
TRANSACTIONS ON DATA PRIVACY 7 (2014) 309–336

Attribute Based Group Key Management

Mohamed Nabeel, Elisa Bertino
305 N. University Street, West Lafayette, IN, 47907.

Email: {nabeel, bertino}@cs.purdue.edu

Abstract. Attribute based systems enable fine-grained access control among a group of users each
identified by a set of attributes. Secure collaborative applications need such flexible attribute based
systems for managing and distributing group keys. However, current group key management schemes
are not well designed to manage group keys based on the attributes of the group members. In this
paper, we propose novel key management schemes that allow users whose attributes satisfy a certain
access control policy to derive the group key. Our schemes efficiently support rekeying operations
when the group changes due to joins or leaves of group members. During a rekey operation, the
private information issued to existing members remains unaffected and only the public informa-
tion is updated to change the group key. Our schemes are expressive; they are able to support any
monotonic access control policy over a set of attributes. Our schemes are resistant to collusion attacks;
group members are unable to pool their attributes and derive the group key which they cannot derive
individually. Experimental results show that our underlying constructs are efficient and practical.

Keywords. Broadcast group key management, attribute based policies, secret sharing

1 Introduction

New application domains have pushed novel paradigms and tools for supporting collab-
oration among (possibly very dynamic) user groups (see for example the notion of group-
centric information sharing [20]). An important requirement in collaborative applications
is to support operations for user group memberships, like join and leave, based on iden-
tity attributes (attributes, for short) of users; we refer to this requirement as attribute-based
group dynamics. As today enterprises and applications are adopting identity management
solutions, it is crucial that these solutions be leveraged on for managing groups. Typi-
cally, a user would be automatically assigned (de-assigned) a group membership based
on whether his/her attributes satisfy (cease to satisfy) certain group membership condi-
tions. Another critical requirement is to provide mechanisms for group key management
(GKM), as very often the goal of a group is to share data. Thus data must be encrypted
with keys made available only to the members of the group. The management of these
keys, which includes selecting, distributing, storing and updating keys, should directly
and effectively support the attribute-based group dynamics and thus requires an attribute-
based group key management (AB-GKM) scheme, by which group keys are assigned (or de-
assigned) to users in a group based on their identity attributes. This scheme recalls the
notion of attribute-based encryption (ABE) [29, 16, 5]; however, as we discuss later on, ABE
has several shortcomings when applied to GKM. Therefore, a different approach is needed.
A challenging well known problem in GKM is how to efficiently handle group dynamics,

i.e., a new user joining or an existing group member leaving. When the group changes, a

309

310 Mohamed Nabeel, Elisa Bertino

new group key must be shared with the existing members, so that a new group member
cannot access the data transmitted before she joined (forward secrecy) and a user who left
the group cannot access the data transmitted after she left (backward secrecy). The process
of issuing a new key is called rekeying or update. Another challenging problem is to defend
against collusion attacks by which a set of colluding fraudulent users are able to obtain
group keys which they are not allowed to obtain individually.

In a traditional GKM scheme, when the group changes, the private information given to
all or some existing group members must be changed which requires establishing private
communication channels. Establishing such channels is a major shortcoming especially
for highly dynamic groups. Recently proposed broadcast GKM (BGKM) schemes [39, 31]
have addressed such shortcoming. BGKM schemes allow one to perform rekeying oper-
ations by only updating some public information without affecting private information
existing group members possess. However, BGKM schemes do not support group mem-
bership policies over a set of attributes. In their basic form, they can only support 1-out-of-n
threshold policies by which a group member possessing 1 attribute out of the possible n
attributes is able to derive the group key. In this paper we develop novel expressive AB-
GKM schemes which allow one to express any threshold or monotonic 1 conditions over a
set of identity attributes.

A possible approach to construct an AB-GKM scheme is to utilize attribute-based encryp-
tion (ABE) primitives [29, 16, 5]. Such an approach would work as follows. A key gener-
ation server issues each group member a private key (a set of secret values) based on the
attributes and the group membership policies. The group key, typically a symmetric key, is
then encrypted under a set of attributes using the ABE encryption algorithm and broadcast
to all the group members. The group members whose attributes satisfy the group mem-
bership policy can obtain the group key by using the ABE decryption primitive. One can
use such an approach to implement an expressive collusion-resistant AB-GKM scheme.
However, such an approach suffers from some drawbacks. Except for a few recent ap-
proaches [7, 28] and their variants, many popular ABE schemes do not support efficient
revocation of group members. Among the notable work, Boldyreva et al.’s revocation
scheme [7] supports only a limited set of ABE functionality, and Sahai et al.’s revocation
scheme [28], which is based on the notion of re-encrypting from one policy to another more
restrictive policy by utilizing the delegation capabilities of the underlying ABE construct,
requires maintaining additional attributes and relatively expensive operations even though
the complexity is reduced to the polylogarithm number of group members. Further, in ap-
plications involving stateless members where it is not possible to update the initially given
private keys and the only way to revoke a member is to exclude it from the public infor-
mation, an ABE based approach does not readily work. Our constructions address these
shortcomings.

Our AB-GKM schemes are able to support a large variety of conditions over a set of at-
tributes. When the group changes, the rekeying operations do not affect the private in-
formation of existing group members and thus our schemes eliminate the need of estab-
lishing private communication channels. Our schemes provide the same advantage when
the group membership conditions change. Furthermore, the group key derivation is very
efficient as it only requires a simple vector inner product and/or polynomial interpolation.
Additionally, our schemes are resistant to collusion attacks. Multiple group members are
unable to combine their private information in a useful way to derive a group key which

1Monotone formulas are Boolean formulas that contain only conjunction and disjunction connectives, but no
negation.

TRANSACTIONS ON DATA PRIVACY 7 (2014)

Attribute Based Group Key Management 311

Table 1: Acronyms

Acronym Description

GKM Group Key Management

BGKM Broadcast GKM
ABE Attribute Based Encryption

CP-ABE Ciphertext Policy ABE

KP-ABE Key Policy ABE
ACV Access Control Vector

KEV Key Extraction Vector
ABAC Attribute Based Access Control

AB-GKM Attribute Based GKM

PI Public Information tuple
UA User-Attribute matrix

they cannot derive individually.
Our AB-GKM constructions are based on an optimized version of the ACV-BGKM (Ac-

cess Control Vector BGKM) scheme [31], a provably secure BGKM scheme, and Shamir’s
threshold scheme [30]. In this paper, we construct three AB-GKM schemes each of which is
more suitable over others under different scenarios. The first construction, inline AB-GKM,
is based on the ACV-BGKM scheme. Inline AB-GKM supports arbitrary monotonic policies
over a set of attributes. In other words, a user whose attributes satisfy the group policies
is able to derive the symmetric group key. However, inline AB-GKM does not efficiently
support d-out-of-m (d ≤ m) attribute threshold policies over m attributes. The second con-
struction, threshold AB-GKM, addresses this requirement. The third construction, access
tree AB-GKM, is an extension of threshold AB-GKM and is the most expressive scheme.
It efficiently supports arbitrary policies. The second and third schemes are constructed by
using a modified version of ACV-BGKM, also proposed in this paper.
The reminder of the paper is organized as follows: Section 2 describes related work. Sec-

tion 3 summarizes the ACV-BGKM scheme [31]. Sections 4, 5, 6 present the construction of
the inline AB-GKM, threshold AB-GKM, and access tree AB-GKM schemes, respectively,
and analyze their security and performance. Section 7 shows an example application using
the access tree AB-GKM scheme. Section 8 provides experimental results of our underlying
optimized ACV-BGKM scheme used in all three schemes against the CP-ABE (ciphertext
policy attribute based encryption) scheme. Section 9 concludes the paper. Table 1 lists, for
the convenience of the reader, the acronyms used in the paper.

2 Related Work

Group Key Management (GKM): Early approaches to GKM rely on a key server to share a
secret with users to distribute decryption keys [18, 11]. Such approaches do not efficiently
handle join and leave operations, as in order to achieve forward and backward security,
they require sending O(n) private rekey information, where n is the number of users. Hier-
archical key management schemes [36, 32] were introduced to reduce this overhead. How-
ever, they only reduce the size of the rekey information to O(log n), and furthermore each
user needs to manage at worst O(log n) hierarchically organized redundant keys.
Broadcast GKM (BGKM) schemes perform the rekey operation with only one broadcast

without affecting the secret information issued to existing users. Approaches have also

TRANSACTIONS ON DATA PRIVACY 7 (2014)

312 Mohamed Nabeel, Elisa Bertino

been proposed to make the rekey operation a one-off process [2, 39]. However, these
schemes are not formally proven to be secure. Recently Shang et. al. introduced the first
provably secure BGKM scheme called ACV-BGKM [31]. Existing BGKM schemes require
sending O(n) public information when rekeying. We improve the complexity by utilizing
subset-cover techniques [25, 17]. Such improved BGKM schemes efficiently handle group
dynamics and lay the foundation for AB-GKM. However such schemes cannot directly
handle expressive conditions against attributes.
Group Key Exchange/Agreement: Unlike the GKM schemes presented above, in group
key exchange (GKE) schemes, group members incrementally decide the group key by ex-
changing messages among the peer group members usually in a few rounds [9, 9, 19, 10].
Recently, more expressive and secure GKE schemes such as attribute based GKE [1, 15]
and predicate based GKE [6], have been proposed. GKE schemes can efficiently support
secure communication in dynamic peer groups. However, compared to our key manage-
ment schemes, such approaches suffer from one or two of the following shortcomings: (1)
high communication overhead in handling dynamic membership under one-to-many com-
munication scenarios where a central authority similar to our approach specifies the access
control policies and enforces them [35]; (2) high computation cost due to expensive pairing
operations [1, 15, 6]; (3) inefficient member revocation which is inherent in the underlying
ABE schemes [29, 5] utilized [1, 15, 6].
Attribute-Based Encryption (ABE) and GKM: In an ABE system [29], the plaintext is en-
crypted with a set of attributes. The key generation server, which possesses the master
key, issues different private keys to users after authenticating the attributes they possess.
Thus, these private keys are associated with the set of attributes each user possesses. In
its basic form, a user can decrypt a ciphertext if and only if there is a match between the
attributes of the ciphertext and the user’s key. The initial ABE system was limited to only
threshold policies by which there should be at least k out of n attributes common between
the attributes used to encrypt the plaintext and the attributes users possess. Since the def-
inition of the initial threshold scheme, a few variants have been introduced to provide
more expressive ABE systems. Goyal et al. [16] introduced the idea of key-policy ABE
(KP-ABE) systems and Bethencourt et al. [5] introduced the idea of CP-ABE systems. We
have already mentioned in Section 1 the drawbacks of even the recent versions of ABE that
support some form of revocation [7, 28]. Our work addresses such drawbacks. The pro-
posers of some of these ABE schemes have suggested using an expiration attribute along
with other attributes for attribute revocation. However, such a solution is not suitable for
highly dynamic groups where joins and leaves are frequent. Traynor et al. [34] propose to
improve the performance of ABE by grouping users and assigning a unique group attribute
to each group. However, their approach only considers one attribute per user and does not
support membership policy based group key management.
GKM Schemes for Selective Dissemination Systems: Selective dissemination or broad-
cast encryption systems allow one to encrypt a message once and broadcast it to all the
users in a group, but only a subset of users who have the correct key can decrypt the
message. The database and security communities have carried out extensive research con-
cerning techniques for the selective dissemination of documents based on access control
policies with their own GKM schemes [14, 3, 22, 17, 8]. In such approaches, users are
able to decrypt the subdocuments, that is, portions of documents, for which they have the
keys. However, such approaches require all [3] or some [22] keys be distributed in advance
during user registration phase. This requirement makes it difficult to assure forward and
backward key secrecy when user groups are dynamic with frequent join and leave opera-
tions. Further, the rekey operation is not transparent, thus shifting the burden of acquiring

TRANSACTIONS ON DATA PRIVACY 7 (2014)

Attribute Based Group Key Management 313

new keys on existing users when others leave or join. Thus the proposed GKM schemes
are not efficient. In contrast, our GKM schemes make rekey transparent to users by not
distributing actual keys.

3 Background

In this section, we provide an overview of the Broadcast Group Key Management (BGKM)
scheme in general and a description of a provably secure BGKM scheme called ACV-BGKM
(Access Control Vector BGKM) [31, 24] in order for readers to better understand our con-
structions. It should be noted that we use ACV-BGKM in Section 4 and a modified version
of ACV-BGKM in our constructions in Sections 5, and 6.

BGKM schemes are a special type of GKM scheme where the rekey operation is performed
with a single broadcast without using private communication channels. Unlike conven-
tional GKM schemes, BGKM schemes do not give users the private keys. Instead users are
given a secret which is combined with public information to obtain the actual private keys.
Such schemes have the advantage to require a private communication only once for the
initial secret sharing. The subsequent rekeying operations are performed using one broad-
cast message. Further, in such schemes achieving forward and backward secrecy requires
only to change the public information and does not affect the secret shares given to existing
users. In general, a BGKM scheme consists of the following five algorithms:

Setup(ℓ): It initializes the BGKM scheme using a security parameter ℓ. It also initializes the
set of used secrets S, the secret space SS , and the key space KS .

SecGen(): It picks a random bit string s /∈ S uniformly at random from SS , adds s to S and
outputs s.

KeyGen(S): It picks a group key k uniformly at random from KS and outputs the public
information tuple PI computed from the secrets in S and the group key k.

KeyDer(s, PI): It takes the user’s secret s and the public information PI to output the
group key. The derived group key is equal to k if and only if s ∈ S.

Update(S): Whenever the set S changes, a new group key k′ is generated. Depending on
the construction, it either executes the KeyGen algorithm again or incrementally updates
the output of the last KeyGen algorithm.

Using the above abstract BGKM algorithms, we now provide an overview of the con-
struction of the ACV-BGKM scheme under a client-server architecture. The ACV-BGKM
scheme is only one approach to construct a secure BGKM scheme. One may construct a
secure BGKM scheme using other constructs such as ACP-BGKM (Access Control Polyno-
mial BGKM) [39]. The ACV-BGKM algorithms are executed by a trusted key server Svr
and a group of users Usri, i = 1, 2, . . . , n. We refer the reader to the pioneering work on
the ACV-BGKM scheme [31] for a simplified example and a practical application of the
ACV-BGKM scheme.

Setup(ℓ): Svr initializes the following parameters: an ℓ-bit prime number q, the maximum
group size N (≥ n and N is usually set to n + 1), a cryptographic hash function H(·) :
{0, 1}∗ → Fq, where Fq is a finite field with q elements, the keyspace KS = Fq , the secret
space SS = {0, 1}ℓ and the set of issued secrets S = ∅.

SecGen(): Svr chooses the secret si ∈ SS uniformly at random for Usri such that si /∈ S,
adds si to S and finally outputs si.

KeyGen(S): Svr picks a random k ∈ KS as the group key. Svr chooses N random bit strings

TRANSACTIONS ON DATA PRIVACY 7 (2014)

314 Mohamed Nabeel, Elisa Bertino

z1, z2, . . . , zN ∈ {0, 1}ℓ. Svr creates an n× (N + 1) Fq-matrix

A =

1 a1,1 a1,2 . . . a1,N
1 a2,1 a2,2 . . . a2,N
...

...
...

...
...

1 an,1 an,2 . . . an,N

 ,

where

ai,j = H(si||zj), 1 ≤ i ≤ n, 1 ≤ j ≤ N, si ∈ S. (1)

Svr then solves for a nonzero (N + 1)-dimensional column Fq-vector Y such that AY = 0.
Note that such a nonzero Y always exists as the nullspace of matrix A is nontrivial by
construction. Here we require that Svr chooses Y from the nullspace of A uniformly at
random. Svr constructs an (N + 1)-dimensional Fq-vector ACV = k · eT1 + Y , where e1 =
(1, 0, . . . , 0) is a standard basis vector of FN+1

q , vT denotes the transpose of vector v, and
k is the chosen group key. The vector ACV controls the access to the group key k and is
called an access control vector. Svr lets PI = 〈ACV, (z1, z2, . . . , zN)〉, and outputs public PI
and private k.
KeyDer(si, PI): Using its secret si and the public information tuple PI , Usri computes
ai,j , 1 ≤ j ≤ N, as in formula (1) and sets an (N + 1)-dimensional row Fq-vector vi =
(1, ai,1, ai,2, . . . , ai,N). vi is called a Key Extraction Vector (KEV) and corresponds to a
unique row in the access control matrix A. Usri derives the key k′ from the inner prod-
uct of vi and ACV : k′ = vi · ACV .
The derived key k′ is equal to the actual group key k if and only if si is a valid secret used

in the computation of PI , i.e., si ∈ S.
Update(S): It runs the KeyGen(S) algorithm and outputs the new public information PI ′

and the new group key k′.
The above construction becomes impractical with large numbers of users since the com-

plexity of the matrix and the public information is O(n). We proprose an improved scheme
in Section 4.4 while keeping the underlying scheme unchanged.

4 Scheme 1: Inline AB-GKM

Recall that in its basic form, a BGKM scheme can be considered as a 1-out-of-m AB-GKM
scheme. If Usri possesses the attribute attrj , Svr shares a unique secret si,j with Usri. Usri
is thus able to derive the symmetric group key if and only if Usri shares at least one secret
with Svr and that secret is included in the computation of the public information tuple PI .
In order for Svr to revoke Usrj , it only needs to remove the secrets it shares with Usrj from
the computation of PI ; the secrets issued to other group members are not affected. We
extend this scheme to support arbitrary monotonic policies, Ps, over a set of attributes. A
user is able to derive the symmetric group key if and only if the set of attributes the user
possesses satisfy P.
As in the basic BGKM scheme, Usri having attrj is associated with a unique secret value
si,j . However, unlike the basic BGKM scheme, PI is generated by using the aggregated se-
crets that are generated combining the secrets issued to users according to P. For example,
if P is a conjunction of two attributes, that is attrr ∧ attrs, the corresponding secrets si,r and
si,s for each Usri are combined as one aggregated secret si,r||si,s and PI is computed using

TRANSACTIONS ON DATA PRIVACY 7 (2014)

Attribute Based Group Key Management 315

these aggregated secrets. By construction, the aggregated secrets are unique since the con-
stituent secrets are unique. Any Usri is able to derive the symmetric group key if and only
if Usri has at least one aggregated secret used to compute PI . Notice that multiple users
cannot collude to create an aggregated secret which they cannot individually create since
si,j ’s are unique and each aggregated secret is tied to one specific user. Hence, colluding
users cannot derive the group symmetric key. Now we give a detailed description of our
first AB-GKM scheme, inline AB-GKM.

4.1 Our Construction

Inline AB-GKM consists of the following five algorithms:
Setup(ℓ): The Svr initializes the following parameters: an ℓ-bit prime number q, a crypto-
graphic hash function H(·) : {0, 1}∗ → Fq , where Fq is a finite field with q elements, the
keyspace KS = Fq, the secret space SS = {0, 1}ℓ, and the set of issued secrets S = ∅. The
user-attribute matrix UA is initialized with empty elements and the maximum group size
N is decided in the KeyGen. It defines the universe of attributesA = {attr1, attr2, · · · , attrm}.
SecGen(γi): For each attribute attrj ∈ γi, where γi ⊂ A and γi is the attribute set of Usri, the
Svr chooses the secret si,j ∈ SS uniformly at random for Usri such that si,j /∈ S, adds si,j
to S, sets UA(i, j) = si,j , where UA(i, j) is the (i, j)th element of the user-attribute matrix
UA, and finally outputs si,j .
KeyGen(P): We first give a high-level description of the algorithm and then the details. Svr

transforms the policy P to disjunctive normal form (DNF). For each disjunctive clause of
P in DNF, it creates an aggregated secret (ŝ) from the secrets corresponding to each of the
attributes in the conjunctive clause. ŝ is formed by concatenation only if secrets exist for
all the attributes in a given row of the user-attribute matrix UA. The construction creates
a unique aggregated secret ŝ since the corresponding secrets are unique. For example, if
the conjunctive clause is attrp ∧ attrq ∧ attrr, for each row i in UA, the aggregated secret
ŝi is formed only if all elements UA(i, p), UA(i, q) and UA(i, r) have secrets assigned. All
the aggregated secrets are added to the set AS. Finally, Svr invokes algorithm KeyGen(AS)
from the underlying BGKM scheme to output the public information PI and the symmetric
group key k.
Now we give the details of the algorithm. Svr converts P to DNF as follows

P =

α∨

i=1

conjuncti where there are α conjuncts and

conjuncti =

φi∧

j=1

cond
(i)
j ,

where each conjuncti has φi conditions.
A simple multiplication of clauses (x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)) and then application

of the absorption law (x ∨ (x ∧ y = x)) are sufficient to convert monotone policies to DNF.
Even though there can be an exponential blow up of clauses during multiplication, it has
been shown that with the application of the absorption law the number of clauses in the
DNF, at the end, is always polynomially bounded. Svr selects N such that

N ≥
α∑

i=1

NUi
= NU

TRANSACTIONS ON DATA PRIVACY 7 (2014)

316 Mohamed Nabeel, Elisa Bertino

where NUi
is the number of users satisfying conjuncti

2. Svr creates NU ŝi’s and adds
them to AS. Svr picks a random k ∈ KS as the shared group key. Svr chooses N random
bit strings z1, z2, . . . , zN ∈ {0, 1}ℓ. Svr creates an m × (N + 1) Fq-matrix A such that for
1 ≤ i ≤ NU

ai,j =

{
1 if j = 1
H(ŝi||zj) if 2 ≤ j ≤ N ; ŝi ∈ AS

(2)

Svr then solves for a nonzero (N + 1)-dimensional column Fq-vector Y such that AY = 0
and sets

ACV = k · eT1 + Y, and

PI = 〈ACV, (z1, z2, . . . , zN)〉

KeyDer(βi, PI): Given βi, the set of secrets for Usri, it computes the aggregated secret ŝ.
Using ŝ and the public information PI , it computes ai,j , 1 ≤ j ≤ N, as in formula 2 and sets
an (N + 1)-dimensional row Fq-vector vi = (1, ai,1, ai,2, . . . , ai,N). Usri derives the group
key k′ by the inner product of the vectors vi and ACV : k′ = vi · ACV . The derived group
key k′ is equal to the actual group key k if and only if the computed aggregated secret
ŝ ∈ AS.
Update(S): The composition of the user group changes when one of the following occurs:

• Identity attributes are added or removed resulting in the change in S and UA 3.

• The underlying policy P changes.

When such a change occurs, a new symmetric key k′ is selected and KeyGen(P) is invoked
to generate the updated public information PI ′. Notice that the secrets shared with existing
users are not affected by the group change. It outputs the public PI ′ and private k′.

4.2 Security

We can easily show that if an unbounded adversary A can break the inline AB-GKM scheme
under the following security model, a simulator S can be constructed to break the ACV-
BGKM scheme.

Definition 1 (Security model for AB-GKM).
Setup The challenger runs the Setup algorithm of AB-GKM and gives the public parame-
ters to the adversary.
Phase 1 The adversary is allowed to request secrets for any set of attributes γi and the
public information tuples for a policy satisfying these attributes. The public information
along with the secrets allows the adversary to derive the private key.
Challenge The adversary declares the set of attributes γ that it wishes to challenged upon.
γ is different from any of the attribute sets γi that the adversary queried earlier. The adver-
sary submits two keys k0 and k1. The challenger flips a random coin b and chooses kb. The

2It should be noted that NU can be reduced to n, the number of users in the group, by exploiting the relation-
ships between conjuncts and letting the users know the conjunct, out of the many they satisfy, they have to use to
derive the key. We leave this optimization to keep the scheme simple.

3A change in a user attribute is viewed as two events; removing the existing attribute and adding a new
attribute.

TRANSACTIONS ON DATA PRIVACY 7 (2014)

Attribute Based Group Key Management 317

challenger generates public information for a policy P satisfying γ, but not any γi, using
the KeyGen algorithm and give it to the adversary. The public information hides the group
key kb.
Phase 2 Phase 1 is repeated as many times provided that the adversary’s attribute set does
not satisfy P .
Guess The adversary outputs a guess b′ of b.
The advantage of an adversary A in this game is defined as Pr[b′ = b]− 1/2.

Now we define security under the security model for AB-GKM defined above.

Definition 2 (Security under the security model for AB-GKM). An AB-GKM scheme is
secure under the security model for AB-GKM if all adversaries have at most a negligible
advantage in the above game defined in the security model.

We [31, 24] have shown that the probability of breaking ACV-BGKM is a negligible 1/q,
where q is the ℓ bit large prime number initialized in Setup. The intuition is that an ad-
versary is required to construct a valid vector in the row space of the access control matrix
in order to break ACV-BGKM and the probability of constructing such a vector is 1/q. We
capture the hardness of the ACV-BGKM scheme in the following assumption:

Definition 3 (ACV-BGKM Assumption). No adversary without any valid secrets can break
the ACV-BGKM scheme with more than a negligible probability assuming that the hash
function is modeled as a random oracle. As shown in [24], the negligible probability is 1/q.

Theorem 4. If an adversary can break the inline AB-GKM scheme in the security model for AB-
GKM, then a simulator can be constructed to break the ACV-BGKM scheme with non-negligible
advantage 1/2 + ǫ where ǫ = 1/q.

Proof. Suppose that there exists an adversary A that can break our scheme in the security
model for AB-GKM with advantage ǫ. We build a simulator B that can break the ACV-
BGKM scheme with the advantage at most ǫ. The simulation proceeds as follows:
The challenger runs the setup algorithm of ACV-BGKM and generates secrets for each

attributes per user outside of B’s view. The simulator B runs A. B is given an instance of
ACV-BGKM and gives the public parameters to A. We assume that all policies are in DNF
such that each conjunctive term has one or more attributes. The secret for a conjunctive
term is derived by simply concatenating secrets for the constituent attributes. Notice that
each aggregate secret is unique. The intuition behind the assumption is that inline AB-GKM
is an extension of ACV-BGKM to support aggregate secrets and, therefore, with unique
aggregate secrets, inline AB-GKM is equivalent to ACV-BGKM.
Phase 1 A submits sets of attributes γi to B and B sends the secrets corresponding to these
attributes using the ACV-BGKM instance.
Challenge A submits the attribute set γ 6= γi as the challenge and two keys k0 and kb. B
flips a random coin b and chooses kb and then using the ACV-BGKM instance, it generates
the public information for a policy P that only γ satisfies and any of γi does not satisfy. The
public information hides the group key kb.
Phase 2 A and B repeats Phase 1 as many times provided A’s attribute sets do not satisfy
P .
Guess Using the public information and the information gathered from the two phases,
A outputs a guess b′ of b. Notice that the view of A when it is run as a subroutine of B

TRANSACTIONS ON DATA PRIVACY 7 (2014)

318 Mohamed Nabeel, Elisa Bertino

and when it is run directly with the inline AB-GKM scheme is identical. In other words,
B simulates an instance of the inline AB-GKM for A using an instance of the ACV-BGKM
scheme. The simulation is trivial as the aggregate secrets in AB-GKM are unique as the
secrets in ACV-BGKM. It should be noted that A does not have an advantage more than
ǫ from the information gathered from the repeated execution of Phase 1 due to the key
indistinguishability and key independence properties [24] of the ACV-BGKM scheme since
the security of these two properties only depend on the uniqueness of the input secrets to
the ACV-BGKM scheme. Notice that this forms the basis of collusion resistance as well.
For different rounds of interactions between A and B, B produces different unique sets of
secrets which results in different unique aggregate secrets. Therefore, the probability of
guessing the aggregate secret for an attribute set satisfying P is as same as that of guessing
the secret for a single attribute satisfying P in ACV-BGKM scheme.
It can easily be seen that B has the same advantage of breaking the ACV-BGKM scheme

as A has on the inline AB-GKM scheme. As per the definitions, B breaks the ACV-BGKM
with Pr[b′ = b] = 1/2+ ǫ. According to the assumption on the hardness of the ACV-BGKM
scheme in Theorem 4, it follows that ǫ must be negligible.

4.3 Performance

Now, we discuss the efficiency of inline AB-GKM with respect to computational costs and
required bandwidth for rekeying.
For any Usri in the group, deriving the shared group key requires N hashing operations

(evaluations of H(·)) and an inner product computation vi·ACV of two (N+1)-dimensional
Fq-vectors, where N is the maximum group size. Therefore the overall computational com-
plexity is O(n).
For every rekeying operation, Svr needs to form a matrix A by performing N2 hashing

operations, and then solve a linear system of size N × (N + 1). Solving the linear system
is the most costly operation as N gets large for computation on Svr. It requires O(n3) field
operations in Fq when the method of Gauss-Jordan elimination [12] is applied. Experimen-
tal results about the ACV-BGKM scheme [31] have shown that this can be performed in a
short time when N is small.
When a rekeying process takes place, the new information to be broadcast is PI =
〈ACV, (z1, . . . , zN)〉, where ACV is a vector consisting of (N +1) elements in Fq, and with-
out loss of generality we can pick zi to be strings of fixed length. This gives an overall
communication complexity O(n). An advantage of inline AB-GKM is that no peer-to-peer
private channel is needed for any persisting group members when rekeying is executed.
Nowadays we generally care less about storage costs on both Svr and Usrs. Nevertheless,

for a group of maximum N users, in the worst case, inline AB-GKM only requires each Usr

to store (O(|A|)) secrets, one secret per attribute that Usr possesses, and Svr to keep track
of all O(n|A|) secrets.

4.4 Improving the Complexity using Subset-Cover

The above approach becomes inefficient if each NUi
values are large as the computational

and communication complexities are still proportional to NUi
values. We utilize the result

from previous research on broadcast encryption [25, 17] to improve the complexity. Based
on that, one can make the complexity sub-linear in the number of users by giving more than
one secret during SecGen for each attribute users possess. The secrets given to each user
overlaps with different subsets of users. During the KeyGen, Svr identifies the minimum

TRANSACTIONS ON DATA PRIVACY 7 (2014)

Attribute Based Group Key Management 319

number of subsets to which all the users belong and uses one secret per the identified sub-
set. During KeyDer, a user identifies the subset it belongs to and uses the corresponding
secret to derive the group key. Group dynamics are handled by making some of the secrets
given to users invalid.

We give a high-level description of the basic subset-cover approach. In the basic scheme, n
users are organized as the leaves of a balanced binary tree of height logn. A unique secret
is assigned to each vertex in the tree. Each user is given log n secrets that correspond to
the vertices along the path from its leaf node to the root node. In order to provide provide
backward secrecy when a single user is revoked, the updated tree is described by logn
subtrees formed after removing all the vertices along the path from the user leaf node to
the root node. To rekey, Svr executes Update using the logn secrets corresponding to the
roots of these subtrees. Naor et. al. [25] improve this technique to simultaneously revoke
r users and describe the exiting users using r log (n/r) subtrees. Since then, there have
been many improvements to the basic scheme. In the remainder of the paper, in order to
maintain the simplicity the SecGen algorithm generates only one secret per attribute but
the schemes can be trivially modified to use any subset-cover approach.

5 Scheme 2: Threshold AB-GKM

Consider now the case of policies by which a user can derive the symmetric group key k,
if it possesses at least d attributes out of the m attributes associated with the group. We
refer to such policies as threshold policies. Under the inline AB-GKM scheme presented in
Section 4, with such threshold policies the size of the access control matrix (A) increases
exponentially if users are not informed which attributes to use. Specifically, to support
d-out-of -m, the inline AB-GKM scheme may require creating a matrix of dimension up to
O(nmd) where n is the number of users in the group. Thus, the inline AB-GKM scheme is
not suitable for threshold policies. In this section, we construct a new scheme, threshold
AB-GKM, which overcomes this shortcoming.

An initial construction to enforce threshold policies is to associate each user with a random
d− 1 degree polynomial, q(x), with the restriction that each polynomial has the same value
at x = 0 and q(0) = k, where k is the symmetric group key. For each attribute users
have, they are given a secret value. The secret values given to a user are tied to its random
polynomial q(x). A user having d or more secrets can perform a Lagrange interpolation
to obtain q(x) and thus the symmetric group key k = q(0). Since the secrets are tied to
random polynomials, multiple users are unable to combine their secrets in any way that
makes possible collusion attacks. However, revocation is difficult in this simple approach
and requires re-issuing all the secrets again.

Our approach to address the revocation problem is to use a layer of indirection between
the secrets given to users and the random polynomials such that revocations do not re-
quire re-issuing all the secrets again. We use a modified ACV-BGKM construction as the
indirection layer. We cannot directly use the ACV-BGKM construction since, multiple in-
stances of ACV-BGKM allow collusion attacks in which colluding users can recover the
group key which they cannot obtain individually. We first show the details of the modi-
fied ACV-BGKM scheme and then present the threshold AB-GKM which uses the modified
ACV-BGKM scheme and Shamir’s secret sharing scheme.

TRANSACTIONS ON DATA PRIVACY 7 (2014)

320 Mohamed Nabeel, Elisa Bertino

5.1 Modified ACV-BGKM Scheme

The modified ACV-BGKM works under similar conditions as ACV-BGKM, but instead of
giving the same key k to all the users, the KeyDer algorithm gives each Usri a different key
ki when the public information tuple PI is combined with their unique secret si.
The algorithms are executed with a trusted key server Svr and a group of users Usri,
i = 1, 2, · · · , n with the attribute universe A = {attr1, attr2, · · · , attrm}. The construction is
as follows:
Setup(ℓ): Svr initializes the following parameters: an ℓ-bit prime number q, the maximum
group size N (≥ n), a cryptographic hash function H(·) : {0, 1}∗ → Fq , where Fq is a finite
field with q elements, the key space KS = Fq , the secret space SS = {0, 1}ℓ and the set of
issued secret tuples S = ∅. Each Usri is given a unique secret index 1 ≤ i ≤ N .
SecGen(): The Svr chooses the secret si ∈ SS uniformly at random for Usri such that si is
unique among all the users, adds the secret tuple 〈i, si〉 to S, and outputs 〈i, si〉.
KeyGen(S, K): Given the set of secret tuples S = {〈i, si〉|1 ≤ i ≤ N} and a random set of
keys K = {ki|1 ≤ i ≤ N}, it outputs the public information tuple PI which allows each
Usri to derive the key ki using its secret si. The details follow.
Svr chooses N random bit strings z1, z2, . . . , zN ∈ {0, 1}ℓ and creates an N × 2N Fq-matrix
A where for a given row i, 1 ≤ i ≤ N

ai,j =

{
1 if i = j

0 if 1 ≤ j ≤ N and i 6= j

H(si||zj) if N < j ≤ 2N

Like in the ACV-BGKM scheme, Svr computes the null space of A with a set of its N basis
vectors, and selects a vector Y as one of the basis vectors. Svr constructs an 2N -dimensional
Fq-vector

ACV = (
N∑

i=1

ki · e
T
i) + Y,

where ei is the ith standard basis vector of F2N
q . Notice that, unlike ACV-BGKM, a unique

key corresponding to Usri, ki ∈ K is embedded into each location corresponding to a valid
index i. Like, ACV-BGKM, Svr sets PI = 〈ACV, (z1, z2, . . . , zN)〉, and outputs PI via the
broadcast channel.
KeyDer(si, PI): Usri, using its secret si and public PI , derives the 2N -dimensional row
Fq-vector vi which corresponds to a row in A. Then Usri derives the specific key as ki =
vi · ACV .
Update(S, K’): If a user leaves or join the group, a new set of keys K ′ is selected. KeyGen(S,
K’) is invoked to generate the updated public information PI ′. Notice that the secrets
shared with existing users are not affected by the group change. It outputs the public PI ′.

5.1.1 Security of the Modified ACV-BGKM Scheme

In this section, we prove the security of the modified ACV-BGKM scheme. Specifically
we prove the soundness of the modified ACV-BGKM scheme. We will model the cryp-
tographic hash function H as a random oracle. We further assume that q = O(2ℓ) is a
sufficiently large prime power and N is relatively small. We first present two lemmas with
their proofs and then prove that the modified ACV-BGKM scheme is indeed sound.

TRANSACTIONS ON DATA PRIVACY 7 (2014)

Attribute Based Group Key Management 321

The following lemmas are useful for proving the security of the modified ACV-BGKM.
Lemma 5 says that in a vector space V over a large finite field, the probability that a ran-
domly chosen vector is in a pre-selected subspace, strictly smaller than V , is very small.
Lemma 6, which uses Lemma 5, is used to prove the soundness of the modified ACV-
BGKM scheme.

Lemma 5. Let F = Fq be a finite field of q elements. Let V be an n-dimensional F -vector space,
and W be an m-dimensional F -subspace of V , where m ≤ n. Let v be an F -vector uniformly
randomly chosen from V . Then the probability that v ∈ W is 1/qn−m.

Proof. The proof is straightforward. We show it here for completeness. Let {v1, v2, . . . , vm}
be a basis of W . Then it can be extended to a basis of V by adding another n − m basis
vector vm+1, . . . , vn. Any vector v ∈ V can be written as

v = α1 · v1 + . . .+ αn · vn, αi ∈ F, 1 ≤ i ≤ n,

and v ∈ W if and only if αi = 0 for m + 1 ≤ i ≤ n. When v is uniformly randomly chosen
from V , it follows

Pr[v ∈ W] = 1/qn−m.

Lemma 6. Let F = Fq be a finite field of q elements. Let vi = eTi +(0, . . . , 0, v
(n+1)
i , . . . , v

(2n)
i), ei

is the ith standard basis vector of F2n
q , i = 1, . . . ,m, and 1 ≤ m ≤ n, be 2n-dimensional F -vectors.

Let v = eT + (0, . . . , 0, v(n+1), . . . , v(2n)) be a 2n-dimensional F -vector with v(j), j ≥ n + 1
chosen independently and uniformly at random from F and e from the 2n-dimensional standard
basis vectors with the position of the non-zero element ≤ m. Then the probability that v is linearly
dependent of {vi, 1 ≤ i ≤ m} is no more than 1/qn−m.

Proof. Let wi = (v
(n+1)
i , . . . , v

(2n)
i), 1 ≤ i ≤ m, w = (v(n+1), . . . , v(2n)), and ui = (v

(1)
i , . . . , v

(n)
i).

All wi span an F -subspace W whose dimension is at most m in an n-dimensional F -vector
space. w and u are uniformly randomly chosen n-dimensional F -vectors. By Lemma 5,

Pr[w ∈ W] = 1/qn−dim(W) ≤ 1/qn−m.

It follows that

Pr[v is linearly dependent of {vi : 1 ≤ i ≤ m}]

= Pr[v = α1 · v1 + . . .+ αm · vm for some αi ∈ F]

= Pr

[
m∑

i=1

αi · ui = eT ∧ w =

m∑

i=1

αi · vi for some αi ∈ F

]

= Pr

[
m∑

i=1

αi · ui = eT

]
· Pr[w ∈ W]

≤ 1/qn · 1/qn−m = 1/q2n−m.

Definition 7 (Soundness of the modified ACV-BGKM scheme). Let Usri be an individual
without a valid secret and Usrj with a valid secret sj , 1 ≤ i, j ≤ N . The modified ACV-
BGKM is sound if

TRANSACTIONS ON DATA PRIVACY 7 (2014)

322 Mohamed Nabeel, Elisa Bertino

• The probability that Usri can obtain the correct key ki by substituting the secret with
a value val that is not one of the valid secrets and then running the key derivation
algorithm KeyDer is negligible.

• The probability that Usrj can obtain a correct key kr, where j 6= r and 1 ≤ r ≤ N , by
substituting sj and then running the key derivation algorithm KeyDer is negligible.

Theorem 8. The modified ACV-BGKM scheme is sound.

Proof. Let PI = 〈ACV, (z1, . . . , zN)〉 be the public information broadcast from Svr.
Case 1: Usri does not have a valid secret and tries to derive ki.

Let Y be a vector orthogonal to the access control matrix A.
Let

{vi, 1 ≤ i ≤ N}

be a basis of the nullspace of Y .
Let

v = eT + (0, . . . , 0, v(N+1), . . . , v(2N)),

where

v(i+N) = H(val||zi), 1 ≤ i ≤ N.

Usri can derive the key using v by running the KeyDer algorithm if and only if v is linearly
dependent from vi, 1 ≤ i ≤ N . When val is not a valid secret and H is a random oracle, v
is indistinguishable from a vector whose first N entries are from eT and the rest of the N
entries are independently and uniformly chosen from Fq. By Lemma 6, the probability that
v is linearly dependent from {vi, 1 ≤ i ≤ N} is no more than 1/q2N−N = 1/qN , which is
negligible. This proves that the modified ACV-BGKM scheme is sound in case 1.
Case 2: Usrj has a valid secret sj and tries to derive kr, where r 6= j and 1 ≤ r ≤ N .
Since Usrj has a valid secret sj , it can construct the jth row of A as follows:

vj = eTj + (0, . . . , 0, v
(N+1)
j , . . . , v

(2N)
j),

where

v
(i+N)
j = H(sj ||zi), 1 ≤ i ≤ N.

Usrj can obtain the key kj using vj :

kj = ACV · vj .

In order to obtain the key kr, Usrj needs to compute ACV · vr where vr is defined as
follows.

vr = eTr + (0, . . . , 0, v(N+1)
r , . . . , v(2N)

r),

where

v(i+N)
r = H(val||zi), 1 ≤ i ≤ N.

TRANSACTIONS ON DATA PRIVACY 7 (2014)

Attribute Based Group Key Management 323

By construction, vr is linearly independent from vj . When val is not a valid secret and H is
a random oracle, vr is indistinguishable from a vector whose first N entries are from eTr and
the rest of the N entries are independently and uniformly chosen from Fq. Thus, knowing
vj does not provide an advantage for Usrj to compute vr. Therefore, the probability of
deriving kr by running the KeyDer algorithm remains the same negligible value 1/qN as
in case 1. This proves that the modified ACV-BGKM scheme is sound in case 2.

5.2 Our Construction

Now we provide our construction of the threshold AB-GKM scheme which utilizes the
modified ACV-BGKM scheme.
Recall that in this scheme, we wish to allow a user to derive the symmetric group key k if

the user possesses at least d attributes out of m. For each user Usri we associate a random
d− 1 degree polynomial qi(x) with the restriction that each polynomial has the same value
k, the symmetric group key, at x = 0, that is, qi(0) = k. We associate a random secret value
with each user attribute. For each attribute attri, we generate a public information tuple
(PIi) using the modified ACV-BGKM scheme with the restriction that the temporary key
that each Usrj derives is tied to its random polynomial qj(x), that is qj(i) = ki. Notice
that each user obtains different temporary keys from the same PI . If a user can derive
d temporary keys corresponding to d attributes, it can compute its random function q(x)
and obtain the group symmetric key k. Notice that, since the temporary keys are tied to
a unique polynomial, multiple users are unable to collude and combine their temporary
keys in order to obtain the symmetric group key which they are not allowed to obtain
individually. Thus, our construction prevents collusion attacks.
A detailed description of our threshold AB-GKM scheme follows.

Setup(ℓ) Svr initializes the parameters of the underlying modified ACV-BGKM scheme: the
ℓ-bit prime number q, the maximum group size N (≥ n), the cryptographic hash function
H , the key space KS , the secret space SS , the set of issued secrets S, the user-attribute
matrix UA and the universe of attributes A = {attr1, attr2, · · · , attrm}.
Svr defines the Lagrange coefficient ∆i,Q for i ∈ Fq and a set, Q of elements in Fq:

∆i,Q(x) =
∏

j∈Q,j 6=i

x− j

i− j
.

SecGen(γi) For each attribute attrj ∈ γi, where γi ⊂ A and γi is the attribute set of Usri,
Svr invokes SecGen() of the modified ACV-BGKM scheme in order to obtain the random
secret si,j . It returns βi, the set of secrets for all the attributes in γi.
KeyGen(α, d) Taking α, a subset of attributes from the attribute universe A and d, the
threshold value, for each user Usri, Svr assigns a random degree d − 1 polynomial qi(x)
with qi(0) set to the group symmetric key k. For each attribute attrj in the set of attributes
α (α ⊂ A and |α| ≥ d), it selects the set of secrets corresponding to attrj , Sj and invokes
KeyGen(Sj, {q1(j), q2(j), · · · , qN (j)}) of the modified ACV-BGKM scheme to obtain PIj ,
the public information tuple for attrj . It outputs the private group key k and the set of
public information tuples PI = {PIj | for each attrj ∈ α}.
KeyDer(βi,PI) Using the set of d secrets βi = {si,j|1 ≤ j ≤ N} for the d attributes attrj ,
1 ≤ j ≤ N , and the corresponding d public information tuples PIj ∈ PI, 1 ≤ j ≤ N , it
derives the group symmetric key k as follows.

TRANSACTIONS ON DATA PRIVACY 7 (2014)

324 Mohamed Nabeel, Elisa Bertino

First, it derives the temporary key kj for each attribute attrj using the underlying modified
ACV-BGKM scheme as KeyDer(si,j , PIj). Then, using the set of d points Qi = {(j, kj)|1 ≤
j ≤ N}, it computes qi(x) as follows:

∆j,Q
i
(x) =

∏

j∈Q
i
,j 6=i

x− j

i− j

qi(x) =
∑

j∈Q
i

kj∆j,Q
i
(x).

It outputs the group key k = qi(0).
Update(α, d) The Update algorithm is invoked whenever α, the attribute set considered, or
d, the threshold value, or the group members satisfying the threshold policy change. The
group membership changes due to similar reasons mentioned under the Update algorithm
in Section 4.1. In such a situation, a new symmetric group key k′ is selected and KeyGen(α,
d) is invoked to generate the set of new public information tuples PI’. Notice that the secrets
shared with existing users are not affected by the group change.

5.3 Security

If an unbounded adversary can break our threshold AB-GKM scheme in the security model
for AB-GKM, a simulator can be constructed to break the modified ACV-BGKM scheme.
We give a high-level detail of the reduction based proof below.

Theorem 9. If an adversary can break the threshold AB-GKM scheme in the security model for
AB-GKM, then a simulator can be constructed to break the modified ACV-BGKM scheme with
non-negligible advantage 1/2 + ǫ where ǫ = 1/qN .

Proof. Suppose that an unbounded adversary A having a set of d− 1 attributes α can break
our scheme in the AB-GKM security model with advantage ǫ. Note that this is the most
powerful adversary as it possesses d− 1 attributes out of the d attributes required to derive
the group key. We build a simulator B that can derive the key kd from PId corresponding
to attrd 6∈ α with the same advantage ǫ using A as subroutine. In other words, we build a
simulator to break the modified ACV-BGKM scheme.
The intuition behind our proof is that, by construction, the modified ACV-BGKM in-

stances corresponding to the attributes are independent. In other words, a user who can
access the key for one attribute only has a negligible advantage in obtaining the key for
another attribute using the known attributes due to the key indistinguishability and inde-
pendence properties of the ACV-BGKM scheme.
The challenger creates an instance of the modified ACV-BGKM scheme for each of the
n attributes. A obtains secrets {si|i = 1, 2, · · · , d − 1} for the attributes α it has from B.
The challenger constructs the public information tuples {PIi|i = 1, 2, · · · , d}, each having
a random key ki and gives them to B. B in turn gives them to A. Notice that the view of
A is identical to that of A interacting directly with an instance of the threshold AB-GKM
scheme, even though it is simulated. The random keys correspond to a random degree d−1
polynomial q(x). Notice that A possesses secrets to obtain the random keys ki, 1 ≤ i ≤ d−1
and can derive the secret key kd with an advantage ǫ from the public information tuples.
We omit the details of the security game defined in the previous section. As mentioned

in the game, A may execute the threshold AB-GKM scheme for different sets of attributes

TRANSACTIONS ON DATA PRIVACY 7 (2014)

Attribute Based Group Key Management 325

that do not satisfy the challenge threshold policy and do not include attrd. As mentioned
earlier, A does not gain any additional advantage by such executions.
After executing the phase 1 of the security game as many times, A outputs k, which is

equal to q(0). This allows B to fully determine q(x) as it now has d points and derive the
key kd = q(d). In other words, it allows B to break the modified ACV-BGKM scheme to
recover the intermediate key kd from the public information tuple PId without the knowl-
edge of the secret sd. In Section 5.1.1, we show that the probability of breaking the modified
ACV-BGKM scheme is a negligible 1/qN where q is the ℓ bit prime number and N is the
maximum number of users. Therefore, it follows that ǫ must be negligible.

5.4 Performance

We now discuss the efficiency of the threshold AB-GKM with respect to computational
costs and required bandwidth for rekeying.

For any Usri in the group deriving the shared group key requires:
∑d

i=1 Ni hashing oper-
ations (evaluations of H(·)), where Ni is the maximum number of users having attri; and
d inner product computations vi · ACVi of two (2Ni)-dimensional Fq-vectors and the La-
grange interpolation O(m log2 m), where m = |A|. Therefore, the overall computational
complexity is O(dn +m log2 m). Notice that the inner product computations are indepen-
dent and can be parallelized to improve performance.
For every rekeying phase, for each attri, Svr needs to form a matrix Ai by performing N2

i

hashing operations, and then solve a linear system of size Ni × (2Ni). Solving the linear
system is the most costly operation as Ni gets large for computation on Svr; it requires
O(

∑m

i=1 n
3) field operations in Fq.

When a rekeying process takes place, the new information to be broadcast is PIi =
〈ACVi, (z1, . . . , zNi

)〉, i = 1, 2, · · · ,m, where ACVi is a vector consisting of (2Ni) elements
in Fq, and without loss of generality we can pick zi to be strings with a fixed length. This
gives an overall communication complexity O(

∑m

i=1 n).
For a group of maximum N users, in the worst case, the threshold AB-GKM only requires

each Usr to store (O(m)) secrets, one secret per attribute that Usr possesses and Svr to keep
track of all O(nm) secrets.

6 Scheme 3: Access Tree AB-GKM

Before we present the third scheme, called access tree AB-GKM, we provide the rationale
behind all three schemes. In the inline AB-GKM scheme, the policy P is embedded into
the BGKM scheme itself. As discussed in Section 5, while this approach works for many
different types of policies and is quite efficient, such an approach is not able to efficiently
support threshold access control policies. Scheme 2, the threshold AB-GKM, on the other
hand, is able to efficiently support threshold policies, but it is unable to support other poli-
cies. In order to support more expressive policies, including threshold policies, we extend
the threshold AB-GKM scheme to propose the access tree AB-GKM scheme. The access tree
AB-GKM is the most expressive AB-GKM scheme out of the three schemes and can repre-
sent any policies supported by inline and threshold AB-GKM schemes. Like threshold
AB-GKM, instead of embedding P in the BGKM scheme, we construct a separate BGKM
instance for each attribute in access tree AB-GKM. Then, we embed P in an access structure
T . T is a tree with the internal nodes representing threshold gates and the leaves represent-
ing attributes. The construction of T is similar to that of the approach by Goyal et al. [16].

TRANSACTIONS ON DATA PRIVACY 7 (2014)

326 Mohamed Nabeel, Elisa Bertino

Table 2: Access tree functions
Function Description

index(x) Returns the index of node x

parent(x) Returns the parent node of node x

attr(x) Returns the index of the attribute as-
sociated with a leaf node x

qx The polynomial assigned to node x

sat(Tx, α) Returns 1 if the set of attributes α

satisfies Tx, the subtree rooted at
node x, and 0 otherwise

However, unlike Goyal et al.’s approach, the goal of our construction is to derive the group
key for the users whose attributes satisfy the access structure T .

6.1 Access Tree

Let T be a tree representing an access structure. Each internal node of the tree represents a
threshold gate. A threshold gate is described by its child nodes and a threshold value. If nx

is the number of children of a node x and tx is its threshold value, then 0 < tx ≤ nx. Notice
that when tx = 1, the threshold gate is an OR gate and when tx = nx, it is an AND gate.
Each leaf node x of the tree is described by an attribute, a corresponding BGKM instance
and a threshold value tx = 1. The children of each node x are indexed from 1 to nx.
We define the functions in Table 2 in order to construct our scheme. All the functions

except sat are straightforward to implement. A brief description of sat follows:
The function sat(Tx, α) works as a recursive function. If x is a leaf node, it returns 1,

provided that the attribute associated with x is in the set of attributes α and 0 otherwise. If
x is an internal node, if at least tx child nodes of x return 1, then sat(Tx, α) returns 1 and 0
otherwise.

6.2 Our Construction

The access tree AB-GKM scheme consists of five algorithms:
Setup(ℓ): Svr initializes the parameters of the underlying modified ACV-BGKM scheme:
the prime number q, the maximum group size N (≥ n), the cryptographic hash function H ,
the key space KS , the secret space SS , the set of issued secrets S, the user-attribute matrix
UA and the universe of attributes A = {attr1, attr2, · · · , attrm}.
Svr defines the Lagrange coefficient ∆i,Q for i ∈ Fq and a set, Q of elements in Fq:

∆i,Q(x) =
∏

j∈Q,j 6=i

x− j

i− j
.

SecGen(γi): Taking γi, the attribute set of Usri, as input, for each attribute attrj ∈ γi, where
γi ⊂ A, Svr invokes SecGen() of the modified ACV-BGKM scheme to obtain the random
secret si,j . It returns βi, the set of secrets for all the attributes in γi.
KeyGen(P): Svr transforms the policy P into an access tree T . The algorithm outputs the
public information which a user can use to derive the group key if and only if the user’s
attributes satisfy the access tree T built for the policy P. The algorithm constructs the public
information as follows.

TRANSACTIONS ON DATA PRIVACY 7 (2014)

Attribute Based Group Key Management 327

For each user Usri having the intermediate set of keys Ki = {ki,j |1 ≤ j ≤ m}, where ki,j
represents the intermediate key for Usri and attrj , the following construction is performed.
For each attribute attri, there is a leaf node in T . The construction of the tree is performed
top-down. Each node x in the tree is assigned a polynomial qx. The degree dx of the
polynomial qx is set to tx − 1, that is, one less than the threshold value of the node. For
the root node r, qr(0) is set to the group key k and dr other points are chosen uniformly
at random so that qr is a unique polynomial of degree dr fully defined through Lagrange
interpolation. For any other node x, qx(0) is set to qparent(x)(index(x)) and dx other points
are chosen uniformly at random to uniquely define qx. For each leaf node x corresponding
to a unique attribute attrj , qx(0) is set to qparent(x)(1) and ki,j = qx(0).
At the end of the above computation, we have all the sets of intermediate keys K =
{Ki|Usri, 1 ≤ i ≤ N}. For each leaf node x, the modified BGKM algorithm KeyGen(Sx,
Kx), where Sx is the set of secrets corresponding to the attribute associated with the node x
and Kx = {ki,j |1 ≤ i ≤ N, attrj}, j = attr(x), is invoked to generate public information tu-
ple PIx. We denote the set of all the public information tuples PI = {PIj |attrj , 1 ≤ j ≤ m}.
KeyDer(βi, PI): Given βi, a set of secret values corresponding to the attributes of Usri, and
the set of public information tuples PI, it outputs the group key k.
The key derivation is a recursive procedure that takes βi and PI to derive k bottom-up.

Note that a user can obtain the key if and only if its attributes satisfy the access tree T , i.e.,
sat(Tr, βi) = 1. The high-level description of the key derivation is as follows.
For each leaf node x corresponding to the attribute with the user’s secret value sx ∈ βi, the

user derives the intermediate key kx using the underlying modified BGKM scheme Key-
Der(sx, P Ix). Using Lagrange interpolation, the user recursively derives the intermediate
key kx for each internal ancestor node x until the root node r is reached and kr = k. Notice
that since intermediate keys are tied to unique polynomials, users cannot collude to derive
the group key k if they are unable to derive it individually. A detailed description follows.
If x is a leaf node, it returns an empty value ⊥ if attr(x) 6∈ βi, otherwise it returns the

key kx = vx · ACVx, where vx is the key derivation vector corresponding to the attribute
attrattr(x) and ACVx the access control vector in PIx.
If x is an internal node, it returns an empty value ⊥ if the number of children nodes having

a non-empty key is less than tx, otherwise it returns kx as follows:
Let the set Qx contain the indices of tx children nodes having non-empty keys {ki|i ∈ Qx}.

∆i,Q
x
(y) =

∏

i∈Q
x
,i6=j

y − i

j − i

qx(y) =
∑

i∈Q
x

ki∆i,Q
x
(y)

kx = qx(0).

The above computation is performed recursively until the root node is reached. If Usri
satisfies T , Usri gets k = qr(0), where r is the root node. Otherwise, Usri gets an empty
value ⊥.
Update(P) The group members change due to the similar reasons mentioned for the Up-
date algorithm in Section 4.1. In such a situation, a new symmetric group key k′ is selected
and KeyGen(P) is invoked to generate the set of new public information tuples PI’. Like
the previous two schemes, the secrets shared with existing users are not affected by the
group change.

TRANSACTIONS ON DATA PRIVACY 7 (2014)

328 Mohamed Nabeel, Elisa Bertino

6.3 Security

If an unbounded adversary can break our access tree AB-GKM scheme in the security
model for AB-GKM, a simulator can be constructed to break the modified ACV-BGKM
scheme. Like the previous scheme, we only give a high-level detail of the reduction based
proof as the proof is very similar.

Theorem 10. If an adversary can break the access tree AB-GKM scheme in the security model
for AB-GKM, then a simulator can be constructed to break the modified ACV-BGKM scheme with
non-negligible advantage 1/2 + ǫ where ǫ = 1/qN .

Proof. Suppose that an unbounded adversary A using a set of attributes α as the challenge
set that does not satisfy the access tree T breaks our scheme in the AB-GKM security model
with advantage at most ǫ. Let the root node of T be r and the group key k = qr(0). Notice
that since A does not satisfy T and qr(x) a tr-out-of-nr threshold scheme, which represents
any type of threshold node, A satisfies no more than tr − 1 subtrees rooted at children of r
out of the nr subtrees. By inference, it is easy to see that A does not satisfy at least one leaf
node.
The challenger constructs modified ACV-BGKM instances for each of the attributes and

gives them to B. A obtains secrets for each of the attributes in α. B sends the public infor-
mation tuples and the access tree T to A. Notice that A can easily derive the keys for any
attribute in α, but it can derive the keys for any other attribute only with an advantage of
ǫ. According to the assumption, A does not satisfy at least one attribute required to satisfy
T . Let that attribute be attrx. A derives kx from PIx corresponding to one such unsatisfied
leaf node with advantage ǫ. Therefore, A derives the group key k with an advantage of at
most ǫ.
Like the proof in Section 5, A derives the group key k, after executing the phase 1 of the

security game as many times and give k to B. Now, B works downwards T to recover
the keys for nodes originally unsatisfied by A using Lagrange interpolation. For example,
using k and tr − 1, B obtains the key ktr for the tthr child node of r. Finally, B obtains the
key kx for an unsatisfied leaf node x corresponding to attrx. In other words, it allows B to
break the modified ACV-BGKM scheme to recover the key kx from the public information
tuple PIx without the knowledge of the secret sx. As mentioned earlier, the probability
of breaking the modified ACV-BGKM scheme by applying the KeyDer algorithm is a neg-
ligible 1/qN where q is the ℓ bit prime number and N is the maximum number of users.
Therefore, it follows that ǫ must be negligible.

7 Example Application

Among other applications, fine-grained access control in a group setting using broadcast
encryption is an important application of the AB-GKM schemes. We illustrate the access-
tree AB-GKM scheme using a healthcare scenario [27, 31]. We refer the reader to our techni-
cal report [23] for more examples. A hospital (Svr) supports fine-grained access control on
electronic health records (EHRs) [38, 13] by encrypting and making the encrypted records
available to hospital employees (Usrs). Typical hospital users include employees playing
different roles such as receptionist, cashier, doctor, nurse, pharmacist, system administra-
tor and non-employees such as patients. An EHR document is divided into subdocuments
including BillingInfo, ContactInfo, Medication, PhysicalExam, LabReports and so on. In
accordance with regulations such as health insurance portability and accountability act

TRANSACTIONS ON DATA PRIVACY 7 (2014)

Attribute Based Group Key Management 329

(HIPAA), the hospital policies specify which users can access which subdocument(s). A
cashier, for example, need not have access to data in EHRs except for the BillingInfo, while
a doctor or a nurse need not have access to BillingInfo. These policies can be based on
the content of EHRs itself. An example of such policies is that “information about a pa-
tient with cancer can only be accessed by the primary doctor of the patient”. In addition,
patients define their own privacy policies to protect their EHRs. For example, a patient’s
policy may specify that “only the doctors and nurses who support her insurance plan can
view her EHR”.
In order to support content-based access control, the hospital maintains some associations

among users and data. Table 3 shows the insurance plans supported by each doctor and
nurse, identified by the pseudonym “Employee ID”.

Table 3: Insurance Plans Supported by Doctors/Nurses

EmployeeID Role/level Insurance Plan(s)

emp
1

doctor MedB, ACME

emp
2

doctor ACME
emp

3
nurse/junior ACME

emp
4

nurse/senior MedA

emp
5

nurse/senior MedC
emp

6
doctor MedA

emp
7

doctor MedB, ACME

emp
8

nurse/senior MedA
emp

9
nurse/senior MedA, MedB, ACME

The hospital runs Setup algorithm to initialize system parameters and issues secrets to
employees by running the SecGen algorithm. Table 4 shows the content of the user at-
tribute matrix UA that the hospital maintains. (Small numbers are used for illustrative
purposes.)

Table 4: User Attribute Matrix
Emp ID doctor nurse senior junior MedA MedB MedC ACME

emp1 100 ⊥ ⊥ ⊥ ⊥ 111 ⊥ 102

emp2 120 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 105

emp3 ⊥ 106 ⊥ 120 ⊥ ⊥ ⊥ 121

emp4 ⊥ 103 150 ⊥ 175 ⊥ ⊥ ⊥

emp5 ⊥ 133 151 ⊥ ⊥ ⊥ 161 ⊥

emp6 129 ⊥ ⊥ ⊥ 141 ⊥ ⊥ ⊥

emp7 119 ⊥ ⊥ ⊥ ⊥ 133 ⊥ 137

emp8 ⊥ 143 152 ⊥ 115 ⊥ ⊥ ⊥

emp9 ⊥ 109 156 ⊥ 117 119 ⊥ 124

Now we illustrate the use of the access tree AB-GKM scheme. Consider the following pol-
icy specification on the Medication subdocument of the EHR. “A senior nurse supporting
at least two insurance plans can access Medication of any patient”. In order to implement
this access control policy, we need to consider attributes role, level and insurance plan. The
access control policy looks as follows:
P = (“role = nurse” ∧ “level = senior” ∧ “2-out-of-{MedA, MedB, MedC, ACME}”)
In addition to Table 5 containing the list of employees satisfying insurance plans, the hos-

pital maintains the list of employees satisfying the attributes nurse and senior as shown in
Table 6.
The above policy can be represented using an access tree with two internal nodes and six

leaf nodes. The root node is an AND gate and has three children. The first and second chil-

TRANSACTIONS ON DATA PRIVACY 7 (2014)

330 Mohamed Nabeel, Elisa Bertino

Table 5: List of employees satisfying each insurance plan

Attribute Employee IDs

MedA emp
4
, emp

6
, emp

8
, emp

9

MedB emp
1
, emp

7
, emp

9

MedC emp
5

ACME emp
1
, emp

2
, emp

3
, emp

7
, emp

9

Table 6: List of employees satisfying attributes

Attribute Employee IDs

nurse emp
3
, emp

4
, emp

5
, emp

8
, emp

9

senior emp
4
, emp

5
, emp

8
, emp

9

dren of the root node represent the attributes nurse and senior, respectively, and the third
child of the root node is a 2-out-of-4 threshold gate which has four children representing the
four insurance plans.
The hospital executes the KeyGen algorithm to generate six PI tuples and encrypts the

Medication subdocuments with the group symmetric key k:

PIMedA = 〈ACVMedA, (z1, z2, z3, z4)〉

PIMedB = 〈ACVMedB , (z5, z6, z7)〉

PIMedC = 〈ACVMedC , (z8)〉

PIACME = 〈ACVACME , (z9, z10, z11, z12, z13)〉

PInurse = 〈ACVnurse, (z14, z15, z16, z17, z18)〉

PIsenior = 〈ACVsenior , (z19, z20, z21, z22)〉

Expressive access control. Notice that only one employee, emp9, can derive the group key k
using KeyDer algorithm to decrypt Medication subdocuments.
Collusion resistance. Notice that emp4 supports MedA and emp5 supports MedC and both
of them are senior nurses. It may appear that these two employees can collude to derive
the group key k. Since, in this particular example, the access tree AB-GKM scheme asso-
ciates each user with two unique polynomials, one for the AND gate and another for the
threshold gate, none of them individually satisfies the access tree and KeyDer results in an
incorrect key.
Handling user dynamics. Assume that emp4 starts to support the insurance plan ACME
in addition to MedA. The hospital re-generates the public information by adding emp4

to the calculation of PIACME and associating a new group key k′. Now emp4 is able to
derive k′ using KeyDer as its attributes satisfy the access tree. Notice that the change in
the user attributes does not affect the secret information each existing employees have. A
similar approach is taken when one or more of these attributes are revoked from an existing
employee. It should be noted that, like the first two schemes, this scheme has the added
flexibility to support changes to the access tree by requiring only changes to the public
information.

TRANSACTIONS ON DATA PRIVACY 7 (2014)

Attribute Based Group Key Management 331

Table 7: Average Time for CP-ABE algorithms

Algorithm Time (ms)

Setup 34.395

Key generation 26.725
Encryption 24.453

Decryption 13.415

8 Experimental Results

In this section we provide experimental results for the underlying optimized ACV-BGKM
scheme used with all three AB-GKM schemes presented earlier. We compare our results
with CP-ABE scheme, which is used in other AB-GKM schemes, with comparable security
parameters.
The experiments were performed on a machine running GNU/Linux kernel version 2.6.32

with an Intel R© CoreTM 2 Duo CPU E8400 3.00GHz and 3.2 Gbytes memory. Only one
processor was used for computation. Our prototype system is implemented in C/C++.
We use V. Shoup’s NTL library [33] version 5.4.2 for finite field arithmetic, and SHA-1
and AES-128 implementations of OpenSSL [26] version 1.0.0d for cryptographic hashing
and symmetric key encryption. We use Bethencourt et. al.’s cpabe [4] library to gather
experimental results for CP-ABE. The cpabe library uses PBC library [21] for pairing based
cryptography.
We implemented the ACV-BGKM scheme with subset cover optimization. We utilized the

complete subset algorithm introduced by Naor et al. [25] as the subset cover. All finite field
arithmetic operations in ACV-BGKM scheme are performed in an 512-bit prime field. We
used comparable and efficient pairing parameters for CP-ABE. The size of the base finite
field is set to the 512-bit prime number
87807107996633125224377819847540498158068831994142082110286533992664756308802229
57078625179422662221423155858769582317459277713367317481324925129998224791
and the group order to the 160-bit number
730750818665451621361119245571504901405976559617.
Following the well-known security practice, we generate symmetric keys and use them

for encrypting documents. Then we encrypt such encryption keys with either the ACV-
BGKM generated symmetric keys or the CP-ABE generated public keys. Therefore, in the
experiments we measure the time to encrypt and decrypt the document encryption keys
only. For all the ACV-BGKM experiments, we assume that 5% of users have left the group
after executing the setup.
First we give experimental results for the most simplest case where a single attribute con-

dition is considered. Then we provide, experimental results for multiple attribute condi-
tions.
Table 7 shows the average time required to execute setup, key generation, encryption and

decryption algorithms of CP-ABE scheme for one attribute condition. It should be noted
that the time required for the above CP-ABE algorithms linearly increases with the number
of attributes as CP-ABE needs to perform similar amount of computation for each attribute.
Our previous work [24] provides detailed experimental results for the key generation, en-
cryption and decryption algorithms of ACV-BGKM with the subset cover optimization.
Figure 1 reports the average time required to execute the key generation algorithm of

ACV-BGKM and CP-ABE with different group sizes. In both ACV-BGKM and CP-ABE
the time increases linearly with the group size. However, ACV-BGKM is much more effi-

TRANSACTIONS ON DATA PRIVACY 7 (2014)

332 Mohamed Nabeel, Elisa Bertino

 0

 5

 10

 15

 20

 25

 30

 100 200 300 400 500 600 700 800 900 1000

T
im

e
(in

 s
ec

on
ds

)

Group Size

ACV-BGKM
CP-ABE

Figure 1: Average Key Generation Time for Different Group Sizes

cient as it does not involve any expensive pairing operations. It only uses efficient hashing
and binary operations over a finite field. Further, the subset cover technique applied to
ACV-BGKM reduces the computational complexity of the underlying scheme. Without the
subset cover optimization, ACV-BGKM has a non-linear computational complexity and be-
comes inefficient for large groups. It should also be noted that if the number of revoked
users are less than the setup value of 5%, ACV-BGKM scheme becomes even more efficient
as less shared secrets are utilized for key generation.

 0

 5

 10

 15

 20

 25

 30

 35

 100 200 300 400 500 600 700 800 900 1000

T
im

e
(in

 m
s)

Group Size

ACV-BGKM encryption
ACV-BGKM decryption
CP-ABE encryption
CP-ABE decryption

Figure 2: Average Encryption/Decryption Time for Different Group Sizes

Figure 2 reports the average time required to perform encryption and decryption in ACV-
BGKM and CP-ABE schemes for one attribute condition with different group sizes. The
decryption time of ACV-BGKM is taken as the time to derive the key as well as to de-
crypt the encryption key. The encryption and decryption times of CP-ABE remain constant
whereas the decryption time of ACV-BGKM increases linearly with the group size. As the

TRANSACTIONS ON DATA PRIVACY 7 (2014)

Attribute Based Group Key Management 333

group size increases, the key derivation algorithm of ACV-BGKM requires to spend more
time to build larger KEVs. The encryption time of ACV-BGKM is negligible and remains
constant as it involves an efficient symmetric encryption only. The average encryption time
of ACV-BGKM is 8.8 microseconds (as these times are very small, the line plotting them is
very close to zero in the graph in Figure 2 and thus overlaps with the x-axis). It should
be noted that if one caches the KEVs, the decryption time of ACV-BGKM also becomes
negligible as it involves only modular multiplications.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 3 4 5 6 7 8 9 10

T
im

e
(in

 m
s)

Numumber of Attribute Conditions

ACV-BGKM
CP-ABE

Figure 3: Average Key Generation Time for Varying Attribute Counts

Figure 3 reports the average time required to execute the key generation algorithm with
varying number of attribute conditions with the group size set to 1000. The time of both
techniques increases linearly with the number of attribute conditions. However, similar
to Figure 1, the ACV-BGKM key generation is much more efficient than the CP-ABE key
generation. This is due to the fact that, in ACV-BGKM key generation, only an additional
hashing operation is performed for each new attribute condition, whereas, in CP-ABE key
generation, additional paring operations are performed for each new attribute condition.

Figure 4 reports the average time required to execute the encryption/decryption algo-
rithms with varying number of attribute conditions with the group size set to 1000 and
the policy being the conjunction of all attribute conditions. Similar to the graph in Figure 2,
ACV-BGKM encryption is negligible and independent of the the number of attributes. This
is due to the fact that ACV-BGKM encryption is simply a symmetric key encryption opera-
tion. ACV-BGKM decryption time only increases slightly with the number of attribute con-
ditions. This is due to the fact that the KEVs for ACV-BGKM decryption remain the same
size and only an additional concatenation operation is performed for each new attribute
condition. Unlike ACV-BGKM encryption/decryption, a noticeable increase in encryp-
tion/decryption is observed for CP-ABE scheme with each additional attribute condition.
This is due to the fact that CP-ABE encryption/decryption operations need to perform
same amount of pairing operations for each new attribute.

As can be seen from the experiments, our constructs are more efficient in handling sce-
narios where the key generation algorithm has to be executed frequently due to changes in
user dynamics.

TRANSACTIONS ON DATA PRIVACY 7 (2014)

334 Mohamed Nabeel, Elisa Bertino

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 3 4 5 6 7 8 9 10

T
im

e
(in

 m
s)

Number of Attribute Conditions

ACV-BGKM encryption
ACV-BGKM decryption
CP-ABE encryption
CP-ABE decryption

Figure 4: Average Encryption/Decryption Time for Varying Attribute Counts

9 Conclusion

In this paper, we have presented three attribute based group key management (AB-GKM)
schemes: inline AB-GKM, threshold AB-GKM, and access tree AB-GKM. In all our schemes,
when the group changes, the rekeying operations do not affect the private information of
existing group members and thus our schemes eliminate the need of establishing private
communication channels. Our schemes provide the same advantage when the group mem-
bership policies change. We have also shown that our schemes are resistant to collusion at-
tacks. Our constructions are based on a provably secure ACV-BGKM scheme and Shamir’s
threshold scheme. Our experimental results show that our underlying construction is more
efficient than the popular CP-ABE scheme. As future work, we plan to combine proposed
schemes with hierarchical group key management schemes in order to further improve
performance. The group key management schemes proposed in our work can be adopted
to construct group agreement protocols [37]. We also plan to extend our work in this direc-
tion.

Acknowledgments

This material is based upon work supported by the Air Force Office of Scientific Research
under Awards No. FA9550-08-1- 0260, FA9550-09-0468 and FA9550-08-1-0265.

References

[1] G. Ateniese, J. Kirsch, and M. Blanton. Secret handshakes with dynamic and fuzzy matching.
In NDSS 2007.

[2] S. Berkovits. How to broadcast a secret. In EUROCRYPT 1991, pages 535–541.

[3] E. Bertino and E. Ferrari. Secure and selective dissemination of XML documents. ACM Trans.
Inf. Syst. Secur., 5(3):290–331, 2002.

TRANSACTIONS ON DATA PRIVACY 7 (2014)

Attribute Based Group Key Management 335

[4] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext policy attribute based encryption library.
http://http://acsc.cs.utexas.edu/cpabe/.

[5] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryption.
In SP 2007, pages 321–334.

[6] J. Birkett and D. Stebila. Predicate-based key exchange. In Information Security and Privacy,
volume 6168, pages 282–299. 2010.

[7] A. Boldyreva, V. Goyal, and V. Kumar. Identity-based encryption with efficient revocation. In
CCS 2008, pages 417–426, 2008.

[8] D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption with short cipher-
texts and private keys. In CRYPTO 2005, volume 3621, pages 258–275.

[9] E. Bresson, O. Chevassut, D. Pointcheval, and J.J. Quisquater. Provably authenticated group
diffie-hellman key exchange. In CCS 2001, pages 255–264.

[10] E. Bresson and M. Manulis. Securing group key exchange against strong corruptions. In ASI-
ACCS 2008, pages 249–260.

[11] H. Chu, L. Qiao, K. Nahrstedt, H. Wang, and R. Jain. A secure multicast protocol with copyright
protection. SIGCOMM Comput. Commun. Rev., 32(2):42–60, 2002.

[12] D. Dummit and R. Foote. Gaussian-Jordan elimination. In Abstract Algebra, page 404. Wiley, 2nd
edition, 1999.

[13] M. Eichelberg, T. Aden, J. Riesmeier, A. Dogac, and G. B. Laleci. A survey and analysis of
electronic healthcare record standards. ACM Comput. Surv., 37(4):277–315, 2005.

[14] A. Fiat and M. Naor. Broadcast encryption. In CRYPTO 1993, volume 773, pages 480–491.

[15] M. C. Gorantla, C. Boyd, and G. Nieto. Attribute-based authenticated key exchange. In ACISP
2010, pages 300–317.

[16] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained access
control of encrypted data. In CCS 2006, pages 89–98.

[17] Dani Halevy and Adi Shamir. The LSD broadcast encryption scheme. In CRYPTO 2002, pages
47–60.

[18] H. Harney and C. Muckenhirn. Group key management protocol specification. Technical report,
Network Working Group, United States, 1997.

[19] J. Katz and M. Yung. Scalable protocols for authenticated group key exchange. In CRYPTO
2003, volume 2729, pages 110–125. 2003.

[20] Ram Krishnan, Ravi Sandhu, Jianwei Niu, and William H. Winsborough. Foundations for
group-centric secure information sharing models. In SACMAT 2009, pages 115–124.

[21] B. Lynn. Pairing based cryptography library. http://crypto.stanford.edu/pbc/.

[22] G. Miklau and D. Suciu. Controlling access to published data using cryptography. In VLDB
2003, pages 898–909.

[23] M. Nabeel and E. Bertino. Attribute based group key management. Technical Report CERIAS
TR 2010, Purdue University, 2010.

[24] M. Nabeel, N. Shang, and E. Bertino. Privacy preserving policy based content sharing in public
clouds. IEEE Trans. on Know. and Data Eng., 2012.

[25] Dalit Naor, Moni Naor, and Jeffrey B. Lotspiech. Revocation and tracing schemes for stateless
receivers. In CRYPTO 2001, pages 41–62.

[26] OpenSSL the open source toolkit for SSL/TLS. http://www.openssl.org/.

[27] M. Pirretti, P. Traynor, P. McDaniel, and B. Waters. Secure attribute-based systems. In CCS 2006,
pages 99–112.

[28] A. Sahai, H. Seyalioglu, and B. Waters. Dynamic credentials and ciphertext delegation for

TRANSACTIONS ON DATA PRIVACY 7 (2014)

336 Mohamed Nabeel, Elisa Bertino

attribute-based encryption. In CRYPTO 2012, volume 7417, pages 199–217, 2012.

[29] A. Sahai and B. Waters. Fuzzy identity-based encryption. In EUROCRYPT 2005, pages 457–473.

[30] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[31] N. Shang, M. Nabeel, F. Paci, and E. Bertino. A privacy-preserving approach to policy-based
content dissemination. In ICDE 2010.

[32] A.T. Sherman and D.A. McGrew. Key establishment in large dynamic groups using one-way
function trees. IEEE Trans. on Soft. Eng., 29(5):444–458, May 2003.

[33] V. Shoup. NTL library for doing number theory. http://www.shoup.net/ntl/.

[34] Patrick Traynor, Kevin R. B. Butler, William Enck, and Patrick McDaniel. Realizing massive-
scale conditional access systems through attribute-based cryptosystems. In NDSS 2008.

[35] W.-G. Tzeng and Z.-J. Tzeng. Round-efficient conference key agreement protocols with provable
security. In ASIACRYPT 2000, ASIACRYPT ’00, pages 614–628.

[36] C.K. Wong and S.S. Lam. Keystone: a group key management service. In ICT 2000.

[37] Qianhong Wu, Yi Mu, Willy Susilo, Bo Qin, and Josep Domingo-Ferrer. Asymmetric group key
agreement. In EUROCRYPT, pages 153–170, 2009.

[38] XML in clinical research and healthcare industries. http://xml.coverpages.org/healthcare.html.

[39] X. Zou, Y. Dai, and E. Bertino. A practical and flexible key management mechanism for trusted
collaborative computing. INFOCOM 2008, pages 538–546.

TRANSACTIONS ON DATA PRIVACY 7 (2014)

