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Abstract. This paper proposes a categorical data synthesizer algorithm that guarantees a quantifi-
able disclosure risk. Our algorithm, named Perturbed Gibbs Sampler (PeGS), can handle high-
dimensional categorical data that are intractable if represented as contingency tables. PeGS involves
three intuitive steps: 1) disintegration, 2) noise injection, and 3) synthesis. We first disintegrate the
original data into building blocks that (approximately) capture essential statistical characteristics of
the original data. This process is efficiently implemented using feature hashing and non-parametric
distribution approximation. In the next step, an optimal amount of noise is injected into the esti-
mated statistical building blocks to guarantee differential privacy or l-diversity. Finally, synthetic
samples are drawn using a Gibbs sampler approach. California Patient Discharge data are used to
demonstrate statistical properties of the proposed synthetic methodology. Marginal and conditional
distributions as well as regression coefficients obtained from the synthesized data are compared to
those obtained from the original data. Intruder scenarios are simulated to evaluate disclosure risks
of the synthesized data from multiple angles. Limitations and extensions of the proposed algorithm
are also discussed.

1 Introduction

Public use data, which are often released by government and other data collecting agen-
cies, typically need to satisfy two competing objectives: maintaining relevant statistical
properties of the original data and protecting privacy of individuals. To address these two
goals, various statistical disclosure limitation techniques have been developed (Willenborg
and de Waal, 2001). Some popular disclosure techniques are data swapping (Dalenius and
Reiss, 1978; Fienberg and McIntyre, 2005), top-coding, feature generalization such as k-
anonymity (Sweeney, 2002) or l-diversity (Machanavajjhala et al., 2007), and additive ran-
dom noise with measurement error models (Fuller, 1993). Each method has distinct utility
and risk aspects. In practice, a disclosure limitation technique is carefully chosen by do-
main experts and statisticians. Sometimes, multiple techniques are mixed and applied to a
single dataset to achieve better privacy protection before being released to the public (Cen-
ters for Medicare and Medicaid Services, 2013). Such public use datasets have served as
valuable information sources for decision makings in economics, healthcare, and business
analytics.

The generation of synthetic data (Rubin, 1993) is an alternative approach to data trans-
forming disclosure techniques. For example, multiple imputation, which was originally
developed to impute missing values in survey responses (Rubin, 1987), can also be used to
generate either partially or fully synthetic data. As synthetic data preserves the structure
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and resolution of the original data, preprocessing steps and analytical procedures on syn-
thetic data can be effortlessly transferred to the original data. This aspect has contributed
to popular adoption of synthetic data in diverse research areas. Thus far, there has been
notable progress on valid inferences using synthetic data and extensions to different appli-
cations: Abowd and Woodcock (2001) synthesized a French longitudinal linked database,
and Raghunathan et al. (2003) provided general methods for obtaining valid inferences us-
ing multiply imputed data. Beyond typically used generalized linear models and Markov
Chain Monte Carlo simulation methods, decision trees models, such as CART and Random
forests, can also be used as imputation models in multiple imputation (Reiter, 2005b; Caiola
and Reiter, 2010). Some illustrative empirical studies have used U.S. census data (Drechsler
and Reiter, 2010), German business database (Reiter and Drechsler, 2010), and U.S. Amer-
ican Community Survey (Sakshaug and Raghunathan, 2011). A very different approach
to imputing missing values in binary or binarized datasets can be taken using association
rule mining. Vreenken and Siebes (2008) used the minimum description length principle to
develop a set of heuristics that are used to (approximately) represent the dataset in terms
of a concise set of frequent itemsets. These rules can be then used to impute missing val-
ues, and in principle could also be used to generate synthetic data. However, their current
work does not quantify the privacy afforded by the compressed data or use a given privacy
criterion to determine the derived itemsets.

The two competing requirements for public use data similarly apply to synthetic data
disclosure. Synthetic data need to be accurate enough to answer relevant statistical queries
without revealing private information to third parties. Statistical properties of synthetic
data are primarily determined by imputation models (Reiter, 2005a), and models that are
too accurate tend to leak private information (Abowd and Vilhuber, 2008).

The balance between accuracy and privacy can be addressed by using cryptographic pri-
vacy measures such as ε-differential privacy (Dwork, 2006). However, several attempts to
achieve such strong privacy guarantees have shown to be impractical to implement. For
example, Barak et al. (2007) showed that it is possible to release contingency tables under
the differential privacy regime using Fourier transform and additive Laplace noise. How-
ever, this proposed release mechanism was later criticized for being too conservative and
disrupting statistical properties of the original data (Yang et al., 2012; Charest, 2012). On
the other hand, Soria-Cormas and Drechsler (2013) claimed that ε-differential privacy can
be a useful privacy measure when disclosing a large size of data with a limited number of
variables. For example, differentially private synthetic data have been demonstrated using
the Census Bureau’s OnTheMap data that consists of approximately one million records
with two variables (Machanavajjhala et al., 2008).

In this paper, we propose a practical multi-dimensional categorical data synthesizer that
satisfies ε-differential privacy. The proposed synthesizer can handle multi-dimensional
data that are not practical to be represented as contingency tables. We demonstrate our
algorithm using a subset of California Patient Discharge data, and generate multiple syn-
thetic discharge datasets. Although ε-differential privacy is extensively used in our algo-
rithm analyses, we note that ε-differential privacy is one of many descriptive measures for
disclosure risks. Differential privacy is a measure for functions, not for data (Fienberg et al.,
2010), and this measure can be overly pessimistic for data-specific applications. Thus, we
also evaluate disclosure risks of the proposed algorithms using the population uniqueness
of synthetic records (Dale and Elliot, 2001) and indirect-matching probabilistic disclosure
risks (Duncan and Lambert, 1986). To measure the statistical similarities between synthetic
and the original data, we compare 1) marginal and 2) conditional distributions, and 3)
regression coefficients of predictive models that are estimated from the original and syn-

TRANSACTIONS ON DATA PRIVACY 7 (2014)



PeGS: Perturbed Gibbs Samplers that Generate Privacy-Compliant Synthetic Data 255

Table 1: Synthesizer algorithms discussed in this paper.

Name Abbreviated Model Eq. Parameters

Contingency table PrD(x) non-parametric
Marginal Bayesian Bootstrap

∏M
i PrD(xi) non-parametric

Multiple imputation
∏M
i Prŵ(xi | x−i) ŵ: model parameter

Perturbed Gibbs Sampler
∏M
i PrD,α(xi | h(x−i)) α: privacy parameter

Block PeGS with Reset
∏B
b

∏M
i PrD,α(xi | h(x−i)) B: sample block size

thesized data.
There are two brute-force approaches to generating synthetic categorical data. As sta-

tistical properties of categorical data are fully captured in contingency tables, in theory, a
synthetic sample x can be drawn directly from an M -way full contingency table PrD(x),
where M is the total number of features. For data with a small number of features, this
contingency table can be estimated by either direct counting or log-linear models (Win-
kler, 2003, 2010). However, this strategy does not scale for high-dimensional datasets. As
we will see in Section 4, our experiment dataset has 13 features and their possible feature
combinations are approximately 2.6 trillion. More importantly, sampling from an exact dis-
tribution may reveal too much detail about the original data, thus this is not a privacy-safe
disclosure method. On the other extreme, one may model the joint distribution as a product
of univariate marginal distributions. Although this approach can easily achieve differen-
tial privacy (McClure and Reiter, 2012), the synthetic data loses critical joint distributional
information about the original data.

The proposed algorithm generates realistic but not real synthetic samples by calibrating
a privacy parameter α. In addition, the exponentially number of cells in a contingency
table is avoided by using chained equations and feature hashing (Weinberger et al., 2009)
as follows:

for i in 1 : M

xi ∼ PrD,α(xi | h(x−i)) (1)

where x−i is a feature vector except for the ith feature and h(x−i) represents a hashed fea-
ture vector. PrD,α(xi | h(x−i)) is the compressed and perturbed conditional distribution
of the ith feature and M is the total number of features. The joint probability distribu-
tion is represented as M conditional distributions. Note that the conditional distribution
in Equation (1) is not exact. The full condition x−i is compressed using a hash function
h(x−i) and perturbed by a privacy parameter α. Ignoring these two additional compo-
nents i.e. h(x−i) and α, if the probability is modeled using generalized linear models, then
the proposed algorithm is the same as a multiple imputation algorithm for fully synthetic
data. The proposed synthesizer is named as Perturbed Gibbs Sampler (PeGS). This pro-
cess is somewhat analogous to multivariate imputation by chained equations (also known
as sequential regression multiple imputation) (Raghunathan et al., 2001; van Buuren and
Groothuis-Oudshoorn, 2011). In Section 3.4, we will show that this synthesis cycle can also
be recursively applied multiple times i.e. s = PeGS(PeGS(. . .PeGS(x))). This recursive
synthesis will be shown to be very effective in our block sampling algorithm.

TRANSACTIONS ON DATA PRIVACY 7 (2014)



256 Yubin Park and Joydeep Ghosh

Table 1 summarizes the synthesizer models that are described in this paper. More de-
tails on this list and privacy guarantees for both one iteration and multiple iterations are
described in Section 3.

The objective of PeGS is to generate a single realistic synthetic dataset that adheres to
rigorous privacy metrics, balancing the trade-off between utility and risk in a flexible and
effective manner. This is substantially different from the goal of multiple imputation, which
primarily focuses on improving the analytical validity of missing data imputation and not
on privacy vs. utility trade-off. The name multiple imputation refers to the fact that multi-
ple imputed datasets are released to alleviate imputation uncertainty. Disclosing multiple
datasets can be helpful for numerous statistical analyses, but at the same time, the im-
proved accuracy may lead to an unexpected privacy breach. Consider a statistical database
that provides a synthetic data row per query. To obtain N rows, intuitively, we need N
queries. According to the sequential composition rule of differential privacy (McSherry,
2009), the privacy risk forN queries isN times greater than the risk of one query. Similarly,
releasing K imputed datasets can be K times more risky than releasing a single dataset.
The target use case of our synthetic data is also quite different from traditional uses of

synthetic data. Our algorithms are primarily designed to protect the privacy of the original
data, and then, within the privacy constraint, to maximize the statistical validity and utility
of synthetic data. Such synthetic data can be useful when providing a single “realistic”
dataset to third party data scientists so that they can explore and develop innovative data
applications. As an illustrative example, Centers for Medicare & Medicaid Services recently
released synthetic public use files1, saying that:

... Although the DE-SynPUF has very limited inferential research value to draw con-
clusions about Medicare beneficiaries due to the synthetic processes used to create the
file, the Medicare DE-SynPUF does increase access to a realistic Medicare claims data
file in a timely and less expensive manner to spur the innovation necessary to achieve
the goals of better care for beneficiaries and improve the health of the population. ...

The users of our synthetic data can be from a wide range of disciplines such as statistics,
computer science, and healthcare policy studies. Providing synthetic data is much more
than just providing the data schema. Users can write scripts and codes for exploring and
extracting information using the “realistic” synthetic data, and deliver their applications to
the data owner to check the validity of their claims.

The rest of this paper is organized as follows: In Section 2, we cover the basics of privacy
measures and synthetic data. In Section 3, the details of the PeGS algorithms are illustrated,
and the privacy guarantees of the proposed algorithms are derived. We demonstrate our
algorithms using California Patient Discharge dataset in Section 4. Finally, we discuss the
limitation of the proposed methods and future extensions in Section 5.

2 Background

In this section, we overview two bodies of related work: privacy measures and approaches
to synthetic data generation.

1http://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-
Reports/SynPUFs/DE Syn PUF.html
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2.1 Privacy Measures

Privacy is an abstract concept, and it can be defined and quantified in many different ways.
We describe two privacy measures that are popular in computer science, ε-differential pri-
vacy and l-diversity. These two measures will be also used in our algorithm to quantify the
privacy risks of synthetic data.

2.1.1 Differential Privacy

Differential privacy (Dwork, 2006) is a mathematical measure of privacy that quantifies
disclosure risks of statistical functions. To satisfy ε-differential privacy, the inclusion or ex-
clusion of any particular record in data cannot affect the outcome of functions by much.
Specifically, a randomized function f : D → f(D) provides ε-differential privacy, if it satis-
fies:

Pr(f(D1) ∈ S)

Pr(f(D2) ∈ S)
≤ exp(ε)

for all possible D1,D2 ∈ D where D1 and D2 differ by at most one element, and ∀S ∈
Range(f(D)). For a synthetic sample, this definition can be interpreted as follows (McClure
and Reiter, 2012):

PrD1(x)

PrD2
(x)
≤ exp(ε) (2)

where x represents a random sample from synthesizers. In other words, a data synthesizer
PrD(x) is ε-differentially private, if the probabilities of generating x from D1 and D2 are
indistinguishable to the extent of exp(ε).

Several mechanisms have been developed to achieve differential privacy. For numeric
outputs, the most popular technique is to add Laplace noise with mean 0 and scale ∆f/ε
where ∆f is the L1 sensitivity of function f . Exponential mechanism (McSherry and Tal-
war, 2007) is a general differential privacy mechanism that can be applied to non-numeric
outputs. For categorical data, Dirichlet prior can be used as a noise mechanism to achieve
differential privacy (Machanavajjhala et al., 2008; McClure and Reiter, 2012).

2.1.2 l-diversity

A certain combination of features can identify an individual from an anonymized dataset,
even if personal identifiers, such as driver license number and social security number, are
removed from a dataset. Such threats are commonly prevented by generalizing or sup-
pressing features; for example, ZIP codes with small population are replaced by corre-
sponding county names (generalization), or can be replaced by * (suppression). Sweeney
(2002) proposed a privacy definition for measuring the degree of such feature generaliza-
tion and suppression, k-anonymity. To adhere the k-anonymity principle, each row in a
dataset should be indistinguishable with at least k − 1 other rows.

The definition of k-anonymity, however, does not include two important aspects of data
privacy: feature diversity and attackers’ background knowledge. Machanavajjhala (2007)
illustrated two potential threats to a k-anonymized dataset, then proposed a new privacy
criterion, l-diversity. The definition of l-diversity states that the diversity of sensitive fea-
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tures should be kept within a block of samples. There are several ways of achieving l-
diversity; in this paper, we use Entropy l-diversity. A dataset is Entropy l-diverse if

−
∑
xi

Pr(xi | x−i) log Pr(xi | x−i) ≥ log l (3)

where 1 ≤ l. This definition originally applies to a dataset with feature generalization or
suppression. For a synthetic sample, Park et al. (2013b) suggested an analogous definition
of l-diversity: A synthetic dataset is synthetically l-diverse if a synthetic sample xi is drawn
from a distribution that satisfies l-diversity.

2.2 Synthetic Data Generation

Synthetic data can be used in a wide range of applications: system performance evaluation,
statistical model validation, and privacy-preserving data publication. In this paper, we are
primarily interested in producing privacy-preserving synthetic data. We start by describing
general approaches to generate synthetic data. In the Bayesian statistics literature, multiple
imputation is widely used to generate synthetic data. We illustrate the basic concepts of
multiple imputation, and discuss some limitations of the multiple imputation approach in
our setting.

2.2.1 General Approaches to Synthetic Data

Synthetic data generation typically involves two steps: 1) statistical modeling of the orig-
inal data, and 2) sampling from the obtained model. In the modeling step, one can ap-
ply a wide range of statistical models, from a simple linear regression model to advanced
Markov Chain Monte Carlo sampling methods. Disclosure risks of synthetic samples are
traditionally analyzed after the sampling step, but recently several researchers have at-
tempted to merge privacy metrics in the modeling and sampling steps. Depending on the
application, synthetic data can replace either the entire original data (Rubin, 1993), or spe-
cific columns or values that bear high disclosure risks i.e. partially synthetic data (Little,
1993). The notion of fully synthetic data in the multiple imputation literature is slightly
different from our notion: this aspect will be detailed in Section 2.2.2. Figure 1 shows var-
ious categories of synthetic data. Note that, in this paper, fully synthetic data refers to
completely synthetic data with no original records.

The quality of a synthetic dataset is mainly determined by the quality of the statistical
model used. Lombardo and Moniz (2008) proposed generating synthetic medical records
for outbreak studies. They suggested using both domain knowledge and actual data. The
underlying dynamics of the original data is modeled through a set of sub-models such
as exposure model, infection model, disease model, and behavior model. Buczak et al.
(2010) demonstrated a pilot study for generating synthetic medical records. In their pilot
study, the synthetic data were generated through three steps: 1) patient information gen-
eration, 2) similar patients clustering, and 3) adapting care models to synthesized patients.
As can be seen, these approaches require a considerable amount of domain knowledge
and non-automated processes. Furthermore, no privacy measure was incorporated in the
synthesizing processes.

Machanavajjhala et al. (2008) generated a differentially private synthetic dataset for com-
muting pattern studies. They derived an appropriate amount of Laplace smoothing param-
eters to guarantee ε-differential privacy. A subset from the Census Bureau’s OnTheMap
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microdata was used in their study. However, the demonstrated dataset had only three
columns (id, origin block, destination block), and the suggested algorithm was specific to
the application. Barak et al. (2007) suggested a differentially private release mechanism for
contingency tables. Note that releasing a contingency table is different from releasing a
synthetic dataset, but one always can sample a synthetic sample from the released contin-
gency table. Their approach used Fourier transform and Linear programming to guarantee
differential privacy. Although the theoretical results are solid, experimental results using
real datasets show that the suggested differential privacy mechanism is not practical for
data mining purposes (Yang et al., 2012).

Synthetic data generation has also been used for privacy-aware distributed data mining
scenarios. In the prototypical approach (Merugu and Ghosh, 2003, 2005), parametric mod-
els are separately learnt on individual (local) databases. Then, only the model parameters
are transmitted to a trusted central site from each local database, instead of the raw data, to
address privacy concerns. At the central site, the parameters received are used to generate
synthetic data that (approximately) represents the union of the different databases. Finally,
a global model is learnt using such data. However, privacy constraints such as l-diversity
are not directly built into the data generation or modeling process, as it is in this paper.
Also, the goal is to attain a global statistical model under sharing constraints, rather than
create a synthetic dataset for public release.

Sensitive 
Columns

Non-sensitive 
Columns

Observed

Unobserved

Fully Synthetic Data in MI

Partially Synthetic Data in MI

PeGS Synthetic Data

Unobserved 
data

Synthetic 
data

Original Data

Figure 1: Three different notions of synthetic data. In multiple imputation, only sensitive
columns are synthesized. To create a fully synthetic dataset, one replaces the unobserved
sensitive values with synthetic values (Drechsler et al., 2008). A partially synthetic dataset
only replaces the observed sensitive values that bear high disclosure risks. Our defini-
tion of fully synthetic data refers to “completely” synthetic data with no original records
regardless of sensitive or non-sensitive columns.
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2.2.2 Synthetic Data using Multiple Imputation

Multiple imputation was originally developed to impute missing values in survey responses
(Rubin, 1987), and it was later applied to generate synthetic data. Let us start from the miss-
ing value imputation setting. Consider a survey with two variables x and z, D = {(x, z)},
where some of the x responses are missing. Let xobs be the observed subset of x. The unob-
served responses are imputed using samples from a predictive posterior model as follows:

x ∼ Pr(x | xobs, z)

Note that the posterior can be modeled using the observed subset, and often obtained us-
ing generalized linear models, Bayesian Bootstrapping methods, or Markov Chain Monte
Carlo simulations (Schafer, 1997; Reiter, 2005a). For example, an R package for multivariate
imputation for chained equation (van Buuren and Groothuis-Oudshoorn, 2011) provides
nine different imputation models including predictive mean matching, Bayesian linear re-
gression, Linear regression, Unconditional mean imputation, etc. Generating fully syn-
thetic data is straightforward from this framework2. First, z is drawn from Pr(z), then x is
drawn from the predictive posterior distribution. Typically, this entire process is repeated
independently K times to obtain K different synthetic datasets.

Raghunathan et al. (2003) showed that valid inferences can be obtained from multiply
imputed synthetic data. Let Q be a function of (x, z). For example, Q may represent the
population mean of (x, z) or the population regression coefficients of x on z. Let qi and vi
be the estimate of Q and its variance obtained from the ith synthetic dataset. Then, valid
inferences on Q can be obtained as follows:

q̄K =

K∑
i=1

qi/K

Ts = (1 +
1

K
)bK − v̄K

where bK =
∑K
i=1(qi − q̄K)2/(K − 1) and v̄K =

∑K
i=1 vi/K. These two quantities q̄K and

Ts estimate the original Q and the variance from sampling.
The disclosure risks of multiply imputed synthetic datasets are typically measured after

synthetic datasets are generated i.e. using post hoc risk analysis. Multiple imputation is a
general imputation methodology, and the choice of posterior model is usually up to statis-
ticians. This flexibility makes it difficult to apply and analyze rigorous privacy measures,
such as differential privacy and l-diversity, in a unified framework. In contrast, we de-
rive the relationship between the amount of Laplace smoothing and privacy measures (ε
in differential privacy and l in l-diversity) by using a simple non-parametric model. Our
algorithm directly incorporates these privacy measures in the synthesizing process, guar-
anteeing the desired level of privacy for synthetic data.

3 Perturbed Gibbs Sampler

In this section, we propose the Perturbed Gibbs Sampler (PeGS) for categorical synthetic
data. We first overview the algorithm, then describe its three main components: feature
hashing, statistical building blocks, and noise mechanism. Next, we illustrate how the

2To see the difference between partially and fully synthetic datasets, see (Drechsler et al., 2008)
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ID Sex Race Age Incom
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1 F W 70-80 middle

2 M B 60-70 low

3 F A 60-70 low

4 F W 20-40 middle

5 M W 20-40 high

6 M B 60-70 low

7 M A 60-70 high

… … … …

Pr(Sex | h(Race, Age, Income))
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ID Sex Race Age Income

* F W 20-40 low

* M W 60-70 <NA>

* M W 70-80 high

* F B 20-40 low

* M A 20-40 middle

* F A 60-70 <NA>

* F W 40-50 middle

… … …

Sy
nt

he
si

ze

Original Data Synthetic DataStatistical Building Blocks

Pr(Race | h(Sex, Age, Income))

Pr(Age | h(Sex, Race, Income))

Pr(Income | h(Sex, Race, Age))

Figure 2: PeGS Process Diagram for a four feature dataset: {(Sex, Age, Race, Income)}.
Four types of conditional distributions are estimated from the original data, then uniform
Dirichlet priors are used to perturb the conditional distributions. Synthetic samples are
drawn by iterating over the statistical building blocks.

PeGS algorithm can be efficiently extended to draw a block of random samples. Finally,
we show that multiple imputation can be similarly extended to satisfy differential privacy,
which will be used as our baseline model in Section 4.

3.1 Algorithm Overview

Perturbed Gibbs Sampler (PeGS) is a categorical data synthesizer that consists of three main
steps:

1. Disintegrate: In this step, the original data D is disintegrated into statistical building
blocks i.e. PrD(xi | h(x−i)) where h is a suitable hash function. These compressed
conditional distributions are estimated by counting the corresponding occurrences in
the original data.

2. Inject Noise: For a specified privacy parameter α, the statistical building blocks are
modified to satisfy differential privacy or l-diversity, PrD(xi | h(x−i)) → PrD,α(xi |
h(x−i)).

3. Synthesize: We first pick a random seed from a predefined pool; this can be regarded
as a query to our model. The seed sample is transformed to a synthetic sample by
iteratively sampling each feature from the statistical building blocks, xi ∼ PrD,α(xi |
h(x−i)).

Figure 2 visualizes the overall sequential steps of the PeGS algorithm. Figure 3 illustrates
the synthesis step. Three components are essential in the PeGS algorithm: feature hash-
ing, statistical building blocks, and perturbation. The number of possible conditions is
exponential with respect to the number of features, Therefore, feature hashing is used to
compress the number of the possible conditions x−i. Statistical building blocks are built
based on this feature hashing, which are essentially multiple hash-tables describing com-
pressed conditional distributions. They serve a key role when we try to sample a block of
synthetic examples. Perturbation is required to guarantee the differential privacy. Without
perturbation, synthetic samples may reveal too much about the original data.
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h(race, age, income) sex=(M, F)

h(white, young, low) 
= h(black, young, low) 
= h(asian, young, low) 

= “young::low”

(0.45, 0.55)

h(white, young, middle) 
= h(black, young, middle) 
= h(asian, young, middle) 

=“young::middle”

(0.55, 0.45)

h(white, young, high) 
= h(black, young, high) 
= h(asian, young, high) 

= “young::high”

(0.6, 0.4)

h(white, old, low) 
= h(black, old, low) 
= h(asian, old, low) 

= “old::low”

(0.52, 0.48)

h(white, old, middle) 
= h(black, old, middle) 
= h(asian, old, middle) 

= “old::middle”

(0.5, 0.5)

h(white, old, high) 
= h(black, old, high) 
= h(asian, old, high) 

= “old::high”

(0.48, 0.52)

h(age, sex, income)
race= 

(white, black, 
asian)

h(young, male, low) 
= h(young, male, middle) 

= h(young, male, high) 
= “young::male”

(0.5, 0.4,0.1)

h(young, female, low) 
= h(young, female, middle) 

= h(young, female, high) 
= “young::female”

(0.4, 0.5, 0.1)

h(old, male, low) 
= h(old, male, middle) 

= h(old, male, high) 
= “old::male”

(0.3, 0.4, 0.3)

h(old, female, low) 
= h(old, female, middle) 

= h(old, female, high) 
= “old::female”

(0.32, 0.35, 0.33)

h(race, sex, income)
age 

=(young, old)

h(white, male, low) 
= h(black, male, low) 
= h(asian, male, low) 

=  “male::low”

(0.7, 0.3)

h(white, male, middle) 
= h(black, male, middle) 
= h(asian, male, middle) 

= “male::middle”

(0.6, 0.4)

h(white, male, high) 
= h(black, male, high) 
= h(asian, male, high) 

= “male::high”

(0.5, 0.5)

h(white, female, low) 
= h(black, female, low) 
= h(asian, female, low) 

= “female::low”

(0.6, 0.4)

h(white, female, middle) 
= h(black, female, middle) 
= h(asian, female, middle) 

= “female::middle”

(0.3, 0.7)

h(white, female, high) 
= h(black, female, high) 
= h(asian, female, high) 

= “female::high”

(0.4, 0.6)

seed: (male, white, old, middle)

…

(female, white, old, middle) (female, asian, old, middle) …

Figure 3: Synthesis Steps in PeGS. Three tables represent the statistical building blocks of
the example in Figure 2. In the disintegration step, these three statistical building blocks
are stored. In the noise injection step, the probability vectors of the tables are perturbed. In
the synthesis step, a new sample is generated by iteratively sampling over the tables.

3.2 Feature Hashing

The hash function h(x−i) in PeGS maps a feature vector to an integer key, where the range
of the hash key is much smaller than 2M (exponential in the number of features). In essence,
our purpose is to design a hash function that exhibits good compression while maintain-
ing the statistical properties of data. Such a hash function has been deeply investigated
in the machine learning literature for compressing high-dimensional feature spaces. This
technique is sometimes known as the hashing trick (Weinberger et al., 2009). For extremely
high-dimensional, sparse, and unstructured data such as natural language texts, Locality
Sensitive Hashing (Indyk and Motwani, 1998) and min-hashing (Gionis et al., 1999) can be
good candidates for the PeGS hash function.

In this paper, we use a simpler approach to compress the feature space, as we are using
lower dimensional data. We select the m variables that have the most mutual information
with xi to form the hash key, and ignore the other variables. Thus:

xo(1) :: . . . :: xo(m)︸ ︷︷ ︸
trivial hash

−→ 1...H︸ ︷︷ ︸
Hash key

where H � 2M and xo(j) represents the feature with the jth highest mutual information
with xi. Let Ci be the number of categories for xi, and Cmax = maxi Ci. The key space of
this simple hash function is upper bounded by (Cmax)m �

∏
i Ci.

Figure 3 illustrates the basic idea of feature hashing. The left and right columns of the
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conditional tables represent hashed features h(x−i) and smoothed probability estimates
PrD,α(xi | h(x−i)), respectively. The first table uses race, age, income as conditional
variables, and sex as a target variable. For illustrative purposes, we use m = 2, and
assume that the target variable is closely related to the age and income variables. In
other words, the race variable is ignored while constructing the conditional table i.e.
h(white,young, low), h(black,young, low), and h(asian,young, low) belong to the same
bin. The smoothed probability distributions are estimated based on a subset of samples
that have the same hash key. Synthetic samples are sequentially drawn from these based
and smoothed estimates, as Figure 3 shows. The details about smoothing and sampling
processes will be discussed in Section 3.3.

The compressed conditional distribution Pr(xi | h(x−i)), which is basically a occurrence
count hash-table for a given hash key, can now be stored in either memory or disk. There
are several advantages of using this compressed conditional distribution over parametric
modeling. First, the process of building statistical building blocks does not involve compli-
cated statistical procedures such as parameter estimation and model selection. Second, the
resulting statistical building blocks are robust to overfitting. Overfitting may occur when
there are not enough samples in a table entry. Hashing reduces the number of table cells
and smoothes out the estimated probability vector. Finally, this simple table representation
is intuitive, and the process is easily extensible. This aspect is critical in our efficient block
sampling scheme, which will be illustrated in Section 3.4.

Note that our feature hashing is different from multinomial models in which certain main
effects and interactions are set to zero. The key difference is that our process is iterative.
As an illustrative example, suppose that we have three features x1, x2, and x3, and we use
m = 1. Let us assume that x1 depends on x2, x2 depends on x3, and x3 depends on x1.
Then x1 and x3 get coupled and are not independent. Thus the synthetic process does not
translate to simple multinomial models.

We now provide a brief guideline for determining the value of m. As a rule of thumb, we
suggest that each cell approximately contains at least 30 data points to estimate probabili-
ties. There are other physical constraints on the value of m such as the size of memory and
hard disk. For example, if we want to minimize the access to hard disk, m should also sat-
isfy 2m < Memory Size. But, if m is too small, then this hash function effectively imposes
an unrealistic conditional independence assumption. Therefore, the value of m should be
carefully determined considering these listed aspects.

3.3 Perturbed Conditional Distribution

To satisfy the differential privacy, a certain amount of noise should be injected to the com-
pressed conditional distributions. The form of noise may depend on applications and pri-
vacy measures. For example, noise can be added to maximize entropy (Polettini, 2003) or
to satisfy l-diversity (Park et al., 2013a,b). In this paper, we use the Dirichlet prior perturba-
tion to smooth out raw count based estimators to satisfy differential privacy and l-diversity.
Specifically, α virtual samples are added to each category of the variable xi, when the condi-
tional distribution Prα(xi | h(x−i)) is estimated. The amount α is a privacy parameter that
controls the degrees of differential privacy and l-diversity. To be more precise, our differ-
entially private perturbation requires a single value of α, while our l-diverse perturbation
needs different α values for each hashed condition h(x−i) i.e. αh(x−i). For analytical sim-
plicity, we assume α virtual samples, αh(x−i) virtual samples for l-diversity, are uniformly
added to all the categories of the variable xi (see Equation 6). In practice, different amounts
of virtual samples can be added to different categories of the variable xi; for example, α can
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be proportional to the corresponding marginal distribution i.e. αj ∝ Pr(xi = j).
We first derive the probability of sampling x from the PeGS algorithm. From a random

seed sample s (or a query), the probability of synthesizing x is factorized as follows:

PrD1,α(x | s) =

M∏
i=1

PrD1,α(xi | h(x1:(i−1), s(i+1):M )) (4)

where x1:0 and s(M+1):M are just null values. For another dataset D2 that differs by at most
one element, the probability of sampling x can be similarly derived.

For differential privacy (see Equation 2), the ratio between two quantities should satisfy
the following relation:

PrD1,α(x | s)
PrD2,α(x | s)

=

∏M
i=1 PrD1,α(xi | h(x1:(i−1), s(i+1):M ))∏M
i=1 PrD2,α(xi | h(x1:(i−1), s(i+1):M ))

≤ exp(ε) (5)

Let us focus on the ith component as follows:

PrD1,α(xi = j | h(x−i)) =
nij + α

Nh(x−i) + Ciα
(6)

Nh(x−i) =
∑
x′−i

1(h(x′−i) = h(x−i)) (7)

where Nh(x−i) is the total number of rows that have the same hash key as h(x−i) and nij
is the count of the jth category i.e. xi = j within the Nh(x−i) samples. In other words,
the probability of sampling the jth category is proportional to the number of the original
samples that have the jth category. The privacy parameter α acts as a uniform Dirichlet
prior on this raw multinomial count estimate.

The value of α depends on the privacy criterion. We study two cases: differential privacy
and l-diversity.

A. Differential Privacy. The two datasets for defining differential privacy D1 and D2

have at most one different row. Without loss of generality, let us assume that D1 has one
more row than D2 i.e. D1 = D2 ∪ xd. Except for the entry with hash keys {h(xd−i)}Mi=1 , the
other entries of the two hash tables fromD1 andD2 are identical; only one entry of the hash
table is different. For the different entries of the hash tables, there are two possibilities:

if xdi 6= j, PrD1,α(xdi = j | h(xd−i)) =
nij + α

Nh(x−i) + 1 + Ciα

else if xdi = j, PrD1,α(xdi = j | h(xd−i)) =
nij + 1 + α

Nh(x−i) + 1 + Ciα

Given α > 0, we obtain the upper-bound for the ith component as follows:

max
D1,D2

PrD1,α(xi = j | h(x−i))

PrD2,α(xi = j | h(x−i))
≤ max
D1,D2

nij+1+α
Nh(x−i)

+1+Ciα

nij+α
Nh(x−i)

+Ciα

≤ 1 +
1

α

where the first inequality is because the two datasets only differ by at most one element.

The second inequality comes from the fact that
Nh(x−i)

+Ciα

Nh(x−i)
+1+Ciα

< 1 and that the equation is
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maximized when nij = 0. As we iterate this process for the M variables, the differential
probability is upper-bounded by:∏M

i=1 PrD1,α(xi | h(x1:(i−1), s(i+1):M ))∏M
i=1 PrD2,α(xi | h(x1:(i−1), s(i+1):M ))

≤
M∏
i

(1 +
1

α
)

Therefore, we obtain the relation between α and ε as follows:

M log(1 +
1

α
) ≤ ε

Rearranging the terms, we have:

α ≥ 1

exp(ε/M)− 1
(8)

Note that for univariate binary synthetic data, McClure and Reiter (2012) showed the rela-
tionship between α and ε as α = 1

exp(ε)−1 . Equation (8) says that a higher level of privacy
(low ε) needs a high value of α. Intuitively, high values of α mean stronger priors, thus the
synthetic data are more strongly masked by the priors (or virtual samples).

B. l-Diversity. For l-diversity (See Equation 3), perturbed conditional distributions need
to satisfy the synthetic l-diversity criterion:

Hα(xi | x−i) = −
∑
j

PrD,α log PrD,α ≥ log l

where Hα(xi | x−i) is the Shannon entropy of the perturbed distribution, PrD,α. The en-
tropy Hα is a monotonically increasing function with respect to α. To satisfy the synthetic
l-diversity criterion with minimal perturbation, we set α as follows:

α =

{
α∗ s.t. −

∑
j PrD,α log PrD,α = log l, if Hα < log l

0, otherwise

where α is set to zero whenHα already satisfies the l-diversity criterion. Unlike the single α
for differential privacy, the α values for l-diversity vary depending on conditional distribu-
tions. This is because l-diversity applies to a dataset, whereas differential privacy applies to
a function. l-diversity is data-aware, but may not provide rigorous guarantees for privacy.
This is also noted in (Clifton and Tassa, 2013) who observed that syntactic methods such
as k-anonymity and l-diversity are designed for privacy-preserving data publishing, while
differential privacy is typically applicable for privacy-preserving data mining. Thus these
two approaches are not directly competing, and indeed can be used side-by-side. This pa-
per also provides a detailed assessment of both the limitations and promise of both types
of approaches.

3.4 Removing Sampling Footprints

This section illustrates an effective block sampling extension of PeGS, and is specific to
differential privacy. PeGS generates one synthetic sample for one seed sample. In other
words, one synthetic sample costs ε in the differential privacy regime. We modify the PeGS
algorithm to sample a block of samples from one seed sample, while achieving the same ε-
differential privacy. One sampling iteration of PeGS is now repeated many times, but each
time, the visited conditional distributions are reset. The procedure of Block PeGS with
Reset (PeGS.rs) is as follows:
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1. Pick a random seed s from a predefined pool.

2. For b in 1 : B,

(a) Sample x(b) using PeGS seeded by the previous sample x(b−1), where x(0) = s

(b) Reset all visited conditional distributions Pr(xi | h(x−i)) to uniform distribu-
tions

This algorithm produces a block of synthetic samples (x(1), . . . ,x(B)) with the same privacy
cost ε. Figure 4 illustrates the process of PeGS with Reset. The synthesizing process of
PeGS.rs is exactly the same as the process of PeGS Figure 3 except for the resetting step.
After sampling from conditional tables, the probability distribution of the visited bin is set
to a uniform distribution. The red lines in Figure 4 illustrate this resetting step. In our
block sampling scheme, there is a chance of re-visiting the bins that are already visited
in the previous sampling steps. For such cases, new samples are drawn from uniform
distributions, since probability estimates are reset to uniform.

h(race, age, income) sex=(M, F)

h(white, young, low) 
= h(black, young, low) 
= h(asian, young, low) 

= “young::low”

(0.45, 0.55)

h(white, young, middle) 
= h(black, young, middle) 
= h(asian, young, middle) 

=“young::middle”

(0.55, 0.45)

h(white, young, high) 
= h(black, young, high) 
= h(asian, young, high) 

= “young::high”

(0.6, 0.4)

h(white, old, low) 
= h(black, old, low) 
= h(asian, old, low) 

= “old::low”

(0.52, 0.48)

h(white, old, middle) 
= h(black, old, middle) 
= h(asian, old, middle) 

= “old::middle”

(0.5, 0.5)

h(white, old, high) 
= h(black, old, high) 
= h(asian, old, high) 

= “old::high”

(0.48, 0.52)

h(age, sex, income)
race= 

(white, black, 
asian)

h(young, male, low) 
= h(young, male, middle) 

= h(young, male, high) 
= “young::male”

(0.5, 0.4,0.1)

h(young, female, low) 
= h(young, female, middle) 

= h(young, female, high) 
= “young::female”

(0.4, 0.5, 0.1)

h(old, male, low) 
= h(old, male, middle) 

= h(old, male, high) 
= “old::male”

(0.3, 0.4, 0.3)

h(old, female, low) 
= h(old, female, middle) 

= h(old, female, high) 
= “old::female”

(0.32, 0.35, 0.33)

h(race, sex, income)
age 

=(young, old)

h(white, male, low) 
= h(black, male, low) 
= h(asian, male, low) 

=  “male::low”

(0.7, 0.3)

h(white, male, middle) 
= h(black, male, middle) 
= h(asian, male, middle) 

= “male::middle”

(0.6, 0.4)

h(white, male, high) 
= h(black, male, high) 
= h(asian, male, high) 

= “male::high”

(0.5, 0.5)

h(white, female, low) 
= h(black, female, low) 
= h(asian, female, low) 

= “female::low”

(0.6, 0.4)

h(white, female, middle) 
= h(black, female, middle) 
= h(asian, female, middle) 

= “female::middle”

(0.3, 0.7)

h(white, female, high) 
= h(black, female, high) 
= h(asian, female, high) 

= “female::high”

(0.4, 0.6)

seed: (male, white, old, middle)

…

(female, white, old, middle) (female, asian, old, middle) …

(0.5, 0.5)

(0.33, 0.33, 0.33)

(0.5, 0.5)

Figure 4: Synthesis Steps in PeGS with Reset. Visited rows in statistical building blocks are
reset to the initial state. In this example, the initial states are uniform distributions over
categories.

To analyze the privacy aspect of this modified PeGS algorithm, we first need to calculate
the probability of synthesizing a block of samples:

PrBD1,α(x(1), . . . ,x(B) | s) = Pr(1)D1,α
(x(1) | s)

B∏
b=2

Pr(b)D1,α
(x(b) | x(b−1))
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where Pr(b)D1,α
(x(b) | x(b−1)) is the transition probability from x(b−1) to x(b). Note that Pr(b)

and Pr(b+1) are different conditional distributions, as M components of Pr(b) are reset to
the initial states. The ratio between two probabilities is written as follows:

Pr(1)D1,α
(x(1) | s)

∏B
b=2 Pr(b)D1,α

(x(b) | x(b−1))

Pr(1)D2,α
(x(1) | s)

∏B
b=2 Pr(b)D2,α

(x(b) | x(b−1))
≤ exp(ε)

Recall that the statistical building blocks from both datasets differ at most M components,
as the two datasets differ at most one element. We provide a sketch of the proof that this
algorithm satisfies ε-differential privacy as follows:

1. To generate the same block of samples, the sequences of statistical building blocks
need to be the same as well. In other words, as the two samples, x(b) | D1 and
x(b) | D2, are the same, x(b)

−i | D1 and x
(b)
−i | D2 will also be the same. Thus, they

use the building blocks from the same location for sampling xi at the bth iteration,
Pr(b)D1,α

(xi | x−i) and Pr(b)D2,α
(xi | x−i).

2. There are at most M different components between Pr(1)D1,α
and Pr(1)D2,α

, and letM be
the set of different components. This is because D1 and D2 differ by at most one row.

3. If Pr(1)D1,α
touched (M − d) components inM, then (M−d)

M ε privacy cost is spent in the
process (see Section 3.3).

4. If Pr(1)D1,α
touched (M − d) components inM, then the rest of the sequences can differ

at most d components. This is because those (M−d) components are reset to uniform
distributions, and they became indistinguishable i.e. the visited components from
D1 and D2 became the same uniform distribution. Every visit of an element in M
decreases the number of different elements.

5. Therefore, the whole sequence can differ at mostM components (upper-bound), thus
the proposed block sampling algorithm satisfies the same ε-differential privacy for
generating a block of B samples.

As we have more samples for the same cost, the privacy cost per sample can be written as:

α ≥ 1

exp(ε′B/M)− 1
(9)

where ε/B = ε′. The privacy cost is smaller by a factor of B. As an illustrative example,
suppose that we need 10 synthetic samples that satisfy ε-differential privacy. To obtain
10 samples from PeGS, we perturb the statistical building block by αPeGS = 1

exp(ε/M)−1 .
On the other hand, if we use B = 10, the amount of perturbation for PeGS.rs is given as
αPeGS.rs = 1

exp(10ε/M)−1 , which can be much smaller than αPeGS. However, the block size B
cannot be arbitrarily large. As every visited statistical building block is reset, the synthetic
samples tend to be more noisy as we increase the size of the block.

The relationship between α and ε represents the trade-off between utility and risk. Low α
values can generate more realistic synthetic data, and low ε values can provide higher levels
of privacy protection. Note the difference between Equation 8 and Equation 9. PeGS.rs has
the additional parameter B that can fine-tune the relationship between α and ε. A smart
choice of B can improve the trade-off curve depending on the characteristics of a dataset.
This property will be illustrated using a real dataset in Section 4.
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3.5 Perturbed Multiple Imputation

The Dirichlet perturbation can similarly be applied to multiple imputation, specifically the
multiple imputation using sequential regressions. Perturbed Multiple Imputation is a naive
extension of multiple imputation that satisfies ε-differential privacy. A multiple imputation
with generalized linear models can be written as follows:

Prŵ(x)(x) =

M∏
i=1

gxi(ŵi(D1)>x−i))

where gxi
(ŵi(D1)>x−i)) is the estimated response probability of xi using a generalized

linear model. We assume that the response is a normalized probability measure, thus gxi
∈

[0, 1]. We propose perturbed multiple imputation as follows:

Prŵ(x),α(x) =

M∏
i=1

gαxi
(ŵi(D1)>x−i))

Perturbed multiple imputation satisfies ε-differential privacy, if the output is perturbed as

gαxi
(ŵi(D1)>x−i) =

gxi
(ŵi(D1)>x−i) + α∑

xi
gxi∈Xi(ŵi(D1)>x−i) + Ciα

=
gxi

(ŵi(D1)>x−i) + α

1 + Ciα

where α = 1/(exp(ε/M) − 1). The proof is analogous to the proof for the PeGS algorithm.
With α = 0, this algorithm is the same as a multiple imputation with generalized linear
model.

4 Empirical Study

In this section, we evaluate the PeGS algorithm using a real dataset from two perspec-
tives: utility and risk of the PeGS-synthesized data. The utility is measured by comparing
marginal, conditional distributions and regression coefficients with those from the original
data. The risk is first measured by the differential privacy parameter ε. As the differential
privacy parameter can be too conservative for a real dataset, we also measure popula-
tion uniqueness and indirect probabilistic disclosure risks. The presented experiments are
mainly for the differentially private perturbation, and the experiment with the l-diversity
perturbation can be found in (Park et al., 2013a,b).

4.1 Dataset Overview

We use public Patient Discharge Data from California Office of Statewide Health Plan-
ning and Development3. This dataset contains inpatient, emergency care, and ambulatory
surgery data collected from licensed California hospitals. Each row of the data represents
either one discharge event of a patient or one outpatient encounter. The data are already
processed with several disclosure limitation techniques. Feature generalization and mask-
ing rules are applied to the data based on population uniqueness.

For our experiment, we use 2011 Los Angeles data. Although there are almost 40 variables
in the provided data, we use 13 important variables. The selected variables are listed in

3http://www.oshpd.ca.gov/HID/Data_Request_Center/Manuals_Guides.html
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Table 2: California discharge data. Los Angeles.

Variable Description Category Values

typ Type of care Acute Care, Skilled Nursing, etc. (6 levels)
age.yrs Age of the patient (5 years bin) 0, 5, 10, 15, ..., 80, NA (18 levels)
sex Gender of the patient Male, Female, NA (3 levels)
ethncty Ethnicity of the patient Hispanic, Non-Hispanic, etc. (4 levels)
race Race of the patient White, Black, Asian, etc. (7 levels)
patzip Patient ZIP code (in LA) 900xx, 902xx, ... , 935xx (16 levels)
los Length of stay (in days) 0, 1, 2, ... , 9, 50-70, 90+, NA (16 levels)
disp The consequent arrangement Routine, Acute Care, etc. (13 levels)
pay Payment category Meicare, Medi-Cal, Private, etc. (9 levels)
charge Total hospital charges 0, 2K, 6K, 8K, 10K, ..., 100K+ (25 levels)
MDC Major diagnostic category Nervous sys., Eye, ENMT, etc. (25 levels)
sev Severity code 0, 1, 2 (3 levels)
cat Category code Medical, Surgical (2 levels)

Table 2. For the numeric variables such as age and charge, we transformed the variables
into categorical variables by grouping. We subset the data to focus on populous zip code
areas, and use this preprocessed dataset to be our ground-truth original data. As can be
seen, the possible combinations of the categories are approximately 2 trillion: 2 × 1012 ≈
6× 18× 3× 4× 7× 16× 16× 13× 9× 25× 25× 3× 2. A table of this size cannot be stored
in a personal computer.

Diagnostic and procedural codes are not included in this experiment. In the original data,
diagnoses and procedures are coded following the rules of International Classification of
Diseases (ICD-9). Both codes can specify very fine levels of diagnoses and procedures; for
example, the ICD-9 codes include information about a underlying disease and a manifes-
tation in a particular organ. These diagnostic and procedural codes can be grouped into a
smaller number of categories. Major Diagnostic Categories (MDC) and Medicare Severity
Diagnosis-Related Group (MSDRG) are two examples of coarser diagnostic codes. In this
example, we only include higher level abstractions of the detailed features. To keep the
semantics of the data, we recommend a two step procedure: first generating a higher level
feature, then synthesizing detailed features based on the higher level feature.

Three numeric variables, age, length-of-stay (los), and charge, are grouped and trans-
formed into categorical features. The age variable is equipartitioned to have 5 years gap
between consecutive categories. The los and charge variables are grouped based on their
marginal distributions. For example, almost half of the population stayed less than 10 days
in a hospital. Thus, the los variable is grouped to have 1 day gap before 10 days threshold,
and 20 days gap after 10 days. The charge variable exhibited a similar marginal distribu-
tion; almost a half of the population pay less than 20K dollars, and we binned this variable
to have almost equal sizes of population. The grouping rules are illustrated in Table 2. In
Section 5, we will discuss the limitations and extension of treating numeric variables in the
PeGS framework.
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Table 3: Detailed Sampling Steps in the PeGS synthesis step. Four variables, sex, race, pay-
ment category (pay), category code (cat), are not changed in the final transformed example.

sequence typ age sex eth race zip los disp pay chg MDC sev cat

seed 4 55 2 1 1 917 8 1 3 40K 25 1 M
X1 | X−1 5 55 2 1 1 917 8 1 3 40K 25 1 M
X2 | X−2 5 75 2 1 1 917 8 1 3 40K 25 1 M
X3 | X−3 5 75 2 1 1 917 8 1 3 40K 25 1 M
X4 | X−4 5 75 2 2 1 917 8 1 3 40K 25 1 M
X5 | X−5 5 75 2 2 1 917 8 1 3 40K 25 1 M
X6 | X−6 5 75 2 2 1 913 8 1 3 40K 25 1 M
X7 | X−7 5 75 2 2 1 913 9 1 3 40K 25 1 M
X8 | X−8 5 75 2 2 1 913 9 5 3 40K 25 1 M
X9 | X−9 5 75 2 2 1 913 9 5 3 40K 25 1 M
X10 | X−10 5 75 2 2 1 913 9 5 3 65K 25 1 M
X11 | X−11 5 75 2 2 1 913 9 5 3 65K 7 1 M
X12 | X−12 5 75 2 2 1 913 9 5 3 65K 7 0 M
X13 | X−13 5 75 2 2 1 913 9 5 3 65K 7 0 M

4.2 Sampling Demonstration

PeGS transforms each feature one by one conditioned on the rest of the features. This ap-
proach differs from a multiple imputation strategy in two aspects. First, PeGS estimates
compressed conditional distributions rather than parameterized approximations e.g., gen-
eralized linear models. Second, the compressed conditional distributions can be further
perturbed by calibrating the privacy parameter, which makes synthetic data ε-differentially
private. Table 3 shows how PeGS transforms a random seed into a private synthetic sam-
ple. The first row of the table is a random seed, and each consecutive row shows the cor-
responding sampling step. Note that some features change their values, whereas other
features maintain the original values. The final sample is shown in the last row. As can be
seen, the final transformed sample is different from the seed; for example, it has a different
age, zip code, and disposition code.

PeGS can be iterated many times, however, without the reset option, there is no gain on
the privacy cost. The reset option in PeGS.rs removes sampling footsteps, and can generate
multiple (or a block of) samples for the same privacy cost. However, the synthetic samples
after many iterations may not be useful for representing the original data. We demonstrate
this characteristics by comparing the first and 500th samples from PeGS.rs. We set ε = 1 for
each sample block, and used 350 random seeds to initialize PeGS.rs i.e. 350 sample blocks
are generated. The sampling process is as follows:

For i in 1 : 350

{x(1),x(2), . . . ,x(500)} ∼ PeGS.rs(s(i))

Put x(1) in Dfirst samples

Put x(500) in D500th samples

Figure 5 shows histograms from the generated samples. As expected, the samples from the
later iterations are more uniformly distributed than those from PeGS. Moreover, as can be
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seen in the age and ZIP code variables, this behavior is more noticeable when the original
distribution is skewed.
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Figure 5: Effect of block size on univariate distributions in the synthetic data. Distributions
obtained based on the first sample are compared with those returned by the 500th sample.

4.3 Risk (ε) vs. Utility

Reducing disclosure risk and improving data utility are two competing objectives when
publishing privacy-safe synthetic data. As these two goals cannot be satisfied at the same
time, a certain trade-off is necessary for preparing public use data. This trade-off has been
traditionally represented using a graphical measure, called R-U confidentiality map (Dun-
can et al., 2001). The R-U confidentiality map consists of two axis: typically a risk measure
on the x-axis and a utility measure on the y-axis. Note that risk and utility measures can
be domain and application specific. In this paper, we first show R-U maps where the risk
is measured using differential privacy. The utility is primarily measured by comparing
statistics from the original data and synthetic data.

We use three different algorithms and seven different privacy parameters for each algo-
rithm as follows:

• PeGS: Perturbed Gibbs Sampler

• PeGS.rs: Perturbed Gibbs Block Sampler with Reset. Block size = 10.

• PMI: Perturbed Multiple Imputation (baseline algorithm). With higher values of ε,
this is the same as a multiple imputation strategy for fully synthetic data. In PMI, the
conditional distributions are modeled using the elastic-net regularized multinomial
logistic regression, specifically glmnet package in R 2.15.3 (Friedman et al., 2010).
The variable xi is regressed on the rest of the variables x−i, and the regularization
parameter λ was tuned based-on cross-validation:

Pr(xi = j | x−i) ∝ exp(cij + β>ijx−i)
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Figure 6: R-U maps where the negative utility is measured as the difference in marginal
distributions; smaller distances imply greater utilities.

where cij and βij are estimated from the data.

where the privacy parameters are given as ε ∈ {0.1, 0.5, 1, 5, 10, 50, 100} per synthetic sam-
ple. We generated 1000 samples for each case. As a result, we have 21 = 7 × 3 synthetic
datasets and one original dataset.

The negative utility is first measured using the distance between marginal and condi-
tional distributions. The term “negative” implies that smaller the distances, greater the
utilities. Marginal and conditional distributions are measured from the original and syn-
thetic datasets, then distances are calculated as follows:

Marginal MSE = Avgxi∈Xi
(P̂rsynth,ε(xi)− P̂rorig(xi))

2

Marginal MAE = Avgxi∈Xi
|P̂rsynth,ε(xi)− P̂rorig(xi)|

Conditional MSE = Avgxj∈Xj
Avgxi∈Xi

(P̂rsynth,ε(xi | xj)− P̂rorig(xi | xj))2

Conditional MAE = Avgxj∈Xj
Avgxi∈Xi

|P̂rsynth,ε(xi | xj)− P̂rorig(xi | xj)|

where these distances are inverse surrogates for the utility. Figure 6 and Figure 7 show
the R-U maps where the utility is measured as the difference in marginal and conditional
distributions, respectively. As can be seen, all synthetic datasets become similar to the
original data with higher values of ε. However, for smaller values of ε, the synthetic data
from PeGS.rs are much more similar to the original than the others. The distributional
distances of PeGS are slightly smaller than those of PeGS.rs for higher values of ε. Since α
values are very small for these privacy parameters, the reset operation of PeGS.rs becomes
more noticeable, and it pushes synthetic samples away from the original distributions.

The utility can be measured in many different ways. In this example, we examine whether
synthetic samples preserve the ordering of marginal and conditional distributions of the
original data. Marginal and conditional distributions are first ranked based on frequencies.
We then compare the ranks from the original and synthetic distributions using Kendall’s τ
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(a) Distributional distances conditioned on the age variable, Xi | age.yrs
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Figure 7: R-U maps where the negative utility is measured as the difference in conditional
distributions; smaller distances imply greater utilities.
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Figure 8: Rank correlation between marginal distributions vs. privacy parameter ε. As ε
increases, the ordering of a marginal distribution remains the same as the original ordering.

and Spearman’s ρ:

Kendall’s τ =
(number of concordant pairs)− (number of discordant pairs)

1
2Ci(1− Ci)

Spearman’s ρ =

∑
j(r

o
j − Ci/2)(rsj − Ci/2)√∑

j(r
o
j − Ci/2)2

∑
j(r

s
j − Ci/2)2

where Ci represents the number of categories for xi, and roj and rsj are ranks of the j cate-
gory from the original and synthetic data, respectively. Both τ and ρ lie between -1 (strong
negative correlation) and 1 (strong positive correlation). These rank correlation statistics
are visualized in Figure 8 and 9 with respect to the privacy parameter ε. As can be seen,
less perturbed synthetic datasets better preserve the ordering of distributions. Overall,
PeGS.rs best preserves the frequency order of the original distributions.

Next, we compare the coefficients from regression models learned on the datasets. We
learned logistic and linear models as follows:

I(charge > 25K) ∼ as.numeric(age.yrs) + sev + cat + as.numeric(los)

as.numeric(charge) ∼ as.numeric(age.yrs) + sev + cat + as.numeric(los)

where some of the features are changed to numeric features based on their actual meaning.
The choice of the target variable was arbitrary, as the goal of this illustrative experiment is
to show the applicability of synthetic data in predictive modeling tasks. After learning the
coefficients of each model, the distance between the coefficients is measured as follows:

Regression Distance =
∑
i

|
βi,synth − βi,orig

βi,orig
|

Figure 10 shows the R-U map from the regression experiment. As can be seen, the syn-
thetic samples from PeGS.rs provide the most similar coefficients to those from the original
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(a) Rank correlations conditioned on the age variable, Xi | age.yrs
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Figure 9: Rank correlation between conditional distributions vs. privacy parameter ε. As ε
increases, the ordering of a marginal distribution remains the same as the original ordering.
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Figure 10: R-U maps where the utility is measured as the difference in regression coeffi-
cients.
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Figure 11: Estimated logistic regression coefficients for (a) ε = 0.1 and (b) ε = 10. The
coefficients from ε = 10 (lower level of privacy) are closer to the original coefficients than
those from ε = 0.1 (higher level of privacy).
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data. Figure 11 shows each coefficient deviation from the linear regression example. No-
tice that the intercept coefficients from the synthetic datasets tend to overshoot the actual
value, while the other feature coefficients tend to undershoot. This is because the pertur-
bation decreases all feature correlations including the correlation between the target and
independent variables.

Another interesting observation is the poor performance of PMI in Figure 10 and 11. This
behavior is mainly because of the model specification of PMI. In PMI, condition variables
are treated as independent variables, thus the interaction effects of the conditional variables
are not captured in its imputation model. Hospital charges are interactively affected by
multiple factors such as severity and length of stay, and the hashing mechanism of PeGS is
better suited for capturing such interactions.

4.4 Estimating Re-identification Risk

Although differential privacy provides a theoretically sound framework for measuring dis-
closure risks, the measure is originally designed for functions, not data (Dankar and Emam,
2012). For many cases, the measures can be overly conservative or strict for a real dataset.
In the statistical disclosure limitation literature, there have been many attempts to mea-
sure disclosure risks for synthetic data. Franconi and Stander (2002) proposed a method to
quantify disclosure risks for model-based synthetic data. Their proposed approach checks
whether it is possible to recognize a unit in the released data assuming the original data are
given to an intruder. This provides a somewhat conservative measure, but is still useful to
compare the risks from different release mechanisms. Reiter (2005c) later formalized mea-
suring probabilistic disclosure risk scores for partially or fully synthetic data. Probabilistic
disclosure risks are used to asses the risks of the fully synthetic data using Random Forests
in Caiola and Reiter (2010).

In this paper, we measure the disclosure risks by measuring the recoverability of feature
values. Assuming that the intruder knows someone’s age, sex, los, and zip, we measure
the likelihood of getting the correct values as follows:

E[1(inferred MDC 6= correct MDC) | age, sex, zip]

E[|inferred charge− correct charge| | age, los, zip]

where the inferred values are (1) the most frequent MDC categories and (2) sample means
from conditioned synthetic samples. Figure 12 shows the results from this simulated in-
truder experiment. Private records are more difficult to reconstruct if misclassification rates
and absolute errors are high. The probability of recovering MDC is significantly lower than
using a simple bootstrap method, but no one method is distinctly better than the other. The
absolute distance of hospital charges shows that synthetic data has comparable predictive
power with the bootstrap method. Noticeably, the absolute errors are higher when the
differential privacy parameters are low, and this finding partially supports our use of dif-
ferential privacy as a disclosure risk measure.

5 Concluding Remarks

In this paper, we proposed a categorical data synthesizer that guarantees prescribed differ-
ential privacy or l-diversity levels. The use of a hash function allows the Perturbed Gibbs
Sampler to handle high-dimensional categorical data. The non-parametric modeling of cat-
egorial data provides a flexible alternative to traditional (GLM-based) Multiple Imputation
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Figure 12: Simulated attack scenarios on the MDC and charge variables (left and right,
respectively).

techniques. Additionally, this simple representation of conditional distributions is a cru-
cial component of our block sampling algorithm that enhances the utility of synthetic data
given a fixed privacy budget.

The California Patient Discharge dataset was used to demonstrate the analytical validity
and utility of the proposed synthetic methodologies. Marginal and conditional distribu-
tions, as well as regression coefficients of predictive models learned from the synthesized
data were compared to those from the original data to quantify the amount of distortion
introduced by the synthesization process. Simulated intruder scenarios were studied to
show the confidentiality of the synthesized data. The empirical studies showed that the
proposed mechanisms can provide useful risk-calibrated synthetic data.

Currently, PeGS only deals with categorical variables. Numeric variables need to be
binned to form categorical variables. Although this approach may be adequate enough
for some applications, brute-force binning ignores numeric similarity or ordering informa-
tion. For example, two consecutive values from an ordinal variable are more similar than
separated values. Consider a size variable with three values: small, medium, and large.
The ordering information states that similarity(small, medium)> similarity(small, big), but
this information is lost if we bin the size variable into three (non-ordered) categories. Such
semantic correlation cannot be captured in the current synthetic and perturbation model.

Although it was originally designed for computational efficiency, the hashing step of PeGS
also provides an added degree of privacy protection. When building the PeGS statistical
building blocks, each row x of the original data is hashed based on h(x−i), and aggregated
with other rows with the same hash key, {z | h(z−i) = h(x−i)}. This aggregation (or
hashing) step should be also incorporated for a tighter guarantee of privacy. The privacy
guarantee of PeGS will be affected by different hash resolutions and mechanisms, and this
topic needs to be covered in future work.

Although the proposed algorithms show substantially better performance on ε-differential
privacy and l-diversity4 measures, they were only marginally better than PMI in other
probabilistic disclosure risk measures. The differential privacy measure may be too con-
servative for real data, and the probabilistic measure may not exhaustively capture all the
attack scenarios. This is why we provided multiple risk measures. The connection between

4Experimental results on l-diversified synthetic data are presented in (Park et al., 2013a).
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the differential privacy and disclosure risks should be further addressed to better evaluate
the validity and utility of the synthetic data.

In practice, multiple disclosure techniques are sequentially mixed to achieve better pro-
tection of the records. For example, PeGS can be applied on top of feature generalization
or masking techniques. Furthermore, some features can be modeled using generalized lin-
ear models; for example, numeric features. It would be worthwhile to investigate novel
cocktails of different statistical disclosure limitation techniques.
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