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Abstract. The popularity of online social networks (OSNs) is on constant rise due to various advan-
tages, including online communication and sharing information of interest among friends. It is often
that users want to make new friends to expand their social connections as well as to obtain informa-
tion from a broad range of people. Friend recommendation is a very important application in many
OSNs and has been studied extensively in the recent past. However, with the growing concerns about
user privacy, there is a strong need to develop privacy-preserving friend recommendation methods
for social networks. In this paper, we propose two novel methods to recommend friends for a given
user by using the common neighbors proximity measure in a privacy-preserving manner. The first
method is based on the properties of an additive homomorphic encryption scheme and also utilizes
a universal hash function for efficiency purpose. The second method utilizes the concept of protect-
ing the source privacy through anonymous message routing and recommends friends accurately and
efficiently. In addition, we empirically compare the efficiency and accuracy of the proposed proto-
cols, and address the implementation details of the two methods in practice. The proposed protocols
provide a trade-off among security, accuracy, and efficiency; thus, users or the network provider can
choose between these two protocols depending on the underlying requirements.

Keywords. Online Social Network, Privacy, Friend Recommendation, Encryption.

1 Introduction

An OSN facilitates users to stay in touch with others users (such as distant family members
or friends), easily share information, look for old acquaintances and establish friendship
with new users based on shared interests. The emerging growth of OSNs [7,23,47], such as
Facebook, MySpace, Twitter, YouTube, Google+ and LinkedIn, has resulted in vast amount
of social data containing personal and sensitive information about individual users. Social
network analyses [6,57] involve mining the social data to understand user activities and to
identify the relationships among various users. Social network analyses have boosted the
research in developing various recommendation algorithms such as [41, 74]. For example,
an algorithm may recommend a new application to a Facebook user based on either the
applications he/she used in the past or the usage pattern of various applications used by
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his/her friends. In general, a recommendation can be a friend, a product, an ad or even a
content potentially relevant to the user.
Friend recommendation algorithms in OSNs can be based on network topology, user con-

tents or both. Topology-based algorithms [9, 58, 70] focus on the topological structures of
social networks as how users are currently connected. These algorithms check whether the
friends of existing friends of user A can be recommended as new friends to A using some
similarity measures. In contrast, the content-based algorithms [35, 77] utilize the profile
information of users, such as education and hobbies, to recommend new friends to A. In
this paper, we restrict our discussion to topology based friend recommendations.
Given the snapshot of an OSN, the social closeness between two users is termed as prox-

imity. The proximity measures can be divided into two groups. The first group includes
measures based on node neighborhoods, such as Common Neighbors, Jaccard Coefficient,
Adamic/Adar, and Preferential Attachment. In contrast, the second group consists of mea-
sures based on ensemble of all paths, such as Katz, Hitting Time, Page Rank and SimRank.
It was shown that the common neighbors method acts as a good proximity measure to cap-
ture the similarity among the nodes of a social network [49, 50]. Therefore, in this paper,
we use the common neighbors as the similarity measure to compute the social closeness
between two users (see Section 4.3 for more details).
With the growing use of OSNs, there have been various concerns about user privacy

[13, 17, 22, 28, 36, 45, 46]. Some well-known privacy issues in the social networks are data
publishing to a third party, social phishing and analysis on the social data. Due to these pri-
vacy concerns, freely mining the social network data is not allowed or feasible; therefore,
researchers from both academia and industry are moving towards developing problem-
specific privacy-preserving techniques. This paper proposes two novel methods for solving
a specific mining problem in social networks, namely friend recommendation in a privacy-
preserving manner. What is private to a given user is subjective in nature. In particu-
lar to the friend recommendation problem, the friendship between any two users can be
treated as sensitive/private information. This assumption is realistic and being supported
by many on-line social networks (e.g., Facebook) where users are allowed to hide their
friend lists. Most often, when people maintain friendship with trusted ones, there is much
information flowing from one to another. Besides protecting the information being shared,
users may also want to hide the list of users with whom they typically share their sensi-
tive information (e.g., photos and articles), for privacy reasons. Therefore, protecting the
friendship information in OSNs is of central importance which would otherwise poses a
great threat to the user’s privacy through social engineering attacks [39,40].
In addition, we assume that the social network operators or administrators are not al-

lowed to know the users’ friend lists or other private personal profile information. We
emphasize that this is a commonly made assumption in the related problem domains
[3, 12, 25, 37, 39, 53, 72, 75] and such a social network has several significant benefits. For
example, when a user’s private personal profile is not disclosed to the social network, the
network would likely not face any obligations about leaking its users’ private information
when the network were hacked. Therefore, the social network has the incentive not to
know the user’s private information, like friend list. On the other hand, the user has more
incentive to use the social network since the user has complete control over his or her pri-
vate information. Due to increasing privacy concerns, we believe that such a private social
network will become more common, and it can attract non-traditional users. In addition,
since the social network provider does not know the network structure and users’ private
profile, this may allow private organizations or government agencies to outsource their in-
ternal communication means to such networks. We think there will be a market for such
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private social networks (see Section 2.2 for more details).

1.1 Problem Definition

Suppose we have a social network where the friendship between two users is considered
as private, and the other users should not know whether the two users are friends. In this
social network, users can still create or share contents among themselves, but the friend
list of a user (considered private) should be accessible only by the user himself/herself.
The challenge is how to perform friend recommendation in such a social network without
disclosing the friendship information between any two users to the other users. We term
this problem as privacy-preserving friend recommendation (PPFR), and the goal of this
paper is to develop PPFR protocols based on the common neighbors method [50]. Let A be
the target user (who wish to make new friends) in a social network and Fr(A) denote the
friend list of A. Without loss of generality, assume Fr(A) = 〈B1, . . . , Bm〉, where Bi is a
friend of A, for 1 ≤ i ≤ m. We formally define a PPFR protocol as follows:

PPFR(A,Fr(A), F r(B1), . . . , F r(Bm), t)→ S (1)

where t denotes a threshold value (more details are given in Section 5) and S denotes the list
of recommended friends whose common neighbors scores (for any two users, it is defined
as the number of common friends between them) with A are greater than or equal to t. In
general, a PPFR protocol should satisfy the following requirements:

1. Privacy-Preserving

• Fr(A) (resp. Fr(Bi), for 1 ≤ i ≤ m) is never disclosed to users other than A
(resp. Bi) in a social network,

• Similarly, ∀ Cij ∈ Fr(Bi), Fr(Cij) is never disclosed to users other than Cij ,

• Friend lists of all users including A are never disclosed to the social network
administrator T ,

• At the end of PPFR, S is only known to A.

2. Correctness

• S ⊆
⋃m

i=1 Fr(Bi),

• ∀ C ∈ S ⇒ Φ(A,C) ≥ t.

where C is a recommended new friend to user A and Φ(A,C) denotes the common
neighbors score between A and C. In order to recommend C as a new friend to A,
Φ(A,C) should be greater than or equal to t.

We emphasize that our proposed PPFR protocols provide a means to recommend friends to
A based on the common neighbors scores in a privacy-preserving manner. Note that only
the users with scores ≥ t are recommended as friends to A. However, A may not wish to
make friendship just simply based on the recommendations from the PPFR protocols. That
is, A might want to know more about the recommended friends before sending the friend
requests. Nevertheless, after the recommendations, A can visit the web pages correspond-
ing to the recommended friends and send friend requests to only those users who are of
particular interest to A.
For example, consider the case where Bob and Charles are recommended as new friends

to Alice using the PPFR protocols. Without loss of generality, let us assume that Charles
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was in the same high school as Alice and Bob has no relationship with Alice (except that
they share one or more common friends). Once Alice receives the recommendations, she
may find that Charles is her old schoolmate from the web-page of Charles. Then, Alice can
simply send a friend request only to Charles (whom she might trust) and may ignore Bob
(if Alice does not want to establish friendship with unknown users).
In order to achieve the privacy requirements of PPFR mentioned above, we model the

PPFR problem as a Secure Multiparty Computation (SMC) [29] problem due to the follow-
ing reasons. In general, the SMC models are widely used in developing various privacy-
preserving applications. This is because the main goal of building any privacy-preserving
application is to let multiple parties to evaluate a common functionality without compro-
mising their privacy. That is, apart from the information they already know (which typi-
cally consists of their private inputs), the participating parties should not deduce any ad-
ditional information other than the outputs specified by the protocol. Under SMC, given
n parties, each holding a private input ai, the goal is to securely evaluate a common func-
tionality f such that the output bi is known only to party i. Depending on the application
requirements, the value of bi that would be known to party i can be varied. Also, during
this process, except < ai, bi >, no other information is revealed to party i. Such privacy re-
quirements are needed in most real-world applications, including the privacy-preserving
friend recommendation (PPFR) problem which we justify below.
To develop mathematically strong (in terms of security guarantee) PPFR algorithms, we

used the well-known security definitions and threat models in SMC (more details are given
in Section 3). In the PPFR problem, the final output (i.e., the newly recommended friend
list) should be revealed only to the target user A. That is, the PPFR problem can be formu-
lated as follows: given a target user A (with his/her friend list as private input), the friends
of A and/or the friends of A’s friends (each holding their respective friend list as his/her
private input), the goal of the PPFR is to compute the new friends for A using the common
neighbors method (i.e., f ) such that the final output is revealed only to A. Under this case,
it is implicit that the output of all the other participating users (i.e., except A) is zero. By
combining the above results, it is clear that the privacy requirements of the PPFR problem
are the same as the privacy offered by the SMC model discussed above (see Sections 3 and
5 for more details).

1.2 Our Contributions

In this paper, we present two novel PPFR protocols that satisfy the well-known security
definitions in the literature of Secure Multiparty Computation (SMC) [19,30]. The first pro-
tocol adopts an additive homomorphic encryption scheme [63] and provides a very strong
security guarantee. It also utilizes a universal hash function for improving the efficiency.
This efficiency comes at the expense of degraded accuracy due to the involved hash colli-
sions. On the other hand, the second method utilizes the concept of protecting the source
privacy [42] through anonymous message routing and recommends friends accurately. The
main contributions of this paper can be summarized as follows:

• Security - Both of the proposed protocols preserve the privacy of each user (i.e.,
his/her friend list). Here a user’s friend list is protected from other users in the social
network, the network administrator, and any other adversary as well. Nevertheless,
both protocols leak different additional information thereby providing different secu-
rity guarantees. The first protocol leaks the common neighbors scores to a third party
(denoted by T , such as the network administrator). However, due to hashing and
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random permutation, T cannot identify the source of this scores. The second proto-
col reveals the common neighbors scores which are ≥ t to user A. Since the protocol
guarantees the source privacy, A cannot determine the sources corresponding to the
scores. A detailed security analysis of both the protocols is provided in Section 5.

• Accuracy & Efficiency - The first protocol uses a universal hash function, so it is
expected to produce false positives and false negatives due to hash collisions. Also,
its efficiency depends on the parameters of hash function and the size of Fr(A). On
the other hand, the second protocol recommends friends accurately and its efficiency
depends mainly on the size of both Fr(A) and friend lists of A’s friends. More details
are provided in Section 6.

• Flexibility - The proposed protocols provide a trade-off among security, accuracy
and efficiency; therefore, a domain expert can choose between these two protocols
depending on the underlying requirements.

The remainder of this paper is organized as follows: Section 2 summarizes the existing re-
lated work. Section 3 discusses the security model adopted in this paper. Section 4 presents
some concepts and properties, as a background, that are used throughout this paper. Sec-
tion 5 discusses the proposed protocols in detail along with a running example. We empir-
ically compare the efficiency and accuracy of the proposed protocols by providing various
experimental results in Section 6. Finally, we demonstrate the implementation details of
the proposed protocols in Section 7 and conclude the paper with future work in Section 8.

2 Related Work

In this section, we first review upon the existing work related to friend recommendations
in OSNs. Then we discuss about private social networks and the existing PPFR algorithms.

2.1 Existing Friend Recommendation Algorithms in OSNs

Social network analyses have been utilized for various business applications [6,73], such as
predicting the future [2] and developing recommender systems [38, 48, 54, 80]. With grow-
ing interest of expanding a person’s social circle, friend recommendation has become an
important service in many OSNs. Along this direction, researchers from both academia
and industry have published much work. In particular, Chen et al. [9] evaluated four rec-
ommender algorithms, which utilize social network structure and/or content similarity, in
an IBM enterprise social networking site Beehive through personalized surveys. Their anal-
ysis showed that algorithms based on social network information produce better-received
recommendations. A novel user calibration procedure was proposed by Silva et al. [70]
based on a genetic algorithm to optimize the three indices derived from the structural prop-
erties of social networks. Xie [77] designed a general friend recommendation framework to
recommend friends based on the common interests by characterizing user interests in two
dimensions - context (e.g., location and time) and content.
By treating friend recommendation process as a filtering problem, Naruchitparames et

al. [58] developed a two-step approach to provide quality friend recommendations by com-
bining cognitive theory with a Pareto-optimal genetic algorithm. Gou et al. [35] developed
a visualization tool (named as SFViz) that allows users to explore for a potential friend
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with an interest context in social networks. Their method considers both semantic struc-
ture in social tags and topological structures in social networks to recommend new friends.
The correlation between social and topical features in three popular OSNs: Flickr, Last.fm,
and aNobii was studied by Aiello et al. [1] to analyze friendship prediction. Their results
showed that social networks constructed solely from topical similarity captured the actual
friendship accurately. Nevertheless, Facebook uses the “People You May Know” feature to
recommend friends to users based on the simple “friend-of-a-friend” approach [24].
It is important to note that all the above methods are based on the assumption that the

social network data are available to the network administrator in clear format. As such,
they are not applicable to the PPFR problem.

2.2 Private Social Networks

In the current online social networks (OSNs), such as Facebook and Google+, users do not
have full control of their own data. Though the OSN providers facilitate users with various
privacy options, this will not guarantee the privacy of user’s data since the data are stored
on the server of an OSN provider (assuming the data are not encrypted by the users). In
addition, with the past history of data leaks and privacy controversies [56, 71], users have
many trust issues with OSN providers. To address such security concerns in OSNs, re-
searchers have been working to develop decentralized architectures for OSNs where so-
cial networking service is provided by a federation of nodes (i.e., peer-to-peer networks).
Along this direction, significant work has been published (e.g., [14, 40, 51, 60,64, 68]).
Most recently, Nilizadeh et al. [61] proposed a decentralized architecture (referred to as

Cachet) to efficiently support users with the central functionality of OSNs while providing
security and privacy guarantees. Cachet uses a combination of techniques, namely dis-
tributed hash tables and attribute based encryption [5], to protect confidentiality, integrity,
availability of user content as well as the privacy of user relationships. In particular, they
developed a gossip-based social caching algorithm to speed up the process of loading the
data in newsfeed application. We emphasize that their scheme is entirely different from
ours. First, their decentralized architecture involves no network provider and the com-
munication happens directly between users. In our model, user’s data are encrypted and
stored on the server of an OSN. Therefore, our problem setting is orthogonal to their model.
Second, the algorithm proposed in [61] is to support newsfeed application (under peer-to-
peer network architecture) whereas this paper focuses on the friend recommendation ap-
plication. Third, we emphasize that the peer-to-peer based social network system involves
heavy computation as well as communication costs on the users. Thus, in this paper, we
focus on conventional OSN framework where the data reside on the server of an OSN.
We emphasize that the decentralized architecture in OSNs is a more restricted model than

the centralized architecture (which is a typical model in the current OSNs, e.g., Facebook
and Google+) since it avoids the use of an OSN provider altogether. Also, it was claimed
in [25] that decentralization is an insufficient approach since it leaves the user with an en-
viable dilemma: either sacrifice availability, reliability and convenience by storing data ei-
ther on his/her machine or entrust his/her data to one of the several providers that he/she
probably does not know or trust any much more than he/she would with a centralized
provider. Therefore, our work considers a OSN system with a centralized provider. How-
ever, due to privacy and security concerns, we assume that user’s can encrypt their profile
data and store it on the OSN’s server. Nevertheless, even after proper encryption of user’s
data, the centralized provider cannot be trusted for various reasons. For example, a mali-
cious provider can show different users divergent views of the system state. This behavior
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is referred to as server equivocation [25].
Along this direction, the authors in [25] developed a novel framework for social network

applications, referred to as Frientegrity, that can be realized with an untrusted service
provider. In Frientegrity, the service provider sees only the encrypted data and cannot
deviate from correct execution without being detected. Therefore, their system preserves
data confidentiality and integrity. However, as mentioned in [25], Frientegrity reveals so-
cial relations to the service provider whereas in our work social relations (i.e., friend lists)
are protected from the service provider. Also, in their method, the target user A discovers
the new friends by searching through the access control lists of his/her friends for potential
FoF (i.e., friend-of-a-friend) that he/she might want to become friend with. However, such
a process is not allowed from user’s privacy perspective since this reveals the friend lists
of A’s friends to A. On the other hand, in our work, friend list of a user is never revealed
to other users.

2.2.1 Existing PPFR Algorithms in OSNs

Due to various privacy issues [13, 17, 22, 28, 36,45, 46,76], many users keep their friend lists
private. Only recently, researchers have focused on developing accurate and efficient PPFR
methods. Along this direction, Dong et al. [18] proposed a method to securely compute and
verify social proximity between two users using cosine similarity in mobile social networks.
Our work differs from theirs in two aspects. First, our problem setting is entirely different
from theirs. We assume that users’ friend lists are kept secret; thus, who are involved in the
computation is not revealed before hand. In contrast, in their approach, participating users
are aware of one another, and only their social closeness is securely computed and verified
to determine the new friendship. Secondly, our protocols are purely based on the user IDs
and does not need any pre-computation from a server. On the other hand, their approach
assumes that the social coordinates (which may change often due to the mobility of users)
for individual users are pre-computed by a trusted central server which is a violation of the
user privacy.
Machanavajjhala et al. [55] estimated the trade-offs between accuracy and privacy of pri-

vate friend recommendations using differential privacy [20, 21]. In their work, the authors
used the existing differentially private algorithms as underlying sub-routines and assumed
the existence of PPFR protocols based on these sub-routines. However, differential privacy
model has certain limitations and is mainly suitable for statistical databases. For exam-
ple, it was mentioned in [55] that if privacy has to be preserved under the differential pri-
vacy model when using the common neighbors utility function, only users with Ω(log n)
friends can hope to receive accurate recommendations, where n is the number of users in
the graph. In contrast, our privacy guarantees are based on an entirely different security
model, namely Secure Multiparty Computation (SMC) [30, 78, 79] model. As mentioned
earlier, the SMC model is a widely used model in cryptography and it has stronger secu-
rity properties compared to the differential privacy model. Under the SMC model, we are
able to develop accurate PPFR protocols. In particular, our second proposed protocol rec-
ommends friends accurately irrespective of the size of users’ friend list and simultaneously
preserves the privacy of each user.
Recently, Samanthula et al. [66] proposed a new private friend recommendation algorithm

using a specific scoring function [15, 52] that takes the social network structure as well as
the number of real message interactions among social network users into consideration.
For a given target user A, their method computes the recommendation scores of all poten-
tial users who reside within a radius of r (≥ 2) in the corresponding candidate network
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of A. When r = 2, the snapshot of the social network in their approach is the same as
ours. However, their method leaks valuable information such as whether two users (who
are friends and the same number of hops away from A in the corresponding candidate
network) share a common friend or not. This point was also mentioned in [66] as a draw-
back. Nevertheless, the scoring function adopted in our protocols (i.e., common neighbors
method) is entirely different from theirs, and the protocols proposed in this paper are more
secure in the perspective of protecting friendship information.

2.3 Secure Set Operations

At the first glance, secure set operation protocols [26, 27, 44] related to intersection and
union may be adopted to solve the proposed friend recommendation problem. There are
two main challenges to use these secure set operations protocols: one is related to com-
putation efficiency and the other is related to security. For example, let us illustrate the
challenges using the protocols proposed in [44] since these protocols seem most suitable to
solve the proposed friend recommendation problem.
The secure set operation protocols given in [44] are based on representing a set (i.e., a

friend list in our case) as a polynomial. Thus, to solve the friend recommendation problem
using these protocols, we need to generate a global polynomial (in encrypted form) by
combining the polynomials corresponding to the friend lists of A’s friends. Let f1, . . . , fm
denote the polynomials corresponding to B1, . . . , Bm, respectively. According to [44], the
computation of f (denoting the global polynomial) needs to be done sequentially. That
is, B1 initially sends the encrypted f1, denoted Epk(f1) to A (serving as a router), where
Epk(f1) = {Epk(f1[d]), . . . , Epk(f1[0])}, E denotes the encryption function with public key
pk, f1[j] is a coefficient and d denotes the degree of the polynomial f1, for 0 ≤ j ≤ d.
Then A sends Epk(f1) to B2, and B2 returns Epk(f1 · f2) to A and so on. After computing
Epk(f), more computation is needed to actually identify the element in the union above
the threshold. That is, the polynomial f need to be evaluated by each Bi based on his or
her private dataset. It is clear that the above solution is complex. Also, we observed that
the computation, communication and round complexities of this solution are much higher
than our proposed protocols (detailed complexity of the proposed protocols is given in
Section 5.3 and Section 6).
Additionally, the evaluation of Epk(f) by Bi may not produce the correct result if A ran-

domizes Epk(f) in order to hide the actual user IDs. On the other hand, if A does not
randomize Epk(f), Bi will know who (among his or her current friend list) will be recom-
mended as new friends for A. It is not clear how to prevent this information leakage if we
adopt the aforementioned secure set operation protocols. The protocols proposed in this
paper are not only efficient, but also better in terms of protecting the user’s privacy and
accuracy compared to the solutions based on the existing secure set operation protocols.

3 Threat Model

We briefly summarize the literature work on Secure Multiparty Computation along with
the security definition adopted in this paper.
In this paper, privacy/security is closely related to the amount of information disclosed

during the execution of a protocol. There are many ways to define information disclosure.
To maximize privacy or minimize information disclosure, we adopt the security defini-
tions in the literature of Secure Multiparty Computation (SMC) first introduced by Yao’s
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HEnc An additive homomorphic probabilistic encryption scheme

PPFR Privacy-preserving friend recommendation

SMC Secure Multiparty Computation

〈E,D〉 A pair of encryption and decryption functions in an HEnc System

〈pk, pr〉 Public and private key pair corresponding to 〈E,D〉

ha,b(x) Hash value of an integer x and ha,b is an universal hash function

s The domain size of the hash function ha,b

Fr(A) The friend list of user A

B or Bi One friend of A

C or Cij One friend of B or Bi, or any user in a social network

t A threshold value for recommendation condition

Table 1: COMMON NOTATIONS

Millionaire problem for which a provably secure solution was developed [78,79]. This was
extended to multiparty computations by Goldreich et al. [31]. It was proved in [31] that
any computation which can be done in polynomial time by a single party can also be done
securely by multiple parties. Since then much work has been published for the multiparty
case [4, 8, 29, 43].

There are two common adversarial models under SMC: semi-honest and malicious. An
adversarial model generally specifies what an adversary or attacker is allowed to do during
an execution for a security protocol. In the semi-honest model, an attacker (i.e., one of the
participating parties) is expected to follow the prescribed steps of a protocol. However, the
attacker can compute any additional information based on his or her private input, output
and messages received during an execution of a secure protocol. As a result, whatever can
be inferred from the private input and output of an attacker is not considered as a privacy
violation. An adversary in the semi-honest model can be treated as a passive attacker; on
the other hand, an adversary in the malicious model can be treated as an active attacker
who can arbitrarily diverge from the normal execution of a protocol.

In this paper, to develop secure and efficient protocols, we assume that parties are semi-
honest. Additional justifications for assuming the semi-honest adversarial behavior are
provided in Section 5.4. The following definition captures the above discussion regarding
a secure protocol under the semi-honest model [29].

Definition 1. Let ai be the input of party i,
∏

i(π) be i’s execution image of the protocol π
and bi be the output computed for party i from π. Then π is said to be secure if

∏

i(π) can be
simulated from 〈ai, bi〉 such that the distribution of the simulated image is computationally
indistinguishable from

∏

i(π).

In the above definition, an execution image generally includes the input, the output and
the messages communicated during an execution of a protocol. To prove a protocol is
secure, we generally need to show that the execution image of a protocol does not leak any
information regarding the private inputs of the participating parties [29].
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4 Preliminaries

In this section, we present some concepts and properties related to universal hash func-
tions, additive homomorphic encryption schemes, and common neighbors method, as a
background knowledge, which are used throughout the paper. Some common notations
that are extensively used in this paper are highlighted in Table 1.

4.1 Universal Hash Function

Consider a set of integers L = {0, 1, . . . , ℓ−1}. The goal is to map the integers from domain
L to a smaller domain V = {0, 1, . . . , s − 1} (where s < ℓ) with minimum number of
collisions. This can be achieved by a universal hash function [10]. Given a positive integer
x ∈ L, a universal hash function ha,b is defined as follows:

ha,b(x) = (a · x+ b mod p) mod s (2)

where p is a prime ≥ ℓ, a and b are randomly chosen from Z
∗

p = {1, 2, . . . , p − 1} and
Zp = {0, 1, . . . , p−1}, respectively. The universal hash function has the following property:
h(x)−h(y) mod s is uniformly distributed in V , ∀x, y ∈ L. That is the probability of collision
between x and y is 1

s
(note that there is no perfect hash function without collisions).

4.2 Additive Homomorphic Probabilistic Encryption

In the first proposed protocol, we use an additive homomorphic encryption scheme (de-
noted as HEnc) that is probabilistic in nature. We now discuss some interesting properties
exhibited by the HEnc system. Let E and D be the encryption and decryption functions
of an HEnc system with pk and pr as their respective public and private keys. Suppose
N 1 is the RSA modulus or the group size, and it is a part of the public key pk. Given two
plaintexts x1, x2 ∈ ZN , an HEnc system has the following properties:

• The encryption function is additive homomorphic: Epk(x1) ·Epk(x2) = Epk(x1 + x2),

• Given a constant c ∈ ZN and Epk(x1): Epk(x1)
c = Epk(c · x1),

• The encryption function has semantic security as defined in [34]. Briefly, a set of
ciphertexts do not provide additional information about the plaintext to an adversary.

There are many HEnc systems available in the literature. However, in this paper, we use
the Paillier cryptosystem [63] due to its efficiency.

4.3 The Common Neighbors Method

Let A and C be two users in a social network such that C /∈ Fr(A). Then, the common
neighbors score (denoted by Φ) for A and C is defined as the number of friends/neighbors
that A and C have in common [59]. More formally,

Φ(A,C) = |Fr(A) ∩ Fr(C)| (3)

Note that the common neighbors score is computed between two-hop neighboring nodes.
Therefore, if we want to recommend new friends for user A, we simply need to consider
the users who are two hops away from A as the possible candidates.

1The product of two large prime numbers of similar bit-length.
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Figure 1: Sample snapshot (two-hop) of a social network for Alex

Example 1. Consider the sample two-hop snapshot of the social network for Alex as shown
in Figure 1. The figure shows all the users who are at most two hops away from Alex.
The goal is to recommend new friends to Alex. Let us assume that t = 2. From Figure
1, it is clear that the set of potential candidates are 〈Baker,Bob, Evans,Martin,Wilson〉.
The friend lists and the common neighbors scores for Alex and each one of the potential
candidates are as shown in Table 2. Since Φ(Alex,Baker) = 2 and Φ(Alex,Martin) = 2,
Baker and Martin are recommended as new friends to Alex.

5 The Proposed PPFR Methods

To solve the PPFR problem, we make the following practical assumptions supported in
many on-line social networks:

1. Friendship is symmetric: If A is in Bi’s friend list, then Bi must be in A’s friend list.

2. Known Participation: A user participation in the social network is public informa-
tion. E.g., a person can browse existing Facebook user IDs.

3. Recommendation Condition: Suppose we want to recommend new friends to A
based on the common neighbors method discussed in Section 4.3. The new friends
are chosen from the candidate users that share at least t friends with A. Here, the can-
didate users are all the friends of A’s friends. In general, the value of t can be decided
by either the network administrator or A, and it can be static or changed occasion-
ally. In either case, it is important that the value of t is chosen at random under the
assumption that 1 ≤ t ≤ UNF , where UNF denotes the upper bound on the number
of friends for any given user in the social network. Note that the value of t does not
reveal any information about a user’s friend list. On one hand, a small value of t may
result in more number of recommendations. On the other hand, while increasing it,
may result in lesser number of recommendations. In this paper, we simply assume
that t is chosen by the network administrator from [1, UNF ] and public.

4. Semi-honest Behavior: We assume that users as well as the OSN provider are semi-
honest (i.e., they do not collude). However, in the case of malicious model, we believe
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Friend Lists

Fr(Alex) = 〈Scott,Moore,Rice,Davis〉

candidates = 〈Baker,Bob, Evans,Martin,Wilson〉

Fr(Baker) = 〈Scott,Moore〉
Fr(Bob) = 〈Moore〉
Fr(Evans) = 〈Moore〉
Fr(Martin) = 〈Rice,Davis〉
Fr(Wilson) = 〈Davis〉

Common neighbors scores for Alex
Fr(Alex) ∩ Fr(Baker) = 〈Scott,Moore〉
Fr(Alex) ∩ Fr(Bob) = 〈Moore〉
Fr(Alex) ∩ Fr(Evans) = 〈Moore〉
Fr(Alex) ∩ Fr(Martin) = 〈Rice,Davis〉
Fr(Alex) ∩ Fr(Wilson) = 〈Davis〉
Φ(Alex,Baker) = Φ(Alex,Martin) = 2
Φ(Alex,Bob) = Φ(Alex,Evans) = 1
Φ(Alex,Wilson) = 1

Table 2: Friend lists and the common neighbors scores for Alex based on Figure 1

that the proposed protocols can be combined with the techniques from [25] in order
to mitigate the server equivocation problem mentioned in Section 2.2.

In addition to the above assumptions, we assume a social network where user’s data are
encrypted at first place, for privacy and security reasons, and then sent to an OSN. Under
such an architecture, where user’s encrypted data are stored on the OSN’s server, vari-
ous schemes, such as [3, 12, 37, 39, 53, 72, 75], have been proposed to protect users’ privacy
through cryptography. More details about such a network are provided in Section 7.
Since the proposed protocols are distributed, the messages communicated among partici-

pating entities need to be authenticated. There exist many user and message authentication
protocols, so this paper does not address these issues when presenting and analyzing the
proposed protocols.

5.1 The PPFRh Protocol

The overall steps involved in the first proposed protocol, denoted by PPFRh, are shown in
Algorithm 1. The PPFRh protocol is based on an additive homomorphic encryption scheme
as explained in Section 4. The basic idea is to encrypt the ID of each friend of A’s friend
independently (under a common candidate space) and perform a homomorphic addition
by A on the encrypted data. Since the global user space is public in a social network,
we could use this global space to represent the candidate space without disclosing any
particular candidate’s ID to A. However, as the size of the social network is usually large
(e.g., in millions), generating a global user space is often impractical.
In general, the size of the potential candidate space (i.e.,

∑m
i=1 |Fr(Bi)|) is much smaller

than the size of the global user space. Additionally, since users’ friend lists are private,

TRANSACTIONS ON DATA PRIVACY 8 (2015)



Privacy-Preserving and Efficient Friend Recommendation in Online Social Networks 153

neither A nor Bi knows the potential candidate space before hand. A quick fix is for Bi

to use a universal hash function that can hash the IDs of his/her friends into integers less
than s (a predefined system parameter). This creates a pseudo and oblivious candidate
space. Here we need to have a proper mechanism to convert each user ID which may
contain some characters into a unique integer. A simple and straightforward approach is
to initially convert each character in the ID (if there are any) into its ASCII value (a three-
digit integer). In addition, we can map a single digit d (0 ≤ d ≤ 9) to 128 + d. Then we can
append these three-digit values together. E.g., ID “Bob52” is converted as follows:

int(Bob52) = ASCII(B)||ASCII(o)||ASCII(b)||133||130

= 066||111||098||133||130

= 066111098133130

where || denotes concatenation. This conversion method satisfies our condition that each
user ID is mapped into a unique integer, and this integer can be easily mapped back to
its corresponding user ID. The collision caused by the hash function is the price to pay for
the accuracy in recommendations. Hereafter, we simply use A to represent the converted
integer of ID(A) for convenience. Also, Fr(A) gives the list of converted user IDs of A’s
friends.
Based on the above description, A chooses a prime number p, such that the converted user

IDs are in the range of [0, . . . , p− 1]. Then A chooses the values of a and b randomly from
Z∗

p and Zp, respectively. In addition, A chooses the domain size of the hash function ha,b

and sets it to s. We also assume that there exists a party T (e.g., the network administrator)
in the network which generates the key pair (pk, pr) using the Paillier’s encryption scheme
[63]. T publishes the public key pk and threshold t to the users in the network. In our
protocol, T is only responsible for certain intermediate computations. We emphasize that
these computations do not reveal the user IDs to T (due to involved randomization and
permutation) and consequently preserve user privacy.
The main idea of the PPFRh protocol is as follows. Each user Bi generates an encrypted

matrix that contains his/her friend list information and forwards it to A. Then A aggregates
the encrypted friend lists component-wise to get the encrypted frequency for each friend of
A’s friend. After this, with the help of T who holds the private key pk, A securely retrieves
the IDs of the friends of A’s friends whose frequency is greater than or equal to threshold t.
Having discussed the basic idea of PPFRh, we now provide a more detailed explanation

of each step in PPFRh which are also outlined in Algorithm 1. To start with, whenever A
wants to make new friends, he/she shares the parameters of ha,b (i.e., a, b, p, s) with only
his/her friends. Then each friend Bi of A generates a matrix Mi of size s× 2 whose values
are initialized to zero and updated according to Fr(Bi) as follows. The first column of Mi

contains user IDs and the second column contains either 0s or 1s. Given the jth row in Mi,
if the value of the second entry is 1, the corresponding first column entry contains an actual
user ID, and j equals to the hashed value of the user ID. More specifically,

Mi[ha,b(Fr(Bi)[j])][1] = Fr(Bi)[j]

Mi[ha,b(Fr(Bi)[j])][2] = 1

where Fr(Bi)[j] denotes the jth user in Fr(Bi), for 1 ≤ i ≤ m and 1 ≤ j ≤ |Fr(Bi)|.
Note that while generating the matrices, A’s ID is skipped from Fr(Bi). Briefly, Bi hashes
each user in his/her friend list and sets the corresponding row entries to Fr(Bi)[j] and
1 (indicating Fr(Bi)[j] being Bi’s friend), respectively. Then Bi encrypts his/her matrix
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Algorithm 1 PPFRh

Require: Friend list of each user is treated as private (Note: the public key pk and t are
known to every party, whereas the private key pr is known only to T )

1: A:

(a). Randomly select a, b from Z
∗

p and Zp, respectively, and pick s

(b). Send ha,b (i.e., a, b, p, s) to each Bi (1 ≤ i ≤ m)

2: Bi (1 ≤ i ≤ m):

(a). Receive ha,b from A

(b). Compute matrix Mi using ha,b and Fr(Bi)

(c). Compute M ′

i [j][k]← Epk(Mi[j][k]), for 1 ≤ j ≤ s and 1 ≤ k ≤ 2

(d). Send M ′

i to A

3: A:

(a). Receive M ′

i from Bi, for 1 ≤ i ≤ m

(b). Compute Z[j][2]← Πm
i=1M

′

i [j][2], for 1 ≤ j ≤ s

(c). Compute Z[j][1]← Z[j][2]rj ·Πm
i=1M

′

i [j][1], where rj is randomly chosen from Z
∗

N ,
for 1 ≤ j ≤ s

(d). Compute Ẑ ← π(Z) and send Ẑ to T (note that function π is known only to A)

4: T :

(a). Receive Ẑ from A

(b). Compute freqj ← Dpr(Ẑ[j][2]), for 1 ≤ j ≤ s

(c). If freqj ≥ t, compute βj ←
Dpr(Ẑ[j][1])

freqj
. Else, set βj to 0, for 1 ≤ j ≤ s

(d). Send β to A

5: A:

(a). Receive β from T

(b). F ← π−1(β)

(c). S = {Fj − rj mod N | Fj ∈ F ∧ Fj 6= 0, for 1 ≤ j ≤ s}

Mi component-wise using the public key pk and sends it to A. Let the encrypted matrix
be M ′

i . Upon receiving the encrypted matrices, A performs homomorphic additions2 on
all the encrypted matrices, i.e., M ′

i ’s component-wise and computes a new matrix Z , for
1 ≤ j ≤ s, as shown below:

Z[j][2] ← Πm
i=1M

′

i [j][2]

Z[j][1] ← Z[j][2]rj ·Πm
i=1M

′

i [j][1]

2Note that the multiplication and exponentiation operations on ciphertexts are followed by mod N2 opera-
tion so that the resulting ciphertext is still in {0, 1, . . . , N2 − 1}. However, to make the presentation more clear,
we simply drop “mod N2” from the computations in the rest of this paper.
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where rj is a random number chosen from Z
∗

N and is used to randomize the encrypted user

ID value. After that, A permutes the row vectors of Z by computing Ẑ ← π(Z), where π

is a random permutation function (known only to A) and sends it to T . Upon receiving Ẑ

from A, T decrypts the second component of each row of Ẑ using his/her private key pr
which gives the approximate frequency, denoted by freq, of corresponding hashed user(s).

More specifically, T computes freqj = Dpr(Ẑ[j][2]) and decrypts the first component of jth

row of Ẑ , for 1 ≤ j ≤ s, and proceeds as follows:

• If freqj ≥ t, decrypt the corresponding first component of Ẑ. That is, compute

Dpr(Ẑ[j][1]) and set βj =
Dpr(Ẑ[j][1])

freqj
. Else, set βj to 0. Note that the decryption of the

first component of each row in Ẑ (i.e., Dpr(Ẑ[j][1])) always yields a random value.

• In case of no collision at location π−1(j) and freqj ≥ t, we can observe that βj =
rk + IDk, where k = π−1(j) and IDk is one of the recommended friend IDs to A. On
the other hand, when freqj < t, βj is always 0.

• After this, T sends β to A, where β = 〈β1, . . . , βs〉.

Finally, A applies the inverse permutation on β and removes the randomness for each non-
zero entry. Precisely, A selects the list of recommended friend IDs as shown below:

• Let vector F denote π−1(β).

• Then the output S = {Fj − rj mod N | Fj ∈ F ∧ Fj 6= 0, 1 ≤ j ≤ s}.

We emphasize that the proposed PPFRh protocol reveals S and freqj as the final outputs to
A and T , respectively, for 1 ≤ j ≤ s. Remember that freq denotes the randomly permuted
list of common neighbors scores and T cannot link the scores to user identities due to
random permutation by the target user A.

Example 2. Refer to Figure 1, let t = 2 and s = 9. From Figure 1, we have Fr(Alex) =
〈Scott,Moore,Rice,Davis〉. The goal is to recommend new friend(s) to Alex using the
PPFRh protocol. Assume that the permutation function π and the hashed values of user
IDs are as shown in Table 3. Let M1,M2,M3 and M4 denote the matrices generated by
Scott, Moore, Rice and Davis, respectively, based on the PPFRh protocol. The intermediate
results during various steps involved in PPFRh are shown in Table 3. At the end of the
PPFRh protocol, Baker and Martin are recommended as new friends to Alex.

5.2 The PPFRsp Protocol

If s is large enough, the PPFRh protocol can produce very accurate results, but large s
increases computation costs. To overcome this problem, we present an alternative PPFR
protocol, termed as PPFRsp, to accurately and efficiently recommend friends to A, at the
expense of weaker security guarantee comparing to PPFRh.
The key steps involved in PPFRsp are demonstrated in Algorithm 2 and Algorithm 3. The

main process of the protocol is presented in Algorithm 2. We assume that each user A in
the network generates a public-private key pair (pkA, prA) using the RSA public key system
[65]. Also, each friend of an A’s friend (say user Cij ) uses an AES encryption algorithm [62]
to encrypt his/her data, and the secret key is divided into at most |Fr(Cij)| different shares
such that at least t shares are required to reconstruct the secret AES key [69].
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A Martin Bob Scott Davis Baker Rice Evans Moore Wilson
ha,b(A) 1 2 3 4 5 6 7 8 9
π(ha,b(A)) 5 8 1 6 9 4 3 7 2

M1 =





























0 0
0 0
0 0
0 0

Baker 1
0 0
0 0

Moore 1
0 0





























; M2 =





























0 0
Bob 1
Scott 1
0 0

Baker 1
0 0

Evans 1
0 0
0 0





























; M3 =





























Martin 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0





























; M4 =





























Martin 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0

Wilson 1





























Z =





























E(2 · (Martin+ r1)) E(2)
E(Bob + r2) E(1)
E(Scott+ r3) E(1)

E(0) E(0)
E(2 · (Baker + r5)) E(2)

E(0) E(0)
E(Evans+ r7) E(1)
E(Moore + r8) E(1)
E(Wilson+ r9) E(1)





























; β =





























0
0
0
0

Martin+ r1
0
0
0

Baker + r5





























; S = {Baker,Martin}

Table 3: Various intermediate results during the execution of the PPFRh protocol

The main idea of the PPFRsp protocol is to let the candidates introduce themselves to
user A in a privacy-preserving way. Here, the so called candidates are all the friends of
A’s friends. Suppose if Bi is one of A’s friends and Cij is Bi’s friend, then Cij acts as a
candidate to be a new friend of A. The user A who wants some new friends just waits
for the self introductions to come. First, Bi arranges a random path along which his/her
friend (a candidate) will pass the self introduction to A. The random path can hide the
identities of Bi’s friends by preventing A from tracking back to them. The PPFRsp protocol
is centered at user A to make friends of A’s friends not aware of whom they are sending
the self-introductions to. This preserves the privacy of both A and each user in Fr(A). In
addition, since A cannot trace back to the candidate, the privacy of each candidate (i.e.,
friends of A’s friends) is preserved.

Next, we explain the overall steps involved in PPFRsp in detail. Initially, A informs only
his/her friends Bi that he/she wants new friends and wait for luck. Then, each Bi in-
forms his/her friends the opportunity to make a new friend. To keep his/her friend list
private from A, each Bi arranges the path of message passing for each user in Fr(Bi) to
hide the source [42], for 1 ≤ i ≤ m. That is, Bi randomly picks two users Xij and Yij for
each of his/her friend Cij and sends the path Mij = Xij ||Yij ||EpuYij

(A) to Cij . During the

self-introduction part of the protocol, shown as step 3 in Algorithm 2, Cij receives the mes-

sage and then appends kBi

Cij
(the share of the key corresponding to Bi) and AESkCij

(Cij)
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(encrypted ID of Cij ) to Mij , and sends only Yij ||EpuYij
(A)||kBi

Cij
||AESkCij

(Cij) to Xij .

Then, Xij forwards EpuYij
(A)||kBi

Cij
||AESkCij

(Cij) to Yij which decrypts the first part us-

ing his/her private key prYij
to get A. After this, it forwards the remaining message

kBi

Cij
||AESkCij

(Cij) to A. Finally, in the Collect and Solve part of the protocol, as shown

in Algorithm 3, A waits and collects the returned messages from each Yij and groups them
based on AESkCij

(Cij).

For each group Gij , A proceeds as follows. If |Gij | ≥ t, A can generate the corresponding
key (i.e., kCij

) from any t different partial keys in Gij (using polynomial interpolation of t
shares). Using kCij

, A can successfully decrypt the message AESkCij
(Cij) to get the user

ID Cij (newly recommended friend). Else, dump the group Gij (since the number of dif-
ferent partial keys are less than t and A cannot generate the corresponding key). Note that
the method in [69] guarantees that a group with size less than t will not provide enough
information for A to generate the key, and consequently A cannot successfully decrypt
AESkCij

(Cij). Observe that in the PPFRsp protocol, since two random users are added to

the path, all the messages received by A are sent to him/her by random users (namely Yij);
therefore, A cannot trace back to the source Cij that does the self-introduction. We empha-
size that two random users are necessary; otherwise, if only one random user were chosen
to do the favor, he or she would know that Cij and A share a friend. To increase security,
we can choose more than two random users.

To protect the privacy of each Cij ∈ Fr(Bi), Cij needs to encrypt his/her user ID (part of
self-introduction), and attaches it with a partial key, which is done at step 3(b) of Algorithm
2. According to the theory in [69], only the user that can collect at least a threshold (t)
number of different partial keys can generate the full key to decrypt the user ID. Why is this
necessary? Consider the goal of this protocol - only the users who share at least t friends
with A should be recommended to A, and A should not know anything else. Without
the encryption of the self introduction, in addition to getting a few recommendations of
new friends, A would know the user IDs of all his/her friends’ friends which violates the
privacy of Bi. Moreover, the AES secret key should be changed occasionally since it can be
generated by A. Note that only one partial key should correspond to one friend like Bi to
ensure that A gets different partial keys from different friends shared by A and Cij .

We emphasize that the proposed PPFRsp protocol reveals |Gij | and 〈ID(C),Φ(A,C)〉 as the
final output to A, for each user C ∈ S, 1 ≤ i ≤ m and 1 ≤ j ≤ |Fr(Bi)|. Remember that
Φ(A,C) denotes the common neighbors score between A and C.

Example 3. Consider the snapshot of the social network for Alex shown in Figure 1, and let
t = 2. The set of potential candidates for Alex are 〈Baker,Bob, Evans,Martin,Wilson〉.
Following from PPFRsp, initially, Alex informs his friends 〈Scott,Moore,Rice,Davis〉 that
he wants new friends. Then, each of Alex’s friend will create an encrypted path for each of
his/her friend. For example, Scott sends an encrypted path to his only friend Baker. Also,
Moore creates three different encrypted paths and sends each one of them to her friends
Baker,Bob, and Evans separately. Without loss of generality, let us consider the potential
candidate Baker. Upon receiving the (different) encrypted paths from Scott and Moore,
Baker appends his self introductions kSB||AESkB

(Baker) and kMB ||AESkB
(Baker) to the

respective (random) encrypted paths. Where kSB and kMB are the corresponding key shares
for Scott and Moore (only known to Baker). After this, Baker forwards the appended self-
introduction messages along their respective random paths. Upon receiving the messages
from random users, Alex groups the messages based on AESkB

(Baker). Since Alex has
two different key shares i.e., kSB and kMB corresponding to the group AESkB

(Baker), he
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Algorithm 2 PPFRsp

Require: ∀ user A, he/she holds the RSA private key prA and shares the public key puA

with the public. A uses AES encryption algorithm to encrypt data and divides the secret
AES key into at most |Fr(A)| shares such that at least t shares are required to reproduce
the secret AES key.

1: A:

(a). Send messages to each Bi that A wants some new friends, where Bi ∈ Fr(A)

2: Bi (1 ≤ i ≤ m):

(a). Receive message from A

(b). for each Cij ∈ Fr(Bi) do:

• Pick two random users Xij and Yij from the social network

• Mij = Xij ||Yij ||EpuYij
(A)

• Send Mij to Cij

3: Cij (1 ≤ i ≤ m and 1 ≤ j ≤ |Fr(Bi)|):

(a). Receive Mij from Bi

(b). if |Fr(Cij)| ≥ t then:

• Generate a share kBi

Cij
of kCij

• Send Yij ||EpuYij
(A)||kBi

Cij
||AESkCij

(Cij) to Xij

4: Xij (1 ≤ i ≤ m and 1 ≤ j ≤ |Fr(Bi)| ):

(a). Receive Yij ||EpuYij
(A)||kBi

Cij
||AESkCij

(Cij) from Cij

(b). Send EpuYij
(A)||kBi

Cij
||AESkCij

(Cij) to Yij

5: Yij (1 ≤ i ≤ m and 1 ≤ j ≤ |Fr(Bi)| ):

(a). Receive EpuYij
(A)||kBi

Cij
||AESkCij

(Cij) from Xij

(b). Decrypt EpuYij
(A) to get A

(c). Send kBi

Cij
||AESkCij

(Cij) to A

6: A:

(a). Collect and Solve(t)

can generate the key kB (as t = 2) and decrypts AESkB
(Baker) successfully and identifies

Baker as the newly recommended friend. Similarly, Alex identifies Martin as a new friend.
The rest of the potential candidates are not recommended to Alex since their respective
group sizes are less than 2.
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Algorithm 3 Collect and Solve(t)

1: G = {kBi

Cij
||AESkCij

(Cij), 1 ≤ i ≤ m ∧ 1 ≤ j ≤ |Fr(Bi)|}

2: Partition G into Gij ’s, where

Gij = {k
Bi1

Cij
||AESkCij

(Cij), . . . , k
Biz

Cij
||AESkCij

(Cij)}

3: S = ∅
4: for each Gij do
5: if |Gij | ≥ t then
6: Generate kCij

via polynomial interpolation on

{k
Bi1

Cij
, . . . , k

Biz

Cij
}

7: Use kCij
to decrypt AESkCij

(Cij) and get Cij

8: S ← S ∪ Cij

9: end if
10: end for
11: return S

5.3 Complexity Analysis

5.3.1 Computation Cost

Since the proposed protocols are asymmetric in nature, the computation costs vary for each
party. For the PPFRh protocol, the computation cost of each Bi is bounded by the number
of encryption operations which depends on the hash domain size (s). Therefore, the com-
putation complexity of Bi is bounded by O(s) number of encryptions. (Note that each
Bi performs the encryption operations independently using his/her friend list in parallel.)
The computation complexity of A depends on the number of homomorphic addition and
exponentiation (involved during randomization) operations. The number of homomorphic
addition operations depends on s and |Fr(A)|. On the other hand, the number of exponen-
tiations depends on the size of s. Therefore, the computation complexity of A is bounded
by O(s · |Fr(A)|) homomorphic additions and O(s) exponentiations. In addition, since T

has to decrypt second component of each row of Ẑ , the computation complexity of T is
bounded by O(s) number of decryptions.

For the PPFRsp protocol, the computation time mainly depends on the number of public
key encryptions (which depends on the size of each Bi’s friend list). This is because the
time taken to compute the AES private key, to generate the secret shares, and to reconstruct
the secret key is negligible comparing to the encryption costs. Therefore, the computation
cost of the PPFRsp protocol is bounded by O(|Fr(Bi)|) encryptions assuming that t and
|Fr(A)| are not exceedingly larger than |Fr(Bi)|.

5.3.2 Communication Cost

For the PPFRh protocol, the communication occurs between A and each of his/her friends,
and also between A and T . Without loss of generality, let K denote the Paillier encryption
key size (usually 1,024 bits long). The communication complexity between A and all of
his/her friends is bounded by O(K · s · |Fr(A)|) bits. In addition, A has to send the ran-

domized encrypted matrix Ẑ to T whose size is bounded by O(K · s) bits. Therefore, the
overall communication complexity of PPFRh is bounded by O(K · s · |Fr(A)|) bits.

In PPFRsp, the communication occurs among different users involved in each randomized
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path (i.e., Bi → Cij → Xij → Yij → A). Each Bi generates one path for each of his/her
friend whose size is bounded by O(K) bits. Then, the total communication between each
Bi and his/her friends is bounded by O(K · |Fr(Bi)|) bits. Since we have Σm

i=1|Fr(Bi)|
number of (Bi, Cij) pairs, the total communication complexity of PPFRsp is bounded by
O(K · w), where w = Σm

i=1|Fr(Bi)|. One disadvantage of the PPFRsp protocol is that it
assumes that each Xij , Yij , and Cij are available and semi-honest, i.e., follow the prescribed
steps of the protocol.

5.4 Security Analysis

5.4.1 The Semi-Honest Security Model

We have two main reasons to adopt the semi-honest adversary model. First of all, a semi-
honest model generally leads to more efficient secure protocols. Most existing practical
secure protocols in Secure Multiparty Computation (SMC) are under this model. By us-
ing standard zero-knowledge proofs [32] for threshold Paillier homomorphic encryption
scheme [11, 16], the PPFRh protocol can be easily converted into a secure protocol under
the malicious model. However, its computation time is around 10 times more expensive
than PPFRh since zero-knowledge proofs are very costly. We restrict our discussion to the
semi-honest model for the rest of this section.

5.4.2 Security Analysis under the Semi-Honest Model

To prove the security of our proposed protocols, we adopt the standard proof methodology
in the literature of SMC. According to Definition 1, we need to generate a simulated exe-
cution image of a protocol based on a participating party’s private input and output. As
long as the simulated execution image is computationally indistinguishable from the ac-
tual execution image, we can claim that the protocol is secure [29]. We emphasize that the
security of participating parties in the proposed protocols is not symmetric. For instance,
there is one way communication from Bi to A; therefore, A is considered as the adversary
for each A’s friend Bi. Similarly, T is considered as the adversary for A. To prove PPFRh is
secure, we need to show that the execution image of PPFRh from A’s perspective (denoted
by ΠA) does not leak any information regarding Bi’s friend list. Also, we need to show
that the execution image of PPFRh from T ’s perspective (denoted by ΠT ) does not leak any
information regarding A’s friend list.

Refer to the steps given in Algorithm 1, ΠA contains {ha,b, pk,M
′

1, . . . ,M
′

m, S}. The simu-
lated execution image of A (denoted by ΠS

A) can be generated as {ha,b, pk,R1, . . . , Rm, S},
where Ri[j][k] (1 ≤ j ≤ s and 1 ≤ k ≤ 2) is randomly chosen from ZN2 and N is part of the
public key pk. Since M ′

i [j][k] is an encrypted value generated from a semantically secure
encryption scheme [63], M ′

i [j][k] is computationally indistinguishable from Ri[j][k] [33].
As a result, ΠA is computationally indistinguishable from ΠS

A, and the PPFRh protocol is
secure from each user Bi’s perspective. That is, the friend list of Bi is not disclosed to A,
except for what can be inferred from A’s private input and output. Similarly, we can prove
that the PPFRh protocol is secure from user A’s perspective. That is, A’s friend list is not
disclosed to T . We emphasize that, in PPFRh, T knows the frequency information of each
permuted and randomized user ID (i.e., freqj in Algorithm 1). However, freqj is consid-
ered to be the output of T in PPFRh. As a result, according to Definition 1, it is clear that
the execution image of T can be easily simulatable as it depends only on its output freqj .
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We stress that it is also possible to completely eliminate revealing freqj to T by first adopt-
ing a fast secure binary conversion protocol over encrypted data [67], and then securely
comparing the encrypted frequency of each potential candidate with the threshold t with-
out ever disclosing the frequency information to T . In this way, the PPFRh offers the best
security. The price to pay here is the increased computation cost. Nonetheless, since T
does not know the hash function, the additional information that T can deduce from freqj
is extremely small. Hence, the current implementation of PPFRh, which assumes that freqj
is the output of T , is likely sufficient.
In PPFRsp, unlike PPFRh where the scores are revealed to T , the common neighbors scores

(i.e., |Gij | in Algorithm 3) are directly revealed to A. Also, A can link the scores to the actual
user IDs whose frequency is greater than or equal to t. If the common neighbors score is
less than t, the corresponding real user ID is not revealed to A because the encrypted user
ID cannot be decrypted by A according to the security guarantee of the Shamir’s secret
sharing scheme [69]. Since all the above information is considered to be the output of A,
the execution image of A can be easily simulatable from its input and output according
to Definition 1. Furthermore, other than the intermediate results (which are in encrypted
format), no additional information is revealed to Bi. In general, PPFRh is more secure than
PPFRsp, but it is less efficient.

5.4.3 Inference Problem and the Ideal Security Model

In the proposed protocols, there exists an inference problem, but we also like to point out
that the inference problem exists even for the most secure common-neighbor based PPFR
protocol. Our reasoning is as follows.
In SMC, the security guarantee of a protocol is generally compared with the ideal security

model: the trusted third party (TTP) model. Under the TTP model, there is a third party
(P0) who has the complete trust among all participating parties (e.g., A and B1, . . . , Bm

in our problem domain). Let PPFRP0
denote a privacy-preserving friend recommendation

protocol by utilizing a TTP. To implement PPFRP0
, all participating parties send their pri-

vate inputs to P0, and P0 will adopt the common neighbor method to identify potential
new friends for A. At the end, P0 will send the identified potential friends to A.
It is a well-known fact that a secure protocol implemented using a completely trusted

party offers the maximum security guarantee [29]. However, when t is small, the inference
problem, still exists even for the most secure protocol PPFRP0

. E.g., when t = m = 1, A will
learn the friend list of his or her only friend. The existence of the inference problem is not
because PPFRP0

is not secure, but it is mainly because the output of the common neighbor
friend recommendation method reveals some additional information regarding the friend
list of Bi. Therefore, under SMC, the information that can be inferred from the output of a
secure protocol is not considered as a security violation [29].
As illustrated in the ideal security model, to completely eliminate the inference problem

is impossible. On the other hand, when the size of A’s friend list m is two and t = 1, A
will not be able to precisely know if the recommended friends are B1 or B2’s friends since
the recommended friends have equal probability for coming from either friend lists. For
smaller values of t, the larger the m is, the more difficult forA to make correct inference. The
inference problem mainly depends on the size of m and t but not on the size of individual
friend list. This is partly because A does not know the size of the friend lists of his/her
friends and partly because the recommended friends are computed from an aggregated
friend list whose contents are summed from B1 to Bm’s friend lists when m ≥ 2.
To further mitigate the inference problem, the network service provider can fix t to a large
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number and makes it publicly available. Alternatively, if t is very small, each user Bi can
refuse to participate in the protocol to prevent the content of his or her friend list from
being inferred.

6 Empirical Analysis

In this section, we thoroughly analyze the effectiveness and computation cost of both the
proposed protocols using a Facebook dataset. Since the PPFRsp protocol always recom-
mends friend(s) accurately, we present the effectiveness of PPFRh by using the PPFRsp

protocol as a baseline. In addition, the computation costs for both protocols are analyzed
under different parameter settings.

6.1 Dataset and Platform Description

For our experimental setting, we collected friend lists of 11,500 Facebook users from Face-
book.com directly as follows. The crawler will first login using a Facebook account. It then
starts to crawl the account’s friend list, the friend list of the friends in the list, and so on.
To get a friend list of a Facebook account while logged in, the crawler will make use of the
Facebook’s AJAX API (a web service the Facebook web client side used to update its friend
list display). The response will be a JavaScript code file for the browser to update the web
page, from where we can extract the friend list using a proper regular expression. Remem-
ber that Facebook lets users to set their privacy preferences. Thus, we can only crawl those
users who set their friend lists information as public.

Due to privacy settings, some of the extracted friend lists are empty (for 2,068 users). In
addition, the combined friend lists of users’ friends are empty for 112 users. Therefore,
after removing the friend lists of these users, we finally had friend lists for 9,330 users.
Among the 9,330 users, the maximum and minimum friend list sizes are 447 and 1, respec-
tively. In addition, the maximum number of unique friends of users’ friends is 3,754, and
each user has 24 friends on average. The proposed protocols were implemented in C, and
experiments were performed on a Intel R© Xeon R© six-CoreTM 3.07GHz PC running Ubuntu
10.04 LTS, with 12GB memory.

6.2 Effectiveness of PPFRh

We analyze the effectiveness of PPFRh by using PPFRsp as the baseline. Out of the 9,330
Facebook users, we selected 1,000 users randomly as target users and conducted various
experiments based on different parameters. We denote the target users (who wish to find
new friends) as setD. Hereafter, the effectiveness results presented are average values over
the 1,000 random users in D. (We observed that our results are almost independent from
the set and the size of the random users chosen when s is large enough. Also, different
hash functions produce almost identical results.)

Let Sh and Ssp denote the sets of recommended friends resulting from PPFRh and PPFRsp,
respectively. Then, we define the accuracy of PPFRh (with respect to PPFRsp) as the com-
mon ratio between the two sets as follows:

Accuracy =
|Sh ∩ Ssp|

|Ssp|
(4)

TRANSACTIONS ON DATA PRIVACY 8 (2015)



Privacy-Preserving and Efficient Friend Recommendation in Online Social Networks 163

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

A
cc

ur
ac

y

Threshold (t)

s=1000
s=3000
s=5000
s=7000

(a) Accuracy of PPFRh

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

E
rr

or
fp

Threshold (t)

s=1000
s=3000
s=5000
s=7000

(b) False Positive Error

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

E
rr

or
fn

Threshold (t)

s=1000
s=3000
s=5000
s=7000

(c) False Negative Error

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0  2000  4000  6000  8000

T
im

e 
(s

ec
on

ds
)

Hash Domain Size (s)

A,m=110
A,m=227
A,m=447

B
T

(d) Complexity: PPFRh

 0

 1

 2

 3

 0  5  10  15  20  25

T
im

e 
(s

ec
on

ds
)

Threshold (t)

A,m=110
A,m=227
A,m=447

B
C

(e) Complexity: PPFRsp

 0

 200

 400

 600

 800

 0  512  1024  1536  2048

T
im

e 
(s

ec
on

ds
)

Key Size (in bits)

s=1000
s=3000
s=5000
s=7000
PPFRsp

(f) PPFRh Vs. PPFRsp

Figure 2: Empirical results for PPFRh and PPFRsp

Note that Ssp always contains the accurate friend recommendations. We compute accuracy
for each user in D according to different hash/vector sizes (s) and threshold values (t). As
shown in Figure 2(a), the accuracy of PPFRh is 65.4% when s = 1, 000 and t = 5. Because
the number of unique candidates for some of the users is greater than 1,000, this results in
many collisions when s = 1, 000. However, for t = 5, the accuracy increases from 65.4%
to 94.1% as we increase the value of s from 1,000 to 7,000. The reason behind is that as
we increase the value of s, the number of collisions are reduced; therefore, improving the
accuracy. We also observe that, as shown in Figure 2(a), for a fixed value of s, the accuracy
improves with an increase in the value of t. For example, when s = 5, 000, the accuracy
of PPFRh changes from 92.1% to 96% as we increase t from 5 to 25. A similar trend can
be observed for other values of s and t. The collision rate of a universal hash function is
generally low, and low collision rate introduces fewer false positives and false negatives
when t is large.
Besides accuracy based on the intersection size, we also analyzed the false positive and

false negative error rates for the PPFRh protocol which are defined below:

Errorfp = 1−
|Ssp ∩ Sh|

|Sh|
; Errorfn = 1−

|Ssp ∩ Sh|

|Ssp|

As shown in Figure 2(b), for s = 1, 000 and t = 5, the false positive error is 37.9%. However,
when t changes from 5 to 25, the false positive error drops to 17.9%. Also, for a fixed t, we
observe that the false positive error rate decreases when s increases (resulting in less hash
collisions). For example, when t = 25, false positive error drops from 17.9% to 4.6% when
s is increased from 1,000 to 7,000. A similar trend can be observed for false negative errors
as shown in Figure 2(c).
Based on the above discussions, it is clear that PPFRh gives good accuracy and low errors

rates (both false positives and false negatives) when s (≥ 3, 000) and t (≥ 5). In particular,
when s = 7, 000 and t = 25, the PPFRh protocol recommends friends 96% accurately with
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a false positive error rate of 4.6% and a false negative error rate of 2.6%.

Next we illustrate the computation costs incurred for different parties involved in the
PPFRh and PPFRsp protocols separately. We also compare the running time of both proto-
cols for different values of s and key sizes.

6.3 The Computation Cost of PPFRh

For the PPFRh protocol, the computation costs are different for target user A, friend of A,
and T . The computation cost of A depends on the size of his/her friend list (m = |Fr(A)|)
and the hash domain or the vector size (s). On the other hand, the computation cost of each
friend of A (i.e., B) mainly depends on s (the deciding factor for the number of encryptions
to be performed by each B). For a friend B of A, we observed that the cost involved in
hashing and creating the matrix M is negligible comparing to the encryption cost involved
in creating M ′. Also, the computation cost of the party T is equivalent to the number of
decryptions he/she needs to perform (which mainly depends on the values of s and t). For
the PPFRh protocol, the computation costs of A and B are independent from t.

Based on the above discussions, we now present the computation costs of each party in
the PPFRh protocol. Since the friend list sizes vary for different users, we have selected
three different users with friend list sizes 110, 247, and 447 such that the size of one friend
list is almost double the size of the other. This kind of selection is to purely present the
variations in computation times in a more precise and concrete manner. We emphasize
that similar results can be observed for other users. Note that in our Facebook dataset, 447
is the maximum friend list size. For key size 1,024 bits, we ran the PPFRh protocol for each
of these three users by varying the values of s.

As shown in Figure 2(d), for user A with m = 110, the computation time increases linearly
with the value of s. When m = 110, the computation time of A increases from 3.57 seconds
to 10.54 seconds (increases by a factor of 3 due to expensive exponentiations) when s is
changed from 1,000 to 3,000. A similar trend can be observed for the other values of s. On
the other hand, when m = 227, the computation time of the user increases slightly (due
to less expensive homomorphic additions) comparing to the user with m = 110 for a fixed
value of s. In addition, as shown in Figure 2(d), the computation cost of B and T are the

same under the assumption that T has to decrypt the whole encrypted matrix Ẑ (in the
worst case).

Under the worst case scenario, the time taken for encrypting the matrix by B is almost the
same as the time taken to decrypt the whole encrypted matrix by T . For instance, when
s = 5, 000, the computation time of B and T are 26.27 and 25.37 seconds (independent
of m), respectively. Our results indicate that the computation time incurred by the PPFRh

protocol is more on B and T comparing to the time of A (except for the worst case where
m = 447) irrespective of the hash domain size (s) because most operations performed at A
are multiplications (much less costly than encryption or decryption operations).

6.4 The Computation Cost of PPFRsp

The computation cost of PPFRsp depends on the running time of A, B, and C. On one hand,
the computation cost of A depends on the number of introductions he/she receives and
also on t. The computation cost of B depends on the number of randomized paths he/she
creates (equivalent to the size of his/her friend list). On the other hand, the computation
cost of C depends on the threshold t and |Fr(C)| for generating shares of the AES secret
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key. In our experiments, we used the Shamir’s secret sharing scheme [69] to generate the
secret partial keys or shares.
We consider the same three users as mentioned before. When A has 447 friends, he/she

receives 13,444 self-introductions (through randomized paths). For t = 5, A consists of 461
groups (formed out of 13,444 self-introductions) and generates the AES secret keys for all
groups in 2.02 seconds as shown in Figure 2(e). Similarly, when t = 25, A has 37 groups
and can generate the keys in 0.156 seconds. A similar trend can be observed for other two
users. Note that since the values of t are small, the total time taken to generate all keys
(following from the Lagrange Polynomial Interpolation) is very small. In the case of B, the
computation cost only depends on his/her friend list and is independent of t. Therefore, as
shown in Figure 2(e), it takes 1.169 seconds for B to generate all encrypted paths (assuming
the worst case, where B can have 447 friends).
Since B performs public key encryptions, B takes more time comparing to A for t greater

than or equal to 10 (resulting in fewer number of self-introductions). In addition, we con-
sider the worst case for computing C’s time (assuming 447 friends). C’s computation time
mainly depends on the time required to generate the secret shares based on t and its friend
list size. Since the value of t is small, it took 53 milliseconds for C to create all 447 secret
shares and also to encrypt his/her ID using the AES private key.

6.5 The Computation Cost of PPFRh vs. PPFRsp

We also compared the total running time of both protocols for the worst case (i.e., A with
447 friends) by varying the values of key size and s, and the results are shown in Figure 2(f).
It is clear that the computation time of PPFRh increases almost by a factor of 6 when the key
size is doubled for any fixed value of s. For instance, if s = 5, 000, the total running time
of the PPFRh protocol increases from 80.853 seconds to 553.459 seconds when the key size
is changed from 1,024 to 2,048 bits. Our results also show that PPFRsp is much faster than
PPFRh, when the key size is greater than or equal to 512 bits, by many orders of magnitude.
However, PPFRh provides stronger security, as per the security definition of SMC [19, 30]
comparing to the PPFRsp protocol.
A note on practicality: It is important to note that since friend recommendation needs

not to be performed every minute or even every day, the proposed protocols are practical.
The additional computation cost is a very small price to pay comparing to the achieved pri-
vacy protection. More significantly, the proposed protocols make friend recommendation
possible even when the users’ friend lists are private.

7 Implementation Details

In this section, we point out various implementation details involved for deploying the
proposed protocols in real-world applications. In general, many online social networks
(OSNs), such as Facebook, collect sensitive user profile data and store them on their server
after proper encryption for security reasons. Therefore, users have no control over their
stored data except trusting the OSN service and OSNs are free to share this stored data with
third parties for business purposes. In order to give more control to users, we consider the
privacy-enhanced web pages where a user can encrypt his/her profile information before
sending it to the OSN [3]. That is, the data stored on the OSN server is encrypted using
the user’s secret key. When a user logins, his/her data stored on the OSN server is pushed
back to the web page and decrypted. On the other hand, when the user tries to sign-out,
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his/her information is updated (in encrypted form) on the OSN server. Under this kind
of architecture, can users still receive friend recommendations? Since T (i.e., the network
administrator) has encrypted user’s friend lists under different secret keys, it seems the
process of friend recommendations by T alone is complex. Note that the friend list of
each user is encrypted by using his/her secret key. In addition, the inherent information
flow in OSNs makes the friend recommendation problem more challenging. However,
by establishing a secure channel between the users, our proposed protocols make friend
recommendation possible under the above mentioned architecture. In order to use the
proposed protocols in a full fledged manner, we first need to address an issue that arises
due to the inherent information flow in OSNs which we discuss below.
In the proposed protocols, we assume that users can directly exchange messages without

revealing them to T (i.e., the network administrator). However, in many OSNs, messages
are always passed through T because the user who is intended to receive the message may
not be online. In addition, in order to minimize the information disclosure to T , we need
to make sure that the messages exchanged between users are in encrypted form and only
the intended receiver is able to decrypt it.
The above issue can be solved by creating a secure session between the users. Briefly, we

assume that each user holds a public/private key pair, where the public keys are treated as
global information. If user B wants to send some message to A, then B generates an AES
encryption key (i.e., the session key which should be different from the secret key used
to encrypt and store his/her data on the OSN server), encrypts it using the public key of
A, and forwards it to A through T . Note that here T merely acts as a network router that
simply forwards the message to A. Upon receiving the encrypted message, A decrypts it to
get the AES session key which is used for further secure communication with B.
Once this kind of secure session is established between users, our proposed protocols

can be directly applied where two users A and B can communicate securely by simply
encrypting their messages using the AES session key and forwarding them to one another
through T . Note that the AES session key should be changed occasionally for security
reasons. We emphasize that the proposed protocols, after taking the above implementation
details into account, protect the friend lists of a user from other users as well as from T .

8 Conclusions

The emerging growth of social networks has resulted in vast amount of social data which
need to be mined for various kinds of recommendations, including friend recommenda-
tion. However, since the social data contain personal and sensitive information about indi-
vidual users, the existing friend recommendation techniques do not work when the users’
friend lists remain private. As a result, this paper proposes two privacy-preserving friend
recommendation algorithms under the assumption that users’ friend lists should be kept
private. Both of the proposed protocols recommend new friends using the common neigh-
bors proximity measure in a privacy-preserving manner.
The first proposed protocol, denoted by PPFRh, is based on an additive homomorphic en-

cryption scheme, and its accuracy is essentially based on the parameters of universal hash
function ha,b. The second proposed protocol, denoted by PPFRsp, utilizes the concept of
protecting the source privacy through anonymous message routing and also recommends
friends accurately. We observe that PPFRsp is more efficient than PPFRh, but it is less secure.
The proposed PPFR protocols act as a trade-off among security, efficiency and accuracy.
In the PPFRsp protocol, if both A and his/her friends have long friend lists, then the pro-
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tocol will incur a lot of communication among the participating users. In general, only a
small number of users are recommended to A; thus, most of the messages passing back to
A will end up useless. One possible solution is to develop a pruning mechanism so that
some of the candidates could be pruned during the process. Another issue is that both
of the proposed protocols are designed only to compute the recommendation in a nearest
neighbor way. It is also possible that a new friend can be recommended in other ways;
for example, by checking the similarities between the users’ profile contents or activities
in the network. Therefore, we will explore alternative ways to develop a hybrid privacy-
preserving friend recommendation method by combining different scoring functions in our
future work. Furthermore, we will investigate the side effects of adding new friends who
were recommended due to false positives in the first proposed protocol.
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