
TRANSACTIONS ON DATA PRIVACY 7 (2014) 27–50

IdentiDroid: Android can finally Wear
its Anonymous Suit
Bilal Shebaro, Oyindamola Oluwatimi, Daniele Midi, Elisa Bertino
Computer Science, Cyber Center and CERIAS, Purdue University, West Lafayette, IN 47907, USA

Email: {bshebaro, ooluwati, dmidi, bertino}@purdue.edu

Abstract. Because privacy today is a major concern for mobile applications, network anonymizers are widely
available on smartphones, such as Android. However despite the use of such anonymizers, in many cases
applications are still able to identify the user and the device by different means than the IP address. The
reason is that very often applications require device services and information that go beyond the capabilities
of anonymous networks in protecting users’ identity and privacy. In this paper, we propose two solutions
that address this problem. The first solution is based on an approach that shadows user and application data,
device information, and resources that can reveal the user identity. Data shadowing is executed when the
smartphone switches to the “anonymous modality”. Once the smartphone returns to work in the normal (i.e.
non-anonymous) modality, application data, device information and resources are returned back to the state
they had before the anonymous connection. The second solution is based on run-time modifications of Android
application permissions. Permissions associated with sensitive information are dynamically revoked at run-time
from applications when the smartphone is used under the anonymous modality. They are re-instated back
when the smartphone returns to work in the normal modality. In addition, both solutions offer protection from
applications that identify their users through traces left in the application’s data storage or through exchanging
identifying data messages.

We developed IdentiDroid, a customized Android operating system, to deploy these solutions and built
IdentiDroid Profile Manager, a profile-based configuration tool that allows one to set different configurations for
each installed Android application. With this tool, applications running within the same device are configured
to be given different identifications and privileges to limit the uniqueness of device and user information. We
analyzed 250 Android applications to determine what information, services, and permissions can identify users
and devices. Our experiments show that when IdentiDroid is deployed and properly configured on Android
devices, users’ anonymity is better guaranteed by either of the proposed solutions with no significant impact on
most device applications.

1 Introduction
The widespread use of mobile smartphones, such as Android devices, has raised privacy concerns as
the use of these devices increases the privacy exposure of users by revealing locations, movements
and habits of users. To address such concerns, several anonymous communication technologies,
such as onion router mechanisms (e.g. Tor [1]) or secure VPN services (e.g. Hotspot Shield [2]),
are today available on smartphones. However just using a network anonymization technique is not
sufficient to assure privacy as the operating system together with the mobile applications invoked by
users may still release information that may lead to re-identification of the user and/or the device.
Even when users are careful and do not provide any identifying data to applications running on
their smartphones during anonymous connections, applications can still leak identifying information

27



28 Bilal Shebaro, Oyindamola Oluwatimi, Daniele Midi, Elisa Bertino

without user knowledge. For example, Tor has already warned users to not download files that are
automatically opened by third-party applications, such as DOCs or PDFs, as these applications may
escape the Tor network relay and access the Internet using a non-torified IP address [3]. As this
is a common problem in mobile phones and ordinary computers, different security approaches are
required on mobile systems as they introduced several new mechanisms for applications (such as
permissions) to access system resources and identifying data.

As an example, suppose that an Android phone user connects to the Tor network and runs the
popular Internet radio application “Pandora”. Surprisingly, this application requires access to the
user’s Contacts list and device ID. When these privileges are given to this application, Tor becomes
useless as the “Pandora” servers can easily identify the user through his/her Contact list or the
device ID [4]. Another example is “Angry Birds”, one of the top games in the Android market,
which requires access to the user’s Location and device ID, regardless of the anonymous network
used. In fact, these are very common scenarios. A recent data collection and analysis by Lin et
al. has shown that out of the top 100 Android applications, 56 use device ID, Contact lists and/or
Location services [5].

Previous research regarding the management and protection of user personally identifying
information on smartphones has mainly focused on privacy issues resulting from permissions
granted to applications at installation. Approaches have been proposed for identifying privacy
risks associated with smartphone applications and for reducing these risks [6, 7]. However, these
approaches do not protect all the information that may lead to the user and/or device re-identification,
such as user data in applications’ data storage. Other research has focused on privacy risks resulting
from over-privileged smartphone applications and on building tools that can identify applications not
complying with the least privilege security principle [8, 9]. However, these tools are not sufficient
as anonymity can still be broken even with minimally granted permissions, and in a few cases even
when no permission is granted. The reason is either the lack of protection for all identifying data or
the fact that applications store identifying information within their own data storage space.

The design of enhanced anonymity approaches is challenging, as such an approach should fulfill
the following requirements:

1. Applications should not be able to bypass restrictions enforced by the solution, and any
request for identifying data should comply with these restrictions before data is delivered
to the application.

2. The approach should not require the application developers to modify source code, or impose
any additional requirement on existing anonymity solutions.

3. Anonymity restrictions should be fully customizable per application to give users complete
freedom and flexibility to grant/block access to information and resources.

4. The approach should not cause significant delays in the device functionality that could
negatively impact the system performance.

In this paper, we propose two solutions that comply with the above requirements. Each solution
offers a different technique that protects anonymous users from being identified when using
applications during anonymous sessions. Our first solution is based on data shadowing and consists
of choosing the identifying information that needs to be hidden from selected applications. Once
one such application requests access to identifying data or resources, the call is intercepted and
the returned data is randomized, thus concealing the actual information about the user/device.
Our second solution is a sensitive permission manager that controls the access of applications to
sensitive permissions at run-time. Such permissions are the ones that grant an application access
to identifying information. By dynamically revoking these permissions at run-time, our approach

TRANSACTIONS ON DATA PRIVACY 7 (2014)



IdentiDroid: Android can finally Wear its Anonymous Suit 29

prevents applications from accessing identifying information during an anonymous session, while
keeping them available during normal (non-anonymous) sessions. As part of both our solutions, we
design two features; Fresh Start and Intent filtering. Fresh Start prevents applications from leaving
any identifying information or traces within their own data storage. With such feature, an application
is given the same “environment” that the application would have were the application running on a
new device for the first time. This feature removes any opportunity for applications to use their own
existing data to identify the device or user. On the other hand, Intent filtering prevents applications at
run-time from exchanging messages during an anonymous session. With such feature, applications
that have access to identifying data will not be able to send such data to applications that have
been blocked access to identifying data. This feature removes any chances of designing cooperative
applications that try to circumvent anonymity through message exchanges.

We implemented these two solutions on the Android operating system as part of a comprehensive
anonymity system, called IdentiDroid. The system also includes a tool called IdentiDroid
Profile Manager for administering configuration profiles, each consisting of a set of customized
configurations for every installed Android application. These configurations apply once a user
activates a profile, and should be used in conjunction when connected to an anonymous network.
Users can configure these profiles using any of our proposed solutions and customize them per
application.

Our solutions give users control over the applications’ access to sensitive data. Under either
solution, Android applications will not be able to leak any identifying information. Thus, even when
applications are granted access to identifying data at installation time in order to permit installation,
users can take away these privileges during their anonymous connections to avoid re-identification.

We deployed IdentiDroid on the latest Android Google Nexus 7 tablet and the Google Nexus
4 phone to compare the device anonymity behavior before and after using IdentiDroid. Our
investigation involved 250 applications and several test cases. For anonymity networks, we used
Tor [1] as an onion routing based network, and Hotspot Shield [2] as a secure VPN, two of the most
popular anonymous communication techniques available for Android devices. Our experimental
results show the effect of both solutions on identifiable information and IdentiDroid’s impact on the
overall system performance.

This paper is organized as follows. Section 2 introduces basic concepts and background
information. Section 3 identifies the data and permissions we consider sensitive for the purpose of
this work. Section 4 introduces the design of our proposed solutions followed by the implementation
and technical details in Section 5. Section 6 reports results of experiments to assess the efficiency
and accuracy of IdentiDroid and its impact on applications. Section 7 discusses our security analysis
of IdentiDroid. Section 8 further discusses our analysis and results. Sections 9 and 10 discuss related
work and outline future work, respectively.

2 Background
In this section, we cover related background information on Android operating system and how it
manages its security policies, and some basics on anonymous networks.

2.1 Android
2.1.1 Operating System and API

The Android operating systems are derived from Linux based kernels and have enhanced support for
security and privacy [10]. Android is designed with a multi-layered security infrastructure (Figure 1),
which provides developers a secure architecture to design their applications.

TRANSACTIONS ON DATA PRIVACY 7 (2014)



30 Bilal Shebaro, Oyindamola Oluwatimi, Daniele Midi, Elisa Bertino

Figure 1: Android Software Stack.

Android applications are sandboxed and run inside the Dalvik Virtual Machine, which isolates
each application’s processes and data. Each application is assigned a user ID (UID) with assigned
privileges, and is given a dedicated part of the file system for its own data. The processes of
applications with different UIDs run separately and are isolated from each other and from the system.
While applications have limited access to device resources, developers can explicitly request access
for their applications through the Android permission system.

2.1.2 Permission System

The Android permission system controls which application has the privilege of accessing certain
device resources and data. Application developers that need access to protected Android APIs need
to specify the permissions they need in the AndroidManifest.xml file which, if inaccurately assigned,
can increase the risks of exposing the users’ data and increase the impact of a bug or vulnerability.

Each application declares the permissions listed in its AndroidManifest.xml file at the time of
installation, and users have to either grant all the requested permissions to proceed with the
installation, or cancel the installation. The Android permission system does not allow users to grant
or deny only some of the requested permissions, which limits the user’s control of application’s
accessibility.

As of Android API 17 version 4.2, there are currently 130 permissions that users
can grant to applications, grouped into 30 permission groups as defined by the Android
Manifest.permission group class [11].

2.1.3 Android Application Components

Every Android application is composed of four essential components: Activities, Services, Content
Providers, and Broadcast Receivers. Each component represents a different entry point for the
system to interact with the application. For this reason, every application component must be
declared in the application’s AndroidManifest.xml file.
The Android operating system allows any application to start another application’s component,

thus allowing developers to use functionalities of other applications. For instance, developers can
capture images in their own applications by calling the device’s camera activity instead of building
their own photo capturing activity. Application components (except content providers) can only be

TRANSACTIONS ON DATA PRIVACY 7 (2014)



IdentiDroid: Android can finally Wear its Anonymous Suit 31

activated by sending the Android system a message, called Intent, that specifies the intent of starting
a particular component.

A content provider acts as a global instance in each application that manages a shared set of
application data. Such data can be stored in the file system or any other persistent storage location
that applications can access. Thus in order to secure such data, content providers are the only
components that cannot be activated through Intent messages, and can only be activated through
the ContentResolver object. In Section 5, we will show more details on how we implement the
content provider component in developing IdentiDroid Profile Manager.

2.2 Anonymous Networks
The basic functionality of anonymous networks is to hide the user’s IP address from all connected
Web services and Internet traffic. What differentiates these networks from each other is the technique
used to hide the source of such traffic. For instance, Tor uses onion routing to hide the source of TCP
traffic based on layered encryption. Each Tor client chooses three Tor nodes, or onion routers (OR),
which will route the client’s Internet traffic. Hotspot Shield is a another popular VPN service that
offers its users a secure and private Internet usage. As web servers can only see the IP address of the
proxy server rather than the client IP address, Hotspot Shield secures its users from untrusted ISPs or
public networks by encrypting all web transactions through HTTPS. This also allows one to bypass
any censorship or firewalls. While VPN solutions are widely offered for network anonymization
purposes, the users’ privacy is in the hands of the proxy server.

We believe that sophisticated users who demand anonymity on their mobile phones and who
are familiar with anonymity techniques and configurations will find it easy to set the proper
IdentiDroid configurations. In addition, we provide through IdentiDroid some built-in profiles that
are pre-configured for quick use, even though we still recommend users to customize their own
profiles based on their personal requirements. Moreover, we can also refer to existing usability
techniques [12–15] that can be used to offer regular users with preset and adapted IdentiDroid
configurations.

3 Sensitive Data and Resources
For the purpose of this work, we did an extensive study to understand what data is used by Android
applications that can identify users or devices and thus undermine their anonymity. Furthermore,
we studied how applications may have access to such data and their methods of accessing it. In this
section, we first define “sensitive data” as it pertains to anonymity and then classify it according to
the methods applications use to access it. This is necessary due to the similarity of some access
methods, which is reflected in the implementation of our solutions.

3.1 Sensitive Data Classification
We define “sensitive data” as any set of information that can be used to uniquely identify a device or
the user of the device. Such data can either be in the form of identifiers (self-identification variables)
or quasi-identifiers that can re-identify a user or device when combined with other data [16]. This
includes, but is not limited to, information about the device itself, underlying hardware, services
provided by the operating system, and of course personal data pertaining to the user. As such,
protecting device and user anonymity is far from trivial.

We categorize sensitive data into four groups, as data in each group is accessed by a different
method and thus needs a different protection mechanism as we discuss in Section 5.

TRANSACTIONS ON DATA PRIVACY 7 (2014)



32 Bilal Shebaro, Oyindamola Oluwatimi, Daniele Midi, Elisa Bertino

Data Method Related Permission(s)
System Info
Android ID Settings.System.getString(Android ID) -
IMEI or CDM or ESN TelephonyManager.getDeviceId() READ PHONE STATE
Current Cell Location TelephonyManager.getCellLocation() READ PHONE STATE
Phone Number TelephonyManager.getLine1Number() READ PHONE STATE
IP Address WifiInfo.getIpAddress() ACCESS WIFI STATE, ACCESS NETWORK STATE
User Data
Contacts ContentResolver.Query() READ CONTACTS, WRITE CONTACTS
Photo Albums ContentResolver.Query() READ EXTERNAL STORAGE
SMS ContentResolver.Query() READ SMS, RECEIVE SMS, SEND SMS, WRITE SMS
Bookmarks/History ContentResolver.Query() READ HISTORY BOOKMARKS,

WRITE HISTORY BOOKMARKS
Resources
Camera Camera.open() CAMERA
Location LocationManager.getLastLocation() ACCESS COARSE LOCATION,

ACCESS FINE LOCATION,
ACCESS LOCATION EXTRA COMMANDS,
ACCESS MOCK LOCATION

WiFi MAC Address WifiInfo.getMacAddress() ACCESS WIFI STATE

Table 1: Some of the sensitive data considered, with access method and related permissions.

• System Information: It consists of all the information concerning the system state and
identity. Such data is typically accessed by calling value-returning methods for each data
entity.

• User Data: It consists of common data generated by the user, such as contacts and SMSs.
Such data is typically accessed by calling methods that return a Cursor to requested databases.

• Resources: It consists of resources provided by the device, such as camera and GPS.
Resources are typically accessed by calling their corresponding activity or service.

• Application Data: It consists of the data stored and managed autonomously by the
applications. This data represents the application data storage and can be only accessed by
the application itself.

Table 1 shows some of the sensitive data we consider in our work, following our categorization.
We also define of what is considered “non-sensitive” data or resources. In general, non-sensitive
data corresponds to common data that is not unique to a device or user of the device, which is
generally duplicated in many devices. Examples of non-sensitive data could be the OS version,
modem firmware, etc. Similarly, non-sensitive resources correspond to resources that do not generate
sensitive data. Examples of non-sensitive resources could be the gyroscope, barometer, thermometer,
or hygrometer (to measure humidity).

3.2 Sensitive Permissions
As mentioned earlier, in order for applications to execute functions involving the phone hardware,
settings, or user data, specific permissions must be granted. In our work, we define sensitive
permissions as permissions that, when granted, permit access to sensitive data and resources. Among
the 130 available application permissions, we identify 41 permissions as sensitive. Such permissions
belong to 14 permission groups out of the available 30 groups.

Permissions such as READ PHONE STATE are considered sensitive as they allow applications to
access system information and easily identify the device through several unique identifiers such as

TRANSACTIONS ON DATA PRIVACY 7 (2014)



IdentiDroid: Android can finally Wear its Anonymous Suit 33

the IMEI for GSM phones. Furthermore, permissions associated with the Bookmarks, Calendar,
Messages and Social Info permission groups are also sensitive as they allow one to access to the
user databases containing private and confidential information. Finally, resource permissions are
considered sensitive when access to the associated resource reveals specific information about the
device or user, such as its location and wifi state. Table 1 lists some of the sensitive permissions
associated with the sensitive data groups defined in subsection 3.1.
After we categorized what permissions are to be considered sensitive, we tested 250 applications

to investigate how many applications request such permissions. Table 2 shows the results of our
investigation listing the top 20 most requested sensitive permissions, with appendix A listing the
complete set of sensitive permissions.

Permission Req. apps # Req. %
READ EXTERNAL STORAGE 160 63.40%
WRITE EXTERNAL STORAGE 159 63.13%
INTERNET 156 62.07%
READ PHONE STATE 124 49.07%
ACCESS NETWORK STATE 103 41.11%
ACCESS WIFI STATE 69 27.19%
WRITE SETTINGS 51 20.03%
READ CONTACTS 46 18.04%
ACCESS FINE LOCATION 41 16.18%
ACCESS COARSE LOCATION 36 14.46%
CHANGE WIFI STATE 35 14.06%
GET ACCOUNTS 31 12.33%
CHANGE NETWORK STATE 29 11.27%
CALL PHONE 26 10.34%
BLUETOOTH 24 9.42%
WRITE CONTACTS 22 8.89%
READ SMS 21 8.49%
CAMERA 18 7.69%
BLUETOOTH ADMIN 18 7.29%
READ SYNC SETTINGS 17 7.16%

Table 2: Top 20 requested sensitive permissions from the top 250 applications on Google Play
Store.

4 Overview of IdentiDroid
In this section, we outline the design details of IdentiDroid and the necessary components that we
build our solutions upon. Referring to the Android software stack (see Figure 1), any interaction that
occurs between the applications and other device components such as the Android kernel, libraries,
and device hardware, must pass through the application framework layer first [17]. For this reason,
we integrated our solutions within the Android application framework layer to guarantee that no
applications can bypass the constraints applied by IdentiDroid (see Figure 2).

4.1 Data Shadowing Manager
Our first solution (see Figure 2(a)) is a data shadowing manager that enables the user to choose
which information needs to be hidden from each application that might access it. The design of this
solution requires to understand all possible ways and methods by which an application can access
sensitive data. We achieved this by first referring to the Android API classes [18] as it is the main
reference for developers who wish to call APIs in their applications. Second, we located all the API

TRANSACTIONS ON DATA PRIVACY 7 (2014)



34 Bilal Shebaro, Oyindamola Oluwatimi, Daniele Midi, Elisa Bertino

(a) Data Shadowing Manager. (b) Sensitive Permission Manager.

Figure 2: Integration of the proposed solutions into the Android Application framework.

methods of our interest on the Android system source code and performed our changes. Finally,
we tested these changes on applications that access these APIs to confirm its functionality. As an
example of multiple methods accessing a resource, applications can use the Camera resource either
though an Intent call or through the Camera class.

We noticed that several API methods share similar properties and thus can be shadowed in the
same manner, as discussed in Section 3. We now show how we shadow each category according to
its access method and functionality.
Device information. Shadowing device information returns a fake value for the requested
information to any application configured to be shadowed. The returned value is randomized upon
each data request such that different applications receive different device information. For example,
if two applications use the Device ID to identify the same device they are running on, the applications
will receive two different random Device IDs. Also if the same application is executed multiple
times, it will receive each time a different random Device ID. The device information that we shadow
includes IMEI (GSM) or MEID or ESN (CDMA), Phone Number, Subscriber ID, WiFi MAC Address,
Android ID, etc.
User databases. Shadowing user databases means returning an empty list of database records
to any application trying to access data that was previously entered and stored when the device
was functioning under normal modality. For example, if an application like PicsArt tries to load
images saved in the photo albums, the application will receive no images as if there were no
pre-saved images. Accesses to phone contacts, SMS/MMS, calendar, music, videos, browser
bookmarks/history and accounts are handled in the same way.
Resources. Shadowing device resources consist of either: (a) not providing access to the resource
by intercepting the application request; or (b) returning modified or fake information, and sometimes
no information. The techniques used for shadowing device resources defined in (a) and (b) are active
at all times. What really decides which one is triggered depends on how an application is calling or
using a resource, whether using an intent call to an activity with access to that resource or having
its own methods in accessing the resource itself. Therefore, the choice of whether to use solution
(a) or (b) is determined at run-time. For example, consider an application that is configured to be
shadowed from using the GPS and Camera resources. If this application issues an intent call to the
Camera stock application every time it needs to capture an image, then our system will dynamically
choose solution (a) to intercept and drop the intent call to the Camera application. On the other
hand, if this application has its own interface and methods to retrieve and load GPS data for location
purposes, then our system will dynamically choose solution (b) to return fake location coordinates
from the GPS services.

TRANSACTIONS ON DATA PRIVACY 7 (2014)



IdentiDroid: Android can finally Wear its Anonymous Suit 35

(a) Skype with “read contacts”
permission granted

(b) Skype with “read contacts”
permission revoked

Figure 3: Sensitive permission manager’s effect on Skype.

We carefully shadow all the above sensitive data and resources (discussed in details in Section 5)
so that there is no significant impact on the application’s functionality or on the system performance
as we show in Section 6.

4.2 Sensitive Permission Manager

Our second solution is a sensitive permission manager that controls the applications access
to sensitive permissions at run-time (see Figure 2(b)). Even though Android applications are
granted all their required permissions at installation time, our solution can dynamically block
permissions when these permissions are required at run-time by applications. For example, if
an application like “Skype” requests to load the contacts address book saved on the device, the
Android operating system will check at run-time if this application has been granted the permission
READ CONTACTS. However, if “Skype” has been configured through IdentiDroid Profile Manager
not to have access to the contacts list, the permission call is dynamically intercepted and denied at
run-time, thus blocking the application access to such list. Figure 3 shows screenshots of the “Skype”
application demonstrating its behavior upon permission blocking.

4.3 Fresh Start Feature

In addition to the previous solutions, our approach also includes a feature, called Fresh Start, which
is combined with both the above solutions to protect users from being identified by applications
that leave identifying information or traces within their own data storage. This feature makes user
applications believe that they are running on a new device for the first time. This is extremely
useful as applications will appear as if they do not have any pre-saved data on the device whenever
either solution is used, while original saved data will be recovered once the user goes back to normal
(non-anonymous) modality. The use of this feature prevent applications, that normally leverage their

TRANSACTIONS ON DATA PRIVACY 7 (2014)



36 Bilal Shebaro, Oyindamola Oluwatimi, Daniele Midi, Elisa Bertino

(a) Fresh Start not activated (b) Fresh Start activated

Figure 4: Screenshots from the “AccuWeather” application.

own existing data, from being able to re-identify the device or user when the user is connected to an
anonymous network.

For example, consider an application like “AccuWeather” that has been installed and configured to
display the weather for Chicago, IL. Once the user connects to an anonymous network and activates
any of our proposed solutions, the Fresh Start feature is activated and causes “AccuWeather” to
appear as if it has been just installed. In this case, “Accuweather” would display the Terms and
Conditions Agreement screen with no predefined preferred cities. Once Fresh Start is deactivated,
“AccuWeather” will display its original configuration. Figure 4 displays screenshots from the
“AccuWeather” application showing the effect of the use of the Fresh Start feature before and after
being activated.

4.4 Intent Filtering Feature

The Intent filtering feature is also part of both solutions, which manages data and messages
sent/received between applications. This component gives the user control over what intent messages
can be exchanged between applications, as the user may wish to block the exchange of identifying
data during an anonymous session. Without Intent filtering, an application that has been granted
access to identifying data during an anonymous session may pass such data to other applications
that are denied access to identifying data. As a result, such cooperating applications may break the
anonymity of the user/device if at least one application is given access to identifying data. Therefore
it is a necessity to include Intent filtering in both IdentDroid solutions to guarantee the anonymity of
user/device during an anonymous session.

TRANSACTIONS ON DATA PRIVACY 7 (2014)



IdentiDroid: Android can finally Wear its Anonymous Suit 37

4.5 IdentiDroid Profile Manager
IdentiDroid Profile Manager is an Android application, also part of our approach, that hosts
customizable configurations represented as profiles. Each profile has four main category settings:
Permission Manager, Shadow Manager, Fresh Start Manager, and Intent Filtering Manager as shown
in figure 5. Each of the aforementioned setting is unique per profile, giving users the ability to tailor
different profiles for protecting various aspects of their identity against a subset of user-installed
applications. The managers populate a list of currently-installed user applications and allow users to
choose which applications they desire to deny access to sensitive data and resources. This benefits
the user in terms of convenience, ease of use, and of course tailoring security configurations to
protect various aspects of anonymity.

Even though the best practice of anonymity is to deny access to sensitive data from all applications,
users can create multiple profiles and configure them differently according to their needs. A user
must activate his/her profile in conjunction with the user’s connection to an anonymous network.
Once the profile is activated, the Fresh Start and Intent filtering features are activated and the
user configured settings are applied per application according to the chosen solution, whether Data
Shadowing Manager or Sensitive Permission Manager.

Figure 5: GUI structure of the configuration profiles.

5 Implementation
In this section, we introduce the technical details of the implementation of IdentiDroid and the
components used to build the IdentiDroid Profile Manager.

5.1 Anonymous Content Provider
The IdentiDroid Profile Manager manages access control lists (ACL) which are accessed by the
Data Shadowing and Sensitive Permission Managers. As we needed to modify the Android
operating system to prevent applications from accessing certain data and resources at run-time,
we had to make it possible for the system to read these ACLs. For this reason, we created

TRANSACTIONS ON DATA PRIVACY 7 (2014)



38 Bilal Shebaro, Oyindamola Oluwatimi, Daniele Midi, Elisa Bertino

our custom AnonymousContentProvider Java class that allows the system framework to access
IdentiDroid Profile Manager’s ACLs in a controlled and secure manner. When IdentiDroid needs
to decide whether or not to deny sensitive data or resource access to an application, it needs to send
several parameters to our Anonymous Content Provider including whether shadowing or permission
management is utilized. Parameters such as the accessed resource, the application accessing the
resource, and the solution currently activated, are passed via the ContentProvider’s call (Uri uri,
String method, String arg, Bundle extras) method. We register the URI of our Anonymous Content
Provider as “com.android.anonymous”, which is declared in the AndroidManifest.xml file within
IdentiDroid’s “provider” tags.

5.2 Shadowing Sensitive Data
Data shadowing performs data obfuscation; it obscures user-identifying data from applications
and replaces it with data that does not represent the user/device. We modified Android APIs that
applications use to access sensitive data, according to the sensitive data classification discussed in
Section 3.
Device information. We modified the methods in classes where device information may occur,
specifically replacing their return values with random ones. Our modifications were mainly applied
to the TelephonyManager class that contains the device ID, phone number, etc..., the WifiManager
class that contains wifi state, connection info, etc..., and the SettingsProvider class containing the
Android ID. For example, if any application attempts to retrieve the Android ID string through
calling either Settings.Secure.getString(ANDROID ID) or Settings.System.getString(ANDROID ID),
each call will return a new randomized 10 byte hex alphanumeric string.
User databases. Access to complex resources provided by the Android framework usually involves
access to a relational database. We modify the query() method of the ContentResolver class by
intercepting application requests to the database and returning a Null Cursor object instead of the
expected Cursor object. The Null Cursor represents an empty dataset, such as an empty list of
contacts entries or SMS messages.
Resources. Resources are shadowed by either returning fake values or by ignoring the requests
made by applications. As an example of the first behavior, we modify the getLastKnownLocation()
method in the LocationManager class to return random longitude and latitude values that reflects
a fake location of the device. As an example of the second behavior, an application can access
the device’s camera by calling the Activity class startActivityForResult() method passing a camera
intent. Therefore, we modify the startActivityForResult() method to intercept the camera intent
request and to ignore it if the user configured to shadow camera for this application, as if the intent
was never sent. This approach can be applied to any blacklist of intents we choose and is thus
extensible. As this will not cause the application to crash, we discuss the shadowing impact on
applications in Section 6.

5.3 Managing Sensitive Permissions
IdentiDroid supplements the Android operating system with permission management: users have
the ability to grant/revoke permissions per application post-installation.

Before to actually accessing a resource, the ActivityManagerService class verifies if the application
has the right permission to access it. The verification process involves invoking the method
checkComponentPermission(String permission, int pid, int uid,...) where the “permission” parameter
is the permission associated with the resource that is requested and thus being checked. The “pid”
and the “uid” parameters identify the process and/or application requesting the resource. We apply
our modifications to this permission check method to implement our run-time restrictions. Since

TRANSACTIONS ON DATA PRIVACY 7 (2014)



IdentiDroid: Android can finally Wear its Anonymous Suit 39

the “uid” may be shared by applications signed by the same developer, we perform our permission
management based on the package name rather the “uid” to avoid confusion with other applications.
Figure 6 shows the interaction between the Sensitive Permission Manager with the application and
data source, showing the steps applied upon each permission check. We retrieve the application
name via the UID or name of the process in which the method is being invoked. The system then
calls our Anonymous Content Provider’s checkResourceAccess() method with the resource being
accessed and the requesting application. If the boolean value returned is false, then the constant
PackageManager.DENIED is returned by checkComponentPermission(...) allowing no access to that
resource.

Figure 6: Steps performed to manage sensitive permissions.

5.4 Fresh Start

The goal of the Fresh Start feature is to restore an application to the state it was in when it was newly
installed. Fresh Start temporarily relocates the data files of an application by moving its data files
and directories to an unaccessible directory. Inaccessibility to such directory is achieved by giving no
access permissions for this directory to any application on the device. The same process occurs in the
reverse: when another profile is set or the current security profile is deactivated, each application’s
data files and directories will be restored to their original location. As some application data may
still reside in the cached files, Fresh Start also deletes the application’s cache data and terminates
any related running process once a user activates or deactivates a profile. In addition, applications
configured under Fresh Start are denied access to external storage during anonymous sessions, and
are given back their original accessibility upon deactivating the anonymous profile.

5.5 Intent Filtering

The goal of Intent filtering is to block message exchanges at run-time between applications that may
contain identifying data and may reveal the identity of the user/device. Intent messages are one of the
common forms for inter- and intra-communication between application components, sent via three
methods: startActivity(), sendBroadcast(), and startService(). Denying an application from sending
intents is simply a matter of intercepting the intents when the aforementioned methods are called by
applications. Intent filtering provides the user the ability to prevent an application component from
broadcasting any possible sensitive information.

TRANSACTIONS ON DATA PRIVACY 7 (2014)



40 Bilal Shebaro, Oyindamola Oluwatimi, Daniele Midi, Elisa Bertino

Data Normal Connection Anonymous Con. + Shadowing Anonymous Con. + Permission Blocking
System Info
IMEI/MEID/ESN 353850932165477 1234567890ABCDE Access Denied
Phone Number 111-111-1111 123-456-7890 No Access to Phone Number
WiFi MAC Address 10:BF:48:F2:7E:EB Null via null WiFiInfo No Access to MAC Address
Android ID A23BF6FD34 ABCDEF1234 A23BF6FD34
User Data
Contacts Access to Contacts Empty List of Contacts No Access to Contacts
Photo Albums Access to Photo Albums Empty List of Photos No Access to Photos
SMS Access to SMS Empty List of SMS Messages No Access to SMS
Calendar Access to Calendar Empty List of Events No Access to Calendar
Account Manager Access to User Accounts Empty List of Accounts No Access to Accounts
App Data
Logs Access to Log Entries No Log Entries Access denied to Logs
Application Storage Data Access to application data Appears as newly installed application Appears as newly installed application
Resources
Camera Access to Unable to open to camera via intent No Access to Camera
Location 41.103807, -85.399449 37.428434, -122.072382 No Access to Location services
Microphone Access to Record Audio Unable to open Audio Recorder No Access to Microphone

Table 3: IdentiDroid’s effect on some of the sensitive data.

6 Experimental Results

We performed different sets of experiments to validate the functionality of IdentiDroid and its impact
on the device applications. We designed the IdentiDroid Profile Manager in a way that allows us to
configure and test each solution separately or combined. Our experiments were performed on the
Android emulator and on real Android devices, the Google Nexus 7 tablet and the Nexus 4 phone.
Our tested application set consists of the top free 250 applications downloaded in August 2013 from
the Google Play Store listed under All Categories, representing the set of most common applications
downloaded by users.

Our first experiment tests the effectiveness of each solution on the device applications to prove
that no accessible data by applications can identify the user or device. Our second experiment
tests the performance of our solutions by evaluating the timing overhead introduced by IdentiDroid
compared to the Android stock operating system. The third experiment tests the impact of
shadowing sensitive data and resources on user-installed applications. The fourth experiment tests
the impact of permission revoking from applications that request a sensitive permission. Each
experiment is conducted with the help of the Android Debug Bridge (ADB) utility by logging the
application events using the command “adb logcat”.

Experiment 1: Testing IdentiDroid on Applications - Expected Behavior Validation Based on
the sensitive data classification we defined in Section 3, we tested each of our solutions separately
on our set of the top 250 applications. Table 3 displays our experimental results showing the values
returned to these applications and the actions taken by IdentiDroid. For demonstration purposes, the
shadowed values displayed are of the general form 1234567890ABCDEF , as they are supposed
to return random numbers whenever an application accesses such data.

Experiment 2: Overhead Performance of IdentiDroid The goal of this experiment is to evaluate
the performance of IdentiDroid against the stock Android operating system. We wanted to measure
the overhead in execution times for the various methods that applications would call to access
sensitive data. For each of these methods we measured the elapsed time from when the application
requests the data until the data is retrieved. We first measured the elapsed time of the stock operating
system methods and then the duration of the same methods when each of our solutions is activated.
Each measurement was taken 8 times then averaged. Table 4 reports in milli-seconds (ms) the

TRANSACTIONS ON DATA PRIVACY 7 (2014)



IdentiDroid: Android can finally Wear its Anonymous Suit 41

Method Before After Overhead
AM.checkComponentPermission() 0.0071 3.958 3.951
TelephonyManager.getDeviceId() 0.0544 5.648 5.594
Settings.getString(Android id) 0.0093 0.371 0.362
WifiManager.getConnectionInfo() 0.0313 3.737 3.705
startActivityForResult() 0.0064 15.553 15.547
startActivity() 0.0159 11.908 11.892
startService() 0.0082 5.727 5.719
sendBroadcast() 0.0098 6.859 6.849

Table 4: Time overhead (in ms) for some of the core Android methods that were modified in
IdentiDroid.

time overhead of these methods. As the displayed values show, the overall delay introduced by
IdentiDroid is not perceivable by the end-user.

Experiment 3: Impact of Data Shadowing on Applications The goal of this experiment is
to evaluate the impact of the shadowing solution on a real-world case scenario, that is, a device
containing the top 100 applications from the Google Play store under All Categories. It is necessary
to understand the overall effect of shadowing data and resources on user applications and the cost
the user is paying for his/her identity protection.

The evaluation of each application is carried as follows: For every application, we make a checklist
of its major functionalities based on what is listed in the application description in the Google Play
market. For example, the major functionalities of the Skype application are video calls, voice calls,
text messaging, phone calling, etc. Given the checklist of each application, we manually test each
application in order to monitor, through the ADB logcat utility, all possible activities and services
each application has on the Android device, as we need to record the effect of using IdentiDroid
whenever they access identifying data or request sensitive permissions. For this purpose, we classify
our evaluation into three categories:
1- No Impact: none of the application’s major functionalities is affected.
2- Partially Functional: some major functionalities of the application are affected and cannot be
used, with at least one major functionality that is still not affected. e.g. no camera access for the
Skype application, but text messaging still works normally.
3- Useless: all of the applications major functionalities are broken, that is, the application becomes
totally useless. e.g. no microphone access for the sound recorder application.

Figure 7 displays the impact on user applications using the most strict shadowing profile, which
consists of shadowing all sensitive data and resources. On average, 92% of the applications had
no impact, 6% of the applications became partially functional, and only 2% of the applications
became useless when all resources have been shadowed. As these results are strictly related to
the functionality of applications, we briefly discuss the shadowing effect on the usefulness of
applications in Section 8.

Experiment 4: Impact of Permission Revoking on Applications In this experiment, we
performed a stress test on the sensitive permission solution and observed the impact of permission
revoking on applications that requested sensitive permissions. For this test, we forced each
application to use all its functionalities to ensure that the sensitive permission is requested. We
performed our tests on 100 Android applications and used the same evaluation methodology
considered in Experiment 3. Figure 8 displays the impact on user applications using the sensitive
permission stress test. On average, 79% of the applications had no impact, 11% of the applications
became partially functional, and 10% of the applications became useless.

TRANSACTIONS ON DATA PRIVACY 7 (2014)



42 Bilal Shebaro, Oyindamola Oluwatimi, Daniele Midi, Elisa Bertino

Figure 7: Impact of data shadowing on applications.

In the process of evaluating the impact of permission revoking on applications, some applications
crashed while performing the permission stress test. Although the 100 Android applications that
were evaluated are chosen to be among the ones that did not crash, we extend our evaluation to
test a larger set of applications and study the impact of revoking sensitive permissions individually.
Specifically, we are interested in whether or not an application crashes as a result of being denied a
permission that was initially granted at installation time.

We performed our experiment on our set of 250 Android applications and use our Sensitive
Permission Manager to deny the top 20 sensitive permissions individually. We used the ADB
logging utility to view the permission being revoked when the checkComponentPermission() method
is called.

Figure 9 shows the percentage of application crashes upon performing the stress test on each
permission. We counted an application as crashing even if it crashed during the execution of one
minor functionality. The main cause of these crashes is due to the developers’ mishandling the denial
of previously granted permissions. We noticed that the ACCESS NETWORK STATE permission is
one of the most frequent permissions that is not exception-handled by the developers and causes 40%
of the crashes, as observed in Figure 9. This is because most applications intend to communicate
through Internet and developers always assume that such permission is available and granted to their
applications.

Preventing applications from performing sensitive actions or process sensitive data is achieved
by returning the PackageManager.PERMISSION DENIED value at run-time. However, a security
exception is thrown when such constant is returned and this might cause problems to some
applications. The reason is that developers usually do not expect their applications to be revoked
a permission they requested because users must grant all permissions in order to install the
applications. Therefore, when a permission that was initially granted is revoked, applications have
the likely chance of crashing, with the operating system subsequently force-closing it. Application
crashing can be prevented if error-handling is added whenever an application attempts to access
sensitive data or resources. In fact, throughout testing several application versions, we realized that
the number of application crashes has been decreasing over time. This is because developers are

TRANSACTIONS ON DATA PRIVACY 7 (2014)



IdentiDroid: Android can finally Wear its Anonymous Suit 43

Figure 8: Impact of permission revoking on applications.

now aware that not having the permission error-mishandling script is causing several application
crashes. A script is thus being added in their application updates especially with the evolvement
of many permission restriction techniques. We observed examples of error-handling in several
applications when an initially granted permission was denied, as shown in Figure 10.

Shadowing vs. Permission Revoking As both solutions protect the user/device identifying
information, we also need to make sure that the device does not become useless. For this reason, we
tested the overall behavior of each solution on a real-world case scenario with a device containing the
top 100 applications from our application’s set, and compared each solution’s impact in protecting
every sensitive data category.

We weighed the behavior of all the applications tested by assigning a score from according to the
outcome, with a score of 1 for applications that crashes or become useless, 6 for applications that
become partially functional, and 10 for no observed impact.

Figure 11 shows the cumulative score obtained for each of the two solutions with respect to the
different categories of sensitive data. As the underlined score determines the better solution, the
score are very close which denotes the strength of each solution separately. For users who demand
the best tradeoff between privacy protection and user experience, the best solution is to combine the
permission and shadowing solutions in order to better protect the users anonymity, an option already
available within IdentiDroid Profile Manager application.

7 Security Analysis of IdentiDroid
In this section, we present a security analysis of the IdentiDroid system to analyze possible threats
from malicious users or applications that can bypass our mechanisms for the protection of personally
identifying information. The aim of our security analysis is to mitigate these threats and discuss how
likely for these threats to occur and affect our customized Android system.

Colluding Applications. In Android, each device application is assigned a unique UserID (UID)
that the system uses to refer to an application. However, if two applications are created and signed

TRANSACTIONS ON DATA PRIVACY 7 (2014)



44 Bilal Shebaro, Oyindamola Oluwatimi, Daniele Midi, Elisa Bertino

Figure 9: Impact of permission revoking on applications.

(a) Snapseed app. error handling
when access to external storage is
blocked.

(b) Contacts+ app. error handling
when sending SMS messages is
blocked.

Figure 10: Screenshots of application’s error handling after permission revoking.

by the same developer, the system will give both applications the same UID, which gives these
applications the ability to share the same processes if needed. Because of that, applications with the
same UID may collaborate together and can break the anonymity of the user or device if at least
one of these applications is not restricted access to sensitive data. For that reason, our IdentiDroid
system follows the same mechanism that the Android system uses in enforcing its security policies
and uses the application UIDs to block all package names associated with a UID. For example, if

TRANSACTIONS ON DATA PRIVACY 7 (2014)



IdentiDroid: Android can finally Wear its Anonymous Suit 45

Figure 11: Shadowing vs. Permission revoking score results.

one application has been blocked access to the Contacts list, then all applications that share the same
UID with the blocked application are also blocked access to the Contacts list.
Bypassing Permissions via NDK. Android’s Native Development Kit (NDK) is a toolset that

allows Android developers to build portions of their applications in native code or port existing
libraries written in C and C++. Even though developers usually refer to Java code when calling
higher-level functionalities in the Android system, they may prefer to write lower-level system calls
using C or C++. In particular, by using an external standard C library, developers can call functions
such as connect(), read(), socket(), write(), etc. However, if a malicious developer tries to use native
code in order to bypass the IdentiDroid’s permission configurations set by the user, such attempts will
fail given that the Android operating system will always check at run-time for whether an application
process has the appropriate permissions when accessing any resource. This is achieved through the
Android kernel that checks if the application processes are in the right resource group [19, 20]. For
example, an application written via NDK that needs to set up a socket connect will need to be granted
the INTERNET permission, and therefore its process should have the Internet group ID (GID). If
this application is blocked access to the INTERNET permission via IdentiDroid, then the connect()
process will not have Internet GID and therefore will fail to setup the socket connection.

Data Forwarding. Many Android applications share and exchange data with each other via
Intent messages. This can cause a rare but possible threat to IdentiDroid users as some malicious
applications that has been configured not to have access to identifying data might request identifying
data from other applications with access to such data. However, using our Intent filtering feature, we
intercept and disable messages containing identifying data to be exchanged between applications.
Another form of applications data sharing is when applications create world writable/readable files.
However, our implementation is based on Android API level 17 in which the world writable/readable
capability is deprecated [21].

Accessing ACL. The Android operating system protects content providers and the data they
store by using both static and dynamic permissions. Information stored by all content providers
is, by default, protected using static declarations of read and write permissions. These static
declarations can be applied to specific file paths within the application data directory. The data
that our anonymous content provider should protect is the ACLs managed by the IdentiDroid Profile
Manager. We thus declare only read permissions to our data directory containing the ACLs, therefore
preventing malicious applications from overwriting the ACL data by accessing it via our custom
content provider.

TRANSACTIONS ON DATA PRIVACY 7 (2014)



46 Bilal Shebaro, Oyindamola Oluwatimi, Daniele Midi, Elisa Bertino

8 Discussion

In our data shadowing solution, the randomized data that we return to the application may affect
the usefulness of some application features even when the application is still fully functional. For
example, randomizing location data might cause weather applications to return the forecast of a
different city not relevant to the user. To address such issue, an approach could be for users to
manually enter some input values that can result in the applications still returning some useful,
perhaps less accurate, results. For example, in the case of the weather applications, the user could
enter a logical “broad” location (such as a city or a county) instead of relaying on the location
auto detect feature which returns a GPS location. Such an approach would make it possible for the
applications to still return useful results to the users while at the same time not using privacy-sensitive
information.

Another aspect of concern is the ability of the Internet service providers (ISPs) to identify their
own smartphone users. It is important to point out that this a problem affecting current anonymous
networks and VPNs as the ISP servers can still identify users through their IP or MAC addresses
due to the fact that the Internet traffic originating at smartphones has to pass through the ISP
servers. Thus as IdentiDroid works at application level, on top of anonymous networks or VPNs,
addressing the problem of protecting the IP or MAC address from the ISPs is outside the scope of
IdentiDroid. We emphasize that the goal of IdentiDroid is to assure user anonymity at application
level. However it can be used in conjunction with tools assuring anonymity at the network level to
provide comprehensive privacy.

9 Related Work

As we are aware that anonymity on Android devices is a known problem, we have not seen any
complete work that solves this problem and prevents all possible identifying information from
reaching device applications. Moreover, the solutions provided by anonymity network providers
(such as Tor Orbot) are not sufficient where applications are still able to identify device and/or user.
The closest works to achieve better anonymity on Androids were the privacy related approaches on
smart mobile devices, and detection of over-privileged applications and malicious applications.

Past work on privacy for smart mobile devices has mainly focused on the applications that are
over-privileged. Vidas et al. implemented the Permission Check Tool [22] to assist developers
in utilizing the least privilege principle, so that applications would not be over-privileged. Enck
et al. [23] categorized over-privileged applications based on their permission requirements before
installation, and their potential threats in case such permissions are granted and abused. Their
experiments identified malware signatures in applications upon installation, and tested applications
against a set of security rules describing their potential threat. However, they did not examine
the functionality of these applications or whether or not they are abusing their permissions. Most
importantly, even with applications that are not over-privileged, user and device re-identification may
still occur. Our solutions were built on the premise that even applications that are not categorized
as over-privileged may still leak identifying information. Enck et al. also built the Kirin [23] that
uses a formalized model of policy mechanisms to determine whether or not the privileges requested
by applications match the desired functionality. If the matching fails, the application will not be
allowed to install. However our solution allows all applications to be installed, but grant the user the
ability to manage the resources the application is allowed to access.

In addition to risks arising from permissions granted to applications, a few researchers have tested
for information leakage of applications in the Android market. Gibler et al. audited applications
by using AndroidLeaks [9], a static analysis framework that finds data leaks in applications, and

TRANSACTIONS ON DATA PRIVACY 7 (2014)



IdentiDroid: Android can finally Wear its Anonymous Suit 47

reported over 2, 000 applications that leak sensitive information containing device information,
sensor data, and users’ information. However, their static analysis lacks in integration with the
Android specific control flow, is thus not able to detect all possible data leaks. Felt et al. built
Stowaway [8], a dynamic tool for determining the required permissions invoked by each API method.
Mann and Starostin have described what sources and sinks of private data could Android APIs
leak, and provided a framework for detecting privacy-violating information flows inside Android
applications [24]. Although most of such work has been motivated by the privacy risks of Android
applications, none of the previous approaches has provided any solution to limit information leakage.

There are few works that closely relate to our work but are still vulnerable and not sufficient for
anonymity purposes. The first is by Hornyack et al. who developed AppFence [6] to enforce
system-wide privacy controls on Android applications. Our work complements Appfence in
protecting the user privacy but is more aimed towards protecting the identity of the user/device.
Moreover, since AppFence was built on TaintDroid [7], it does not address all implicit flows and
therefore cannot deal with malicious applications attempting to circumvent tracking.

Finally, AppFence does not prevent applications from accessing user traces left at the application
data storage, which is the key goal of our Fresh Start feature. Similar work was done by Schreckling
et al. who extend the TaintDroid framework to offer fine-grained security policies by supporting
the tracking of access restrictions on single data items [25]. Zhou et al. developed TISSA [26] to
introduce a privacy-mode implementation to the Android OS in order to limit the accessibility of user
information to untrusted device applications. Other closely related work is by Nauman et al. [27]
who modified the permission enforcement of the Android operating system by offering granularity in
control permissions. Another similar work is MockDroid [28] that intercepts the permission requests
for resources. However, these solutions are not sufficient for applications that can store identifying
information within the data space, which is the main purpose of our Fresh Start feature.

Our modifications to the Android system were applied at the application level of the operating
system, however several researchers have made lower level modifications that are targeted at the
kernel and the Android run-time levels for the purpose of giving users security and privacy controls
over their devices. Russello et al. created security profiles that are dynamically switched by
their MOSES Hypervisor to enforce software isolation of applications and data on the Android
platform [29]. Xu at al. [30] created security and privacy policies that are enforced after repackaging
applications with sandboxing code. Finally, Tiwari et al. provided users with Bubbles [31], an almost
virtualization abstraction, where only data contained in a Bubble can be shared with applications.

Other researchers have implemented detection mechanisms for malicious applications [32–34],
some of which are responsible for leaking identifying information. Chen et al. investigated
the differences between malicious and benign applications and characterized them based on the
temporal order of the used APIs and permissions [35]. They built the Pegasus tool that detects
applications performing sensitive operations without the user’s consent. Moreover, Zhou and Jiang
identified two vulnerabilities in Androids resulting from applications with unprotected content
provider components [36]. We benefit from such work in understanding how these applications
leak phone identifiers and user data.

In all the aforementioned related work, we have not seen any work that offers complete solution for
the anonymity problem on Android systems, while IdentiDroid offers two solutions and two major
features (Fresh Start and Intent filtering) that strongly compliment existing anonymity networks in
protecting the identity of their users.

TRANSACTIONS ON DATA PRIVACY 7 (2014)



48 Bilal Shebaro, Oyindamola Oluwatimi, Daniele Midi, Elisa Bertino

10 Conclusion and Future Work

Anonymous networks on smartphone devices such as Android are not sufficient to guarantee the
anonymity of users due to several identifying information that may be accessible to applications. In
this paper, we introduced a customized Android operating system, called IdentiDroid, that deploys
two solutions designed to protect users from being re-identified. Our first solution is based on
shadowing sensitive data and the second solution is based on blocking at runtime permissions that
lead access to identifying data. We also developed IdentiDroidProfile Manager as a profile-based
tool that hosts the customized configuration of our solutions for each installed application. Our
experimental results show the effectiveness of these solutions on the sensitive data returned to
applications and that it can no longer identify the user or device.

We plan to extend our system to investigate its effectiveness against applications that use native
libraries, as they might be able to circumvent both shadowing and permission checking. We also
plan to introduce guidelines on how to build applications that can function anonymously. Finally, we
plan to study vulnerabilities in applications that have unprotected APIs where malicious applications
may use for user/device identification.

References

[1] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-generation onion router,” in In
Proceedings of the 13th USENIX Security Symposium, 2004, pp. 303–320.

[2] I. AnchorFree, “Hotspot shield,” http://www.anchorfree.com.

[3] T. T. Project, “Want tor to really work?” https://www.torproject.org/download/download-easy.html.en.

[4] S. T. Amir Efrati and D. Searcey. (2011, Apr.) Mobile-app makers face u.s. privacy investigation. [Online].
Available: http://online.wsj.com/article/SB10001424052748703806304576242923804770968.html

[5] J. Lin, N. Sadeh, S. Amini, J. Lindqvist, J. I. Hong, and J. Zhang, “Expectation and purpose:
understanding users’ mental models of mobile app privacy through crowdsourcing,” in Proceedings of
the 2012 ACM Conference on Ubiquitous Computing, ser. UbiComp ’12, NY, USA. [Online]. Available:
http://doi.acm.org/10.1145/2370216.2370290

[6] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These aren’t the droids you’re looking
for: retrofitting android to protect data from imperious applications,” in Proceedings of the 18th ACM
conference on Computer and communications security, ser. CCS ’11, NY, USA, 2011.

[7] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an
information-flow tracking system for realtime privacy monitoring on smartphones,” in Proceedings of
the 9th USENIX conference on Operating systems design and implementation, ser. OSDI’10, Berkeley,
CA, USA, 2010. [Online]. Available: http://dl.acm.org/citation.cfm?id=1924943.1924971

[8] A. P. Felt, K. Greenwood, and D. Wagner, “The effectiveness of application permissions,” in Proceedings
of the 2nd USENIX conference on Web application development, ser. WebApps’11, Berkeley, CA, USA,
2011, pp. 7–7. [Online]. Available: http://dl.acm.org/citation.cfm?id=2002168.2002175

[9] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androidleaks: automatically detecting potential privacy
leaks in android applications on a large scale,” in Proceedings of the 5th international conference on
Trust and Trustworthy Computing, ser. TRUST’12, Berlin, Heidelberg, pp. 291–307. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-30921-2 17

[10] W. Enck, M. Ongtang, and P. McDaniel, “Understanding android security,” Security Privacy, IEEE, vol. 7,
no. 1, pp. 50–57, 2009.

[11] A. D. Guide. Android permissions. [Online]. Available: http://developer.android.com/guide/topics/
security/permissions.html

TRANSACTIONS ON DATA PRIVACY 7 (2014)



IdentiDroid: Android can finally Wear its Anonymous Suit 49

[12] M. Shehab, G. Cheek, H. Touati, A. Squicciarini, and P.-C. Cheng, “User centric policy management
in online social networks,” in Policies for Distributed Systems and Networks (POLICY), 2010 IEEE
International Symposium on, 2010, pp. 9–13.

[13] R. W. Reeder, L. Bauer, L. F. Cranor, M. K. Reiter, and K. Vaniea, “More than skin deep: measuring
effects of the underlying model on access-control system usability,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ser. CHI ’11. New York, NY, USA: ACM, 2011,
pp. 2065–2074. [Online]. Available: http://doi.acm.org/10.1145/1978942.1979243

[14] L. Cranor and S. Garfinkel, Security and Usability. O’Reilly Media, Inc., 2005.

[15] K. Fisler and S. Krishnamurthi, “A model of triangulating environments for policy authoring,”
in Proceedings of the 15th ACM symposium on Access control models and technologies,
ser. SACMAT ’10. New York, NY, USA: ACM, 2010, pp. 3–12. [Online]. Available:
http://doi.acm.org/10.1145/1809842.1809847

[16] A. Hundepool, J. Domingo-Ferrer, L. Franconi, S. Giessing, E. S. Nordholt, K. Spicer, and P.-P. de Wolf,
Statistical Disclosure Control (Wiley Series in Survey Methodology). Wiley, 2012.

[17] A. O. S. Project. Android security overview. [Online]. Available: http://source.android.com/tech/security/

[18] A. D. Guide. Android apis. [Online]. Available: http://developer.android.com/reference/packages.html

[19] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, “Paranoid android: versatile
protection for smartphones,” in Proceedings of the 26th Annual Computer Security Applications
Conference, ser. ACSAC ’10. New York, NY, USA: ACM, 2010, pp. 347–356. [Online]. Available:
http://doi.acm.org/10.1145/1920261.1920313

[20] H. Hao, V. Singh, and W. Du, “On the effectiveness of api-level access control using bytecode
rewriting in android,” in Proceedings of the 8th ACM SIGSAC symposium on Information, computer and
communications security, ser. ASIA CCS ’13. New York, NY, USA: ACM, 2013, pp. 25–36. [Online].
Available: http://doi.acm.org/10.1145/2484313.2484317

[21] A. D. Guide. Android interface to global information. [Online]. Available: http://developer.android.com/
reference/android/content/Context.html

[22] T. Vidas, N. Christin, and L. Cranor, “Curbing Android permission creep,” in Proceedings of the Web 2.0
Security and Privacy 2011 workshop (W2SP 2011), Oakland, CA, May 2011.

[23] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone application certification,”
in Proceedings of the 16th ACM conference on Computer and communications security, ser.
CCS ’09. New York, NY, USA: ACM, 2009, pp. 235–245. [Online]. Available: http:
//doi.acm.org/10.1145/1653662.1653691

[24] C. Mann and A. Starostin, “A framework for static detection of privacy leaks in android applications,” in
Proceedings of the 27th Annual ACM Symposium on Applied Computing, ser. SAC ’12, New York, NY,
USA, 2012, pp. 1457–1462.

[25] D. Schreckling, J. Posegga, J. Köstler, and M. Schaff, “Kynoid: real-time enforcement of
fine-grained, user-defined, and data-centric security policies for android,” in Proceedings of
the 6th IFIP WG 11.2 international conference on Information Security Theory and Practice,
ser. WISTP’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 208–223. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-30955-7 18

[26] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh, “Taming information-stealing smartphone applications (on
android),” in Proceedings of the 4th international conference on Trust and trustworthy computing, ser.
TRUST’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 93–107.

[27] M. Nauman, S. Khan, and X. Zhang, “Apex: extending android permission model and enforcement with
user-defined runtime constraints,” in Proceedings of the 5th ACM Symposium on Information, Computer
and Communications Security, ser. ASIACCS ’10. New York, NY, USA: ACM, 2010, pp. 328–332.
[Online]. Available: http://doi.acm.org/10.1145/1755688.1755732

[28] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, “Mockdroid: trading privacy for application
functionality on smartphones,” in Proceedings of the 12th Workshop on Mobile Computing Systems and

TRANSACTIONS ON DATA PRIVACY 7 (2014)



50 Bilal Shebaro, Oyindamola Oluwatimi, Daniele Midi, Elisa Bertino

Applications, ser. HotMobile ’11. New York, NY, USA: ACM, 2011, pp. 49–54. [Online]. Available:
http://doi.acm.org/10.1145/2184489.2184500

[29] G. Russello, M. Conti, B. Crispo, and E. Fernandes, “Moses: supporting operation modes
on smartphones,” in Proceedings of the 17th ACM symposium on Access Control Models and
Technologies, ser. SACMAT ’12. New York, NY, USA: ACM, 2012, pp. 3–12. [Online]. Available:
http://doi.acm.org/10.1145/2295136.2295140

[30] R. Xu, H. Saı̈di, and R. Anderson, “Aurasium: practical policy enforcement for android
applications,” in Proceedings of the 21st USENIX conference on Security symposium, ser.
Security’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 27–27. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2362793.2362820

[31] M. Tiwari, P. Mohan, A. Osheroff, H. Alkaff, E. Shi, E. Love, D. Song, and K. Asanović,
“Context-centric security,” in Proceedings of the 7th USENIX conference on Hot Topics in Security,
ser. HotSec’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 9–9. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2372387.2372396

[32] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of mobile malware in the wild,” in
Proceedings of the 1st ACM workshop on Security and privacy in smartphones and mobile devices, ser.
SPSM ’11, NY, USA, 2011, pp. 3–14. [Online]. Available: http://doi.acm.org/10.1145/2046614.2046618

[33] W. Enck, “Defending users against smartphone apps: techniques and future directions,” in Proceedings
of the 7th international conference on Information Systems Security, ser. ICISS’11. Springer-Verlag,
2011, pp. 49–70.

[34] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of android application security,” in
Proceedings of the 20th USENIX conference on Security, ser. SEC’11. Berkeley, CA, USA: USENIX
Association, 2011, pp. 21–21. [Online]. Available: http://dl.acm.org/citation.cfm?id=2028067.2028088

[35] K. Chen, N. Johnson, V. D’Silva, S. Dai, T. Magrino, K. Macnamarra, E. Wu, M. Rinard, and D. Song,
“Contextual policy enforcement in android programs with permission event graphs,” in Proc. of the
Conference on Networked and Distributed System Security.

[36] X. J. Yajin Zhou, “Detecting passive content leaks and pollution in android applications,” in Proceedings
of the 20th Network and Distributed System Security Symposium, ser. NDSS’13. [Online]. Available:
http://www.csc.ncsu.edu/faculty/jiang/pubs/NDSS13 CONTENTSCOPE.pdf

TRANSACTIONS ON DATA PRIVACY 7 (2014)


