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Abstract. One main concern for individuals participating in the data collection of personal location
history records (i.e., trajectories) is the disclosure of their location and related information when a
user queries for statistical or pattern mining results such as frequent locations derived from these
records. In this paper, we investigate how one can achieve the privacy goal that the inclusion of his
location history in a statistical database with interesting location mining capability does not substan-
tially increase risk to his privacy. In particular, we propose a (ε, δ)-differentially private interesting
geographic location pattern mining approach motivated by the sample-aggregate framework. The
approach uses spatial decomposition to limit the number of stay points within a localized spatial
partition and then followed by density-based clustering. The (ε, δ)-differential privacy mechanism
is based on translation and scaling insensitive Laplace noise distribution modulated by database
instance dependent smoothed local sensitivity. Unlike the database independent ε-differential pri-
vacy mechanism, the output perturbation from a (ε, δ)-differential privacy mechanism depends on
a lower (local) sensitivity resulting in a better query output accuracy and hence, more useful at a
higher privacy level, i.e., smaller ε. We demonstrate our (ε, δ)-differentially private interesting ge-
ographic location discovery approach using the region quadtree spatial decomposition followed by
the DBSCAN clustering. Experimental results on the real-world GeoLife dataset are used to show the
feasibility of the proposed (ε, δ)-differentially private interesting location mining approach.

Keywords. Differential privacy, moving objects data mining, frequent location pattern mining, density-
based clustering, spatial decomposition.

1 Introduction

The interesting location discovery task is an important intermediate procedure in many
real-world prediction [13] and recommender system [31, 32] applications. Informally, an
interesting location can be understood as a geographic region that many people have vis-
ited. The interesting location patterns and statistics can be extracted from individual loca-
tion history records, the so-called trajectory data. With the prevalence of location acquisition
technology on mobile devices, these data can be easily obtained with permission from the
individuals carrying the mobile devices. However, to obtain meaningful patterns, a large
and diverse amount of individual location history records have to be collected for analysis
or mining. One main concern for individuals participating in such data collection is the
disclosure of their location and related information when a user (repeatedly) queries for
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the analysis or mining results. The privacy goal for this problem is to ensure that an indi-
vidual’s participation in such a statistical database does not substantially increase risk to his
privacy. The desired privacy level for such a goal is captured by the measure of differential
privacy [7]. If one can provide a guarantee that limits privacy risk when one’s location his-
tory is included into a database, an individual would be more willing to allow his location
history to be collected. With the increase number of participations, results mined from the
location history database become more accurate with higher confidence.

For a query on a location history statistical database with data mining capabilities, one as-
sumes that only statistics and patterns are returned to users. Without disclosing a person’s
membership in the location history database or even when the person’s location history is
not in the database, an attack can take place to gain information about the person on the
discovered spatial patterns. This is especially true when one has auxiliary information [9]
not available from the location history database.

An overview of the interesting location discovery task for a trajectory database is shown
in Figure 1. In the first stage, stay points are extracted from trajectories (see Section 3.1).
In the next stage, interesting locations with their data count and centroid information are
mined from the stay point database.

Figure 1: Overview of the Interesting Location Discovery Task for a Trajectory Database.

There are two specific privacy policies that we would like to control: (i) the precision of the
discovered locations and (ii) the output counts for queries on these locations. One would
like to preserve the privacy for an individual, say John, and also to ensure the usefulness
and accuracy for database queries that utilize the discovered location patterns and their
stay point counts. Differential privacy ensures that the “ability of an adversary to inflict
harm [. . . ] should be essentially the same, independent of whether any individual opts
in to, or opts out of, the dataset” [9]. Figure 2 shows a non privacy-preserving example
when an individual (say John) decides to opt out from the location history database, an
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interesting region changes from Region A to Region A′. With this change, an adversary
discovers a more specific location (dashed non-shaded region, A − A′) within Region A
that John visits regularly.

Figure 2: An interesting region changes from Region A to Region A′ when John opts out
from the location history database.

In this paper, we investigate in detail how one can ensure differential privacy for two spa-
tial queries needed to accomplish the interesting location discovery task with differential
privacy, namely:

[Data Count in Region] f1 : I → Z+ (1)
[Centroid for Region] f2 : I → R2 (2)

such that I is the set of interesting locations computed from a database D, with each record
containing a stay point (latitude, longitude) and a number unique to each individual, Z+ is
the set of positive integers, and R2 is the 2D space. Besides the above two spatial queries,
we apply differential privacy mechanism to the count query

[Data Count in Partition] f0 : P → Z+ (3)

such that P is the set of partition computed using spatial decomposition such as quadtree,
KD-tree, or R-tree, from the database D.
The main contributions of the paper are: (i) the first application of (ε, δ)-differential pri-

vacy mechanism to a spatial data mining task, in particular, the interesting geographic
location discovery problem and (ii) the theoretical justification for our (ε, δ)-differentially
private interesting location pattern mining approach based on the sample-aggregate frame-
work [24] . One distinct advantage of (ε, δ)-differential privacy Laplace noise mechanism
over the conventional ε-differential privacy Laplace noise mechanism is the much lower
noise level required to achieve the same ε privacy level. This lower noise level, in turn, re-
sults in a better query output accuracy. Hence, one obtains a more useful output at similar
privacy level (with a negligible privacy loss) with a slight variation in the output distribu-
tion.

The rest of the paper is organized as follows. In Section 2, we briefly review privacy is-
sues in data mining, privacy goals, and related work on privacy approaches for spatial and
location-based domains. In Section 3, we define the interesting location pattern mining
problem for trajectory data, introduce the concept of differential privacy, and the Laplace
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noise differential privacy mechanism. In Section 4, we describe and discuss in detail our
proposed differentially private pattern mining solution to discover interesting locations.
In Section 5, experimental results on the GeoLife dataset [31], consisting of human tra-
jectory collected using mobile devices, are used to show the feasibility of the proposed
(ε, δ)-differentially private interesting location pattern mining approach.

2 Related Work

There have been many research work on preserving privacy for sensitive information in
statistical databases [2] (and the references therein) and privacy preserving knowledge dis-
covery techniques [4] (and the references therein). Decision tree classifier is the most com-
monly used data mining algorithm that research has been done to explore privacy issues
[2, 11, 19]. Agrawal and Srikant [2] addressed the task of developing accurate decision tree
using perturbed data sets to preserve data record privacy. Lindell and Pinkas [19] devel-
oped theoretically a protocol on the task when two parties perform data mining, in par-
ticular running the ID3 decision tree classifier, on the union of their confidential databases
without revealing any confidential information to each other. Friedman and Schuster [11]
used the Privacy Integrated Queries (PINQ) API [21], an infrastructure for implementing
differentially private algorithms, to construct a differentially private ID3 decision tree clas-
sifier.

Conventional privacy goals such as data/response perturbation, k-anonymity, and differ-
ential privacy have been considered for privacy preserving data mining algorithms for sta-
tistical databases. An algorithm achieves privacy protection if it can still perform well (i.e.,
accurate prediction model) when the records in the database are perturbed [2]. Although
such a privacy goal is intuitive from a data mining perspective, it lacks theoretical results
to establish a relationship between the model accuracy and the amount of data/response
perturbation. An algorithm achieves k-anonymity privacy protection if each record in the
database cannot be distinguished from at least k− 1 records in the database when the algo-
rithm is applied [27]. An algorithm achieves ε-differential privacy protection if the outputs
returned from the algorithm for any two databases differ on a single record are approxi-
mately the same described by a probabilistically bound using an exponential function of ε
[7] (see Section 3.2).

Privacy is an important issue for both spatial and spatiotemporal data mining due to the
challenge of protecting personal location information [3, 28, 14] (and the references therein).
k-Anonymity approaches are used frequently to preserve privacy during personal location
collection in location-based services [12] or to perform privacy preserving spatial (range
or nearest neighbors) queries [18]. Obfuscation or perturbation techniques are used to
hide and confuse an adversary by modifying a user’s trajectory or location history. To
achieve anonymity in publishing trajectory dataset is also a challenging problem. Mon-
reale et al. [22] proposed a method to transform trajectory data based on spatial general-
ization (i.e., replacing exact locations by their approximations) and k-anonymity justified
by a theoretical upper bound to the probability of re-identification. Nergiz et al. [23] pro-
posed a method that ensures k-anonymity and included sampling from the anonymized
data to prevent leakage due to the anonymization step. Yarovoy et al. [29] introduced a
form of k-anonymity based on spatial generalization for moving objects and proposed two
anonymization approaches that achieve their notion of k-anonymity. Recently, Abul et al.
[1] also introduced the concept of (k, δ)−anonymity that exploits the inherit location un-
certainty of moving objects, represented by radius δ, to reduce the amount of distortion
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needed to anonymize data using clustering and spatial perturbation. Due to the difficulty
in obtaining global sensitivities needed to achieve ε−differential privacy for location-based
pattern mining queries, Ho [17] suggested the necessity to handle location-based pattern
mining approaches from the (ε, δ)-differentially privacy perspective [8].

3 Background

In Section 3.1, we define and describe the interesting location mining problem. In Section
3.2, we formally define differential privacy and describe existing concepts and tools that
are needed to construct the differentially private pattern mining approach to discover in-
teresting locations.

3.1 Discovering Interesting Locations

Let trajkii = {p1, p2, . . . , pki} be a trajectory consisting of ki measurements. Each pj =
(xj , yj , tj) such that xj is the latitude, yj is the longitude, and tj is a timestamp and tj <
tj+1. Following the definition in [31] with a slight variation, we define a stay point to be
the center (x, y) of a circle region with radius η that a trajectory stays for at least a time
period of4T (see Figure 3).

An individual interesting location is a region containing more than r stay points for the
individual. Given a set of trajectories, TJ = {trajk11 , trajk22 , . . . , trajkss }. An interesting
location is a region containing more than r′ stay points. One can also define an interesting
location as a region that satisfies the condition that it is an individual interesting location
for at least m individuals if each individual has more than r′ stay points in the region.

Figure 3: Stay point is the center of the circle region.

While the interesting location discovery problem, under a more complex assumption, is
motivated by its application to recommender system [31], it is a main research topic in
spatial and spatial-temporal data mining which the objective is to find regions with high
object density [10, 14, 15]. One notes that the task of finding interesting locations is similar
to the task of finding frequent locations and it is an intermediate step to find correlation
between interesting or frequent locations.
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3.2 Differential Privacy

Differential privacy ensures that one can extract meaningful knowledge or information
from a dataset while privacy is preserved for any individual whether his data is in the
dataset or not.

Definition 1. [9] A randomized function K gives ε− differential privacy if for all datasets
D1 and D2 differing on at most one element, and all S ⊂ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε)× Pr[K(D2) ∈ S].

The function K satisfies the fact that when one element is removed from the dataset,
no output would become significantly more or less likely. From another perspective, ε-
differential privacy for a pattern mining algorithm can be defined as follows.

Definition 2. A pattern mining algorithm M provides ε−differential privacy if for any two
datasets D1 and D2 that differ in a single entry and for any a,∣∣∣∣log µ(M(D1) = a|D1)

µ(M(D2) = a|D2)

∣∣∣∣ ≤ ε (4)

such that M(D) is the random variable that represents the algorithm output and µ de-
notes the probability density for the algorithm output. Inequality (4) is also called the ε−
indistinguishable and ε is called the leakage [6]. Inequality (4) implies that for the pattern
mining algorithm outputs to be indistinguishable probabilistically when there is only one
different entry in the dataset, ε has to be small, since log(1 + ε) ≈ ε for small ε. In other
words, a high degree of differential privacy is quantified by a small leakage.
ε−differential privacy can be achieved by the addition of random noise whose magnitude

is chosen as a function on the largest change a single participant could have on the output
to the query function, called the sensitivity of the function.

Definition 3. For f : D → Rd, the sensitivity of f is

4f = max
D1,D2

||f(D1)− f(D2)||1 (5)

for all D1, D2 differing in at most one element.

The most common mechanism to handle differential privacy is by Laplace noise pertur-
bation on the outputs [7] described by Theorem 4 below.

Theorem 4. Let Kf be the privacy mechanism for a query function f : D → Rd and adds noise
with a scaled symmetric exponential distribution with variance σ2 described by the density function

Pr[Kf (X) = a] ∝ exp

(
−||f(X)− a||1

σ

)
to each component of f(X) with X ∈ D. This density function defines the Laplace distribution,
Lap(σ). The mechanism Kf gives

(
4f
σ

)
-differential privacy.

The proof of Theorem 4 shows that the application of Laplace noise satisfies Inequality (4)
[6]. To achieve ε−differential privacy, one perturbs the query output so that

f ′(X) = f(X) +N (6)
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whereN ∼ Lap(σ) with σ = 4f
ε . The sensitivity4f used to specify the σ parameter for the

Laplace distribution is a “global sensitivity” [24] as the sensitivity depends on all possible
pairs ofD1 andD2 with one element difference. Since ε = 4f

σ , it is clear that in practice one
needs to sacrifice differential privacy (or indistinguishability) by allowing higher leakage if
the problem domain has a large sensitivity instead of using a higher σ, affecting the output
accuracy, to maintain a smaller leakage.

One important result for the differential privacy concept is that the application of a se-
quence of differential privacy mechanisms ensures differential privacy for a task, even
when a later computation makes use of results from earlier computations [21].

Theorem 5 (Sequential Composition). Let Mi be a mechanism that provides εi− differential
privacy for i = 1, . . . , n. The sequence of Mi on an input domain X provides (

∑
i εi)−differential

privacy.

Another important result is that if a sequence of differential privacy mechanisms is ap-
plied to a set of disjoint subsets of the input domain, one achieves a better overall privacy
guarantee which is the worst privacy guarantee among all the disjoint subsets.

Theorem 6 (Parallel Composition). [21] Let Mi be a mechanism that provides εi-differential
privacy for i = 1, . . . , n on arbitrary disjoint subsets Di of the input domain D. The sequence of
Mi on the input domain D provides (maxi εi)-differential privacy.

Due to this database independent nature of global sensitivity, the privacy mechanism can
perform very badly in practice [26]. In particular, if the noise perturbation is too much due
to large sensitivity, the output responses from the algorithm becomes meaningless. While
Sarathy and Muralidhar [26] presented a negative argument challenging the usefulness
of the Laplace noise perturbation mechanism for practical applications, we claim that the
differential privacy mechanism is useful if one can decompose the problem domain into
smaller subproblems and one utilizes database instance dependent sensitivity for query
function f . This can be achieved based on the utilization of a “relaxed” definition for dif-
ferential privacy defined as follows.

Definition 7. [8] A randomized function K is (ε, δ)-differentially private if for all datasets
D1 and D2 differing on at most one element, and all S ⊂ Range(K)

Pr[K(D1) ∈ S] ≤ exp(ε)× Pr[K(D2) ∈ S] + δ.

This is the differential privacy definition we use for the rest of the paper. If δ = 0, (ε, 0)-
differential privacy is ε-differential privacy. One notes that this definition has no relation to
the (ε, δ)-probabilistic differential privacy [20] such that δ is used to ensure that the disclo-
sure set has low probability.
(ε, δ)-differential privacy allows one to claim the same privacy level as Definition 1 when

there is a small amount of privacy loss due to a slight variation in the output distribution for
the privacy mechanism K. Moreover, one can use a sample-aggregate framework [24] to
construct the privacy-preserving pattern mining algorithm that preserves (ε, δ)-differential
privacy.

Note that the composition theorems above are also valid for (ε, δ)-differential privacy
mechanism. They are used in the justification of our (ε, δ)-differentially private interest-
ing location pattern mining approach.
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4 (ε, δ)-Differentially Private Interesting Location Discovery

In Section 4.1, we provide intuition and motivation for our (ε, δ)-differentially private in-
teresting location pattern mining algorithm. In Section 4.2, we present and describe the dif-
ferentially private region quadtree algorithm and interesting location extraction algorithm
using DBSCAN clustering in detail. In Section 4.3, we show that our proposed privacy
preserving region quadtree algorithm and interesting location extraction algorithm using
DBSCAN clustering are (ε, δ)-differentially private. Towards that end, privacy is preserved
for the proposed interesting location pattern mining approach motivated by the sample-
aggregate framework [24].

4.1 Motivation and Intuition

A practical problem for the Laplace noise perturbation privacy mechanism (refer to Equa-
tion 6) is the magnitude of the database independent (global) sensitivity,4f . For the inter-
esting location discovery task, the criterion to identify an interesting location is the num-
ber (or count) of stay points in a specific region. One cannot derive a reasonably useful
database independent 4f for a stay point database (see Figure 1) for our task. The main
reason is that4f for the count record query (f0 and f1) does not equal one when an individ-
ual is added or removed from the database. The individual set to stay point set mapping
is a one-to-many relation, i.e., one individual can have more than one stay point. There
is no database independent upper bound for 4f except the database record size which is
practically useless as the noise added to the output of the count query is most likely mean-
ingless. The motivation for our privacy preserving pattern mining framework is a privacy
mechanism that one can control and add significantly less noise without revealing infor-
mation from the database for the interesting location discovery task. The two main ideas
we pursued are: (i) privacy mechanism that utilizes database instance dependent local sen-
sitivity, and (ii) spatial decomposition to partition the data domain into disjoint subsets to
lower the local sensitivity for f0, f1, and f2 (see (1), (2), and (3), respectively) and to satisfy
parallel composition condition (see Theorem 6). In particular, our approach is motivated
by the sample-aggregate framework [24] that consists of random partitioning of a database
into smaller databases and obtaining a query output by combining query outputs from the
smaller databases.

Our (ε, δ)-differentially private pattern mining approach consists of two main steps: spa-
tial decomposition and clustering (see Figure 1). For the interesting location discovery
task, we specifically use region quadtree [25] together with DBSCAN (Density-Based Spa-
tial Clustering of Applications with Noise) clustering algorithm [10]. Both steps, with the
inclusion of (ε, δ)-differential privacy mechanisms, will be elaborated in Subsection 4.2.
Zheng et al. [32] used a tree-based hierarchical graph (TBHG) to construct a data struc-
ture by clustering the stay points at different tree height and connecting the clusters with
directed edges, defining the chronological order of the stay points. Here, we only focus
on the spatial context of the data and hence we use a standard spatial decomposition such
as a quadtree, with DBSCAN clustering to achieve both tree-based density-based spatial
objects clustering and to demonstrate the differential privacy mechanism on a tree-based
location mining approach. One notes that our proposed privacy preserving pattern min-
ing approach can be directly applied to the tree-based TBHG with privacy guarantee. In
particular, one can use any spatial decomposition or clustering approach and the results in
Subsection 4.3 still hold true.

For a region quadtree, one needs to specify a criterion to halt the spatial decomposition
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based on the number of stay points in a quadrant. In other words, if the number of stay
points in a quadrant is less than (say)H , the space will stop splitting. Hence, by performing
the spatial decomposition, one bounds the sensitivity 4f using H that affects the Laplace
noise perturbation as no individual in a quadrant can have a stay point count larger than
H .
In fact, the threshold H for the spatial decomposition step is a database independent

global sensitivity for f0 and f1 (see Lemma 12 in Subsection 4.3). The only problem is
that H can be chosen to be so large (i.e., an interesting location has to have a reasonable
large number of stay points) that the Laplace noise perturbation affects the utility of the
output results. On the other hand, if we choose a relatively small H (say, less than 100 for
a database size in the order of 107), we will need to perform a merge operation for interest-
ing locations in adjacent regions based on the stay point counts. We will need an additional
interesting locations threshold H ′ (> H) for the merging operation and additional privacy
preserving steps.

As the focus of the paper is on the general differential privacy framework for the interest-
ing location discovery task and how the sensitivity for query functions can be controlled so
that a privacy preserving location pattern mining algorithm returns reasonable outputs in
practice, we use a reasonably large H in our experiments and do not consider the merging
step. As described earlier, spatial decomposition partitions the spatial domain into smaller
disjoint sets, i.e., one handles many independent interesting location discovery tasks for
smaller spatial regions. Moreover, the database dependent sensitivities for query function
f0, f1, and f2 are lower for each smaller disjoint set as the number of stay points for each
individual is now smaller.

4.2 Algorithms

Differentially Private Region QuadTree-based Spatial Decomposition

There are two types of quadtree [25] (and the references therein): point quadtree and trie-
based quadtree. We utilize the second type which is a decomposition on the space that the
input data is drawn. In particular, we use the region quadtree representing the 2-D space by
partitioning it into four quadrants. The space decomposition continues till a predefined tree
height is reached. Or, spatial decomposition stops for a quadrant when the point counts in
that quadrant is less than a global threshold.

A region quadtree spatial decomposition is used to partition the geographic domain for
the interesting location discovery task to ensure a reasonable sensitivity for the count queries
f0 and f1 so that one achieves both the differential privacy goal and accurate output results
in practice. Other spatial decomposition can also be used to partition the data domain.
Note that we perform the tree construction when the complete input dataset becomes avail-
able. Hence, we do not require data insertion into and deletion from the quadtree.

The input variables for Algorithm 1 (BuildDPQuadTree) are: (i) the stay point database S
consisting of the stay points and their corresponding user IDs extracted from the trajectory
database (see Figure 1), (ii) the spatial extent of the domain, and (iii) a threshold value T .
In Line 1, NoisyCount takes in the set of stay points records for a partition and returns
stay point count S′ perturbed by the Laplace noise. NoisyCount corresponds to the query
function f0 (Equation 3) with the (ε, δ)-differential privacy mechanism (see Lemma 11 in
Subsection 4.3) applied to it. The perturbed count S′ decides (Line 2–3) whether to halt
without returning stay points when there are too few points in the spatial partition (Line
14–15), to continue splitting the space when there are more than H points (Line 7–11), or
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Input: S, stay point database; R, spatial region; T , threshold
Output: P , set of spatial partitions; Sp, set of sets of stay points (with User IDs) for

corresponding partitions in P
Global variables: P = {}, Sp = {}, H = 3T ;
Procedure BuildDPQuadTree(S, R, T )

1: S′ = NoisyCountε,δ(S) ;
2: if S′ > T then
3: if S′ ≤ H then
4: P = P ∪ {R};Sp = Sp ∪ {S};
5: return
6: else
7: Split spatial region R into 4 equal

quadrants: Rnw, Rne, Rsw, Rse with
corresponding point sets Snw, Sne, Ssw,
Sse;

8: BuildDPQuadTree(Snw, Rnw, T ) ;
9: BuildDPQuadTree(Sne, Rne, T ) ;

10: BuildDPQuadTree(Ssw, Rsw, T ) ;
11: BuildDPQuadTree(Sse, Rse, T ) ;
12: end if
13: else
14: P = P ;Sp = Sp;
15: return
16: end if

Algorithm 1: Differentially private region quadtree-based spatial decomposition (Build-
DPQuadTree).

return the stay points of the quadrant when there are between T and H points (Line 4–5).
The outputs are the spatial partitions and their corresponding database subsets consisting
of stay points with their user IDs.

We set the upper bound for perturbed stay point counts in a returned partition to be
H = 3T . A quadrant partition stops splitting when its perturbed stay point count is less
than T (Line 13-15). If the perturbed stay point count for a partition is more than T and less
than H (Line 3), a quadrant partition and its perturbed stay point count is returned. From
Algorithm 1, one sees that the region quadtree is constructed recursively. Figure 4 shows
the partitions containing the interesting locations for a particular synthetic dataset using
the BuildDPQuadTree algorithm.

One notes the importance of storing not only the stay points but also their corresponding
user IDs which are needed to compute the local sensitivity (see Definition 8 and Lemma 13
in Subsection 4.3) used by NoisyCount. Moreover, one notes that our approach is similar
to a recent work on differentially private spatial decomposition [5].

Differentially Private Interesting Location Discovery using DBSCAN

The DBSCAN (Density-Based Spatial Clustering of Applications with Noise) clustering al-
gorithm [10] is used in our interesting location discovery task. Since location pattern min-
ing works on a 2-D space, the Euclidean distance is used. The DBSCAN algorithm does
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Figure 4: Quadtree partitions for regions where the interesting locations (ten data blobs)
are likely to be based on the BuildDPQuadTree algorithm.

not require the number of clusters to be specified and there are only two parameters, γ and
MinPts. Also, the algorithm can find arbitrary shaped clusters and points that are not in
the clusters are labeled as noise.

The input variables for Algorithm 2 (DP-ILD) are (i) the set of the stay point/userID data
subsets from Algorithm 1, (ii) threshold r′, and (iii) DBSCAN parameters (MinPts, γ).
For each stay point/userID subset, the DBSCAN density-based clustering algorithm [10]
is used to extract the likely interesting regions (Line 4). Similar to Algorithm 1, Noisy-
Count takes in the set of stay point/userID records representing a cluster and returns
the perturbed stay point count Ct′ (Line 8) and it corresponds to the query function f1

(Equation 1) with the (ε, δ)-differential privacy mechanism (Lemma 11 in Subsection 4.3)
applied to it. If the perturbed count Cts′ is greater than r′, then the region Rjl is labeled
as an “interesting location” with Cts′ stay points. NoisyCentroid takes in the set of stay
point/userID records representing the cluster and returns the perturbed centroid Cg′ (Line
10) and it corresponds to the query function f2 (Equation 2) with the (ε, δ)-differential pri-
vacy mechanism (Lemma 11 in Subsection 4.3) applied to it. The local sensitivities used
for NoisyCount and NoisyCentroid are found in Lemma 13 and Lemma 15, respectively.
The perturbed centroid Cg′ represents an interesting region Rjl defined by its convex hull.
The outputs for Algorithm 2 are the privacy preserved interesting locations and their cor-
responding stay point counts. In Figure 5, the left and right diagrams show the original
interesting locations and the outputs from DP-ILD, respectively, given inputs shown in
Figure 4 .

Since the local sensitivities for f1 and f2 require the knowledge of the set of likely inter-
esting locations, we have to completely identify these locations (Line 2–5) before applying
the privacy mechanism.

4.3 Theoretical Justifications

Definition 8. [24] For f : D → Rd and x ∈ D, the local sensitivity of f at x ∈ D is

4fLS(x) = max
y∈D′

||f(x)− f(y)||1 (7)
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Input: Sp = {S1, . . . , Sk}, set of stay point/user ID sets for corresponding partitions in
P ; threshold r′; DBSCAN parameters: MinPts, γ.

Output: I , set of interesting locations (region centroids); C, set of corresponding counts
for I .

Procedure DP-ILD(Sp, r′, MinPts, γ)
1: I = {};C = {};Cts′ = 0;Cg′ = 0;
2: for i = 1 to k do
3: //CLi = {Ri1, . . . , Rili} such that Rij is

the set of points of the form
{(xm, ym), userID} in cluster j, j = 1, · · · , li.

4: CLi = DBSCAN(Si,Minpts, γ);
5: end for
6: for j = 1 to k do
7: for l = 1 to |CLj | do
8: Count Cts′ = NoisyCountε,δ(Rjl);
9: if Cts′ > r′ then

10: Cg′ = NoisyCentroidε,δ(Rjl)

11: I = I ∪ {Cg′} ;
12: C = C ∪ {Cts′};
13: end if
14: Cts′ = 0;Cg′ = 0;
15: end for
16: end for

Algorithm 2: Differentially private interesting location discovery (DP-ILD).

for all y ∈ D′ differing in at most one element from x ∈ D.

According to [24], the noise function has to be insensitive in the database space. In other
words, a small difference between two databases cannot induce a spike or sharp dip in
the noise added. [24] introduced the concepts of β−smooth sensitivity and β−smooth upper
bound for local sensitivity.

Definition 9. [24] For β > 0, the β-smooth sensitivity of f for x ∈ D is

4fβ(x) = max
y∈D

(4fLS(y) · e−βd(x,y)). (8)

such that d(x, y) is the number of elements that x and y differs.

One notes that it is difficult to compute 4fβ(x) as one has to find local sensitivity for all
databases in D.

Definition 10. [24] For β > 0, a function S : D → R+ is a β-smooth upper bound on4fLS ,
local sensitivity of f , if it satisfies the following requirements:

∀x ∈ D : S(x) ≥ 4fLS(x)
∀x, y ∈ D : S(x) ≤ eβS(y)

such that x and y differing on one element.
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Figure 5: Interesting location outputs from DP-ILD (right) and outputs when no privacy
preserving mechanism is used (left).

The noise added to the output is weighted by the smooth upper bound function S on the
local sensitivity for all databases in D such that lnS(·) has a global sensitivity bounded by
β. Note that4fβ is a β−smooth upper bound on4fLS and the global sensitivity4f is, in
general, a relax/conservative β−smooth upper bound. Moreover, the noise distributionN
on Rd used (e.g., Laplace distribution) should not change much under translation (T) and
scaling (S) [24], i.e., when N1, N2 ∼ N ,

T: P (N1 ∈ U) ≤ e
ε
2 · P (N2 ∈ U + T ) + δ

2

S: P (N1 ∈ U) ≤ e
ε
2 · P (N2 ∈ eλ · U) + δ

2

for all ||T || ≤ α = α(ε, δ) and |λ| ≤ β = β(ε, δ), all subsets U ⊆ Rd, ε > 0, and δ > 0. A
noise distribution N is (α, β)-admissible if it satisfies the above two conditions.
Now, we can achieve (ε, δ)−differential privacy using the (α, β)−admissible Laplace noise

as follows.

Lemma 11. For f : D → Rd with4fβ , a β-smooth upper bound on4fLS , local sensitivity of f .
Given the noise random variable N ∼ Lap(1) = 1

2 · e
−|z|, α = ε

2 , and β = ε
2 ln(

1
δ ) with δ > 0, the

privacy mechanism K(x) = f(x) + S
α ·N = f(x) +

4fβ
α ·N is (ε, δ)-differentially private.

The Lemma follows from Lemma 2.5 in [24] that provides the condition for (ε, δ)-indistinguishable
for 4fLS and local sensitivity of f , together with Example 3 in [24] describing a (α, β)-
admissible Laplace distribution with location parameter µ = 0 and scaling parameter σ = 1
that satisfies Definition 7 with δ > 0.

From Lemma 11, one observes that the differential privacy level ε and the local sensitivity
4fLS are no longer used to parametrize the Laplace distribution (6). Instead, they are used
to weigh the noise generated from a standard Laplace distribution with mean zero and
variance one.

Lemma 12. 4f0GS and4f1GS , the global sensitivity for f0 and f1, is the count threshold parameter,
3T , in the BuildDPQuadTree algorithm.

4f0GS = maxD1,D2
|f (0)(D1) − f (0)(D2)| is the count difference in a partition when an

arbitrary individual, together with his trajectory and derived stay points, is removed or
added to either D1 or D2. The worst case situation occurs when there are maximum num-
ber of stay points in the partition, i.e. 3T, and they are owned by the removed/added
individual. This worst case situation is independent of a database but depends on the
BuildDPQuadTree algorithm stay point count upper bound threshold 3T . 4f1GS = 3T fol-
lows from the earlier argument on the counts in a partition with an addition observation
that all the stay points in the partition forms an interesting location in a worst case scenario.
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Lemma 13. 4f0LS = maxu∈U maxp∈Pu\U |opu − npu| is the local sensitivity for f0, such that
Pu\U is the set of partition when an individual u and all its corresponding stay points are re-
moved or added to a database, and opu and npu are the number of stay points in such a par-
tition p before and after the removal or addition of stay points for an individual u. Similarly,
4f1LS = maxu∈U maxi∈Iu\U |oiu − niu| is the local sensitivity for f1, such that Iu\U is the set
of interesting location when an individual u and all its corresponding stay points are removed or
added to a database, and oiu and niu are the number of stay points in such an interesting location i
before and after the removal or addition of stay points for an individual u.

Both local sensitivities follow from Definition 8.
The local sensitivity for f1 defined in Lemma 13 does not disclose the interesting location

that has the largest change or the individual who contributes to the local sensitivity as long
as there are stay points from more than one individual in all the likely interesting locations.
Hence, even if the local sensitivities are known by an adversary, the individual’s location
privacy is preserved.

Theorem 14. BuildDPQuadTree spatial decomposition algorithm provides (ε, δ)-differential pri-
vacy for δ ≥ 0 .

Using the β-smooth sensitivity in Definition 9 and the local sensitivity in Lemma 13, we
can construct a β−smooth upper bound for 4f0LS . Using this, we can construct a privacy
mechanism in Step 1 of Algorithm 1 based on Lemma 11 that is (ε, δ)-differentially pri-
vate. Based on Theorem 5 (Sequential Composition) and 6 (Parallel Composition), Build-
DPQuadTree provides maxp(

∑hp(ε, δ))-differential privacy at a fixed non-negative δ, where
p ∈ P , the set of partitions and hp is the depth of the tree when the algorithm returns the
final count for a disjoint partition p.

Lemma 15. 4f2LS = maxu∈U maxi∈Iu\U |cgoiu − cgniu| is the local sensitivity for f2, such that
Iu\U is the set of interesting locations when an individual u and all its corresponding stay points
are removed or added to a database, and cgoiu and cgniu are the centroids for an interesting location i
before and after the removal or addition of an individual u.

4f2LS follows from Definition 8. One notes that a meaningful global sensitivity for f2

without knowing the database before hand is not possible. To reduce computational cost,
we use the (somehow weak) upper bound

max
i∈I

(
longest distance between 2 points in i

2

)
(9)

such that I is the set of interesting locations, to compute4f2LS .

Theorem 16. DP-ILD interesting location discovery algorithm provides (ε, δ)-differential privacy
for δ > 0.

Using the β-smooth sensitivity in Definition 9 and the local sensitivity in Lemma 13 and
Lemma 15, we can construct a β−smooth upper bound for 4f1LS and 4f2LS . Using the
two upper bounds, we can construct privacy mechanisms in Step 8 and 10 of Algorithm
2 based on Lemma 11 that are (εf1 , δ)-differentially private and (εf2 , δ)-differentially pri-
vate for some fixed positive δ. Since a centroid computation f2 (step 10 in Algorithm 2)
follows from f1 and also considering the εf0−differentially private spatial decomposition
at the same δ, f2 is (εf0 + εf1 + εf2 , δ)-differentially private based on Theorem 5 (Sequential
Composition). Since f1 (step 8 in Algorithm 2) and f2 are applied to all independent likely
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interesting locations in all the partitions, DP-ILD is (εf0 + εf1 + εf2 , δ)-differentially private
based on Theorem 6 (Parallel Composition).

One notes from Theorem 14 that since global sensitivity is available for f0, δ can equal
zero. On the other hand, since global sensitivity is not possible for f2, δ is strictly greater
than zero in Theorem 16.

5 Experimental Results

Our preliminary results (e.g. pattern mining performance and effect of privacy budget allo-
cation between spatial decomposition and clustering) [16] performed on synthetic datasets
using an approximated version of our differentially private interesting location pattern
mining algorithm demonstrated the feasibility of using local sensitivity on a sample-aggregate
approach for the interesting location pattern mining task.

In this section, we present additional experimental results on the Geolife dataset [30, 31]
to study the characteristics of our proposed algorithm. In Section 5.1, we describe the
performance measures used in our study. In Section 5.2, we briefly describe the Geolife
dataset. In Section 5.3, comparison results are presented and discussed.

5.1 Performance Measures
Let I0 = {I1, I2, . . . , Im} and I(ε,δ) = {I1ε, I2ε, . . . , Inε} be the two sets of regions [par-
titions in spatial decomposition or interesting locations from DBSCAN clustering] with-
out and with the application of any privacy preserving mechanism, respectively. Also,
m may not equal n. Let I be the set of regions that are similar in I0 and I(ε,δ). Here,
two regions are similar if their intersection is non-empty. Let C0 = {c1, c2, . . . , c|I|} and
C(ε,δ) = {c1ε, c2ε, . . . , c|I|ε} be the two sets containing corresponding stay point counts for
regions in I without and with the application of the privacy preserving mechanism, re-
spectively. Let Cg0 = {cg1, cg2, . . . , cg|I|} and Cg(ε,δ) = {cg1ε, cg2ε, . . . , cg|I|ε} be the two
sets containing corresponding interesting location centroids in I without and with the ap-
plication of the privacy preserving mechanism, respectively. The evaluation criteria for
output accuracy are defined as follows.

Mean Count Deviation (MCtD) =

∑
x∈I |ci − ciε|
|I|

Mean Centroid Deviation (MCgD) =

∑
x∈I ||cgi − cgiε||

|I|

MCtD and MCgD measure the effects of the privacy mechanism on the number of stay
points and the interesting location centroid, respectively, compared to the baseline when
no privacy mechanism is applied.

5.2 Geolife GPS Trajectory Data

The real world dataset used in our experiment is the GPS trajectory dataset [30, 31], pub-
lished in September 2010, consists of data from 165 users for a period of over two years
(from April 2007 to August 2009). The dataset recorded a broad range of users’ outdoor
movements, including not only routines like going home and going to work, but also some
entertainments and sports activities, such as shopping, sightseeing, dining, hiking, and cy-
cling. We note that 70502 stay points extracted from the Geolife trajectory dataset based on
the stay point definition (see Section 3.1).
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Figure 6: The effect of δ on the (ε, δ)-differentially private count query f0 used in Build-
DPQuadTree algorithm for various ε.

5.3 Results and Discussions

We use the BuildDPQuadTree (i) to understand the effect of ε and δ on the output count
accuracy and (ii) to compare the ε-differential privacy Laplace noise mechanism (6) and the
(ε, δ)-differential privacy weighted Laplace noise mechanism (Lemma 11).

The threshold value T for BuidDPQuadTree is set to 500 and hence the upper bound on
the number of stay points in a partition is H = 3T . We use ε = 0.1, 0.5, 1.0, 1.5, and 2.0
and vary δ from 0.001 to 1. Figure 6 shows that smaller δ results in smaller deviation (i.e.,
smaller MCtd) in count output from f0 for all ε values. In Figure 6, the curve for ε = 0.1 is
not shown as it has a much higher MCtd and variance even for a very small δ. This shows
that it is extremely difficult to achieve low differential privacy level even when δ is very
small for the count query f0.
Next, we compare the effect of the output query of f0 when (ε, δ)-differentially private

weighted Laplace noise mechanism (Lemma 11) and the ε-differential private Laplace noise
mechanism (Theorem 4) on BuildDPQuadTree algorithm. We set δ to 0.001. Moreover, we
include a pseudo ε-differential private Laplace noise mechanism that uses local sensitiv-
ity (Definition 8) instead of global sensitivity (Definition 5). Figure 7 shows that (ε, δ)-
differential privacy mechanism outperforms the ε-differential privacy in terms of the mean
output count deviation for various ε. The inserted graph in Figure 7 magnifies the perfor-
mance curves for the three mechanisms at around ε = 1 to demonstrate the low mean de-
viation of output count and variance for the (ε, δ)-differential privacy mechanism compare
to the other two mechanisms when ε is greater than 0.5. One observes that even though
the pseudo ε-differential privacy mechanism that used local sensitivity performs best at
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Figure 7: Comparison of the three differential privacy (DP) mechanisms: ε-DP (solid line),
pseudo ε-DP (dotted line), (ε, δ = 0.001)-DP (dashed line) on the count query f0 for the
BuildDPQuadTree algorithm.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

ε

M
C

tD

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

ε 

M
C

g
D

 

 

(ε,δ)−differential privacy mechanism

pseudo ε−differential privacy mechanism

ε−differential privacy mechanism

Figure 8: Effect of applying the three differential privacy mechanisms on f1 and f2 on the
MCtD and MCgD of the DP-ILD algorithm.

ε = 0.1, there is no theoretical justification that it preserves differential privacy at ε privacy
level.

From Figure 8, we observe that the DP-ILD algorithm using the (ε, δ)-differential privacy
mechanism returns more accurate count and centroid output when ε is greater than 0.3.
One observes that there is no curve for the application of ε-differential mechanism on the
right graph as there is no non-trivial global sensitivity for the centroid query function f2.
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Figure 9: Comparing the baseline (no privacy preserving mechanism used) stay point
counts and the stay point counts from the application of the differentially private inter-
esting location pattern mining approach on thirty interesting locations obtained from the
Geolife dataset. The experiment was repeated ten times.

Using ε = 1 for NoisyCount in BuildDPTree (Algorithm 1) and ε = 2 for both NoisyCount
and NoisyCentroid in DP-ILD (Algorithm 2) and fixed δ = 0.001 ,MinPts = 60, γ = 0.001,
and r′ = 500, we performed ten trials on the whole Geolife dataset. There are a total of 30
interesting locations based on our chosen parameters. In Figure 9, we see that the stay point
counts for the interesting locations are very similar (but not identical) for each of the ten
trials as compared to the baseline using the privacy level that we defined. One notes that to
achieve practical privacy preserving objective and utility, one needs to choose the privacy
level (ε) and mining algorithm parameters (e.g. threshold r′ and DBSCAN parameters)
based on practical considerations such as the level of tolerance to output accuracy .

6 Conclusions

In this paper, we investigate how one achieves the privacy goal that the inclusion of his
location history in a statistical database with interesting location mining capability does
not substantially increase risk to his privacy. In particular, we propose a (ε, δ)-differentially
private approach motivated by the sample-aggregate framework for pattern mining inter-
esting geographic locations using spatial decomposition to preprocess the location points
followed by density-based clustering. Preliminary study [16] on an approximated version
of the algorithm has demonstrated its feasibility. Here, we further justify our approach and
provide additional supportive empirical results using the Geolife dataset.
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