Multiplication Protocol is O(c1). Assume that each number
in Protocol YMPP is represented by c2 bits. In order to find the kth smallest distance and
compare whether the distance is greater than Eps, we need O(l(n− l)c2n′) bits to execute,
where n′ = |u| and l is the number of records owned by one party. Hence, the entire proto-
col requires O(c1ml(n− l) + c2n

′l(n− l)) to execute.

Theorem 11. Algorithm 7 privately computes the privacy preserving distributed DBSCAN clus-
tering over horizontally partitioned data assuming semi-honest revealing whether the number of
other party’s points in his/her point’s neighborhood is greater than Minpts minus ||his/her points
in this point’s neighborhood||.

Proof. Step 2 and Step 10 are the only two steps of Algorithm 8 requiring communication.
As Protocol YMPP and Multiplication Protocol have been proved private, by applying the
composition theorem (Theorem 6), we can conclude that the updated privacy preserving
distributed DBSCAN clustering over horizontally partitioned data is private.

6 Conclusion and Future Work

In this paper, we provide efficient privacy preserving algorithms for DBSCAN clustering
over the setting of horizontally, vertically and arbitrarily partitioned data, respectively. In
the future, it will be interesting to see whether we can extend our method to other privacy
preserving distributed data mining algorithms.

7 Acknowledgments

This research has been partially supported by the AFOSR under grant FA9550-12-1-0240
and NSF of China under project 11271351.

References

[1] C. C. Aggarwal and P. S. Yu. A condensation approach to privacy preserving data mining. In
EDBT, pages 183–199, 2004.

[2] R. Agrawal and R. Srikant. Privacy-preserving data mining. In SIGMOD Conference, pages
439–450, 2000.

[3] A. Amirbekyan and V. Estivill-Castro. Privacy preserving dbscan for vertically partitioned data.
In ISI, pages 141–153, 2006.

[4] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Ordering points to identify the
clustering structure. In SIGMOD Conference, pages 49–60, 1999.

[5] P. Bunn and R. Ostrovsky. Secure two-party k-means clustering. In ACM Conference on Computer
and Communications Security, pages 486–497, 2007.

[6] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-party computation. In
STOC, pages 639–648, 1996.

TRANSACTIONS ON DATA PRIVACY 6 (2013)



Privacy Preserving Distributed DBSCAN Clustering 85

[7] W. Du and Z. Zhan. Using randomized response techniques for privacy-preserving data mining.
In KDD, pages 505–510, 2003.

[8] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters
in large spatial databases with noise. In KDD, pages 226–231, 1996.

[9] A. V. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserving mining of associa-
tion rules. In KDD, pages 217–228, 2002.

[10] O. Goldreich. Foundations of cryptography: Basic applications, volume 2. Cambridge Univ Pr, 2004.

[11] A. Hinneburg and D. A. Keim. An efficient approach to clustering in large multimedia databases
with noise. In KDD, pages 58–65, 1998.

[12] G. Jagannathan and R. N. Wright. Privacy-preserving distributed k-means clustering over arbi-
trarily partitioned data. In KDD, pages 593–599, 2005.

[13] M. Kantarcioglu and C. Clifton. Privacy-preserving distributed mining of association rules on
horizontally partitioned data. IEEE Trans. Knowl. Data Eng., 16(9):1026–1037, 2004.

[14] K. A. Kumar and C. P. Rangan. Privacy preserving dbscan algorithm for clustering. In ADMA,
pages 57–68, 2007.

[15] K.-P. Lin and M.-S. Chen. Privacy-preserving outsourcing support vector machines with ran-
dom transformation. In KDD, pages 363–372, 2010.

[16] Y. Lindell and B. Pinkas. Privacy preserving data mining. J. Cryptology, 15(3):177–206, 2002.

[17] J. Liu, J. Luo, J. Z. Huang, and L. Xiong. Privacy preserving distributed dbscan clustering. In
EDBT/ICDT Workshops, pages 177–185, 2012.

[18] R. T. Ng and J. Han. Efficient and effective clustering methods for spatial data mining. In VLDB,
pages 144–155, 1994.

[19] R. Ostrovsky, Y. Rabani, L. J. Schulman, and C. Swamy. The effectiveness of lloyd-type methods
for the k-means problem. In FOCS, pages 165–176, 2006.

[20] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EURO-
CRYPT, pages 223–238, 1999.

[21] H. Thomas, E. Charles, and L. Ronald. Introduce to Algorithms. MIT press, 2001.

[22] J. Vaidya and C. Clifton. Privacy preserving association rule mining in vertically partitioned
data. In KDD, pages 639–644, 2002.

[23] J. Vaidya and C. Clifton. Privacy-preserving k-means clustering over vertically partitioned data.
In KDD, pages 206–215, 2003.

[24] W. Xu, L. Huang, Y. Luo, Y. Yao, and W. Jing. Protocols for privacy-preserving dbscan clustering.
Int. J. Secur., Appl, 1(1):45–56, 2007.

[25] A. C.-C. Yao. Protocols for secure computations (extended abstract). In FOCS, pages 160–164,
1982.

[26] A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In FOCS, pages 162–
167, 1986.

TRANSACTIONS ON DATA PRIVACY 6 (2013)


