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Abstract. In this paper∗ we illustrate a privacy framework named Indistinguishable† Privacy. In-
distinguishable privacy could be deemed as the formalization of the existing privacy definitions in
privacy preserving data publishing as well as secure multi-party computation. We introduce three
representative privacy notions in the literature, Bayes-optimal privacy for privacy preserving data
publishing, differential privacy for statistical data release, and privacy w.r.t. semi-honest behavior in
the secure multi-party computation setting, and prove they are equivalent. To the best of our knowl-
edge, this is the first work that illustrates the relationships of these privacy definitions and unifies
them through one framework.
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1 Introduction

In an age where the details of our life are recorded and stored in databases, a clear paradox
is emerging between the need to preserve the privacy of individuals and the need to use
these collected data for research or other purposes. Privacy preserving data analysis and
publishing (PPDP) has received considerable attention in recent years [10, 8]. The goal is
for a data custodian to release some views or statistical computations of the original pri-
vate data, so that the released data remains practically useful while individual privacy for
the data subjects is preserved. A related problem is secure multi-party computation (SMC)
where a given number of participants wish to compute a public function on their private in-
puts without disclosing the private inputs to each other. With decades’ development, there
are three essential privacy principles in the literature on PPDP and SMC: Bayes-optimal
privacy [29] in the PPDP setting, differential privacy [6] in the PPDP setting, and privacy
w.r.t. semi-honest behavior [14] in the SMC setting.

L. Sweeney [38] [37] introduced the well-known k-anonymity principle. It is a syntactic
property on anonymized databases: if only certain attributes known as quasi-identifiers
∗ Preliminary version of this paper in the Proceedings of the 2013 Joint EDBT/ICDT Workshops [28]

† We note that this notion came from [13] first and was developed further in [9].
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(QIDs) are considered, each instance in the anonymized database should appear at least
k times. However, it is generally considered too weak. Many other derivative privacy
principles have been introduced since then, e.g., l-diversity [29] and t-closeness [24]. A.
Machanavajjhala et al. [29] studied that k-anonymity is susceptible to homogeneity an
background knowledge attacks. To address this problem, they show the notion of Bayes-
optimal privacy that provides privacy even when the data publisher does not know what
kind of knowledge is possessed by the adversary.

The notion of differential privacy was introduced by C. Dwork et al. [6, 9]. An “algo-
rithm” (or, “mechanism”)M satisfies ε-differential privacy if and only if for two datasets
D and D′ which differ at only one instance, the distributions ofM(D) andM(D′) differ at
most by a multiplicative factor of eε. A relaxed version of ε-differential privacy, which we
use (ε, δ)-differential privacy to denote, allows an error probability bounded by δ. Satisfy-
ing differential privacy ensures that even if the adversary has full knowledge of the values
of an instance t, as well as full knowledge of other instances in the dataset, and is only
uncertain about whether t is in the input dataset, the adversary is unlikely to have precise
information about the instance’s presence in the database. Differential privacy is achieved
by introducing randomness into query answers. The original algorithm for achieving dif-
ferential privacy, commonly called the Laplace mechanism [9], returns the sum of the true
answer and random noise drawn form a Laplace distribution. The scale of the distribution
is determined by a property of the query called sensitivity: roughly the maximum possible
change to the query answer induced by the addition or removal of one instance. Higher
sensitivity queries are more likely to reveal individual instances and thus they should re-
ceive greater noise.

Yao first introduced the two parties comparison problem (Yao’s Millionaire Problem),
where two millionaires want to find out who is richer without disclosing their actual wealth,
and developed a provably secure solution [42]. This was extended to multi-party compu-
tation by Goldreich et al. [15]. They developed a framework for secure multi-party compu-
tation (SMC), and proved that computing a function privately is equivalent to computing
it securely in [14]. The protocol is secure if the parties learn only the result of the function
and nothing else.

1.1 Contributions

While there are extensive literature based on each of the privacy definitions, few works
studied their inter relationship. We believe it is important and significant to understand
their relationships and the underlying principles that unify these definitions. The main
contributions of this paper are as follows:

1. We present a privacy framework named indistinguishable privacy that could unify
existing privacy definitions for privacy preserving data publishing and secure multi-
party computation.

2. We introduce the representative privacy principles in the literature, Bayes-optimal
privacy and differential privacy in privacy preserving data publishing setting and
privacy w.r.t. semi-honest behavior in the secure multi-party computation setting -
and prove they are equivalent.

3. We discuss the relationship of those state of the art privacy definitions related to dif-
ferential privacy. The map of those definitions to Indistinguishable Privacy frame-
work is also presented.
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4. We also show that the indistinguishable Privacy framework satisfies the two privacy
axioms.

The rest of the paper is organized as follows. Section 2 presents the new privacy frame-
work, and analyzes the relationship of these three definitions in the literature. The existing
state of the art privacy definitions related to differential privacy are discussed in Section
3. We prove indistinguishable privacy satisfies privacy axioms in Section 4. We review the
related work in Section 5. Section 6 concludes the paper.

2 Indistinguishable Privacy

In this section, we illustrate our privacy framework indistinguishable privacy. We first dis-
cuss the underlying principle followed by the formal definition of the framework.

Let us briefly describe Shannon’s definition of “perfect secrecy” [34]. Consider an adver-
sary with unlimited time and manpower available for analysis of intercepted cryptograms.
Let the set of all possible messages be finite. These messages have a priori probability for
each and are encoded and sent across the wire. When an adversary intercepts an encoded
message, he can calculate its posteriori probabilities for the various messages. Perfect se-
crecy is achieved if for all encoded messages the posteriori probabilities are equal to the
priori probabilities. Thus intercepting the message gives the adversary no information.

Compare with “perfect secrecy” that provably can not be broken even with unlimited
time and manpower available, semantic security (computationally secure) is theoretically
possible to break but it is infeasible to do so by any known practical means. Due to the use
of cryptography knowledge, SMC is based on semantic security. Hence, in this paper, our
privacy framework definition also is based on semantic security.

Dalenius [4] defined a similar privacy goal for statistical database: access to the published
data should not enable the attacker to learn anything extra about any target victim com-
pared to no access to the database, even with the presence of any attacker’s background
knowledge obtained from other sources. The literature on privacy preserving data pub-
lishing has attempted to formalize Dalenius’ goal or define similar notions for privacy.
Machanavajjhala et al. defined a Bayes-optimal privacy notion for privacy preserving data
publishing based on the uninformative principle (for published data).

Uninformative Principle [29]. The published table should provide the adversary with little
additional information beyond the background knowledge. In other words, there should
not be a large difference between the prior and posterior beliefs.

2.1 Notations and Privacy Principle

We define a formal indistinguishable privacy framework based on a generalized uninfor-
mative principle and show that it can be used to unify the privacy definitions for both PPDP
and SMC. Given an operation of private data (e.g. a data release, a statistical computation,
or a multi-party secure-computation), intercepting the operation knowledge should give
an adversary no or little (ε) new information about sensitive knowledge in private data.

We first define the notations below.
Background Knowledge (BK) Background knowledge is what adversary obtained before

one operation.
Sensitive Information (SI) Individual sensitive information is the information that needs

to be protected, such as the salary or state of health of an individual.
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Table 1: Summary of Notations and Mapping with Existing Privacy Definitions
```````````Notation

Definition
Bayes-optimal Privacy Differential Privacy Privacy w.r.t Semi-honest Be-

havior in SMC
Background Knowledge
(BK)

Dataset that can be
linked with the quasi-
identifying attributes
in the original dataset

Dn−1 from Dn without
i

own input and output

Sensitive Information
(SI)

Each individual’s sen-
sitive attributes

instance i’s sensitive
information

Other party’s private input
and output

Operation Knowledge
(OK)

Anonymized data M(Dn), where Dn dif-
fers only in i from
dataset Dn−1

Intermediate result received
during communication with
the other party

Operation Knowledge (OK) Operation knowledge is the knowledge that a participant
will obtain after an operation. For example, it can be the published data after the operation
of data release.

We redefine the uninformative principle with a generalization from published data to the
operation knowledge as follows:

Uninformative Principle for Operations. The operation knowledge should provide the adver-
sary with little sensitive information beyond the background knowledge. In other words, the
prior and posterior beliefs should be indistinguishable.

2.2 Indistinguishable Privacy Definition

Consider an adversary Alice, we denote her prior belief about the sensitive information as:

α(BK,SI) = P (SI|BK)

After an operation is executed, Alice’s posterior belief is:

β(BK,SI,OK) = P (SI|BK,OK)

Definition 1. (Indistinguishable Privacy). An operation satisfies indistinguishable privacy
if the following holds for an adversary with polynomially bounded resources available:

α(BK,SI) ≤ eεβ(BK,SI,OK) (1)

The Inequation (1) indicates that before and after the operation, the difference between
the prior and posterior beliefs of the adversary about the sensitive information (not the
complete information) differs by no more than a very small fraction ε. ε can be considered
as the disclosure. When ε is small, ln(1 + ε) ≈ ε.

Given the above definition, we can show that each of the three existing privacy definitions
can be mapped to the indistinguishable privacy framework. Table 1 shows a summary of
the mapping.

Example 2. Bayes-optimal Privacy: Alice has background knowledge (BK), e.g. publicly
available voter registration list, that can be used to link the quasi-identifying attributes in
the datset and identify the individuals in order to compute the sensitive information (SI).
After she obtains the published dataset (OK), she could compute the sensitive information
(SI) based on both the background knowledge and the published data (BK, OK).
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Example 3. Differential Privacy: Alice has background knowledge (BK), in the worst case,
about all but one record in the database, which is considered asDn−1. After she obtains the
query answer (OK) from the dataset Dn which only differs from Dn−1 by one record, she
could be able to compute the sensitive information (SI) based on Dn−1 and M(Dn) (BK,
OK).

Example 4. Privacy w.r.t. Semi-honest Behavior in SMC: Alice has some knowledge (BK)
to compute sensitive information (SI). After she receives intermediate result (OK) from the
other party during the execution of the protocol, she could compute the sensitive informa-
tion (SI) based on her own background knowledge and the intermediate result (BK, OK).

2.3 Relationships of Existing Privacy Definitions

We present three existing privacy definitions and show their equality in this subsection.

2.3.1 Bayes-Optimal Privacy

We present Bayes-optimal privacy [29] that bounds the differences between the prior and
posterior beliefs.

Consider an original table T which contains a instance t about Bob. Let S denote the set of
all sensitive attributes andQ denote the set of all nonsensitive attributes. Alice’s prior belief
about Bob’s sensitive information is denoted as α(q,s), where s is Bob’s sensitive attribute
values and q is his nonsensitive attribute values:

α(q,s) = P (t[S] = s|t[Q] = q)

After the anonymization operation, Alice observes the anonymized table T ∗, her posterior
belief about Bob’s sensitive attribute is denoted as β(q,s,T∗):

β(q,s,T∗) = P (t[S] = s|t[Q] = q ∧ ∃t∗ ∈ T ∗, t→ t∗).

Definition 5. (ε-Bayes-optimal privacy for anonymized data). The anonymized table T ∗

satisfies ε-adversarial privacy if the following holds:

α(q,s) ≤ eεβ(q,s,T∗).

2.3.2 Differential Privacy

We present differential privacy based on [19].

Definition 6. (ε-differential privacy). A randomized mechanismM satisfies ε-differential
privacy if for any pair of database instances D, D′ and for any set S,

P (M(D) ∈ S) ≤ eεP (M(D′) ∈ S)

2.3.3 Privacy w.r.t. Semi-honest Behavior in SMC

We present the privacy definition w.r.t. Semi-honest Behavior in SMC based on [13].
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Definition 7. (ε-privacy w.r.t Semi-honest Behavior for SMC). For a function f , we say that∏
privately computes one operation f if there exist probabilistic polynomial time algo-

rithms, denoted S1 and S2 for any φ and ϕ, such that

P ({S1(x, f1(x, y)) = φ}x,y∈{0,1}∗) ≤ eεP ({view
∏
1 (x, y) = φ}x,y∈{0,1}∗), (2)

P ({S2(y, f2(x, y)) = ϕ}x,y∈{0,1}∗) ≤ eεP ({view
∏
2 (x, y) = ϕ}x,y∈{0,1}∗), (3)

where x and y are the input, f(x, y) is the output. f1(x, y) (resp., f2(x, y)) denotes the first
(resp., second) element of f(x, y). The view of the first (resp., second) party during an
execution of

∏
on (x, y), denoted view

∏
1 (x, y) (resp., view

∏
2 (x, y)). “≤ eε” is equivalent to

“
c≡” in [13].

2.3.4 Equivalence

Theorem 8. The three definitions: ε-Bayes-optimal privacy for anonymized data, ε-differential pri-
vacy for a randomized algorithm, and ε-privacy w.r.t. semi-honest behavior for SMC, are equivalent.

Proof. From Bayes-optimal privacy’s viewpoint:

α(q,s) ≤ eεβ(q,s,T∗)

⇔ P (t[S] = s|t[Q] = q) ≤ eεP (t[S] = s|t[Q] = q ∧ ∃t∗ ∈ T ∗, t→ t∗)

⇔ α(BK,SI) ≤ eεβ(BK,SI,OK)

where SI = (t[S] = s), BK = (t[Q] = q), and OK = (∃t∗ ∈ T ∗, t→ t∗).
From differential privacy’s viewpoint:

P (M(D) ∈ S) ≤ eεP (M(D′) ∈ S)

⇔ α(BK,SI) ≤ eεβ(BK,SI,OK)

where SI = instance i′s sensitive information, BK = Dn−1, and OK =M(Dn = Dn−1+
i).

From privacy w.r.t semi-honest behavior’s viewpoint:

P ({S1(x, f1(x, y)) = φ}x,y∈{0,1}∗)

≤ eεP ({view
∏
1 (x, y) = φ}x,y∈{0,1}∗),

⇔ α(BK,SI) ≤ eεβ(BK,SI,OK)

where SI = (y, f2(x, y)), BK = (S1(x, f1(x, y))) and OK = (view
∏
1 (x, y)). Similarly, In-

equation (3) satisfies the constraint.
Summing up the above, the theorem is correct.

3 The State of the Art Privacy Definitions

In this section, we survey the existing state of the art privacy definitions. Furthermore,
we show Indistinguishable Privacy Framework also could be deemed as the formalization
of those privacy definitions. In addition, we discuss the relationship between free-lunch
privacy, zero-knowledge privacy, differential privacy, and crowd-blending privacy.

TRANSACTIONS ON DATA PRIVACY 6 (2013)



Semantic Security: Privacy Definitions Revisited 191

3.1 Free-Lunch Privacy

D. Kifer et al. [19] addressed several popular misconceptions about differential privacy.
They showed that, without further assumptions about the data, its privacy guarantees can
degrade when applied to social networks or when deterministic statistics have been previ-
ously released. They presented a stricter privacy definition - free-lunch privacy.

Definition 9. (Free-Lunch Privacy)[19].
A randomized mechanism M satisfies ε-free-lunch privacy if for any pair of database

instances D, D′ (not just those differing in one instance) and for any set S,

P (M(D) ∈ S) ≤ eεP (M(D′) ∈ S).

We show how to map free-lunch privacy to Indistinguishable Privacy framework.

P (M(D) ∈ S) ≤ eεP (M(D′) ∈ S)

⇔ α(BK,SI) ≤ eεβ(BK,SI,OK)

where SI = instance i′s sensitive information, BK = any subset D without i, and OK =
M(D′). Free-lunch privacy guarantees any subset can simulate the view of whole database.

3.2 Zero-Knowledge Privacy

Let D be the class of all databases whose rows are instances from some relation/universe
X . For convenience, we will assume that X contains a instance ⊥, which can be used to
conceal the true value of a row. Given a database D, let |D| denote the number of rows
in D. For any integer n, let [n] denote the set {1, ..., n}. For any database D ∈ D, any
integer i ∈ [|D|], and any v ∈ X , let D−i, v denote the database D with row i replaced by
the instance v. LetM be a mechanism that operates on database in D. For any database
D ∈ D, any adversary A, and any z ∈ {0, 1}∗, let OutA(A(z)↔M(D)) denote the random
variable representing the output of A on input z after interacting with the mechanismM
operating on the database D. J. Gehrke et al. [12] presented the Zero-Knowledge Privacy
definition as follows:

Definition 10. (Zero-Knowledge Privacy)[12]. We say thatM is ε-zero-knowledge private
with respect to Aggregate Information [12] if there exists a T ∈ Aggregate Information
such that for every adversary A, there existing a simulator S such that for every database
D ∈ Xn, every z ∈ {0, 1}∗, every integer i ∈ [n], and everyW ⊆ {0, 1}∗, the following hold:

•Pr[OutA(A(z)↔M(D)) ∈W ] ≤ eεPr[S(z, T (D−i,⊥), i, n) ∈W ]

•Pr[S(z, T (D−i,⊥), i, n) ∈W ] ≤ eεPr[OutA(A(z)↔M(D)) ∈W ]

The probabilities are over the random coins ofM and A, and T and S, respectively.

Roughly speaking, zero-knowledge privacy requires that whatever an adversary learns
about an individual i can be simulated given just some “aggregate information” about the
remaining individuals in the database. For example, this aggregate information could be k
random samples of the remaining individuals in the database. If the aggregate information
contains all individuals, zero-knowledge privacy collapses down to differential privacy, but
for more restrictive classes of aggregate information, such as k random samples, where k is
smaller than the number of individual in the database, zero-knowledge privacy is strictly
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stronger, and provides stronger privacy guarantees in contexts where there is correlation
between individuals. That is, zero-knowledge privacy definition is a variant of differential
privacy definition.

We show how to map zero-knowledge privacy to Indistinguishable Privacy framework.

ε− zero− knowledge privacy

⇔ α(BK,SI) ≤ eεβ(BK,SI,OK)

where SI = instance i′s sensitive information,BK = any subset of n with k instances but i,
and OK =M(any subset of n with k instances). Zero-knowledge privacy guarantees any
subset with k instances can simulate the view of whole database.

3.3 Crowd-Blending Privacy

In this subsection, we survey Crowd-Blending Privacy, a weaker version of zero-knowledge
privacy. J. Gehrke et al. [11] proved crowd-blending privacy with “robust pre-sampling”
equals to zero-knowledge privacy as well as differential privacy is the sufficient condition
of crowd-blending privacy (differential privacy implies crowd-blending privacy).

Definition 11. (ε-blend in a crowd of k instances in D)[11]. Let D be any database. An
individual i ∈ D ε-blend in a crowd of k instances in D with respect to the mechanismM
if |{i′ ∈ D : i′ ≈ε,M i}| ≥ k.

Intuitively, an individual i ∈ D blends in a crowd of k instances in D if i is indistinguish-
able by M from at least k − 1 other individuals in D. Note that by the definition of two
individuals being indistinguishable by M, i ∈ D must be indistinguishable by M from
each of these k− 1 other individuals regardless of what the database is, as opposed to only
when the database is D.

Definition 12. (Crowd-Blending Privacy)[11].
A mechanismM is (k, ε)-crowd-blending private if for every database D and every indi-

vidual i ∈ D, either i ε-blends in a crowd of k instances in D, orM(D) ≈εM(D \ {i}).

Crowd-blending privacy requires that for every individual i in the database, either i
blends in a crowd of k instances in the database, or the mechanism essentially ignores
individual i’s data.

We show how to map crowd-blending privacy to Indistinguishable Privacy framework.

(k, ε)− Crowd−Blending Privacy

⇔ α(BK,SI) ≤ eεβ(BK,SI,OK)

where SI = instance i′s sensitive information, BK = particular subset of n with k −
1 instances andOK =M(particular subset of n with k−1 instances+i). Crowd-blending
privacy guarantees particular k−1 (i blends in a crowd of k−1+ i instances) instances can
simulate the view of k instances.
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3.4 Discussion

Generally speaking, free-lunch privacy requires any subset can simulate the view of whole
database, zero-knowledge privacy requires any subset with k instances can simulate the
view of whole database, differential privacy requires any subset with n − 1 instances can
simulate the view of whole database, crowd-blending privacy requires there exists partic-
ular k − 1 instances can simulate the view of k instances. That is,

free− lunch privacy � zero− knowledge privacy

� differential privacy � crowd− blending privacy

where “�” means “stricter than”.

3.5 Induced Neighbors Privacy

To account for prior deterministic data releases, D. Kifer and A. Machanavajjhala [19] [20]
presented the Induced Neighbors Privacy.

Definition 13. (Induced Neighbors NQ)[19].
Given a general constraint Q, let IQ be the set of databases satisfying those constraints.

Let Da and Db be two databases. Let nab be the smallest number of moves necessary to
transform Da into Db and let {m1, ...,mab} be the set of those moves. We say that Da and
Db are neighbors induced by Q, denoted as NQ(Da, Db)=true, if the following holds.
• Da ∈ IQ and Db ∈ IQ.
• No subset of {m1, ...,mab} can transform Da into some Dc ∈ IQ.

Definition 14. (Induced Neighbors Privacy)[20]. An mechanismM satisfies induced neigh-
bor privacy with constraint Q, if for each output w ∈ range(M) and for every pair Da, Db

of neighbors induced by Q, the following holds:

P (M(Da) = w) ≤ eεP (M(Db) = w)

We show how to map induced neighbors privacy to Indistinguishable Privacy framework.

P (M(Da) = w) ≤ eεP (M(Db) = w)

⇔ α(BK,SI) ≤ eεβ(BK,SI,OK)

where SI = instance i′s sensitive information, BK = Da and OK = M(Db). Induced
neighbor privacy guarantees any subset D can simulate the view of instance that different
from its induced neighbors.

4 Privacy Axioms

Modern design guidelines for privacy definitions include two fundamental axioms known
as transformation invariance and convexity [18]. While the ideas contained in the axioms
have been accepted by the privacy community for a long time, only recently there has been
an insistence that privacy definitions should satisfy them.

In this section we show indistinguishable privacy framework satisfies both fundamental
axioms, thus ensuring that it satisfies modern design guidelines.

The axioms are:
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Axiom 15. (Transformation Invariance [18]). If an algorithmM satisfies a privacy definition and
A is any algorithm such that (1) its domain contains the range of M and (2) its random bits (if
any) are statistically independent from the random bits (if any) ofM, then the algorithm A ◦M,
which first runs M on the data and then runs A on the output should also satisfy the same privacy
definition.

Axiom 16. (Convexity [18]). IfM1 andM2 both satisfy a privacy definition, and p ∈ [0, 1], then
the algorithmMp which runsM1 with probability p andM2 with probability 1 − p should also
satisfy the privacy definition.

The following theorem confirms that the indistinguishable privacy framework satisfies
modern privacy design guidelines.

Theorem 17. Indistinguishable privacy satisfies the axioms of convexity and transformation in-
variance.

Proof. LetM be an algorithm that satisfies indistinguishable privacy, for any s we have:

P (SI = s|BK) ≤ eεP (SI = s|BK,OK(M))

where OK(M), the operation knowledge ofM, is what you obtain after the operationM.
Step 1: First we prove it satisfies the axiom of transformation invariance. Let A be any

algorithm whose domain contains the range ofM and whose random bits are independent
from those ofM.

P (SI = s|BK) ≤ eεP (SI = s|BK,OK(M))

= eε
P (SI = s,BK,OK(M))

P (BK,OK(M))

= eε
P (SI = s,BK,OK(M))× P (OK(A ◦M))

P (BK,OK(M))× P (OK(A ◦M))

= eε
P (SI = s,BK,OK(A ◦M), OK(M))

P (BK,OK(A ◦M), OK(M))

= eεP (SI = s|BK,OK(A ◦M), OK(M))

Thus A ◦M also satisfies the privacy definition.
Step 2: Now we prove that it satisfies that axiom of convexity. LetM1 andM2 be algo-

rithms that satisfy the axiom of convexity. LetM1 andM2 be algorithms that satisfy the
privacy definition indistinguishable privacy, let p ∈ [0, 1] and letMp be the algorithm that
runsM1 with probability p andM2 with probability 1− p.

P (SI = s|BK)

= pP (SI = s|BK) + (1− p)P (SI = s|BK)

≤ eεpP (SI = s|BK,OK(M1)) + eε(1− p)P (BK,OK(M2))

= eεP (SI = s|BK,OK(Mp))

ThusMp also satisfies the privacy definition.
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5 Related Work

In a k-anonymized dataset, each record is indistinguishable from at least k − 1 other records
with respect to certain identifying attributes. Some follow-up notions include l-diversity
[29], which requires that the distribution of a sensitive attribute in each equivalence class
has at least l “well represented” values. l-diversity is based on the Bayes-optimal privacy
which involves modeling background knowledge as a probability distribution over the
attributes and uses Bayesian inference techniques to reason about privacy. t-closeness [24],
which requires that the distribution of a sensitive attribute in any equivalent class is close to
the distribution of the attribute in the overall table. A series [23] [35] [1] [36] [40] of papers
based on k-anonymity are presented. For a detailed survey, please see [10].

The principle of differential privacy was developed in a series of works [6] [9] [2] [22] [19]
[5] [3] [41] [16]. Differential privacy requires that computations be insensitive to changes
in any particular individual’s record, thereby restricting data leaks through the results. It
represents a major breakthrough in privacy preserving data analysis. In an attempt to make
differential privacy more amenable to more sensitive queries, several relaxations have been
developed, including (ε, δ)-differential privacy [2] [9]. Three basic general approaches to
achieve differential privacy add Laplace noise proportional to the query’s global sensitivity
[6] [9], adding noise related to the smooth bound of the query’s local sensitivity [32], and
the exponential mechanism to select a result among all possible results [31]. A survey on
these results can be found in [7].

Secure two party computation was first investigated by Yao [42], and was later generalized
to multi-party computation in [13] [14]. The basic problem is Yao’s Millionaires’ problem
that two millionaires would like to know who is richer, but neither wants to reveal their
real worth. Abstractly, the problem is simply comparing two numbers, each held by one
party,however, without either party revealing its number to the other. Yao presented a
solution for any efficiently computable function restricted to two parties and semi-honest
adversaries. Goldreich first [14] introduced the privacy w.r.t semi-honest behavior. Due to
the inefficiency of generic protocols, some research has focused on finding efficient proto-
cols for specific problem of secure computation. See privacy preserving SVM [26], privacy
preserving DBSCAN [27], and privacy preserving k-means [39] [17] for just a few examples.
The work closest to ours are V. Rastogi et al. [33], A. McGregor et al. [30], and N. Li

et al. [25]. [33] has the original equivalent result on adversarial privacy and differential
privacy, which is of independent interest: an algorithm is ε-indistinguishable if and only if
it is private for a particular class of adversaries. [30] demonstrates a connection between
differential privacy and deterministic extraction from Santha-Vazirani sources. [25] uses
the random sampling step to bridge the gap between k-anonymity and differential privacy.
D. Kifer et al. [21] introduced a rigorous and customizable framework for privacy which
is the most closest work to ours. The main difference between our paper and others is that
we consider the privacy w.r.t. semi-honest behavior while others’ work like D. Kifer et
al. only consider the k-anonymity and differential privacy. We prove that Bayes-optimal
privacy, differential privacy are similar with privacy w.r.t. semi-honest behavior which is
the original idea (three definitions in our paper).

6 Conclusions and Discussions

In this paper, we illustrate a new privacy framework named indistinguishable privacy and
introduce Bayes-optimal privacy, differential privacy and privacy w.r.t. semi-honest behav-
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ior, and prove they are equivalent. This is the first work to unify the existing definitions:
Bayes-optimal privacy, differential privacy and privacy w.r.t. semi-honest behavior into
one framework.

We also note that this is only a first step towards unifying the distinct privacy notions and
many challenging issues remain to be solved. While the framework allows the framing of
similar sets of equations for each of the privacy definition, it is also important to devise
ways to capture numerically the various parameters. For instance, finding expressions to
represent the background knowledge BK in the context of k-anonymity or syntactic privacy
is itself a challenging issue. We hope there will be more work in this direction from the
community that help us understand the foundations of the privacy definitions.
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