
TRANSACTIONS ON DATA PRIVACY 7 (2014) 195–222

DPCube: Differentially Private Histogram
Release through Multidimensional Parti-
tioning
Yonghui Xiao∗, Li Xiong∗, Liyue Fan∗, Slawomir Goryczka∗,Haoran Li∗
∗Department of Mathematics & Computer Science, Emory University, Atlanta, GA, 30322

E-mail: {yxiao25,lxiong,lfan3,sgorycz,hli57}@emory.edu

Abstract. Differential privacy is a strong notion for protecting individual privacy in privacy pre-
serving data analysis or publishing. In this paper, we study the problem of differentially private
histogram release for random workloads. We study two multidimensional partitioning strategies
including: 1) a baseline cell-based partitioning strategy for releasing an equi-width cell histogram,
and 2) an innovative 2-phase kd-tree based partitioning strategy for releasing a v-optimal histogram.
We formally analyze the utility of the released histograms and quantify the errors for answering lin-
ear queries such as counting queries. We formally characterize the property of the input data that
will guarantee the optimality of the algorithm. Finally, we implement and experimentally evaluate
several applications using the released histograms, including counting queries, classification, and
blocking for record linkage and show the benefit of our approach.

Keywords. Differential privacy, non-interactive data release, histogram, classification, record link-
age

1 Introduction

As information technology enables the collection, storage, and usage of massive amounts
of information about individuals and organizations, privacy becomes an increasingly im-
portant issue. Governments and organizations recognize the critical value in sharing such
information while preserving the privacy of individuals. Privacy preserving data analy-
sis and data publishing [1, 2, 3] has received considerable attention in recent years. There
are two models for privacy protection [1]: the interactive model and the non-interactive
model. In the interactive model, a trusted curator (e.g. hospital) collects data from record
owners (e.g. patients) and provides an access mechanism for data users (e.g. public health
researchers) for querying or analysis purposes. The result returned from the access mech-
anism is perturbed by the mechanism to protect privacy. In the non-interactive model, the
curator publishes a “sanitized” version of the data, simultaneously providing utility for
data users and privacy protection for the individuals represented in the data.

Differential privacy [4, 5, 1, 3, 6] is widely accepted as one of the strongest known pri-
vacy guarantees with the advantage that it makes few assumptions on the attacker’s back-
ground knowledge. It requires the outcome of computations to be formally indistinguish-
able when run with or without any particular record in the dataset, as if it makes little

195

196 Yonghui Xiao, Li Xiong, Liyue Fan, Slawomir Goryczka, Haoran Li

difference whether an individual is being opted in or out of the database. Many meaning-
ful results have been obtained for the interactive model with differential privacy [4, 5, 1, 3].
Non-interactive data release with differential privacy has been recently studied with hard-
ness results obtained and it remains an open problem to find efficient algorithms for many
domains [7, 8].

Diff.

Private

Interface

Diff.

Private

Histogram

Partitioning and

Querying Strategy

User
Original

Data

Queries

Diff. Private

Answers

Queries

Diff. Private

Answers

Figure 1: Differentially private histogram release

In this paper, we study the problem of differentially private histogram release and extend
our previous work [9] with more theoretical analysis and experimental applications. A his-
togram is a disjoint partitioning of the database points with the number of points which
fall into each partition. A differential privacy interface, such as the Privacy INtegrated
Queries platform (PINQ) [10], provides a differentially private access to the raw database.
An algorithm implementing the partitioning strategy submits a sequence of queries to the
interface and generates a differentially private histogram of the raw database. The his-
togram can then serve as a sanitized synopsis of the raw database and, together with an
optional synthesized dataset based on the histogram, can be used to support count queries
and other types of OLAP (Online Analytical Processing) queries and learning tasks.

An immediate question one might wonder is what is the advantage of the non-interactive
release compared to using the interactive mechanism to answer the queries directly. A
common mechanism providing differentially private answers is to add carefully calibrated
noise to each query determined by the privacy parameter and the sensitivity of the query.
The composability of differential privacy [10] ensures privacy guarantees for a sequence
of differentially-private computations with additive privacy depletions in the worst case.
Given an overall privacy requirement or budget, expressed as a privacy parameter, it can
be allocated to subroutines or each query in the query sequence to ensure the overall pri-
vacy. When the number of queries grow, each query gets a lower privacy budget which
requires a larger noise to be added. When there are multiple users, they have to share a
common privacy budget which degrades the utility rapidly. The non-interactive approach
essentially exploits the data distribution and the query workload and uses a carefully de-
signed algorithm or query strategy such that the overall noise is minimized for a particular
class of queries. As a result, the partitioning strategy and the algorithm implementing the
strategy for generating the query sequence to the interface are crucial to the utility of the
resulting histogram or synthetic dataset.
Contributions. We study differentially private histogram release for random query work-
load in this paper and propose partitioning and estimation algorithms with formal utility
analysis and experimental evaluations. We summarize our contributions below.

• We study two multidimensional partitioning strategies for differentially private his-
togram release: 1) a baseline cell-based partitioning strategy for releasing an equi-

TRANSACTIONS ON DATA PRIVACY 7 (2014)

DPCube: Differentially Private Histogram Release through Multidimensional Partitioning 197

width cell histogram, and 2) an innovative 2-phase kd-tree (k-dimensional tree) based
space partitioning strategy for releasing a v-optimal histogram. There are several in-
novative features in our 2-phase strategy. First, we incorporate a uniformity measure
in the partitioning process which seeks to produce partitions that are close to uniform
so that approximation errors within partitions are minimized, essentially resulting
in a differentially private v-optimal histogram. Second, we implement the strategy
using a two-phase algorithm that generates the kd-tree partitions based on the cell
histogram so that the access to the differentially private interface is minimized.

• We formally analyze the utility of the released histograms and quantify the errors
for answering linear distribute queries such as counting queries. We show that the
cell histogram provides bounded query error for any input data. We also show that
the v-optimal histogram combined with a simple query estimation scheme achieves
bounded query error and superior utility than existing approaches for “smoothly”
distributed data. We formally characterize the “smoothness” property of the input
data that guarantees the optimality of the algorithm.

• We implement and experimentally evaluate several applications using the released
histograms, including counting queries, classification, and blocking for record link-
age. We compare our approach with other existing privacy-preserving algorithms
and show the benefit of our approach.

2 Related Works

Privacy preserving data analysis and publishing has received considerable attention in re-
cent years. We refer readers to [1, 2, 3] for several up-to-date surveys. We briefly review
here the most relevant work to our paper and discuss how our work differs from existing
work.

There has been a series of studies on interactive privacy preserving data analysis based
on the notion of differential privacy [4, 5, 1, 3]. A primary approach proposed for achiev-
ing differential privacy is to add Laplace noise [4, 1, 5] to the original results. McSherry
and Talwar [11] give an alternative method to implement differential privacy based on the
probability of a returned result, called the exponential mechanism. Roth and Roughgarden
[12] proposes a median mechanism which improves upon the Laplace mechanism. McSh-
erry implemented the interactive data access mechanism into PINQ [10], a platform used
in our data releasing method.

A few works started addressing non-interactive data release that achieves differential pri-
vacy. Blum et al. [7] proved the possibility of non-interactive data release satisfying dif-
ferential privacy for queries with polynomial VC-dimension, such as predicate queries. It
also proposed an inefficient algorithm based on the exponential mechanism. The result
largely remains theoretical and the general algorithm is inefficient for the complexity and
required data size. [8] further proposed more efficient algorithms with hardness results
obtained and it remains a key open problem to find efficient algorithms for non-interactive
data release with differential privacy for many domains. [13] pointed out that a natural ap-
proach to side-stepping the hardness is relaxing the utility requirement, and not requiring
accuracy for every input database.

Several recent work studied differentially private mechanisms for particular kinds of data
such as search logs [14] or set-valued data [15]. Others proposed algorithms for specific
applications or optimization goals such as recommender systems [16], record linkage [17],

TRANSACTIONS ON DATA PRIVACY 7 (2014)

198 Yonghui Xiao, Li Xiong, Liyue Fan, Slawomir Goryczka, Haoran Li

data mining [18], or differentially private data cubes with minimized overall cuboid error
[19]. It is important to note that [17] uses several tree strategies including kd-tree in its
partitioning step and our results show that our 2-phase uniformity-driven kd-tree strategy
achieves better utility for random count queries.

A few works considered releasing data for predictive count queries and are closely re-
lated to ours. [20] developed an algorithm using wavelet transforms. [21] used saniti-
zation techniques, Fourier perturbation algorithm and redundancy exploitation, to boost
the accuracy. [22] generates differentially private histograms for single dimensional range
queries through a hierarchical partitioning approach and a consistency check technique.
[23, 24] propose a query matrix mechanism that generates an optimal query strategy based
on the query workload of linear count queries and further mapped the work in [20] and
[22] as special query strategies that can be represented by a query matrix. It is worth not-
ing that the cell-based partitioning in our approach is essentially the identity query ma-
trix referred in [23]. [25] proposes two method, PCA and maximum entropy, to integrate
historical noisy answers for better utility. [26] introduces “iReduct” to compute answers
with reduced relative errors. We are also aware of the work [27] which focuses on single
dimensional histograms. The PSD [28] also studied multi-dimensional spatial partition-
ing techniques using differentially private mechanisms and compared their work with our
preliminary work. We further compare them in this paper. While we will leverage the
query matrix framework to formally analyze our approach, it is important to note that the
above mentioned query strategies are data-oblivious in that they are determined by the
query workload, a static wavelet matrix, or hierarchical matrix without taking into consid-
eration the underlying data. On the other hand, our 2-phase kd-tree based partitioning is
designed to explicitly exploit the smoothness of the underlying data indirectly observed by
the differentially private interface and the final query matrix corresponding to the released
histogram is dependent on the approximate data distribution.

In summary, our work complements and advances the above works in that we focus on
differentially private histogram release for random query workload using a multidimen-
sional partitioning approach that is “data-aware”. Sharing the insights from [13, 15], our
primary viewpoint is that it is possible and desirable in practice to design adaptive or data-
dependent heuristic mechanisms for differentially private data release for useful families
or subclasses of databases and applications. Our approach provides formal utility guar-
antees for a class of queries and also supports a variety of applications including general
OLAP, classification and record linkage.

3 Preliminaries and Definitions

In this section, we formally introduce the definitions of differential privacy, the data model
and the queries we consider, as well as a formal utility notion called (ε, δ)-usefulness. Ma-
trices and vectors are indicated with bold letters (e.g H, x) and their elements are indicated
asHij or xi. While we will introduce mathematical notations in this section and subsequent
sections, Table 3 lists the frequently-used symbols for references.

TRANSACTIONS ON DATA PRIVACY 7 (2014)

DPCube: Differentially Private Histogram Release through Multidimensional Partitioning 199

Table 1: Frequently used symbols
Symbol Description

n number of records in the dataset
m number of cells in the data cube
xi original count of cell i(1 ≤ i ≤ m)
yi released count of cell i in cell histogram
yp released count of partition p in subcube histogram
np size of partition p
s size of query range

α, α1, α2 differential privacy parameters
γ smoothness parameter

3.1 Differential Privacy

Definition 3.1 (α-Differential privacy [5]). In the interactive model, an access mechanismA
satisfies α-differential privacy if for any neighboring databases1 D1 and D2, for any query
function Q, r ⊆ Range(Q), AQ(D) is the mechanism to return an answer to query Q(D),

Pr [AQ(D1) = r] ≤ eαPr [AQ(D2) = r]

In the non-interactive model, a data release mechanism A satisfies α-differential privacy if
for all neighboring database D1 and D2, and released output D̂,

Pr
[
A(D1) = D̂

]
≤ eαPr

[
A(D2) = D̂

]
Laplace Mechanism To achieve differential privacy, we use the Laplace mechanism [4]

that adds random noise of Laplace distribution to the true answer of a query Q, AQ(D) =

Q(D) + Ñ , where Ñ is the Laplace noise. The magnitude of the noise depends on the
privacy level and the query’s sensitivity.

Definition 3.2 (Sensitivity). For arbitrary neighboring databases D1 andD2, the sensitivity
of a query Q, denoted by SQ, is the maximum difference between the query results of D1

and D2,
SQ = max|Q(D1)−Q(D2)| (1)

To achieve α-differential privacy for a given query Q on dataset D, it is sufficient to return
Q(D) + Ñ in place of the original result Q(D) where we draw Ñ from Lap(SQ/α) [4].

Composition The composability of differential privacy [10] ensures privacy guarantees
for a sequence of differentially-private computations. For a general series of analysis, the
privacy parameter values add up, i.e. the privacy guarantees degrade as we expose more
information. In a special case that the analysis operations are on disjoint subsets of the
data, the ultimate privacy guarantee depends only on the worst of the guarantees of each
analysis, not the sum.

Theorem 3.1 (Sequential Composition [10]). Let Mi each provide αi-differential privacy.
The sequence of Mi provides (

∑
i αi)-differential privacy.

1We use the definition of unbounded neighboring databases [6] consistent with [10] which treats the databases
as multisets of records and requires their symmetric difference to be 1.

TRANSACTIONS ON DATA PRIVACY 7 (2014)

200 Yonghui Xiao, Li Xiong, Liyue Fan, Slawomir Goryczka, Haoran Li

Theorem 3.2 (Parallel Composition [10]). If Di are disjoint subsets of the original database
and Mi provides α-differential privacy for each Di, then the sequence of Mi provides α-
differential privacy.

Differential Privacy Interface A privacy interface such as PINQ [10] can be used to pro-
vide a differentially private interface to a database. It provides operators for database
aggregate queries such as count (NoisyCount) and sum (NoisySum) which uses Laplace
noise and the exponential mechanism to enforce differential privacy. It also provides a Par-
tition operator that can partition the dataset based on the provided set of candidate keys.
The Partition operator takes advantage of parallel composition and thus the privacy costs
do not add up.

3.2 Data and Query Model

Data Model Consider a dataset with N nominal or discretized attributes, we use an N -
dimensional data cube, also called a base cuboid in the data warehousing literature [29, 19],
to represent the aggregate information of the data set. The records are the points in the N -
dimensional data space. Each cell of a data cube represents an aggregated measure, in our
case, the count of the data points corresponding to the multidimensional coordinates of
the cell. We denote the number of cells by m and m = |dom(A1)| ∗ · · · ∗ |dom(AN)| where
|dom(Ai)| is the domain size of attribute Ai. We use the term “partition” to refer to any
sub-cube in the data cube.

>

Income

x2 x3x1

21 3710

1
>20KID Age Income

1 20~30 10~20K x4 x5 x6

x x x

20 0 0

10~20K

1 20 30 10 20K

2 30~40 30K

x7 x8 x9

53 0 0

0~10K

… … …

141 30~40 60K

20~30 30~40 40~50 Age

Figure 2: Example: original data represented in a relational table (left) and a 2-dimensional
count cube (right)

Figure 2 shows an example relational dataset with attribute age and income (left) and
a two-dimensional count data cube or histogram (right). The domain values of age are
20∼30, 30∼40 and 40∼50; the domain values of income are 0∼10K, 10K∼20K and > 20K.
Each cell in the data cube represents the population count corresponding to the age and
income values.

Query Model We consider linear counting queries that compute a linear combination of
the count values in the data cube based on a query predicate. We can represent the original
data cube, e.g. the counts of all cells, by an m-dimensional column vector x shown below.

x =
[

10 21 37 20 0 0 53 0 0
]T

Definition 3.3 (Linear query [23]). A linear query Q can be represented as anm-dimensional
boolean vector Q = [q1 . . . qm] with each qi ∈ 0, 1. The answer to a linear query Q on data
vector x is the vector product Qx = q1x1 + · · ·+ qmxm.

TRANSACTIONS ON DATA PRIVACY 7 (2014)

DPCube: Differentially Private Histogram Release through Multidimensional Partitioning 201

In this paper, we consider counting queries with boolean predicates so that each qi is a
boolean variable with value 0 or 1. The sensitivity of the counting queries, based on equa-
tion (1), is SQ = 1. We denote s as the query range size or query size, which is the number
of cells contained in the query predicate, and we have s = |Q|. For example, a query Q1

asking the population count with age = [20, 30] and income > 20k, corresponding to x1,
is shown as a query vector in Figure 3. The size of this query is 1. It also shows the orig-
inal answer of Q1 and a perturbed answer with Laplace noise that achieves α-differential
privacy. We note that the techniques and proofs are generalizable to real number query
vectors.

x2 x3

x4 x5 x6

x7 x8 x9

21 37

20 0 0

53 0 0

20~30 30~40 40~50

0
~
1
0
K

1
0
~
2
0
K

>
2
0
K

Income

Age

10

x1

20~30 30~40 40~50 Age

Figure 3: Example: a linear counting query

Definition 3.4 (Query matrix [23]). A query matrix is a collection of linear queries, arranged
by rows to form an p×m matrix.

Given a p×m query matrix H, the query answer for H is a length-p column vector of query
results, which can be computed as the matrix product Hx. For example, an m×m identity
query matrix Im will result in a length-m column vector consisting of all the cell counts in
the original data vector x.

A data release algorithm, consisting of a sequence of designed queries using the differen-
tial privacy interface, can be represented as a query matrix. We will use this query matrix
representation in the analysis of our algorithms.

3.3 Utility Metrics

We formally analyze the utility of the released data by the notion of (ε, δ)-usefulness [7].

Definition 3.5 ((ε, δ)-usefulness [7]). A database mechanism A is (ε, δ)-useful for queries
in class C if with probability 1 − δ, for every Q ∈ C, and every database D, A(D) = D̂,
|Q(D̂)−Q(D)| ≤ ε.

In this paper, we mainly focus on linear counting queries to formally analyze the released
histograms. We will discuss and experimentally show how the released histogram can be
used to support other types of OLAP queries such as sum and average and other applica-
tions such as classification.

TRANSACTIONS ON DATA PRIVACY 7 (2014)

202 Yonghui Xiao, Li Xiong, Liyue Fan, Slawomir Goryczka, Haoran Li

3.4 Laplace Distribution Properties

We include a general lemma on probability distribution and a theorem on the statistical dis-
tribution of the summation of multiple Laplace noises, which we will use when analyzing
the utility of our algorithms.

Lemma 3.1. If Z ∼ f(z), then aZ ∼ 1
af(z/a) where a is any constant.

Theorem 3.3. [30] Let fn(z, α) be the PDF of
∑n
i=1 Ñi(α) where Ñi(α) are i.i.d. Laplace

noise Lap(1/α),

fn(z, α) =
αn

2nΓ2(n)
exp(−α|z|)

∫ ∞
0

vn−1(|z|+ v

2α
)n−1e−vdv (2)

4 Multidimensional Partitioning

4.1 Motivation and Overview

For differentially private histogram release, a multi-dimensional histogram on a set of at-
tributes is constructed by partitioning the data points into mutually disjoint subsets called
buckets or partitions. The counts or frequencies in each bucket are then released. Any access
to the original database is conducted through the differential privacy interface to guarantee
differential privacy. The histogram can be then used to answer random counting queries
and other types of queries.

The partitioning strategy will largely determine the utility of the released histogram to
random counting queries. Each partition introduces a bounded Laplace noise perturbation
error by the differential privacy interface. If a query predicate covers multiple partitions,
the perturbation error is aggregated. If a query predicate falls within a partition, the result
has to be estimated assuming certain distribution of the data points in the partition. The
dominant approach in histogram literature is making the uniform distribution assumption,
where the frequencies of records in the bucket are assumed to be the same and equal to the
average of the actual frequencies [31]. This introduces an approximation error.

Original Data in

Histogram

Released

Histogram

Query: Count(x5) = ?
0

x5 x6

x8x7

0
0+

～～～～
N

Data-aware

strategy User

0+N 0+N

0+

0+ 0+

0+
～～～～

N

～～～～

N

～～～～
N

～～～～
N

Baseline

strategy

0

0 0

x5 x6

x8x7

0

Answer: 0+

Query error:

～～～～

N
～～～～

N

Query: Count(x5) = ?

User

0 0
x8x7

Estimated Answer: 0+ /4

Query error: /4
～～～～

N

～～～～

N

Figure 4: Baseline strategy vs. data-aware strategy

Example We illustrate the errors and the impact of different partitioning strategies through
an example shown in Figure 4. Consider the data in Figure 2. As a baseline strategy, we

TRANSACTIONS ON DATA PRIVACY 7 (2014)

DPCube: Differentially Private Histogram Release through Multidimensional Partitioning 203

could release a noisy count for each of the cells. In a data-aware strategy, as if we know
the original data, the 4 cells, x5, x6, x8, x9, can be grouped into one partition with a single
noisy count. Note that the noises are independently generated for each cell or partition.
Because the sensitivity of the counting query is 1 and the partitioning only requires paral-
lel composition of differential privacy, the magnitude of noise in the two approaches are
the same. Consider a query, count(x5), asking the count of data points in the region x5. For
the baseline strategy, the query error is Ñ which only consists of the perturbation error. For
the data-aware strategy, the best estimate for the answer based on the uniform distribution
assumption is 0 + Ñ/4. So the query error is Ñ/4. In this case, the approximation error is
0 because the cells in the partition are indeed uniform. If not, approximation error will be
introduced. In addition, the perturbation error is also amortized among the cells. Clearly,
the data-aware strategy is desired in this case.

In general, a finer-grained partitioning will introduce smaller approximation errors but
larger aggregated perturbation errors. Finding the right balance to minimize the overall
error for a random query workload is a key question. Not surprisingly, finding the opti-
mal multi-dimensional histogram, even without the privacy constraints, is a challenging
problem and optimal partitioning even in two dimensions is NP-hard [32]. Motivated by
the above example and guided by the composition theorems, we summarize our two de-
sign goals: 1) generate uniform or close to uniform partitions so that the approximation
error within the partitions is minimized, essentially generating a v-optimal histogram [33];
2) carefully and efficiently use the privacy budget to minimize the perturbation error. In
this paper, we first study the most fine-grained cell-based partitioning as a baseline strat-
egy, which results in an equi-width histogram and does not introduce approximation error
but only perturbation error. We then propose a 2-phase kd-tree (k-dimensional tree) based
partitioning strategy that results in a v-optimal histogram and seeks to minimize both the
perturbation and approximation errors.

Note that we do not assume any prior knowledge about target queries. This is why we
use “cell”, the smallest unit in data, to represent a dataset. Otherwise query knowledge can
also be adopted to further improve our method in two ways. First, the granularity can be
determined by the smallest unit in queries. For example, if in Figure 4 x5 and x6 always
appear together as x5 + x6, then x5 and x6 can form a new “cell” for the target queries.
Thus the perturbation error would be reduced by the decrease of “cells” and the accuracy
for the target queries can be boosted. Second, the releasing strategy can also be tailored
for target queries. If there are mostly large queries, which usually cover a large number of
cells, then the whole kd-tree can be released because internal nodes in kd-tree will benefits
large queries. Since we do not assume such knowledge of queries, the v-optimal histogram,
which only consists of the leaf nodes in kd-tree, will prefer small queries that only cover few
number of cells. Without the prior knowledge of target queries, the merit of our method
lies in the exploitation of data distribution to improve the utility of released histograms.

4.2 A Baseline Cell Partitioning Strategy

A simple strategy is to partition the data based on the domain and then release a noisy
count for each cell which results in an equi-width cell histogram. Figure 5 illustrates this
baseline strategy. The implementation is quite simple, taking advantage the Partition op-
erator followed by NoisyCount on each partition, shown in Algorithm 1.

Privacy Guarantee We present the theorem below for the cell partitioning algorithm which
can be derived directly from the composability theorems.

TRANSACTIONS ON DATA PRIVACY 7 (2014)

204 Yonghui Xiao, Li Xiong, Liyue Fan, Slawomir Goryczka, Haoran Li

Cell Partitioning
Diff.

Private
Interface

Raw
Records

UserCell

Cell Partitioning

NoisyCount ReleaseInterface User
Histogram

Figure 5: Baseline cell partitioning

Algorithm 1 Baseline cell partitioning algorithm
Require: α: differential privacy budget

1. Partition the data based on all domains.
2. Release NoisyCount of each partition using privacy parameter α

Theorem 4.1. Algorithm 1 achieves α-differential privacy.

Proof. Because every cell is a disjoint subset of the original database, according to theorem
3.2, it is α-differentially private.

Error Quantification We present a lemma followed by a theorem that states a formal util-
ity guarantee of cell-based partitioning for linear distributive queries.

Lemma 4.1. If Ñi (i = 1 . . .m) is a set of random variables i.i.d from Lap(b) with mean 0,
given 0 < ε < 1, the following holds:

Pr

[
m∑
i=1

|Ñi| ≤ ε

]
≥ 1−m · exp(− ε

mb
) (3)

Proof. Let ε1 = ε/m, given the Laplace distribution, we have

Pr
[
|Ñi| > ε1

]
= 2
∫∞
ε1

1
2bexp(−

x
b) = e−ε1/b

then

Pr
[
|Ñi| ≤ ε1

]
= 1 - Pr

[
|Ñi| > ε1

]
= 1− e−ε1/b

If each |Ñi| ≤ ε1, we have
∑m
i=1 |Ñi| ≤ m · ε1 = ε, so we have

Pr

[
m∑
i=1

|Ñi| ≤ ε

]
≥ Pr

[
|Ñi| ≤ ε1

]m
= (1− e−ε1/b)m

Let F (x) = (1 − x)m +mx − 1. The derivative of F (x) is F ′(x) = −m(1 − x)m−1 +m =
m(1− (1− x)m−1) ≥ 0 when 0 < x < 1. Note that 0 < e−ε1/b < 1, so F (e−ε1/b) ≥ F (0) = 0.
We get

(1− e−ε1/b)m ≥ 1−m · e−ε1/b

Recall ε1 = ε/m, we derive equation (3).

TRANSACTIONS ON DATA PRIVACY 7 (2014)

DPCube: Differentially Private Histogram Release through Multidimensional Partitioning 205

Theorem 4.2. The released D̂ of algorithm 1 maintains (ε, δ)-usefulness for linear counting
queries, if α ≥ m·ln(mδ)

ε , where m is the number of cells in the data cube.

Proof. Given original data D represented as count vector x, using the cell partitioning with
Laplace mechanism, the released data D̂ can be represented as y = x + Ñ, where Ñ is a
length-m column vector of Laplace noises drawn from Lap(b) with b = 1/α.

Given a linear counting query Q with query size s (s ≤ m), we have Q(D) = Qx, and

Q(D̂) = Qy = Qx + QÑ = Qx +

s∑
i=1

|Ñi|

With Lemma 4.1, we have

Pr
[
|Q(D)−Q(D̂)| ≤ ε

]
= Pr

[
s∑
i=1

|Ñi| ≤ ε

]
≥ 1−m · exp(− ε

mb
)

If m · exp(− ε
mb) ≤ δ, then

Pr
[
|Q(x,D)−Q(x, D̂)| ≤ ε

]
≥ 1− δ

In order for m · exp(− ε
mb) ≤ δ, given b = 1/α, we derive the condition α ≥ m·ln(mδ)

ε .

4.3 DPCube: Two-Phase Partitioning

1. Cell Partitioning

Cell
Histogram

NoisyCount

Diff. Raw

Histogram

2 Multi-dimensionalPartitions Release
Private

Interface

Raw
Records User3. Estimation

2. Multi dimensional
Partitioning

Partitions Release

Subcube
Histogram

NoisyCount

Figure 6: DPCube: 2-phase partitioning

We now present our DPCube algorithm. DPCube uses an innovative two-phase partition-
ing strategy as shown in Figure 6. First, a cell based partitioning based on the domains (not
the data) is used to generate a fine-grained equi-width cell histogram (as in the baseline
strategy), which gives an approximation of the original data distribution. We generate a
synthetic database Dc based on the cell histogram. Second, a multi-dimensional kd-tree
based partitioning is performed on Dc to obtain uniform or close to uniform partitions.
The resulting partitioning keys are used to Partition the original database and obtain a

TRANSACTIONS ON DATA PRIVACY 7 (2014)

206 Yonghui Xiao, Li Xiong, Liyue Fan, Slawomir Goryczka, Haoran Li

NoisyCount for each of the partitions. Finally, given a user-issued query, an estimation
component uses either the v-optimal histogram or both histograms to compute an answer.
The key innovation of our algorithm is that it is data-aware or adaptive because the multi-
dimensional kd-tree based partitioning is based on the cell-histogram from the first phase
and hence exploits the underlying data distribution indirectly observed by the perturbed
cell-histogram. Essentially, the kd-tree is based on an approximate distribution of the orig-
inal data. The original database is not queried during the kd-tree construction which saves
the privacy budget. The overall privacy budget is efficiently used and divided between the
two phases only for querying the NoisyCount for cells and partitions. Algorithm 2 presents
a sketch of the algorithm.

Algorithm 2 2-phase partitioning algorithm
Require: β: number of cells;
α: the overall privacy budget
Phase I:
1. Partition the original database based on all domains.
2. get NoisyCount of each partition using privacy parameter α1 and generate a synthetic
dataset Dc.
Phase II:
3. Partition Dc by algorithm 3.
4. Partition the original database based on the partition keys returned from step 3.
5. release NoisyCount of each partition using privacy parameter α2 = α− α1

Kd-tree Construction The key step in Algorithm 2 is the multi-dimensional partitioning
step. As discussed earlier, our main design goal is to generate uniform or close to uniform
partitions so that the approximation error within the partitions is minimized. Because it
has been shown that finding the optimal multi-dimensional histogram, even without the
privacy constraints, is a challenging problem and optimal partitioning even in two dimen-
sions is NP-hard [32], we construct the following heuristic kd-tree. The uniformity (in
terms of variance) based heuristic is used to make the decision whether to split the current
partition and to select the best splitting point. Concretely, we do not split a partition if its
variance is less than a threshold, i.e. it is close to uniform, and split it otherwise. In order
to select the best splitting point, we choose the dimension with the largest range and the
splitting point that minimizes the accumulative weighted variance [33], n1V1+n2V2 where
n1, n2 are the numbers of cells in the two partitions and V1, V2 are their variances. This
heuristic is consistent with the goal of a v-optimal histogram which places the histogram
bucket boundaries to minimize the cumulative weighted variance of the buckets.

Algorithm 3 summarizes how to construct the heuristic kd-tree. It starts from the root
node which covers the entire space. At each step, a decision of whether to split a partition is
made according to the uniformity measurement, the variance. If the variance is larger than
a threshold, then a splitting dimension and a splitting value from the range of the current
partition on that dimension are chosen to divide the space into subspaces. The algorithm
repeats until all partitions (leaf nodes in the kd-tree) meet the uniformity requirement.

Data Release The remaining question is how to release the constructed kd-tree from above
step. If prior knowledge of target queries is given or known, the releasing strategy can
be tailored. For example, if there are mostly large queries, which usually cover a large
number of cells, it is shown in [22] that the whole kd-tree can be released because internal
nodes in kd-tree will benefits large queries. Because in this paper we do not assume any

TRANSACTIONS ON DATA PRIVACY 7 (2014)

DPCube: Differentially Private Histogram Release through Multidimensional Partitioning 207

Algorithm 3 Kd-tree based v-optimal partitioning
Require: Dt: input database; ξ0: variance threshold;

if variance of Dt > ξ0 then
Find a dimension and splitting point m which minimizes the cumulative weighted
variance of the two resulting partitions;
Split Dt into Dt1 and Dt2 by m.
partition Dt1 and Dt2 by algorithm 3.

end if

prior knowledge of target queries, we only release the cell histogram and the v-optimal
histogram, which only consists of the leaf nodes in the kd-tree, with the merit that the
released v-optimal histogram will perform best when data is uniformly distributed.

Privacy Guarantee We present the theorem below for the 2-phase partitioning algorithm
which can be derived directly from the composability theorems.

Theorem 4.3. Algorithm 2 is α-differentially private.

Proof. Step 2 and Step 5 are α1,α2-differentially private respectively. So the sequence is
α-differentially private because of theorem 3.1 with α = α1 + α2.

Query Matrix Representation We now illustrate how the proposed algorithm can be rep-
resented as a query matrix. We denote H as the query matrix generating the released data
in our algorithm and we have H = [HII;HI], where HI and HII correspond to the query
matrix in the cell partitioning and kd-tree partitioning phase respectively. HI is an Identity
matrix with m rows, each row querying the count of one cell. HII contains all the partitions
generated by the second phase. We use Ñ(α) to denote the column noise vector and each
noise Ñi is determined by a differential privacy parameter (α1 in the first phase and α2 in
the second phase respectively). The released data is y = Hx + Ñ. It consists of the cell
histogram yI in phase I and the v-optimal histogram yII in phase II: yI = (HI)x + Ñ(α1),
yII = (HII)x + Ñ(α2).

Using our example data from Figure 2, the query matrix H consisting of HI and HII and
the released data consisting of the cell histogram yI and subcube histogram yII are shown
in Equations (4, 5). The histograms are also illustrated in Figure 7.

HI =


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

 yI =


10 + Ñ1(α1)

21 + Ñ2(α1)

37 + Ñ3(α1)

20 + Ñ4(α1)

0 + Ñ5(α1)

0 + Ñ6(α1)

53 + Ñ7(α1)

0 + Ñ8(α1)

0 + Ñ9(α1)

 (4)

HII =

[
1 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0
0 0 0 0 1 1 0 1 1

]
yII =

[
31 + Ñ10(α2)

37 + Ñ11(α2)

73 + Ñ12(α2)

0 + Ñ13(α2)

]
(5)

4.4 Query Estimation and Error Quantification

Once the histograms are released, given a random user query, the estimation component
will compute an answer using the released histograms. We study two techniques and for-
mally quantify and compare the errors of the query answer they generate. The first one

TRANSACTIONS ON DATA PRIVACY 7 (2014)

208 Yonghui Xiao, Li Xiong, Liyue Fan, Slawomir Goryczka, Haoran Li

II

y11y10

37+N31+N

>20K

Income

y2 y3y1

21+N 37+N10+N

>20K

Income

y13y12

37+N1131+N10

10~2

y4 y5 y6

21+N2 37+N310+N1

10~2

0+N1373+N120~
0K

y7 y8 y9

20+N4 0+N5 0+N6

0~
0K

20~30 30~40 40~50

10K

Age

53+N7 0+N8 0+N9

20~30 30~40 40~50

10K

Age 0 30 30 0 0 50 ge0 30 30 0 0 50 ge

Figure 7: Example: released cell histogram (left) and subcube histogram (right)

estimates the query answer using only the subcube histogram assuming a uniform distri-
bution within each partition. As an alternative approach, we adopt the least squares (LS)
method, also used in [23, 22], to our two-phase strategy. The basic idea is to use both cell
histogram and subcube histogram and find an approximate solution of the cell counts to
resolve the inconsistency between the two histograms.

Uniform Estimation using Subcube Histogram Based on our design goal to obtain uni-
form partitions for the subcube histogram, we make the uniform distribution assumption in
the subcube histogram, where the counts in each cell within a partition are assumed to be
the same. Given a partition p, we denote np as the size of the partition in number of cells.
Hence the count of each cell within this partition is yp/np where yp is the noisy count of the
partition. We denote x̂H as the estimated cell counts of the original data. If a query predi-
cate falls within one single partition, the estimated answer for that query is s

np
yp where s is

the query range size.
Given a random linear query that spans multiple partitions, we can add up the estimated

counts of all the partitions within the query predicate. Then the error is the aggregation of
all errors in the partitions. However, in each partition, the error is a combination of pertur-
bation error (Laplace noises) and approximation error (uniform assumption). Therefore,
the total error is also a tradeoff between perturbation error and approximation error. If we
can analyze these two errors in one partition, we can obtain the total error in all partitions.
In the rest of the error analysis, we only consider queries within one partition as the result
can be easily extended for the general case.

Figure 8 shows an example. Given a query Q2 on population count with age = [30, 40],
the original answer is x2 + x5 + x8. Using the subcube histogram, the query overlaps
with partition y10 and partition y13. Using the uniform estimation, the estimated answer is
y10
2 + y13

2 .
Error Quantification for Uniform Estimation We derive the (ε, δ)-usefulness and the ex-

pected error for the uniform estimation method. To formally understand the distribution
properties of input database that guarantees the optimality of the method, we first define
the smoothness of the distribution within a partition or database similar to [13]. The dif-
ference is that [13] defines only the upper bound, while our definition below defines the
bound of differences of all cell counts. Intuitively, the smaller the difference, the smoother
the distribution.

Definition 4.1 (γ-smoothness). Denote x the original counts of cells in one partition, ∀xi, xj ∈
x, if |xj − xi| ≤ γ, then the distribution in the partition satisfies γ-smoothness.

TRANSACTIONS ON DATA PRIVACY 7 (2014)

DPCube: Differentially Private Histogram Release through Multidimensional Partitioning 209

y11

y13y12

y10

37+N
11

0+N
13

73+N
12

31+N
10

0
~
1
0
K

1
0
~
2
0
K

>
2
0
K

Income

20~30 30~40 40~50 Age

Figure 8: Example: query estimation with uniform estimation using subcube histogram

We now present a theorem that formally analyzes the utility of the released data if the
input database satisfies γ-smoothness, followed by a theorem for the general case.

Theorem 4.4. For γ-smooth data x, given a query q with size s, np the size of the partition,
the uniform estimation method is (ε, δ)-useful if equation (6) holds; the upper bound of the
expected absolute error E(εH) is shown in equation (7).

γ ≤ (ε+
s · logδ
α2np

)/min(s, np − s) (6)

E(εH) ≤ γ[min(s, np − s)] +
s

α2np
(7)

Proof. Given a query vector Q, the answer using the original data is Qx, the estimated
answer using the released partition is s

np
yp where yp is the released partition count, np is

the partition size, and s is the query size. The released count yp =
∑np
i=1 xi + Ñ(α2). So we

have the absolute error as

εH = | s
np
yp −Qx| = |(s

np

np∑
i=1

xi −Qx) +
s

np
Ñ(α2)|

According to the definition of γ-smoothness, ∀i, j, |xj − xi| ≤ γ, then | snp
∑np
i=1 xi −Qx| ≤

min(s, np − s)γ. Because of the symmetry of the PDF of Ñ(α2), we have

εH ≤ |min(s, np − s)γ +
s

np
Ñ(α2)| ≤ min(s, np − s)γ + | s

np
Ñ(α2)|

By Lemma 3.1, we know the PDF of s
np
Ñ(α2). To satisfy (ε, δ)-usefulness, we require

Pr(εH ≤ ε) ≥ 1− δ, then we derive the condition as in equation (6).
The expected absolute error is

E(εH) =
s

np

np∑
i=1

xi −Qx +
s

np
E|Ñ(α2)| ≤ min(s, np − s)γ +

s

np
E|Ñ(α2)|

Based on the PDF of s
np
Ñ(α2), we have

E|Ñ(α2)| = 1/α2

and hence derive equation (7).

TRANSACTIONS ON DATA PRIVACY 7 (2014)

210 Yonghui Xiao, Li Xiong, Liyue Fan, Slawomir Goryczka, Haoran Li

From theorem 4.4, we can conclude that if the input data is smoothly distributed or very
sparse, γ would be small and the error would be small. In this case, our algorithm achieves
the best result. In the general case, if we do not know the distribution properties of the
input data, we present Theorem 4.5 to quantify the error.

Theorem 4.5. Given a linear counting query Q, the expected absolute error for the uniform
estimation method, E(εH), is a function of (α1, s, η) shown in equation (8):

E(εH) =

∫
fs(z, α1)|η + z|dz (8)

where η = s
np
yp − QyI, yp is the released count of the partition in the subcube histogram,

np the size of the partition, s is the size of the query, and yI is the released counts of the cell
histogram.

Proof. Given a query Q, the answer using the original data is Qx, the estimated answer
using the released partition is s

np
yp. The released partition count is yp =

∑np
i=1 xi + Ñ(α2).

The released cell counts for the cell histogram in the first phase is yI = x + Ñ(α1). So we
have

εH = | s
np
yp −Qx| = | s

np
yp − (QyI − Ñ(α1))| = |(

s

np
yp −QyI) +

s∑
i=1

Ñi(α1)|

Denote η = s
np
yp − QyI, which is the difference (inconsistency) between the estimated

answers using the cell histogram and the subcube histogram, then εH = |η+
∑s
i=1 Ñi(α1)|.

By equation (2) , we have E(εH) in equation (8).

Least Square Estimation using Cell Histogram and Subcube Histogram The least square
(LS) method, used in [23, 22], finds an approximate (least square) solution of the cell counts
that aims to resolve the inconsistency between multiple differentially private views. In
our case, the cell histogram and the subcube histogram provide two views. We derive the
theoretical error of the least square method and compare it with the uniform estimation
method. Note that the error quantification in [23] is only applicable to the case when α1

and α2 are equal. We derive new result for the general case in which α1 and α2 may have
different values.

Theorem 4.6. Given a query Q, a least square estimation x̂LS based on the cell histogram
and subcube histogram, the expected absolute error of the query answer, E(εLS), is a func-
tion of (α1, α2, np, s) in equation (9), where s is the size of Q, and np is the size of the
partition.

E(εLS) =
(np + 1)3

s2(np + 1− s)
·
∫
|ε|
∫
fnp−s(−

(ε− z)(np + 1)

s
, α1)

·
∫
fs(

(z − y)(np + 1)

np + 1− s
, α1)f1(

y(np + 1)

s
, α2)dydzdε (9)

Proof. Given our two phase query strategy, the query matrix for the partition is H = [ones(1, np); Inp],
where np is the partition size. Using the least square method in [23], we solve H+ =

TRANSACTIONS ON DATA PRIVACY 7 (2014)

DPCube: Differentially Private Histogram Release through Multidimensional Partitioning 211

(HTH)−1HT , we have

H+ =



1
np+1

np
np+1

− 1
np+1

− 1
np+1

· · · − 1
np+1

1
np+1

− 1
np+1

np
np+1

− 1
np+1

· · · − 1
np+1

1
np+1

− 1
np+1

− 1
np+1

np
np+1

· · · − 1
np+1

1
np+1

− 1
np+1

− 1
np+1

− 1
np+1

. . . − 1
np+1

1
np+1

− 1
np+1

− 1
np+1

− 1
np+1

· · · np
np+1


We compute the least square estimation based on the released data y as x̂LS = H+y. So the
query answer using the estimation is

Qx̂LS = QH+y = QH+(Hx + Ñ(α)) = Qx + QH+Ñ(α)

The absolute error is

Qx̂LS −Qx =
s

np + 1
Ñ(α2) +

np + 1− s
np + 1

s∑
i=1

Ñ(α1)−
s

np + 1

np−s∑
i=1

Ñ(α1)

By Lemma 3.1 and equation (2), we know the PDF of s
np+1Ñ(α2),

np+1−s
np+1

∑s
i=1 Ñ(α1) and

s
np+1

∑np−s
i=1 Ñ(α1), then by convolution formula, we have equation (9).

We will plot the above theoretical results for both uniform estimation and least square
estimation with varying parameters in Section 6 and demonstrate the benefit of the uniform
estimation method, esp. when data is smoothly distributed.

5 Applications

Having presented the multidimensional partitioning approach for differentially private
histogram release, we now briefly discuss the applications that the released histogram can
support.

OLAP On-line analytical processing (OLAP) is a key technology for business-intelligence
applications. The computation of multidimensional aggregates, such as count, sum, max,
average, is the essence of on-line analytical processing. The released histograms with the
estimation can be used to answer most common OLAP aggregate queries.

Classification Classification is a common data analysis task. Several recent works studied
classification with differential privacy by designing classifier-dependent algorithms (such
as decision tree) [34, 35]. The released histograms proposed in this paper can be also used as
training data for training a classifier, offering a classifier-independent approach for classi-
fication with differential privacy. To compare the approach with existing solutions [34, 35],
we have chosen an ID3 tree classifier algorithm. However, the histograms can be used as
training data for any other classifier.

Blocking for Record Linkage Private record linkage between datasets owned by distinct
parties is another common and challenging problem. In many situations, uniquely iden-
tifying information may not be available and linkage is performed based on matching of
other information, such as age, occupation, etc. Privacy preserving record linkage allows
two parties to identify the records that represent the same real world entities without dis-
closing additional information other than the matching result. While Secure Multi-party
Computation (SMC) protocols can be used to provide strong security and perfect accuracy,

TRANSACTIONS ON DATA PRIVACY 7 (2014)

212 Yonghui Xiao, Li Xiong, Liyue Fan, Slawomir Goryczka, Haoran Li

Table 2: Simulation parameters
parameter description default value

np partition size np = 11
s query size s ≤ np

α1, α2 diff. privacy parameters α1 = 0.05, α2 = 0.15
γ smoothness parameter γ = 5
η inconsistency between η = 5

cell and subcube histogram

they incur prohibitive computational and communication cost in practice. Typical SMC
protocols require O(n ∗ m) cryptographic operations where n and m correspond to num-
bers of records in two datasets. In order to improve the efficiency of record linkage, blocking
is generally in use according to [36]. The purpose of blocking is to divide a dataset into mu-
tually exclusive blocks assuming no matches occur across different blocks. It reduces the
number of record pairs to compare for the SMC protocols but meanwhile we need to de-
vise a blocking scheme that provides strong privacy guarantee. [17] has proposed a hybrid
approach with a differentially private blocking step followed by an SMC step. The dif-
ferentially private blocking step adopts tree-structured space partitioning techniques and
uses Laplace noise at each partitioning step to preserve differential privacy. The match-
ing blocks are then sent to SMC protocols for further matching of the record pairs within
the matching blocks which significantly reduces the total number of pairs that need to be
matched by SMC.

The released histograms in this paper can be also used to perform blocking which enjoys
differential privacy. Our experiments show that we can achieve higher reduction ratio com-
pared to the blocking method proposed by [17]. We will examine some empirical results in
Section 6.

6 Experiment

We first simulate and compare the theoretical query error results from Section 4.4 for count-
ing queries that fall within one partition to show the properties and benefits of our ap-
proach (Section 6.1). We then present a set of experimental evaluations of the quality of
the released histogram in terms of weighted variance (Section 6.2) with respect to different
parameters. Next we show the evaluations of query error against random linear counting
queries and a comparison with existing solutions (Section 6.3). Finally, we also implement
and experimentally evaluate the two additional applications using the released histograms,
classification and blocking for record linkage, and show the benefit of our approach (Sec-
tion 6.4).

6.1 Simulation Plots of Theoretical Results

As some of the theoretical results in Section 4.4 consist of equations that are difficult to
compute for given parameters, we use the simulation approach to show the results and the
impact of different parameters in this section. Detailed and sophisticated techniques about
the simulation approach can be found in [37] and [38]. Table 6.1 shows the parameters used
in the simulation experiment and their default values.

TRANSACTIONS ON DATA PRIVACY 7 (2014)

DPCube: Differentially Private Histogram Release through Multidimensional Partitioning 213

Metric We evaluate the absolute error of count queries. Recall that E(εLS) is the expected
error of the least square estimation method; max(E(εH)) is the upper bound of expected
error of the uniform estimation method when the data is γ-smooth; E(εH) is the expected
error of the uniform estimation method in the general case. Note that E(εLS), max(E(εH)),
and E(εH) are derived from equation (9), (7), (8) respectively.

Impact of Query Size We first study the impact of the query size. Figure 9 shows the
error of the uniform and least square solutions with respect to varying query size for γ-
smooth data and general case (any distribution) respectively. We can see that the highest
error appears when the query size s is half of the partition size np. When γ is small, i.e.
data is smoothly distributed, the uniform estimation method outperforms the least square
method. This can be explained as follows. In uniform estimation, the error is a combina-
tion of the perturbed noise in the partition and the difference among data. To estimate a
query in the partition, the perturbed error is amortized by all the cells in the partition. Thus
for smooth distribution uniform estimation generates better result because the difference
among data is negligible. However, in general cases when we do not have any domain
knowledge about the data distribution, it is beneficial to use both cell histogram and sub-
cube histogram to resolve their inconsistencies. Otherwise, the error of uniform estimation
increases when the query size grows as in Figure 9(b). In least square method, the error
is a combination of errors in the cell histogram and subcube histogram. When the query
size approaches the partition size, the subcube histogram plays more important role in the
estimation method. This is why in Figure 9(b) E(εLS) is curved.

2 4 6 8 10
0

5

10

15

20

25

30

35

40

s

E
rr

o
r

max(E(ε
H

))

E(ε
LS

)

(a) γ-smooth distribution

2 4 6 8 10
0

10

20

30

40

50

60

70

80

s

E
rr

o
r

E(ε
H

),η=5

E(ε
LS

)

(b) any distribution

Figure 9: Query error vs. query size s

Impact of Privacy Budget Allocation We now study the impact of the allocation of the
overall differential privacy budget α between the two phases. The overall budget is fixed
with α = 0.2. Figure 10 shows the error of the uniform and least square solutions with
respect to varying query size for γ-smooth data and general case (any distribution) respec-
tively. For the LS method, equally dividing α between the two phases or slightly more for
cell-based partitioning works better than other cases. The results for the uniform estima-
tion method present interesting trends. For smoothly distributed data, a smaller privacy
budget for the partitioning phase yields better result. Intuitively, since data is smoothly
distributed, it is beneficial to save the privacy budget for the second phase to get a more
accurate overall partition count. On the contrary, for the random case, it is beneficial to
spend the privacy budget in the first phase to get a more accurate cell counts, and hence
more accurate partitioning.

Impact of Partition Size For γ-smooth data, the expected error is dependent on the par-
tition size np and the smoothness level γ. Figure 11(a) shows the error of the uniform and

TRANSACTIONS ON DATA PRIVACY 7 (2014)

214 Yonghui Xiao, Li Xiong, Liyue Fan, Slawomir Goryczka, Haoran Li

0 0.05 0.1 0.15 0.2
0

50

100

150

200

α
1

E
rr

o
r

E(ε
LS

)

max(E(ε
H

))

(a) γ-smooth distribution

0 0.05 0.1 0.15 0.2
0

50

100

150

200

250

300

α
1

E
rr

o
r

E(ε
LS

)

E(ε
H

)

(b) any distribution

Figure 10: Query error vs. privacy budget allocation α1

least square solutions with respect to varying partition size np for γ-smooth data. We ob-
serve that the error increases when the partition size increases because of the increasing
approximation error within the partition. Therefore, a good partitioning algorithm should
avoid large partitions.

20 40 60 80 100
5

10

15

20

25

30

35

40

45

n
p

E
rr

o
r

E(ε
LS

)

max(E(ε
H

))

(a) vs. partition size np

2 4 6 8 10
0

5

10

15

20

25

30

γ

E
rr

o
r

max(E(ε
H

))

(b) vs. smoothness γ

Figure 11: Query error for γ-smooth distribution

Impact of Data Smoothness For γ-smooth data, we study the impact of the smoothness
level γ on the error bound for the uniform estimation method. Figure 11(b) shows the
maximum error bound with varying γ. We can see that the more smooth the data, the less
error for released data. Note that the query size s is set to be nearly half size of the partition
size np as default, which magnifies the impact of the smoothness. We observed in other
parameter settings that the error increases only slowly for queries with small or big query
sizes.

Impact of Inconsistency For data with any (unknown) distribution, E(εH) is a function
of η, the level of inconsistency between the cell histogram and the subcube histogram. In
contrast to the the γ-smooth case in which we have a prior knowledge about the smooth-
ness of the data, here we only have this observed level of inconsistency from the released
data which reflects the smoothness of the original data. Figure 12 shows the error for the
uniform estimation method with varying η. Note that the error increases with increasing
η and even when η = 10, the error is still larger than the error of least square method in
Figure 11.

TRANSACTIONS ON DATA PRIVACY 7 (2014)

DPCube: Differentially Private Histogram Release through Multidimensional Partitioning 215

20 40 60 80 100
0

20

40

60

80

100

120

η
E

rr
o

r

E(ε
H

)

Figure 12: Query error vs. level of inconsistency η for any distribution

6.2 Histogram Variance

We use the Adult dataset from the Census [39]. All experiments were run on a computer
with Intel P8600(2 ∗ 2.4 GHz) CPU and 2GB memory. For computation simplicity and
smoothness of data distribution, we only use the first 104 data records.

Original and Released Histograms We first present some example histograms generated
by our algorithm for the Census dataset. Figure 13(a) shows the original 2-dimensional
histogram on Age and Income. Figure 13(b) shows a cell histogram generated in the first
phase with α1 = 0.05. Figure 13(c) shows a subcube histogram generated in the second
phase with estimated cell counts using uniform estimation, in which each horizontal plane
represents one partition. Figure 13(d) shows an estimated cell histogram using the LS esti-
mation using both cell histogram and subcube histogram. We systematically evaluate the
utility of the released subcube histogram with uniform estimation below.

0
2

4
6

8
10

0

5

10
50

100

150

200

Original Distribution

(a) Original histogram

0
2

4
6

8
10

0

5

10
0

50

100

150

200

250

Cell release

(b) Cell histogram

0
2

4
6

8
10

0

5

10
70

80

90

100

110

120

130

Released

(c) Subcube histogram

0
2

4
6

8
10

0

5

10
0

50

100

150

200

250

Released

(d) Estimated cell histogram

Figure 13: Original and released histograms

TRANSACTIONS ON DATA PRIVACY 7 (2014)

216 Yonghui Xiao, Li Xiong, Liyue Fan, Slawomir Goryczka, Haoran Li

Metric We now evaluate the quality of the released histogram using an application-independent
metric, the weighted variance of the released subcube histogram. Ideally, our goal is to ob-
tain a v-optimal histogram which minimizes the weighted variance so as to minimize the
estimation error within partitions. Formally, the weighted variance of a histogram is de-
fined as V =

∑p
i=1 xiVi, where p is the number of partitions, xi is the number of data points

in the i-th partition, and Vi is the variance in the i-th partition [33].

0 2 4 6 8 10
0

1

2

3

4

5
x 10

4

ξ
0

V
ar

ia
n

ce

Variance

(a) vs. threshold ξ0

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2
x 10

4

α
1

V
ar

ia
n

ce

Variance

(b) vs. privacy budget α1

Figure 14: Histogram variance and impact of parameters

Impact of Variance Threshold Figure 14(a) shows the weighted variance of the released
subcube histogram with respect to varying variance threshold value ξ0 used in our algo-
rithm. As expected, when ξ0 becomes large, less partitioning is performed, i.e. more data
points are grouped into one bucket, which increases the variance.

Impact of Privacy Budget Allocation Figure 14(b) shows the weighted variance with re-
spect to varying privacy budget in the first phase α1 (with fixed ξ0 = 3). Note that the
overall privacy budget is fixed. We see that the correlation is not very clear due to the ran-
domness of noises. Also the ξ0 is fixed which does not reflect the different magnitude of
noise introduced by different α1. Generally speaking, the variance should decrease gradu-
ally when α1 increases because large α1 will introduce less noise to the first phase, which
will lead to better partitioning quality.

6.3 Query Error

We evaluate the quality of the released histogram using random linear counting queries
and measure the average absolute query error and compare the results with other algo-
rithms. For the original dataD and estimated data D̂, query error is defined as the absolute
distance between answers derived from D and D̂: E = |Q(D)−Q(D̂)|.

We also implemented an alternative kd-tree strategy similar to that used in [17], referred
to as hierarchical kd-tree, and another data release algorithm [22], referred to as consistency
check, for comparison purposes.

Random Queries Generation We use the Age and Income attributes and generated 105

random counting queries to calculate the average query error. The random queries are
generated in the following way. First, we generate two random intervals within the domain
of age and income. A random interval is created in the following way. In the domain of one
attribute, we generate two random numbers, a and b, uniformly. Then [a, b] forms a random
interval. Second, combining the two intervals we obtain a random rectangle, which covers
the area of the query.

TRANSACTIONS ON DATA PRIVACY 7 (2014)

DPCube: Differentially Private Histogram Release through Multidimensional Partitioning 217

0 2 4 6 8 10
0

200

400

600

800

1000

ξ
0

E

rr
o

r

Query error

(a) vs. threshold ξ0

0 0.05 0.1 0.15 0.2
0

200

400

600

800

1000

α
1

E
rr

o
r

Query error

(b) vs. privacy budget α1

Figure 15: Query error and impact of parameters

Impact of Variance Threshold We first evaluate the impact of the threshold value ξ0 on
query error. Figure 15(a) shows the average absolute query error with respect to varying
threshold values. Consistent with Figure 14, we observe that the query error increases with
an increasing threshold value, due to the increased variance within partitions. A general
guideline is to choose ξ0 proportional to the smoothness γ: the greater γ, the greater ξ0.

Impact of Privacy Budget Allocation We next evaluate the impact of how to allocate the
overall privacy budget α into α1, α2 for the two phases in the algorithm. Figure 15(b)
shows the average absolute query error vs. varying α1. We observe that small α1 values
yield better results, which complies with our theoretical result for γ-smooth data in figure
10. This verifies that the real life Adult dataset has a somewhat smooth distribution. On
the other hand, for data with unknown distribution, we expect α1 cannot be too small as it
is more important for generating a more accurate partitioning.

Comparison with Other Works We use 3 attributes in the CENSUS dataset: Age, Hours/week,
and Education, whose domain sizes are 100, 100 and 16 respectively. We compare our ap-
proach with three representative approaches in existing works, the interactive model in [5],
the spatial decomposition method [28], and the Privelet+ method [20]. In the 2D experi-
ment, we use Age and Education.

Figure 16(a,c) shows the median absolute query error of different approaches with respect
to varying privacy budget α. We can see that the DPCube algorithm achieves the best
utility against the random query workload because of its efficient 2-phase use of the privacy
budget and the v-optimal histogram. The Dwork method performs worse than DPcube,
because when the original counts of cells have low values, the noise injected to original
counts are relatively very large especially for high privacy level, leading to an unnecessarily
large amount of noise. For the KD-hybrid method, since the maximum height of the tree
is predetermined and the privacy budget is allocated to both the median and the count of
tree nodes, additional useful tree levels need to be extended especially when the variance
of data in some certain dimension has not arrived at its threshold. This explains why the
KD-hybrid approach generally performs worse than DPcube as shown in Figure 16, and
the performance gap gradually expands as the total privacy budget increases.

We also experimented with query workloads with different query sizes, [1, 500] and [1, 4000]
for 2D and 3D queries respectively, in Figure 16(b,d). As proven in our theoretical result in
Figure 11, the query error of our algorithm would increase with increasing query size. We
can see that for queries with small sizes ([1, 500] and [1, 4000] are small compared with the
query size domain) our 2-phase algorithm achieves better results than others. On the other
hand, the PSD[28] and Privelet+[20] algorithms favors queries with large size. PSD adopts

TRANSACTIONS ON DATA PRIVACY 7 (2014)

218 Yonghui Xiao, Li Xiong, Liyue Fan, Slawomir Goryczka, Haoran Li

the canonical range query processing method to minimize the number of nodes contribut-
ing their counts to the query results and decrease the error variance of large size queries.
Privelet+ provides a fixed bound of noise variance for queries of all sizes. Our algorithm
favors smaller partitions with small variances which will result in large aggregated pertur-
bation errors for large queries that span multiple partitions.

0 0.2 0.4 0.6 0.8 1
10

1

10
2

10
3

10
4

α

E
rr

or

Privelet+
kd−hybrid(PSD)
Dwork
DPCube

(a) vs. privacy budget α(2D)

0 200 400 600
10

0

10
5

Query size

E
rr

or

Privelet+
kd−hybrid(PSD)
Dwork
DPCube

(b) vs. query size(2D)

0 0.2 0.4 0.6 0.8 1
10

1

10
2

10
3

10
4

α

E
rr

or

Privelet+
kd−hybrid(PSD)
Dwork
DPCube

(c) vs. privacy budget α(3D)

0 1000 2000 3000 4000 5000
10

−2

10
0

10
2

10
4

10
6

Query size

E
rr

or

Privelet+
kd−hybrid(PSD)
Dwork
DPCube

(d) vs. query size(3D)

Figure 16: Query error for different approaches

6.4 Additional Applications

Classification We evaluate the utility of the released histogram for classification and com-
pare it with other differentially private classification algorithms. In this experiment, the
dataset is divided into training and test subsets with 30162 and 15060 records respectively.
We use the work class, martial status, race, and sex attributes as features. The class was rep-
resented by salary attribute with two possible values indicating if the salary is greater than
$50k or not.

For this experiment, we compare several classifiers. As a baseline, we trained an ID3
classifier from the original data using Weka [40]. We also adapted the Weka ID3 implemen-
tation such that it can use a histogram as its input. To test the utility of the differentially
private histogram generated by our algorithm, we used an ID3 classifier called DPCube
histogram ID3. As a comparison, we implemented an interactive differentially private ID3
classifier, private interactive ID3, introduced by Friedman et al. [35].

Figure 17 shows the classification accuracy of the different classifiers with respect to vary-
ing privacy budget α. The original ID3 classifier provides a baseline accuracy at 76.9%.
The DPCube ID3 achieves slightly worse but comparable accuracy than the baseline due to
the noise. While both the DPCube ID3 and the private interactive ID3 achieve better accu-
racy with increasing privacy budget as expected, our DPCube ID3 outperforms the private

TRANSACTIONS ON DATA PRIVACY 7 (2014)

DPCube: Differentially Private Histogram Release through Multidimensional Partitioning 219

0 0.2 0.4 0.6 0.8 1
74.5

75

75.5

76

76.5

77

α

A
cc

u
ra

cy

ID3
private interactive ID3
DPCube ID3

Figure 17: Classification accuracy vs. privacy budget α

interactive ID3 due to its efficient use of the privacy budget.
Blocking for Record linkage We also evaluated the utility of the released histogram for

record linkage and compared our method against the hierarchical kd-tree scheme from [17].
The attributes we considered for this experiment are: age, education, wage, marital status,
race and sex. As the histogram is used for the blocking step and all pairs of records in
matching blocks will be further linked using an SMC protocol, our main goal is to reduce
the total number of pairs of records in matching blocks in order to reduce the SMC cost.
We use the reduction ratio used in [17] as our evaluation metric. It is defined as follows:

reduction ratio = 1−
∑k
i=1 ni ∗mi

n ∗m
(10)

where ni (mi) corresponds to the number of records in dataset 1 (resp. 2) that fall into the
ith block, and k is the total number of blocks.

We compared both methods by running experiments with varying privacy budget (α) val-
ues (using the first 2 attributes of each record) and with varying numbers of attributes (with
α fixed to 0.1). Figure 18(a) shows the reduction ratio with varying privacy budget. Both
methods exhibit an increasing trend in reduction ratio as the privacy budget grows but our
2-phase v-optimal histogram consistently outperforms the hierarchical kd-tree approach
and maintains a steady reduction ratio around 85%. Figure 18(b) shows the reduction ra-
tio with varying number of attributes (dimensions). As the number of attributes increases,
both methods show a drop in their reduction ratios due to the sparsification of data points,
thus increasing the relative error for each cell/partition. However, our DPCube approach
exhibits desirable robustness when the dimensionality increases compared to the hierar-
chical kd-tree approach.

7 Conclusions and Future Works

We have presented a two-phase multidimensional partitioning algorithm with estimation
algorithms for a differentially private histogram release. We formally analyzed the utility
of the released histograms and quantified the errors for answering linear counting queries.
We showed that the released v-optimal histogram combined with a simple query estima-
tion scheme achieves bounded query error and superiors utility comparing to existing ap-
proaches for “smoothly” distributed data. The experimental results on using the released
histogram for random linear counting queries and additional applications including clas-
sification and blocking for record linkage showed the benefit of our approach. As future

TRANSACTIONS ON DATA PRIVACY 7 (2014)

220 Yonghui Xiao, Li Xiong, Liyue Fan, Slawomir Goryczka, Haoran Li

0 0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

α

R
ed

uc
tio

n
ra

tio

DPCube
Hierarchical kd−tree

(a) vs. privacy budget α

2 3 4 5 6
0.65

0.7

0.75

0.8

0.85

0.9

number of attributes

R
ed

uc
tio

n
ra

tio

DPCube
Hierarchical kd−tree

(b) vs. number of attributes

Figure 18: Reduction ratio of blocking for record linkage

work, we plan to develop algorithms that are both data- and workload-aware to boost the
accuracy for specific workloads and investigate the problem of releasing histograms for
temporally changing data.

Acknowledgements

This research was supported in part by NSF grant CNS-1117763, a Cisco Research Award,
and an Emory URC grant.

References

[1] C. Dwork, “Differential privacy: a survey of results,” in 5th international conference on Theory and
applications of models of computation, TAMC, 2008.

[2] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu, “Privacy-preserving data publishing: A survey
on recent developments,” ACM Computing Surveys, vol. 42, no. 4, 2010.

[3] C. Dwork, “A firm foundation for private data analysis,” Commun. ACM, vol. 54, January 2011.

[4] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in private data
analysis,” in 3rd Theory of Cryptography Conference, 2006.

[5] C. Dwork, “Differential privacy,” Automata, Languages and Programming, Pt 2, vol. 4052, 2006.

[6] D. Kifer and A. Machanavajjhala, “No free lunch in data privacy,” in SIGMOD, 2011.

[7] A. Blum, K. Ligett, and A. Roth, “A learning theory approach to non-interactive database pri-
vacy,” in STOC, 2008.

[8] C. Dwork, M. Naor, O. Reingold, G. N. Rothblum, and S. Vadhan, “On the complexity of differ-
entially private data release: efficient algorithms and hardness results,” in STOC, 2009.

[9] Y. Xiao, L. Xiong, and C. Yuan, “Differentially private data release through multidimensional
partitioning,” in Proceedings of the 7th VLDB Conference on Secure Data Management, SDM’10,
(Berlin, Heidelberg), pp. 150–168, Springer-Verlag, 2010.

[10] F. McSherry, “Privacy integrated queries: an extensible platform for privacy-preserving data
analysis,” in SIGMOD, 2009.

[11] F. McSherry and K. Talwar, “Mechanism design via differential privacy,” in FOCS, 2007.

[12] A. Roth and T. Roughgarden, “Interactive privacy via the median mechanism,” in STOC, 2010.

TRANSACTIONS ON DATA PRIVACY 7 (2014)

DPCube: Differentially Private Histogram Release through Multidimensional Partitioning 221

[13] M. Hardt and G. Rothblum, “A multiplicative weights mechanism for interactive privacy-
preserving data analysis,” in FOCS, 2010.

[14] A. Korolova, K. Kenthapadi, N. Mishra, and A. Ntoulas, “Releasing search queries and clicks
privately,” in WWW, 2009.

[15] R. Chen, N. Mohammed, B. C. M. Fung, B. C. Desai, and L. Xiong, “Publishing set-valued data
via differential privacy,” in VLDB, 2011.

[16] F. McSherry and I. Mironov, “Differentially private recommender systems: building privacy
into the net,” in KDD, 2009.

[17] A. Inan, M. Kantarcioglu, G. Ghinita, and E. Bertino, “Private record matching using differential
privacy,” in EDBT, 2010.

[18] N. Mohammed, R. Chen, B. C. Fung, and P. S. Yu, “Differentially private data release for data
mining,” in KDD, 2011.

[19] B. Ding, M. Winslett, J. Han, and Z. Li, “Differentially private data cubes: optimizing noise
sources and consistency,” in SIGMOD, 2011.

[20] X. Xiao, G. Wang, and J. Gehrke, “Differential privacy via wavelet transforms,” in ICDE, 2010.

[21] G. Acs, C. Castelluccia, and R. Chen, “Differentially private histogram publishing through lossy
compression,” IEEE International Conference on Data Mining, 2012.

[22] M. Hay, V. Rastogiz, G. Miklauy, and D. Suciu, “Boosting the accuracy of differentially-private
histograms through consistency,” VLDB, 2010.

[23] C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor, “Optimizing linear counting queries
under differential privacy,” in PODS, 2010.

[24] C. Li and G. Miklau, “An adaptive mechanism for accurate query answering under differential
privacy,” vol. 5, pp. 514–525, VLDB Endowment, Feb. 2012.

[25] S. Chen, Z. Shuigeng, and S. S. Bhowmick, “Integrating historical noisy answers for improving
data utility under differential privacy,” in Proceedings of the 2011 EDBT, EDBT ’12, 2012.

[26] X. Xiao, G. Bender, M. Hay, and J. Gehrke, “ireduct: differential privacy with reduced relative
errors,” in Proceedings of the 2011 international conference on Management of data, SIGMOD ’11,
(New York, NY, USA), pp. 229–240, ACM, 2011.

[27] J. Xu, Z. Zhang, X. Xiao, Y. Yang, and G. Yu, “Differentially private histogram publication,” in
ICDE, 2012.

[28] G. Cormode, C. M. Procopiuc, D. Srivastava, E. Shen, and T. Yu, “Differentially private spatial
decompositions,” in ICDE, pp. 20–31, 2012.

[29] M. Kamber and W. Han, J, Data mining: concepts and techniques, Second Edition. MorganKaufman,
2006.

[30] U. Kchler and S. Tappe, “On the shapes of bilateral gamma densities,” Statistics & Probability
Letters, vol. 78, no. 15, 2008.

[31] Y. Ioannidis, “The history of histograms (abridged),” in Proc. of VLDB Conference, 2003.

[32] S. Muthukrishnan, V. Poosala, and T. Suel, “On rectangular partitionings in two dimensions:
Algorithms, complexity, and applications,” in ICDT, pp. 236–256, 1999.

[33] V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J. Shekita, “Improved histograms for selectivity
estimation of range predicates,” SIGMOD Rec., vol. 25, June 1996.

[34] G. Jagannathan, K. Pillaipakkamnatt, and R. N. Wright, “A practical differentially private ran-
dom decision tree classifier,” in ICDM Workshops, 2009.

[35] A. Friedman and A. Schuster, “Data mining with differential privacy,” in SIGKDD, 2010.

[36] A. Elmagarmid, P. Ipeirotis, and V. Verykios, “Duplicate record detection: A survey,” Knowledge
and Data Engineering, IEEE Transactions on, vol. 19, pp. 1 –16, jan. 2007.

TRANSACTIONS ON DATA PRIVACY 7 (2014)

222 Yonghui Xiao, Li Xiong, Liyue Fan, Slawomir Goryczka, Haoran Li

[37] C. George and R. L.Berger, Statistical Inference. 2001.

[38] H. Anton and C. Rorres, Introduction to Probability Models, Tenth Edition. John Wiley and Sons,
Inc, 2005.

[39] A. Frank and A. Asuncion, “UCI machine learning repository,” 2010.

[40] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The weka data
mining software: an update,” SIGKDD Explor. Newsl., vol. 11, pp. 10–18, November 2009.

TRANSACTIONS ON DATA PRIVACY 7 (2014)

