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Abstract. Multiclass classification problem is often solved by combing binary classifiers into ensem-
bles. While this is required for inherently binary classifiers, such as SVM, it also provides perfor-
mance advantages for other classifiers. In this paper, we address the problem of combining binary
classifiers into ensembles in the differentially private data publishing framework, where the data pri-
vacy is achieved by anonymization. The main idea of this paper is to counter the inevitable loss of
data quality due to anonymization of the data by building an ensemble of binary classifiers, and then
to use an error-correcting approach to obtain a class decision from this ensemble. We describe the
proposed algorithm and present the results of extensive experimentation on synthetic and UC Irvine
data. We find that while building ensembles after anonymization leads to no change in classifier ac-
curacy, preparing the data for ensembles prior to anonymization improves accuracy in most of the
cases.

1 Introduction

There has been a vast amount of digital information collected about individuals in the
recent years. Such personal data presents tremendous opportunities for data miners, but it
also poses a threat to individual’s privacy, as the raw information often contains sensitive
data [1]. It is thus important to develop techniques to allow for successful retrieval of
information without the breach of privacy. Differential privacy [8] is a a recent theoretical
privacy model that is currently used as the privacy standard. In a nutshell differential
privacy requires an output of a query of a database to be insensitive to the values of any
particular record. Differential privacy provides formal guarantees that do not depend on
an adversary’s computing power or background knowledge.

One of the most common tasks in data mining is training classifiers that can be used to
categorize new data. Training classifier on private data poses additional challenges as no
sensitive individual information should be transmitted to the classifier. Typically the fol-
lowing interaction protocol is assumed. The private data is stored in a database, which is
maintained by a curator. A client who wants to mine data does so by interacting with the
database through the curator.

Several models for differentially private data mining have recently been proposed [16, 12,
21, 22]. We can separate them in two approaches. In one, a classifier is build by a client
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by successive queries to a private database. The database curator adjusts the level of noise
added to the response to maintain a certain privacy of the data [16, 12, 22, 18]. A different
approach is taken in the field of differentially private data publishing [21, 15, 17, 4, 9, 23, 13].
Here the database curator anonymizes the data, or creates a synthetic data to satisfy the
privacy requirements, and then publishes it. The client may then build a classifier using
the published data.

The majority of the published work concentrates on binary classification. Multiclass prob-
lems, however, are abundant in the real world and thus multi-class classifiers are necessary
for the end users. For cases when the use of an inherently binary classifier (for example
support vector machine) is necessary, the problem may be resolved by employing various
ensemble techniques, particularly error-correcting output codes [7, 3]. In this paper we
study the problem of building a multiclass classifier from an ensemble of binary classifiers
in the differentially private data publishing setting, following the work of [21].

Anonymizing the data increases its privacy, but at the same time it misleads the learning of
a classifier. Error correcting techniques have been known to help recover from errors made
by classifiers in a multiclass classification setting. We investigate if such techniques are also
beneficial in differentially private framework. The main idea of this paper is therefore to
counter the inevitable loss of data quality due to anonymization of the data by building
an ensemble of binary classifiers, and then to use an error-correcting approach to obtain a
class decision from this ensemble.

We propose a variant of the approach where the ensembles are built by the database cura-
tor prior to publishing. We compare it to the baseline of the classical approach in which the
ensembles are build by the client on the published data. We investigate experimentally the
performance of these approaches, comparing them between each other. Our main finding
is that publishing datasets prepared for learning an ensemble influences the performance
and leads to an increase in classifier accuracy for about a half of the data sets considered,
however, using these ensemble methods after the data has been anonymized on average
does not affect the accuracy of the classifier. This effect is particularly notable for weaker
privacy guarantees.

The contribution of this paper is as follows: (1) we introduced a novel algorithm for an
ECOC-based classifier in a differentially private data publishing scenario; (2) we conducted
a series of experiments to compare the classifier’s performance to a baseline of a standard
ECOC-based classifier on a differentially private published dataset. We investigated the
dependence of the relative accuracy achieved for different ECOC parameters, such as, type
of ECOC and ECOC decoding method.

In section 2 we describe the differential privacy[8] framework and the previously pro-
posed [21] PPDP algorithm. In section 4 we present our model. In section 5 we describe the
datasets used in this study, and in section 6 we describe our experiments, giving the details
of implementation needed for replicability of our results. Finally, we conclude with section
7.

2 Privacy Preserving Methods

2.1 Differential Privacy

Differential privacy[8] is a recent privacy definition that guarantees the outcome of a cal-
culation to be insensitive to any particular record. The results of any computation are the
same with or without any particular record.
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DEFINITION. (ε-differential privacy). A randomized computation M provides differen-
tial privacy if for any datasets A and B with symmetric difference |A∆B| = 1 and for all
possible outcomes of a computation C ∈ Range(M)

Pr[M(A) ∈ C] ≤ Pr[M(B) ∈ C]× eε (1)

The parameter ε allows us to control the desired level of privacy. Lower values of ε indicate
stronger privacy guarantees.

The definition of differential privacy maintains a sequential composition property [19].
When successive differentially private computations are executed on a data set, the com-
pound computation is differentially private with ε set by the sum of individual privacy
values.

Differential privacy also maintains a parallel composition [19]. A set of computations
performed on disjoint data sets is differentially-private with ε set by the largest privacy
guarantee of its parts.

2.1.1 Exponential Mechanism

The Exponential Mechanism [20] is an ε-differentially private mechanism to select the best
among a discrete set of options, where “best” is defined by a score function s: dataset ×
R → <, where s(B, r) is interpreted as the quality of the result r, for the dataset B. The
Exponential Selection Mechanism, E selects a result r from a the distribution satisfying

Pr[E(B) = r] ∝ exp(ε× s(B, r)/2) (2)

2.1.2 Laplace Mechanism

The Laplace Mechanism [8] is an ε-differentially private mechanism to report a approximate
sums of bound functions over a dataset. If f is a function of records in the dataset adding
a Laplace noise with a parameter (1/ε) to it before publishing ensures its ε-differential pri-
vacy. In other words if for a function f: B → <d, an algorithm that adds noise drawn from
Lap(∆f/ε) to each of the d outputs, where ∆f is f’s sensitivity, is differentially private.

2.2 Differential Privacy Data Publishing

Most of differentially private data publishing methods concentrate on creating a noisy or
a synthetic set of data, that can be optimized to give a correct response under a certain
chosen set of queries [15],[23],[13],[4]. Some other methods group data according to some
entropy measure and publish their noisy counts [21]. Other techniques include creating
synthetic datasets similar to the dataset of interest, and adjusting the weight of each data
point according to its similarity to the original data [17].

2.2.1 DiffGen

Mohammed et al. [21] introduce a differentially private data publishing technique, in
which a data set can be published in a non-interactive manner. The details of this algo-
rithms can be seen in [21], we reproduce it here as a reference in algorithm 1. In this tech-
nique the data is initially generalized to the top of each attribute’s taxonomy (taxonomies
are provided for nominal attributes, and adaptively calculated for numerical attributes)
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Algorithm 1 DiffGen
Input: data, privacy ε,

number of specializations H
for each attribute do

generalize data to the top of respective taxonomy
calculate specialization score

end for
set partitionCounts to include all data
for i = 1 to H do

select attribute A according to score using Exponential Mechanism with ε/2H
specialize data on A
update score
update partitionCounts

end for
return partitionCounts + Lap(ε/2)

and one large partition containing all data is created. For each attribute a score is calcu-
lated. The score for specialization data on a certain attribute is calculated with a utility
function. We used a sum of highest class frequencies over all child values for the current
specialization of the attribute in the taxonomy tree. Other possibility could for example be
information gain.

At each round of specialization the best candidate for specialization is randomly selected
using the Exponential Mechanism described above in section 2.1.1. The probability of an
attribute being selected is exponential, with the exponent proportional to the product of
the attribute’s score computed above and the privacy budget. The data is specialized on
this attribute, partitioned with respect to the selected attribute’s child values, and the score
for the attribute is recalculated according to possibility of further specialization.

After the desired number of specialization rounds the data is separated among several
partitions, each with a specific attribute values. Before publishing the attributes values
and the partition counts, the partition counts are scrambled by the addition of a random
number drawn from a Laplace distribution. The centre of the Laplace distribution is pro-
portional to the remaining privacy budget.

2.2.2 Differentially Private Synthetic Dataset for Data Publishing

Hardt et al.[15] introduced a simple and practical algorithm for differentially private data
release, that based on Exponential Mechanism and Multiweights Scaling. The algorithm cre-
ates an synthetic data set which gives the same response to a set of supplied queries as the
real dataset.

For a desired number of approximation rounds, the algorithm selects a query out of
the pool using Exponential Selection and the difference between the real and the synthetic
datastets’ response to a query as the score function. Once chosen, the algorithm employs
Multiweights Scaling to adjust the synthetic counts to better approximate the response.
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3 Converting Multiclass to Binary

For many natural data sets the task of classification is complicated by the fact that data
consists of several different classes. Some algorithms, e.g. decision trees fit this case natu-
rally, assigning a different class label to different leaves. Some others, e.g. support vector
machines (SVM) are inherently binary.

Several binary classifiers can be combined together in various ways to produce a classifier
capable of assigning multiple labels. These methods, in essence, train multiple classifiers,
each on a subset of the data with certain class labels combined and certain left out to pro-
duce a binary problem.

Algorithm 2 extract sub data
Input: data, code for one classifier
subData← null
for i = 1 to number of classes do

if codei 6= 0 then
extractedData← data with class = i
if codei = +1 then
extractedData assigned class +1

else
extractedData assigned class −1

end if
add extractedData to subData

end if
end for
return subData

We define the subset of the data and how the class labels are combined in terms of a
table. The rows of the table represent each available class label, and the columns - binary
classifiers. The entries in the table can be +1,−1, or 0. The classes are, thus, represented by
unique sequences of +1,−1 and 0, known as the Error Correcting Output Codes.
To train this combined classifier, for each binary classifier, the appropriate subset of the

dataset is extracted and converted to binary: the data with class label marked 0 are not
used for training, and the data with class labels marked +1 and −1 are combined into a
positive and negative class label, respectively. The classifiers are then trained. To label an
example, each of the binary classifiers assigns a label. The resulting class label vector is then
compared to each of the classes encodings to find the closest match. The exact definition of
the ‘closest match‘ depends on the decoding scheme used.

Having a good code is essential for obtaining good results. Ideally, the code would entries
for the classes that are most dissimilar under the decoding method used as a metric.

Many different codes and decoding techniques exist. For a review see: [10, 3, 7]. Error
correcting codes can be divided into three categories: general binary (1-ALL, Dense Ran-
dom, Exhaustive), general ternary (1-1, Sparse Random) and problem-specific (ECOC-1,
DECOC). 1-ALL code discriminates each class against all others combined. 1-1 code dis-
criminates each class against each other class. Exhaustive code is the largest possible binary
code for a given size problem.

Dense Random code usually is a subset of the Exhaustive code; it is used as the Exhaustive
code quickly becomes too large for computation. Sparse Random code is a ternary random
code, with a certain probability to have a zero entry. Dense Random code would have this
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probability equal to zero. Random codes of different lengths can be created. It has been em-
pirically determined [3] that the optimal code length for a problem of n classes is 15 log2(n)
for a Sparse Random code and 10 log2(n) for a Dense Random code.
The details of problem-specific codes can be looked up in [10], typically the code starts

from a random code and then a validation set is used to optimize the performance of this
code on a particular dataset.

Decoding techniques are methods that allow us to calculate the distance between the re-
sult vector produced by the ensemble of classifiers and the codes for individual classes.
These techniques vary in how they can take into account the certainty of the classifier, how
they deal with the zero entries in the codes. For a good review of decoding techniques see
[10].

Algorithm 2 describes the algorithm for extracting a data set based on the code.

4 Differential Privacy with ECOC

Algorithm 3 ClientEns
Input: data, privacy ε, ECOC code
publish ε-private version of data
for i = 1 to number classifiers do
subData← data defined by column i of code
ensClsi ← train base classifier on subData

end for
return ensCls

Algorithm 4 CuratorEns
Input: data, privacy ε, ECOC code
n← number of non-disjoint subsets defined by code
for i = 1 to number of classifiers, m do
subData← data defined by column i of code
publish ε/n-private version of subData
ensClsi ← train base classifier on subData

end for
return ensCls

In the data-publishing scenario, such as, for example, [21], [15], [4], [13], [23] or [17] an
ensemble-based classifier can be used by the client as well as any other classifier, since
the sensitive data has already been anonymized by the curator of the database prior to
publishing. We refer to this scheme as the ClientEns. The data flow for this method is:

1. Curator:

(a) publish the differentially private version of the dataset

2. Client:

(a) create an ensemble of datasets according to the ECOC table
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(b) train individual binary classifiers

However, the curator could, potentially, create an ensemble of anonymized datasets on
which the client would then run hers individual binary classifiers. We will refer to this
scheme as the CuratorEns. The data flow would be the following:

1. Curator:

(a) create an ensemble of datasets according to the ECOC table
(b) publish the differentially private version of each dataset

2. Client:

(a) train individual binary classifiers

While the first method does not require any additional considerations as the data is al-
ready differentially private prior to the use of the ensemble classifiers, in the second method,
care must be taken to assure that when anonymizing each dataset subset in the ensemble
results in the differentially private data with the same privacy level.

4.1 Privacy Considerations for CuratorEns

1 2 3 4 5 6
A 1 0 1 0 1 0
B 1 0 0 1 0 1
C 0 1 1 0 0 1
D 0 1 0 1 1 0

Table 1: 1-1 code for 4 classes. Classifiers 1 and 2, 3 and 4, as well as 5 and 6 use mutually
disjoint subsets of data

In the most general case, for the code of length m, there will be m different datasets pub-
lished. Which data forms each of these subsets is defined by the ECOC table. The publi-
cation of each of these datasets needs to be ε-differentially private. For m datasets, then,
using the composability property [19] of differential privacy we see that all m datasets are
(m × ε)-differentially private. The privacy guarantee for the publication of each dataset
must then be tightened by a factor of 1/m in order to arrive to the original requirement of
ε-differentially private publication.
We should note, however, that for ternary codes certain classifiers might use non-overlapping

datasets. For example, as shown in table 4.1, classifiers 1 and 2, are using disjoint sets.
Same is true for classifiers 3 and 4, and 5 and 6. If publishing each dataset is ε-differentially
private, publishing all, according to the sequential composition property of differential pri-
vacy, is still ε-differentially private. The factor for tightening the privacy guarantee for each
dataset will depend on the number of non-disjoint subsets that remain. The exact scaling
factor will be code dependent and vary with its “sparseness”.

In the case of the 1-1 code we can calculate the number of non-disjoint subsets analytically.
The length of the code is m =

(
n
2

)
= n(n − 1)/2, there are exactly two datasets in each

columns, and there are n/2 columns that define disjoint datasets. The privacy guarantee
has to be tightened by n− 1 for the publication of each dataset. In the example of table 4.1
there are three pairs of mutually disjoint data subsets: 1 and 2, 3 and 4, 5 and 6.
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4.2 Privacy Guarantees

Let us know look at the algorithms 3 and 4 to ensure that they remain ε-differentially pri-
vate.

ClientEns algorithm is trivially ε-differentially private, as it builds upon already anonymized
and published data.

If there are n non-disjoint subsets defined by code, then the algorithm CuratorEns basically
reduces to the following step repeated m times, where m is total number of data subsets,
i.e. the number of classifiers.

publish ε/n-differentially private data subset defined by column i of code (3)

This implies that m − n times the (ε/n)-differentially private publishing procedure is run
on disjoint datasets, and using the sequential composition property theses m− n steps are
together as well (ε/n)-differentially private. The rest of the data subsets are non-disjoint,
and using the composability of differential privacy, the overall publishing of the datasets
will be (n× ε/n)-differentially private.

4.3 Running Times

In both algorithms, CuratorEns and ClientEns there are three main contributions to the run-
ning time: creation of the code, data anonymization, and training of classifiers. Let TECOC
be the time it takes to build a code of lengthm, Tanonymization be the time it takes to publish
the differentially private version of the full dataset, and Tcls be the time it takes to train a
classifier.

The ClientEns, then, will execute in

TClientEns = Tanonymization︸ ︷︷ ︸
curator

+TECOC +m× Tcls︸ ︷︷ ︸
client

(4)

The CuratorEns will execute in

TCuratorEns = TECOC +m× Tanonymization︸ ︷︷ ︸
curator

+m× Tcls︸ ︷︷ ︸
client

(5)

Here, for simplicity, we include the factor by which the anonymization of a datasets’ sub-
set defined by the code and training of a classifier thereon will be reduced, in the codes’
width parameter m.
As we can see, the running time difference between the two algorithm lies in the number

of data anonymization turn. While this is a significant increase in the running time, it only
be seen by the Curator and had to be done once per the publishing of the dataset.

5 Data

Use of ECOC as the core of our approach mandated the use of data with multiple classes.
The generalization procedure required a relatively large dataset. We thus chose four datasets
from the UC Irvine repository [11] that satisfied or partially satisfied these requirements:
ECOLI, GLASS, STATLOG and SHUTTLE.

ADULT dataset from UCI Machine Learning Repository [11] is a staple dataset used for
privacy preserving data mining. It contains census information for adults in the US, and is
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NAME ATTRIBUTES CLASSES SIZE

ECOLI 8 8 336
GLASS 9 6 214
STATLOG 19 7 2,310
SHUTTLE 9 7 43,500
ADULT-MARITAL-STATUS 15 7 48,842
ADULT-RELATIONSHIP 15 5 48,842
SYNTHETIC 3-10 3-10 300 - 100K

Table 2: Data sets employed in the study

used to predict income value to be more or less than 50k. The dataset contains 8 nominal
attributes and 7 numerical attributes. We could not use this data set in its traditional forms
as it did not comply with requirement of multiple classes set by ECOC. To get around
this problem we decided to chose a different nominal attribute as a class label. Out of
these eight only two had more than two values, and also yielded classifiers with some
predictive power (better than a classifier with all labels removed except the class label).
The two remaining possible class labels were: MARITAL STATUS, RELATIONSHIP, with 7
and 5 possible class values, respectively.
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Figure 1: Three different types of three-attribute classification problems with 6 classes. Each
shade represents a different class value.

We have also created five types of synthetic datasets, in the spirit of [2], described in
more detail below. Table 5 describes the properties of each dataset. Synthetic datasets
were created using a data generator. The datasets had between three and ten continuous
numeric attributes, and a class attribute, calculated according to one of the five geometrical
problems referred to as P1, P2, P3, P4 and P5, shown in figure 1. The number of classes
could be set from tree to ten, and the number of data samples per class was varied from 30
per class to 10,000 per class.

Assuming n is the number of classes, for P1, the span of attribute one was divided into n
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equal intervals, each corresponding to one class value. The values of other attributes did
dot influence the class value.

For P2, the span of each attribute was divided into n − 1 equal intervals, the intersection
of which defined a set of n − 1 hyper-cubes on the main diagonal of the data attributes
hyper-space. These n− 1 squares defined the first n− 1 classes, the remaining space in the
attribute hyper-space defined the last class value.

For P3, the attribute1-attribute2 plane was divided into n triangles, each corresponding to
a certain class value. The values of other attributes did not influence the class assignment.
Problem P3, is hard for a decision tree as the tree can not reproduce a diagonal line in the
attribute1-attribute2 plane, it approximates it by a ”staircase-like” division, resulting in a
very large, complicated tree.

For P4, similarly to P2, the spans of attribute1 was each divided into n− 1 equal intervals,
and the span of attribute2 in six equal intervals. For each interval on the attribute1 axis,
three non-adjacent squares defined one class. For adjacent intervals on the attribute1 axis,
the squares were offset by one, defining, overall, a check-board pattern. The rest of the
attribute space was attributed to remaining class. The values of other attributes did not
influence the class assignment. Note that we expect problem P4 to be hard as in essence it
reduces to an XOR, which is known to be hard for decision tree algorithms.

Finally, P5 was a generalization of P3 for an arbitrary number of attributes. In P5, for each
two attributes i and j, the attributei-attributej plane was divided into n triangles by n− 1
boundary line. n hyperplanes connecting these lines defined n class values. Like P3, P5 is
hard for a decision tree.

6 Experiments

We will now examine performance of ClientEns and CuratorEns algorithms in different con-
ditions with different datasets. Unless otherwise mentioned we used SVM classifier, 1-1
ECOC, and ELB decoding technique and ε = 3.0. We studied the dependence of the relative
performance of the two aforementioned algorithms on the type of the classifier, ECOC type,
decoding technique and privacy constraint. While in our experiments we used the data
publishing method proposed by [21], we would like to underline, that any differentially-
private data publishing method can be used in these two scenarios.

We implemented data publishing algorithm introduced in [21] to be compatible with
WEKA [14]. We also implemented the necessary error-correcting codes and decoding meth-
ods from the ECOC library provided in [10] to be compatible with the use of WEKA classi-
fiers. For SVM we used WEKA’s SMO algorithm and for decision trees the C4.5 algorithm.

6.1 Experimental Procedure

In our experiments we used 10-fold cross-validation (3-fold for ADULT) unless the test-
ing set was provided in the UC Irvine repository. To eliminate the effect of the non-
deterministic Exponential Mechanism of algorithm 1, we ran five different experimental trials
(ten for SHUTTLE and ADULT) on the same training set with different random seeds. For
each set of conditions, we thus calculated fifty values of accuracy (ten for SHUTTLE, thirty
for ADULT). The average of these values is shown as one experimental data point on figures
below, and their standard deviation is shown as error bars.
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6.2 Anonymization Algorithm

3 6 9 12 15 18

Specializations

0.60

0.64

0.68

0.72

0.76

0.80

0.84

A
cc

u
ra

cy

ADULT-MARITAL
ClientEns
CuratorEns

6 9 12 15 18 21

Specializations

0.24

0.30

0.36

0.42

0.48

0.54

0.60

A
cc

u
ra

cy

SYNTHETIC-P5
ClientEns
CuratorEns

Figure 2: Accuracy vs. the number of specializations for a) ADULT dataset with MARITAL
STATUS class label and for b) synthetic dataset for problem P5 with 8 classes 8 attributes
and 7000 pts per class. Using 1-1 code, ELB decoding technique, and ε = 3.0. Black circles -
ClientEns, red squares - CuratorEns

The left panel of Figure 2 presents a set of results for experiments for the ADULT dataset
with MARITAL STATUS used as a class label. The graph shows accuracy vs. the number
of specialization used in the anonimization procedure presented in algorithm 1 with the
privacy constraint of ε = 3.0. The ClientEns is shown in black circles and CuratorEns - in red
squares. Similarly, in the right panel of Figure 2 we can see the accuracy vs. the number of
specialization in the anonimization procedure for a synthetic dataset for problem P5 with
six classes, six attributes and 3000 datapoints per class.

For both datasets we observe that there is a maximum in the accuracy vs. number of spe-
cializations curve for each algorithm. For small number of specializations the data values
are initialized to the top of their respective attribute taxonomy trees, for most of attributes.
This is equivalent to deleting data for these attributes, and thus the resulting accuracy is
low. For larger number of specializations, the average size of a partition decreases. When
the average size of a partition is of the same order as the mean of the Laplace distribution
in the count scrambling stage of the anonimization algorithm, the resulting data becomes
useless and the accuracy decreases. This implies that there is a sweet spot where accuracy
is maximum. For ClientEns this maximum is achieved at a higher number of specializations
then for CuratorEns.

We would like to distance ourselves from the details of any particular anonymization pro-
cedure, and compare only the potential of algorithms ClientEns and CuratorEns. In order to
do that, for each experimental scenario, we compare the maximum achieved accuracies by
both algorithms as the anonymization procedure is tuned (i.e. the number of specialization
varied).

The middle column of table 6.3 presents the results obtained in this manner with SVM,
1-1, ELB and ε = 3.0.
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Figure 3: Accuracies of ClientEns (black circles), CuratorEns (red squares), and NoEns (blue
triangles) as a function of the number of specializations for ADULT-MARITAL and SHUTTLE
datasets using decision trees (C4.5) as a base classifier, 1-1 code, ELB decoding technique
and ε = 3.0

6.3 Other Classifiers

While ECOC techniques are typically used with inherently binary classifiers they can be
used with any classifier. In this section we compare the accuracy of a differentially-private
decision tree classifier with the accuracy of a decision tree classifier (C4.5) used in the Clien-
tEns and CuratorEns techniques.
FIgure 3 shows accuracy vs. the number of specialization rounds of DifGen algorithm for

a differentially private decision tree (DT), which we will reffer to NonEns in blue triangles,
ClientEns with DT in black squares, and CuratorEns in red circles for two different datasets.
As we can see for ADULT-MAR and SHUTTLE datasets, CuratorEns achieves better accura-
cies than both ClientEns and NonEns, while there is no statistically significant difference
between ClientEns and NoEns. In the CuratorEns ECOC helps recover from certain errors
introduced by the anonymization procedure. However, in ClientEns ECOC is run on al-
ready anonymized set, and in essence is useless. While we only show results from two
datasets, ClientEns and NoEns achieve similar, statistically indistinguishable accuracies for
all datasets in the study.

The maximum accuracy achieved by ClientEns and CuratorEns achieved for each dataset
in the study can be seen in the rightmost column of table 6.3, next to the SVM results. Note
that, while SVM and C4.5 achieve different accuracies on the same datasets, the respective
advantage or disadvantage of CuratorEns over ClientEns is the same: i.e. for datasets where
CuratorEns performs better than ClientEns with the SVM, it also performs better with C4.5
and vice versa.

We conclude that first the advantage of CuratorEns is problem-dependent, second, for
classifiers that do not require ECOC, ClientEns is not advatageous at all.

Two questions remain: for which kind of datasets and for which ECOC conditions is Cu-
ratorEns advantageous?

To address the first question let us note that in the table 6.3 CuratorEns produced lower ac-
curacies for ECOLI, GLASS, STATLOG and ADULT-RELATIONSHIP. From table 5 we learn that
with the exception of ADULT-RELATIONSHIP dataset, all these datasets have few datapoints
(200 - 2,300). This is suggestive of CuratorEns being advantageous for larger datasets.
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NAME CLIENTENS / CURATORENS
SVM C4.5

ECOLI 0.64 / 0.49 0.58 / 0.47
GLASS 0.50 / 0.41 0.50 / 0.35
STATLOG 0.72 / 0.67 0.82 / 0.77
SHUTTLE 0.93 / 0.95 0.93 / 0.98
ADULT-MARITAL-STATUS 0.813 / 0.823 0.82 / 0.827
ADULT-RELATIONSHIP 0.764 / 0.750 0.773 / 0.747

SYNTHETIC 6 CLASSES, 6 ATTRIBUTES, 7000 SAMPLES PER CLASS
P1 0.994 / 0.992 0.994 / 0.993
P2 0.969 / 0.989 0.990 / 0.994
P3 0.628 / 0.669 0.628 / 0.694
P4 0.900 / 0.895 0.900 / 0.898
P5 0.634 / 0.662 0.642 / 0.673

Table 3: Accuracies of ClientEns and CuratorEns using 1-1 code, and ELB decoding tech-
nique for two different base classifiers: SVM and C4.5. Boldface indicate significant differ-
ence between techniques.

6.4 Accuracy Difference versus Synthetic Dataset Parameters

For synthetic data we could do a systematic study of how different dataset parameters,
such as number of attributes, number of classes and dataset size (i.e. number of datapoints
per class) influence the respective performances of CuratorEns and ClientEns. The result
can be see in Figure 4 a) and b) for problems P2 and P5, respectively. We omitted this study
for problems P1, P3 and P4 as they are similar to P2 and P5, respectively. The experiments
were done with 1-1 code, ELB decoding technique and ε = 3.0.
Figure 4 present the difference in the maximum accuracy (as described in the previous sec-

tion) between CuratorEns and ClientEns for different values of number of attributes, num-
ber of classes and number of datapoints per class. Red (blue) squares represent statistically
significant positive (negative) difference; and pink (light blue) squares statistically insignif-
icant positive (negative) difference. Black squares represent no data being available for
those experimental parameters.

First thing that we can observe is that for all synthetic problems, for larger datasets, Cura-
torEns performs better than ClientEns. This is consistent with the UC Irvine datasets, where
smaller datasets gave better accuracies with ClientEns and larger with CuratorEns .
Secondly, there seems to be a much less strong dependence on the number of classes and

attributes, however, the sign of the dependence (which algorithm performs better for small
number of classes) is problem dependent.

6.5 Privacy Guarantees

As explained in section 2.1, in ε-differentially private framework the strength of privacy
guarantees is expressed by the parameter ε. The lower the value of ε the stronger the guar-
antees. Figure 5 shows accuracy of ClientEns and CuratorEns as we loosen the privacy
guarantees by increasing ε for ADULT-MARITAL dataset.

As we can see, for high values of privacy, ClientEns shows higher accuracies, but as ε
is increased and the privacy guarantees are loosened the accuracy of both algorithms in-

TRANSACTIONS ON DATA PRIVACY 7 (2014)



64 Vera Sazonova, Stan Matwin

Number of Attributes

5
7

9

11 Num
ber o

f C
lass

es

4

6

8

10

D
a
ta

se
t 

S
iz

e

0

1000

2000

3000

4000

5000

6000

7000

SYNTHETIC-P2

Number of Attributes

5
7

9

11 Num
ber o

f C
lass

es

4

6

8

10

D
a
ta

se
t 

S
iz

e

0

1000

2000

3000

4000

5000

6000

7000

SYNTHETIC-P5

Figure 4: Difference between accuracies achieved by CuratorEns and ClientEns as a func-
tion of number of attributes, number of classes, dataset size (300, 3000, and 7000 datapoints
per class) for two synthetic problems P2 and P5. Red - statistically significant positive dif-
ference ( CuratorEns achieves better accuracy ). Pink / Light Blue - statistically insignificant
difference (positive / negative). Black - no data available. Using 1-1 code, ELB decoding
technique and ε = 3.0

crease. ClientEns’s accuracy plateaus quickly, while that of CuratorEns continues to increase
steadily and overpasses the accuracy of ClientEns. The cross-over in accuracies happens
around ε = 1.0. The difference in accuracies at higher values of ε are statistically signifi-
cant.

The process of differentially-private anonymization can be though of as error injection
into the real dataset. ECOC can recover from a certain of these errors. As the number of
errors injected goes down (ε increases), the percentage of errors recovered from by ECOC
is higher and higher. At some value of ε a point will be reached where ECOC the usage of
ECOC is, so to speak, maximized, that is that ECOC recovers from all errors it can recover
from. At this point a plateauing in accuracy occurs.

From section 4.1 we know that for CuratorEns, each copy of ECOC is executed on a ε/n-
differentially private dataset, where n is the code width. This effectively reduces the value
of ε in Figure 5 and thus CuratorEns reaches its terminal accuracy at higher values of ε.

From the user point of view there are two point that we need to underline. First, for
ClientEns there is no reason to increase privacy guarantees a lot, as plateauing happens at
relatively low values of ε. Second, to take advantage of the higher accuracy of CuratorEns
we need to be able to work with lower privacy guarantees.

6.6 ECOC Parameters

In the rest of the paper we will investigate the dependence of the algorithms performance
on various ECOC parameters: code type and decoding technique.
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Figure 5: Accuracies of ClientEns (black circles), and CuratorEns (red squares) as a function
of privacy guarantees (ε) for ADULT-MARITAL dataset using 1-1 code and ELB decoding
technique.

6.6.1 Code Type

As described in section 3, many different codes can be used to encode a particular problem.
These codes might lead to different performances in both ClientEns and CuratorEns meth-
ods. We tested five different codes: 1-All, Dense Random, Sparse Random with probability of
finding zero of 0.4 and 0.2, and 1-1 on three different datasets: ADULT with MARITAL STA-
TUS class label, SHUTTLE and a synthetic dataset of problem P5 with 8 classes, 8 attributes
and 7000 datapoints per class.

1-All and 1-1 codes are unique for value of the number of classes and are of set length.
Dense Random and Sparse Random codes can be of variable length, plus several possibilities
per a given length exist. For consistency, for each number of classes value, one code of
each type: Dense Random, Sparse Random, 0.1 and Sparse Random 0.4 were created with the
optimal length suggested by [10]. The same code was used for all datasets with equal
number of classes.

Figure 6 presents a a comparison in accuracies between CuratorEns and ClientEns for
these five different codes. All random codes were 56 columns in length. There are two fea-
tures common to all four datasets. First there is a trend of increasing accuracy for “sparser”
codes for both ClientEns and CuratorEns, even though the latter curve has a dip for two
out of four datasets. Secondly, ClientEns does not exhibit as strong of a dependence on the
code type as CuratorEns does. And finally, CuratorEns outperforms ClientEns only for the
1-1 code.
These three observations are not surprising. As noted in section 3, the “sparseness” of the

code is very important for the CuratorEns method, as it increases the number of disjoint
data subsets and allows to generalize on the same privacy budget. There is inevitably a
variability between the number of disjoint data subsets between different codes so we may
not expect a simple monotonic dependency. However, it is clear that the largest number of
disjoint sets is provided by the 1-1 codes. The resulting performance of the code consists
then of two components - the applicability of the code to the dataset, and the number of
disjoint sets it allows for. The performance of the former is reflected by the performance of
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Figure 6: Accuracy of ClientEns (black circles) and CuratorEns (red squares) using dif-
ferent codes with ELB decoding technique and ε = 3.0. From left to right: 1-All,
Dense Random width=56, Sparse Random with p(0)=0.1 and width=56, SparseRandom with
p(0)=0.4 and width=56, 1-1. For datasets ADULT-MARITAL, ADULT-RELATIONSHIP, SHUT-
TLE, SYNTHETIC-P5 with 6 classes, 6 attributes, 7000 pts/class

the ClientEns, leaving the performance of CuratorEns be a convolution of ClientEns and the
number of disjoint sets allowed by the code.

Finally, for random codes, the code width can also be factor. We tested the effect of the
code length for Sparse Random code with the probability of zero of 0.1 with ADULT-MARITAL
dataset and found no statistically significant dependence of the accuracy on the code width
for either algorithm.

6.6.2 Decoding ECOC Techniques

For datasets ADULT-MARITAL, ADULT-RELATIONSHIP, and SYNTHETIC for problem P5 with
6 attributes, 6 classes and 7000 datapoints per class, we also compared the accuracy achieved
by ClientEns and CuratorEns with two different decoding techniques: Hamming Distance
(HD) and Exponential Loss-Based (ELB) decoding. As table 6.6.2 shows, while the actual ac-
curacy result might change with the decoding technique the relative accuracy achieved by
the two algorithms remains the same for both decoding methods.

Overall, our finding from this section is three-fold. Firstly, CuratorEns is only advan-
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NAME CLIENTENS / CURATORENS
ELB HD

ADULT-MARITAL-STATUS 0.813/ 0.823 0.815 / 0.823
ADULT-RELATIONSHIP 0.764 / 0.750 0.764 /0.750

SYNTHETIC 6 CLASSES, 6 ATTRIBUTES, 7000 SAMPLES PER CLASS
P5 0.634 / 0.662 0.522 / 0.527

Table 4: Accuracies of CuratorEns and ClientEns using 1-1 code and ELB and HD decoding
techniques. Boldface indicate significant difference between accuracies.

tageous using 1-1 code. Secondly, the advantage of CuratorEns is privacy constraint de-
pendent. Lower privacy guarantees allows CuratorEns achieve higher accuracies, with the
cross-over around ε = 1.0. Lastly, ECOC decoding technique does not affect the relative
advantage of CuratorEns over ClientEns.

7 Conclusions

In this paper we present novel algorithm for combining differential privacy data publishing
task with an ensemble-based data-mining. Perturbations to the data lay at the core of differ-
ential privacy yet perturbations decrease the accuracy of data make data-mining tasks, for
example, classifications. Ensemble methods are known to address this issues. Particularly,
error-correcting output codes are known to be capable to compensate errors introduced by
individual classifiers. Our algorithm allows to take advantage of this capability of ECOC
and in certain cases recover from perturbations introduced by differentially-private data
publishing.

We compared our algorithm to the use of ECOC on already differentially-private pub-
lished data for several different datasets and investigated their relative accuracies as a
function of ECOC parameters. Our findings are two-fold. First, we find that setting up
ECOC before anonymization can yield better or similar accuracies for most large datasets
with lower privacy guarantees. This accuracy advantage is independent of the classifier,
used. Moreover, for classifier that do not require ECOC to operate, using ECOC is only
advantageous in our novel approach.

Secondly, this accuracy increase, however, is present only for the 1-1 error-correcting code.
The decoding method used affects the traditional and novel algorithms in the same manner
and does not affect their relative advantage.

We recommend this technique be used on most large datasets, where the privacy guaran-
tees can be loose.

This algorithm does require an increase in the running time, but only on the curator-side.
The client execution time is not changed.

One of the unfortunate limitation of our algorithm is the fact that if ever more advan-
tageious error-correcting codes are discovered, the dataset would have to be republished.

In future work we want to investigate the use of other ensemble methods in the non-
interactive data publishing scenario. Random forest [6] and bagging [5] and the natural
next candidates.
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Figure 7: Difference between accuracies achieved by CuratorEns and ClientEns as a func-
tion of number of attributes, number of classes, dataset size (300, 3000, and 7000 datapoints
per class) for three synthetic problems P1, P3 and P4. Red - statistically significant pos-
itive difference ( CuratorEns achieves better accuracy ). Pink / Light Blue - statistically
insignificant difference (positive / negative). Black - no data available. Using 1-1 code, ELB
decoding technique and ε = 3.0
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