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Abstract. We investigate the relation between t-closeness, a well-known model of data anonymiza-
tion against attribute disclosure, and α-protection, a model of the social discrimination hidden in
data. We show that t-closeness implies bdf (t)-protection, for a bound function bdf () depending on
the discrimination measure f() at hand. This allows us to adapt inference control methods, such
as the Mondrian multidimensional generalization technique and the Sabre bucketization and redis-
tribution framework, to the purpose of non-discrimination data protection. The parallel between
the two analytical models raises intriguing issues on the interplay between data anonymization and
non-discrimination research in data protection.
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1 Introduction

Several inference control methods have been proposed in privacy-preserving data min-
ing for protecting micro-data from the risk of revealing confidential information, such as
identities and sensitive attribute values [6, 7, 9, 15]. Ultimately, private data protection
consists of data transformations, such as perturbations, generalizations, or suppressions,
that achieve a measurable level of privacy, according to some formal model, such as k-
anonymity [33, 34] or t-closeness [20]. The challenge here is to trade-off the achieved level
of privacy with an unavoidable data utility loss.

Conceptually, a similar problem occurs in the blooming field of discrimination-aware data
mining [28]. Discrimination refers to an unjustified distinction of individuals based on
their membership, or perceived membership, in a certain group or category. Some groups,
traditionally subject to discrimination, are explicitly listed as “protected” groups by human
rights laws, including women, black people, immigrant workers, minority ethnic groups,
and so on. As for data privacy, the release of micro-data can be subject to discrimination
threats. Consider the following examples:

• An employer may notice from public census data that the race or sex of workers act
as proxy of the workers’ productivity in his specific industry segment and geograph-
ical region. The employer may then use those visible traits of individuals, rather than
their unobservable productivity, for driving (discriminatory) decisions in job inter-
views. This behavior is known as statistical discrimination [28].
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• A data mining model used to profile applicants to a bank loan may learn from past
application records some patterns of traditional prejudices that led to negative de-
cisions for applicants belonging to a minority group. The profiles assigned by the
model to new applicants may then be biased against that minority group.

Privacy preserving data publishing techniques based on group anonymization tackle sim-
ilar problems, where individuals are partitioned into groups and each group must en-
sure some property such as k-anonymity or t-closeness. In this paper, we investigate
whether data anonymization techniques for privacy protection can be adapted to sanitize
a dataset of historical decisions with regard to discrimination threats before releasing the
data publicly (non-discrimination data publishing) or before using them for training a classi-
fier (discrimination-free classification). In the first example above, the employer should not be
able to derive (for his industry sector and region) any signal stronger than some maximal
threshold of different productivity among groups of workers of different race or sex. In the
second example, the learning algorithm should not find out1 any condition denoting past
discriminatory practices against minority groups of applicants.
Using a common notation based on itemset mining, in this paper we investigate the re-

lation between the model of α-protection for discrimination (which is parametric in a dis-
crimination measure) [30] and the model of t-closeness for data anonymization [20]. Both
approaches are based on the key idea of contrasting proportions on subsets of data. How-
ever, t-closeness considers the distribution of a sensitive attribute (e.g., proportions of dis-
eases), while α-protection considers the joint distribution of a discriminatory attribute and
a decision (e.g., proportions of denied loans for women and men). We formally prove
that t-closeness implies bdf (t)-protection, for an appropriate bound function bdf () depend-
ing on the reference discrimination measure f(). The converse does not hold, due to a
form of the Simpson’s paradox on proportions that prevents α-protection from having the
generalization property of t-closeness. We exploit the implication result above to devise a
generalization-based algorithm, called dMondrian, that is a variant of a well-known gener-
alization approach for k-anonymity [19]; and a bucketization and redistribution algorithm,
called dSabre, that is a variant of the state-of-the-art framework for t-closeness [5]. These
data transformation techniques provide a formal guarantee on the maximum level of dis-
crimination present in a sanitized dataset before it is released. This is a major technical
advancement over existing discrimination data sanitization approaches [11, 13, 16]. We
provide both theoretical and experimental analyses. On the theoretical side, by means of
a polynomial reduction of t-closeness to α-protection, we conclude that the problem of
finding an optimal generalization for α-protection is NP-hard. On the experimental side,
we illustrate the performances of the proposed algorithms in terms of discrimination data
protection, of information loss and utility, and of running time. Summarizing, the parallel
highlighted between the analytical models of t-closeness and α-protection raises intriguing
issues on the interplay between data anonymization and non-discrimination research.
This paper is organized as follows. Sect. 2 recalls basic notions using a common nota-

tion based on itemset mining. Sect. 3 revises and extends the model of α-protection. The
implication between t-closeness and α-protection is formalized in Sect. 4. The data saniti-
zation algorithms dMondrian and dSabre are presented in Sect. 5. Experiments are reported
in Sect. 6, and related work is discussed in Sect. 7. Conclusions summarize the contribu-
tions of the paper and some open research directions. Appendix A provides a polynomial
time reduction of t-closeness to α-protection.

1Discriminatory predictions can still be produced, however, due to a possible bias of the learning algorithm
[4]. The design of discrimination-free algorithms is out of the scope of the paper.
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2 Preliminaries

We recall notation and concepts from itemset mining [14]. They allow us to express in a
common framework basic definitions of data anonymity and discrimination analysis.

Let R be a relational table (or, simply, a table or a dataset) with attributes A1, . . . , AN .
Tuples in the table denote individuals, and attribute values denote information about in-
dividuals. An A-item is a term A = v, where A is an attribute and v ∈ dom(A), the do-
main of A. We assume that dom(A) is categorial for every attribute A. Continuous do-
mains can be accounted for by discretizing values into ranges. An item is any A-item. An
itemset X is a set of items. As usual in the literature, we write X,Y for X ∪ Y. A tu-
ple σ from R supports X if for every A = v in X, we have σ[A] = v, where σ[A] is the
value of the attribute A in the tuple σ. The cover of X is the set of tuples that support
X: coverR(X) = {σ ∈ R | σ supports X}. We omit the subscript R if it is clear from the
context. The support of X is the size |cover(X)| of its cover. The relative support of X is
supp(X) = |cover(X)|/|R|. X is a frequent itemset if supp(X) ≥ minsupp, where minsupp is
a given threshold. X is closed if there is no Y ⊃ X with cover(Y) = cover(X). A closed item-
set is a representative member of the class of equivalence of itemsets with a same cover [2].

In privacy-aware data mining, attributes of a dataset are partitioned into quasi-identifiers
(QIs) and sensitive attributes. Quasi-identifiers, such as ZIP code, gender, and birth-date, can
potentially identify an individual when joined with some external knowledge. We restrict
here to the case that A1, . . . , AN−1 are the QIs and AN is the only sensitive attribute. Let us
introduce the notion of QI itemset.

Definition 1. A QI itemset Q is an itemset containing one and only one A-item for every QI
attribute A, and no A-item for sensitive attributes A.

With our restriction, Q has the form A1 = v1, . . . , AN−1 = vN−1. The q-block (also known
as the equivalence class) of Q is the cover of Q. A q-block denotes a set of individuals sharing
the same QI characteristics and possibly differing only in the value of the sensitive attribute.

In discrimination-aware data mining, attributes of a table of historical decisions are par-
titioned into potentially discriminatory (PD) attributes, such as sex and race; potentially2 non-
discriminatory (PND) attributes, such as education and skills; and decision attributes, such as
hired. We restrict here to the case of only one PD attribute, say AN−1, with binary values
“protected” and “unprotected”, and of only one decision attribute, say AN , with binary val-
ues “+” (positive decision) and “-” (negative decision). Thus, A1, . . . , AN−2 is the set of
PND attributes.

Definition 2. A PND itemset B is an itemset containing at most one A-item for every PND
attribute A, and no A-item for PD or decision attributes A.

With our restriction, B has the form Aπ1
= v1, . . ., Aπk

= vk where π1, . . . , πk are distinct
numbers from {1, . . ., N − 2}. The context of possible discrimination denoted by B is the
cover of B. A context of possible discrimination regards a set of individuals sharing some
PND characteristics and possibly differing in the value of the PD and sensitive attributes.
Notice that QI itemsets contain exactly one item for every QI attribute, whilst PND itemsets
contain at most one item for every PND attribute.

2The use of PD (resp., PND) attributes in decision making does not necessarily lead to (or prevent from) dis-
criminatory decisions [4, 30]. This motivates the adjective “potentially”.
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Figure 1: Difference-based discrimination measures.

3 Discrimination analysis

3.1 Discrimination measures

Consider a dataset of historical decisions about granting a benefit (e.g., a loan, a job, a wage
increase, a school admission). A common tool for statistical analysis is provided by a 2× 2,
or 4-fold, contingency table, as shown in Fig. 1. Different outcomes between two groups
are measured in terms of the proportion of people in each group with a specific outcome.
The proportions of negative decisions for the protected-by-law group (p1), the unprotected-
by-law group (p2) and the overall dataset (p) are considered. A general legal principle is
then to consider group proportional representation [28] in decision outcomes as a quantitative
measure of discrimination against a protected-by-law (briefly, protected) group. Group
proportional representation can be measured as differences or rates of these proportions.
Measures defined as differences of proportions include:

• risk difference (RD = p1 − p2), also known as absolute risk reduction, measures the dif-
ference in the proportion of negative decisions between the protected and the unpro-
tected group;

• and extended difference (ED = p1 − p), measures the difference in the proportion of
negative decisions between the protected group and the whole population.

The terminology is borrowed from bio-statistics and epidemiological comparative stud-
ies between two dichotomous groups. Statistical tests and confidence intervals have been
considered both in the legal and in the data mining literature [26, 32].
The degree of observed disproportionate burden suffered by the protected group is mono-

tonically increasing for the two discrimination measures. Since one is interested in contexts
with a larger proportion of negative decisions, or equivalently for a smaller proportion of
positive decisions, for the protected group compared to the unprotected group or to the av-
erage, the values of interest for difference measures are those greater than 0. Values lower
than 0 are also worth to be investigated since they measure phenomena of affirmative ac-
tions or of favoritism (see [30]). However, such cases must be analysed separately, and
this is why the discrimination measures are not defined as absolute values of differences of
proportions. This is a minor difference with what happens in measures of data anonimity.
Finally, observe that RD = 0 iff ED = 0 iff ad = bc. The last condition describes a situation
of statistical parity, with equal chances of obtaining a negative decision for the protected
group, the unprotected group, and the whole population. The rankings imposed by the
various existing measures on contingency tables can be dramatically different [25]. Since
national legislations have adopted different measures, discrimination analysis has then to
be parametric in the discrimination measure at hand.
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3.2 Discrimination protection

The actual discovery of discriminatory situations and practices may be an extremely diffi-
cult task. A huge number of possible contexts may, or may not, be the theater for discrim-
ination. To see this point, consider the case of gender discrimination in credit approval.
Although an analyst may observe that no discrimination occurs in general, i.e., when con-
sidering the whole available decision records, it may turn out that it is extremely difficult
for women to obtain credit for a particular purpose, e.g., in the case of car loans. Using the
itemset notation, we would then be interested in checking the value of discrimination mea-
sures over the context of possible discrimination denoted by the cover of the PND itemset
purpose=car, where the protected group is sex=female. However, many small or large such
contexts may exist that conceal discrimination, and therefore all possible specific situations
should be considered as candidates, consisting of all possible combinations of variables and
variable values, i.e., in our words, of all PND itemsets. This problem has been tackled first
in [30] by extracting and ranking classification rules on the basis of a discrimination mea-
sure. We restate here the analysis framework using3 PND itemsets and measures defined
over the 4-fold contingency table of their cover. Let us start introducing some notation.

Definition 3. For a PND itemset B, we denote by f(B) the value of a measure f() over the
contingency table of the set cover (B).

The proportions and measures in Fig. 1 extend then to a generic PND itemset B by re-
stricting to only the tuples in the cover of B. Once provided with a quantitative measure of
the degree of discrimination and with a threshold between “legal” and “illegal” degree, we
can isolate contexts of possible discrimination where the measure is above such a threshold.
Let us extend the definition of α-protection, originally introduced in [30].

Definition 4. Let f() be a measure defined over a contingency table, and α a fixed thresh-
old. A PND itemset B is α-protective w.r.t. f() if cover (B) = ∅ or f(B) ≤ α. Otherwise, c is
α-discriminatory.

The problem of discrimination discovery consists then of extracting and ranking PND item-
sets that are α-discriminatory, i.e., having a non-empty cover and a measure value greater
than the threshold α. Such itemsets denote contexts that need further consideration by a
legal expert, e.g., for determining a legitimate justification, such as a genuine occupational
requirement [28] or explainable discrimination [17]. The problem we tackle in this paper
is the one of non-discrimination data publishing, which consists of transforming a dataset so
that it contains no α-discriminatory PND itemset. Throughout the paper, we assume that
PD attributes are available in the dataset under analysis. This is not the case, for instance,
in the problem of indirect discrimination discovery [11, 30], where the analysis has to rely on
background knowledge relating attributes in the dataset to unavailable PD attributes.
The original work [30] and its actual implementation [31], resort to frequent itemset min-

ing in defining α-protection, thus restricting to PND and PD itemsets with a minimum sup-
port. Technically this means that condition cover(B) = ∅ in Def. 4 is relaxed to a < minsupp,
where a is from the contingency table in Fig. 1. Since in this paper we will show sufficient
conditions for establishing α-protection, our results extend to the relaxed version as well.

3[30] reasons over 4-fold contingency tables of classification rules A,B → C, where A is a PD itemset, B is a
PND itemset, and C is a decision item. We can restrict to consider only the PND itemset B because we assume
only one PD attribute and only one decision attribute. Hence, there is only one 4-fold contingency table for a
given B. Our approach extends to the case of multiple PD and decision attributes by considering in Def. 3 the
maximum value of f() over all possible 4-fold contingency tables for cover(B).

TRANSACTIONS ON DATA PRIVACY 7 (2014)



104 Salvatore Ruggieri

From a legal perspective, however, the relaxed version is unable to capture the illegal prac-
tice of tokenism, which we will consider in the next subsection.
The notion of α-protection extends to a whole dataset.

Definition 5. A relational table is α-protective w.r.t. a measure f() if every closed PND
itemset is α-protective w.r.t. f().

Since the context of possible discrimination of a PND itemset corresponds to the individ-
uals sharing the characteristics stated by the itemset, this definition amounts at checking
the proportional representation principle, as measured by f(), for all such contexts. We can
restrict to consider closed PND itemsets, since they are representative itemsets. The cover
of a non-closed PND itemset is checked when considering the closed itemset in its class
of equivalence. Moreover, since there is a unique closed PND itemset for every class of
equivalence, there is no duplicate analysis of a same context of possible discrimination.

3.3 Tokenism and discrimination measures

Due to a division by zero in the discrimination measure, α-protection may be undefined.
This occurs for ED when n1 = 0 and for RD when n1 = 0 or n2 = 0. Such cases are unlikely
for the whole dataset, but they can readily occur for (small) covers of PND itemsets Let us
discuss here the legal interpretation of those conditions. First, consider the ED measure.
When n1 = 0, all individuals in the cover belong to the unprotected group. Is that a dis-
criminatory practice? It may be so. If in the context there are d = 999 individuals with
positive decision and c = 1 individuals with negative decision, then the unprotected group
is favored by the absence of competitors from the protected group. The single individual
with negative decision, called a token, may be there to create the false appearance of equality
and to prevent charges of discrimination. This illegal practice is known as reverse tokenism
(whereas tokenism [18] consists of granting a benefit to a few members of a minority group
to create the false appearance of inclusiveness). A measure of the disproportion between
negative decisions for the unprotected group and for the whole population is the difference
p−− c/n2 between the proportion p− of negative decision in the the overall dataset and the
proportion of the unprotected group with negative decision (c/n2).

Definition 6. We denote by p− the fraction of tuples with negative decision in a relational
table, i.e., p− = supp(AN = −).

The ratio c/n2 coincides with m1/n, since n1 = 0. Thus, ED can be extended as follows:

ED =

{

p− − p if n1 = 0
p1 − p otherwise

This looks intuitive: when the proportion a/n1 of individuals from the protected group
with negative decision is undefined (because n1 = 0), we simply consider the expected
proportion p−. The above extended definition of ED, the extension of RD, and the ex-
tensions of ratio-based measures that we will introduce in Sect. 4.3 can be obtained, in a
general way, by revising the definitions of p1 and p2 in Fig. 1 as follows:

p1 =

{

p− if n1 = 0
a/n1 otherwise

p2 =

{

p− if n2 = 0
c/n2 otherwise

These extensions cover relevant legal contexts and will not interfere with linking α-protection
to t-closeness.
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4 Data anonymization and non-discrimination

Several partition-based schemes of privacy in data disclosure are defined by proof condi-
tions over the q-blocks of a released dataset. k-anonymity [33, 34] requires that the support
of any non-empty q-block is at least k. l-diversity [24] requires that the number of dis-
tinct values of the sensitive attribute in a non-empty q-block is at least l. t-closeness [20]
requires that the distribution of the sensitive values in a non-empty q-block is close to the
distribution in the overall dataset, according to a distance function between distributions.
We concentrate on t-closeness, making the further assumption that the sensitive attribute is
binary, with values ⋆ and •. This assumption will be needed later on, when mapping the
decision attribute (which is binary) to a sensitive attribute. Moreover, under this assump-
tion, known distance measures between distributions collapse to variational distance. Let
us recall the notion of t-closeness from [20].

Definition 7. Let p⋆ be the fraction of tuples in a relational table with sensitive value ⋆. A
q-block is t-close if it is empty or, called p the fraction of tuples in it with sensitive value ⋆,
if |p− p⋆| ≤ t. A relational table is t-close if all of its q-blocks are t-close.

Variational distance is the average distance, in an equal-distance space, between the pro-
portion of a sensitive value in the q-block and its proportion in the whole dataset. For a
binary attribute, variational distance is: 1

2 (|p− p⋆|+ |(1− p)− (1− p⋆)|), which boils down
to |p− p⋆|. The parameter t in t-closeness takes values from 0 to max{p⋆, 1 − p⋆}, which is
the largest possible variational distance.
The proof conditions required by t-closeness closely resemble those of α-protection. QI

itemsets and PND itemsets play similar roles, partitioning individuals/tuples into groups
(q-blocks and contexts of possible discrimination) for which some bounds on the distribu-
tions of values must be satisfied. However, QI itemsets fix all of the values of QI attributes,
whilst PND itemsets fix some of the values of PND attributes. This occurs because a gen-
eralization property holds for t-closeness but not for α-protection – as it will be shown in
Sect. 4.1. Another analogy is that both t-closeness and α-protection impose a maximum
difference between two proportions computed over a group of individuals. However, the
proportions compared in t-closeness regard the distribution of the sensitive attribute only,
whilst the proportions in α-protection regard the joint distribution of the PD and the deci-
sion attributes.
The proof conditions of t-closeness are stronger than those of α-protection. Because they

impose that the proportion of a (sensitive) value is bounded in each q-block, one can derive
bounds on the relative proportions of the value in any two given q-blocks (in particular,
two q-blocks which differ only in the value of the PD attribute). This is precisely the idea
exploited in Sect. 4.2 to show that t-closeness imply bdf (t)-protection, for some bounding
function bdf () depending on the discrimination measure f().

4.1 On the generalization property

We have observed that t-closeness proof conditions are restricted to QI itemsets and need
not to consider explicitly their subsets. This is a consequence of the generalization property
of t-closeness [20, 21], for which generalizing two or more values of a QI attribute to a
common value (or even removing the attribute from the dataset) leads to a dataset that is
t′-close for some t′ ≤ t. We prove this statement using the itemset-based notation.

Lemma 8. Consider a t-close relational table. The cover of any subset B of a QI itemset is t-close.
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dept sex admitted

A female no
A female no
A female no
A female no
A female no
A female yes
A female yes
A male no
A male yes
A male yes

PND itemset dept=A
ED = 5/7− 6/10 = 0.114

dept sex admitted

B female no
B female yes

B male no
B male no
B male no
B male yes
B male yes
B male yes
B male yes
B male yes

PND itemset dept=B
ED = 1/2− 4/10 = 0.10

PND itemset empty
(both departments)

ED = 6/9 − 10/20 = 0.167

Figure 2: Example of the Simpson’s paradox.

Proof. By sensitive group, we mean the set of tuples whose sensitive attribute takes the
value ⋆. Let p⋆ be the proportion of the sensitive group in the overall dataset (as in Def. 7).
It is immediate to observe that:

cover(B) =
⋃

B′∈base(B)

cover (B′)

where base(B) is the set of QI itemsets B′ such that B′ ⊇ B. Notice that the covers in the
union are disjoint. This implies that the size s of the sensitive group in cover (B) can be
expressed as: s =

∑

B′∈base(B) sB′ where sB′ is the size of the sensitive group in cover(B′).

The fraction p(B) of the sensitive group in the cover of B is (
∑

B′∈base(B) sB′)/|cover(B)|,

which can be written as a weighted average of proportions:

p(B) =

∑

B′∈base(B) |cover (B
′)| p(B′)

|cover (B)|

where p(B′) is the fraction of the sensitive group in the cover of B′. This implies that
max{p(B′) | B′ ∈ base(B)} ≥ p(B) ≥ min{p(B′) | B′ ∈ base(B)}. Since the dataset is
t-close, we have that p(B′) ∈ [p⋆ − t, p⋆ + t] for every B′ ∈ base(B). Therefore, p(B) ∈
[p⋆ − t, p⋆ + t] as well.

The generalization property does not hold instead for α-protection, due to a form of the
Simpson’s paradox when comparing differences or ratios of two proportions. This moti-
vates requiring the proof conditions of α-protection for all (closed) PND-itemsets.

Example 9. A real life example of the Simpson’s paradox occurred in a legal case [3] re-
garding bias against women in a university admission exam. Fig. 2 shows a table with the
university department, sex of applicant, and the exam outcome for a fictious set of indi-
viduas. Here, dept is a PND attribute, sex is the PD attribute, and admitted is the decision
attribute. There are 4 applicants admitted to department A out of a total of 10: there are 2
women out of 7, and 2 men out of 3. The extended difference ED is then 5/7−6/10 = 0.114.
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When considering applicants to department B, ED is 1/2− 4/10 = 0.10. Then, for all PND
itemsets with exactly one item, i.e., dept=A and dept=B, the ED measure is bounded by
0.114. However, for the empty PND itemset (denoting applicants to any department), the
extended difference is greater, since it amounts at 6/9− 10/20 = 0.167.

Another subtle consequence of the lack of the generalization property is that α-protection
has to be defined for discrete PND attributes only. In fact, by the same arguments of the
above example, α-protection for contexts such as age=25 and age=26 does not necessarily
generalize to α-protection for the context age ∈ [25,26]. Thus, in order to extend the defi-
nition to continuous attributes, all PND itemsets with ranges should be explicitly checked.
This is computationally expensive. Moreover, frequent itemset mining tools rarely support
the extraction of itemsets with ranges. Our results will allow us to draw conclusions about
α-protection of PND itemsets with ranges without having to explicitly check them.

4.2 From t-closeness to α-protection

As shown in the previous subsection, t-closeness and α-protection impose distinct proof
conditions on datasets. In particular, t-closeness proof conditions are stronger than the
ones of α-protection, which motivates searching for some implication result. Assume a
given relational table, with fixed PND, PD and decision attributes. The problem we will
investigate is: does there exist a partition of the attributes into QIs and sensitive attributes, such
that t-closeness of the table implies its α-protection for some α? We answer affirmatively by
showing that a t-close table is bdf (t)-protective for an appropriate bound function bdf ()
that depends on the discrimination measure f(). An alternative way of stating such a
result, is that a sufficient condition for α-protection is to show bd−1

f (α)-closeness. Recall
that p− is the fraction of the negative decision in a relational table (see Def. 6).

Theorem 10. Fix as QIs the set of PND attributes plus the PD attribute, and as sensitive attribute
the decision attribute. If the table is t-close then it is bdf (t)-protective w.r.t. f ∈ {ED, RD}, where
bdRD(t) = bdED(t) = min{2t, t+ p̂−, 1} and p̂− = min{p−, 1− p−}.

Proof. Consider a PND itemset B with non-empty cover, and with contingency table as in
Fig. 1. We will show the stronger result |f(B)| ≤ bdf (t).
Let us start with RD. The bound |RD(B)| ≤ 1 is trivial. First, we observe that p1, p2 ∈ [p−−
t, p−+ t]. This is immediate when n1 = 0 (resp., n2 = 0) due to the extended definition of p1
(resp., p2) provided in Sect. 3.3. When n1 > 0 (resp., n2 > 0), this is stated by Lemma 8 since
the table is t-close. By triangle inequality, the bounds for p1 and p2 imply |RD| = |p1−p2| ≤
2t. Moreover, we claim that |RD| ≤ t + p−. We distinguish two cases. If |RD| =RD then
|RD| = p1−p−+p−−p2 ≤ p1−p−+p− ≤ t+p− since p1 ∈ [p−−t, p−+t]. If |RD| = −RD then
|RD| = p2−p−+p−−p1 ≤ p2−p−+p− ≤ t+p− since p2 ∈ [p−−t, p−+t]. We also claim that
|RD| = |(1−p1)−(1−p2)| ≤ t+(1−p−). We distinguish two cases. If |RD| = (1−p1)−(1−p2)
then |RD| = (1 − p1) − p− + p− − (1 − p2) ≤ p− − p1 + (1 − p−) ≤ t + (1 − p−) since
p1 ∈ [p−− t, p−+ t]. If |RD| = (1−p2)− (1−p1) then |RD| = (1−p2)−p−+p−− (1−p1) ≤
p− − p2 + (1− p−) ≤ t+ (1 − p−) since p2 ∈ [p− − t, p− + t]. Summarizing, |RD| ≤ t+ p̂−,
and then |RD| ≤ bdRD(t).
Consider now ED. Since p = m1/n = (p1n1 + p2n2)/(n1 + n2) is the weighted average of
p1 and p2, we have min{p1, p2} ≤ p ≤ max{p1, p2}, and then |ED| = |p1 − p| ≤ |p1 − p2| =
|RD| ≤ bdRD(t) = bdED(t).

Basically, the bound 2t originates from triangle inequality. If the negative decision rates for
the protected and unprotected groups cannot deviate from the average negative decision
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rate more than t, then they cannot deviate each other more than 2t. The bound t+ p̂− is also
intuitive. It derives from the observation that the extreme value of the negative decision
rate for the protected (resp., unprotected) group in a q-block can be distant from p− (resp.,
1− p−) at most p̂− = min{p−, 1− p−}. Notice the symmetry: the bounds are independent
from the choice of which group is protected and which one is unprotected. This is due to
the fact that p2 − p1 = −(p1 − p2), namely the risk difference considering one group as
protected is the opposite of the risk difference considering the other group as protected.
Their absolute value, which is the one bounded in the proof of the theorem, is the same.
Intuitively, Thm. 10 states that a dataset does not contain discrimination (more than a

threshold bdf (t)) if it is not possible to be confident (more than a threshold t) on the deci-
sion assigned to an individual by exploiting the differences in the fraction of positive and
negative decisions between the protected and the unprotected groups in a privacy attack
assuming as QIs the set of PND attributes plus the PD attribute. Notice that the role of an
“attacker” here is played by the anti-discrimination analyst, whose objective is to unveil
from data a context where negative decisions are biased against the protected group.
The upper bound bdf (t) of Thm. 10 is sharp.

Example 11. Consider a dataset with uniform distribution of the decision attribute, i.e., p− =
p̂− = 0.5. Following Thm. 10, we fix such an attribute as sensitive. The dataset is clearly
t-close for t = 0.5. Consider now two PND itemsets with the following contingency tables:

decision
group - +

protected 1 0 1
unprotected 0 1 1

1 1 2

decision
group - +

protected 1 0 1
unprotected 0 d d

1 d d+ 1

For the left table, RD = 1− 0 = 1 = bdRD(t) = min{2 · 0.5, 0.5 + 0.5, 1}. For the right table,
ED = 1− 1/(d+1) is arbitrarily close to the bound bdED(t) = bdRD(t) = 1 for a sufficiently
large d. Later on, in Sect. 6 we will experiment on real datasets, and we will show that
bounds are typically reached also in practice.

The converse of Thm. 10 does not hold in general. A counter-example is provided by the
Simpson’s paradox table from Ex. 9.

Example 12. Reconsider the table in Fig. 2. The distribution of the decision attribute in
the overall dataset is uniform: 10 yes and 10 no, hence p− = p̂− = 0.5. From Ex. 9, we
know that the dataset is 0.167-protective w.r.t. the ED measure, since the maximal value of
ED over PND itemsets is 0.167. Fix now as QIs the attributes dept and sex, and as sensi-
tive the attribute decision. The dataset is not 0.0835-close, where 0.0835 = bd−1

ED(0.167) =
max{0.167/2, 0.167− 0.5}. In fact, the q-block of the QI itemset dept=A, sex=female includes
5 no and 2 yes, with a variational distance of |5/7−1/2| = 0.214. As shown by the following
calculations, the dataset is t-close only for t ≥ 0.214:

dept=A, sex=female
|5/7− 1/2| = 0.214

dept=A, sex=male
|1/3− 1/2| = 0.167

dept=B, sex=female
|1/2− 1/2| = 0.0

dept=B, sex=male
|3/8− 1/2| = 0.125

Let us now consider range items or, more generally, disjunctive items.

Definition 13. A disjunctive item is a term A = v1 ∨ . . . ∨ A = vn, where A is an attribute
and {v1, . . . , vn} ⊆ dom(A). A tuple σ supports that disjunctive-item if σ[A] ∈ {v1, . . . , vn}.
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Range items A ∈ [v1, v2] for a continuous attribute A are a special case of disjunctive items
of the form A = v1 ∨ A = v1 + 1 ∨ . . . ∨ A = v2. We say that an itemset includes disjuntive
items if it consists of a subset of items and disjunctive items. The notions of cover and
support of an itemset clearly extend in presence of disjunctive items. As observed after
Ex. 9, α-protection of a dataset does not imply that a PND itemset with disjunctive items is
α-protective. Thm. 10 allows us to draw conclusions on α-protection of PND itemsets with
disjunctive items at no additional cost.

Corollary 14. Fix as QIs the set of PND attributes plus the PD attribute, and as sensitive attribute
the decision attribute. If the table is t-close then every PND itemset, possibly with disjunctive items,
is bdf (t)-protective w.r.t. f ∈ {ED, RD} and bff() as in Thm. 10.

Proof. In the proof of Thm. 10, it is exploited the property that a PND itemset B is t-close.
Such a property can be shown also for B including disjunctive items by a simple general-
ization of the proof of Lemma 8, where base(B) is now defined as the set of QI itemsets B′

such that every item A = v in it appears in B as a single item or in a disjunctive item.

As an example, if a dataset including the age attribute is 0.1-close, then a PND itemset with
disjunctive items, such as age ∈ [25, 26], is 0.2-protective w.r.t. RD, where 0.2 ≥ bdRD(0.1).

4.3 Ratio-based discrimination measures

Several ratio-based discrimination measures have been defined over the 4-fold contingency
table of Fig. 1 (see [28]), including:

RR =
p1
p2

RC =
1− p1
1− p2

OR =
p1(1− p2)

(1− p1)p2
=

a/b

c/d
ER =

p1
p

EC =
1− p1
1− p

risk ratio or relative risk (RR), defined as the ratio of the proportions of negative decisions; rel-
ative chance or selection rate (RC), defined as the ratio of the proportions of positive decisions;
and odds ratio (OR), defined as the ratio of the odd of the protected group (p1/(1−p1) = a/b)
over the odd of the unprotected group (p2/(1−p2) = c/d). The variants of RR and RC when
the protected group is compared to the average proportion p of negative decisions, rather
than to the proportion for the unprotected group, include the extended ratio or extended lift
(ER), and the extended chance (EC). All ratio measures extend to deal with (reverse) tokenism
by the revised definitions of p1 and p2 provided in Sect. 3.3.
The degree of observed disproportionate burden suffered by the protected group is mono-

tonically increasing for RR, OR, and ER, and monotonically decreasing for RC and EC (for
these measures, the inequality in Def. 4 of α-protection is replaced by f(B) ≥ α). All ratio
measures boil down to 1 in the case of statistical parity, namely when ad = bc. However,
they rank contexts of possible discrimination in a different order (see [25]).
By exploiting the lower and upper bounds imposed on proportions p1 and p2 by t-closeness,

upper bounds on α-protection are readily derived for ratio-based measures as well.

Theorem 15. Fix as QIs the set of PND attributes plus the PD attribute, and as sensitive attribute
the decision attribute. If the table is t-close then it is bdf (t)-protective w.r.t. f , where:

• bdRR(t) = bdER(t) = min{p− + t, 1}/max{p− − t, 0},

• bdRC(t) = bdEC(t) = max{1− p− − t, 0}/min{1− p− + t, 1},

• bdOR(t) = min{p− + t, 1}min{1− p− + t, 1}/(max{p− − t, 0}max{1− p− − t, 0}).
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Proof. Following the reasoning of Thm. 10, the bounds of p1, p2 can be further refined to
p1, p2 ∈ [max{p− − t, 0},min{p− + t, 1}] by observing that p1, p2 ∈ [0, 1]. This implies
(1 − p1), (1 − p2) ∈ [max{1− p− − t, 0},min{1− p− + t, 1}]. The upper bounds on RR, ER
and OR, and the lower bounds on RC and EC follow immediately.

Notice the symmetry again: the bound for RC is equal to the inverse of the bound for
RR but considering “+” as the negative decision. This is due to the fact that risk chance
amounts at the risk ratio when considering “+” as the negative decision, but in the former
case one is interested in lower bounds and in the latter case in upper bounds. Also, notice
that bdOR(t) = bdRR(t)/bdRC(t) reflects the fact that OR = RR / RC.

5 Discrimination data protection algorithms

As an application of Thms. 10 and 15, we can resort to inference control methods for t-
closeness to the purpose of controlling the degree of α-protection in a dataset. This provides
us with a means to prevent discrimination inference attacks, such as in the examples from
the introduction. In the α-protection model, these attacks consists of inferring contexts of
possible discrimination with a discrimination measure greater than a given threshold α.
Observe that t-closeness is a single sufficient condition for establishing α-protection w.r.t. a

wide range of discrimination measures. That is, discrimination protection does not need
specialized methods for sanitizing a dataset w.r.t. different measures. Rather, we only have
to select the value tα = bd−1

f (α) such that a dataset sanitized for tα-closeness is guarranteed
to be α-protective.
In this section, we devise two algorithms for discrimination data protection inspired by

the observation above. We consider non-perturbation methods which rely on partial reduc-
tions in details of data by partitioning a dataset into classes of equivalence. In particular,
generalization (also called recoding) maps domain values to less specific values, according to
a user defined hierarchy for categorial domains, or by grouping values into ranges in an
ordered or continuous domain. We adapt two well-known generalization algorithms: Mon-
drian, originally designed for k-anonymity; and Sabre, which is the state-of-the-art method
for t-closeness. The overall approach consists of mimicking the algorithms of data anonimiza-
tion except in the part where values of the PD attribute may be generalized. The motivation for
this is that collapsing protected and unprotected individuals into a single group, would
make 4-fold contingency tables and, a fortiori, discrimination measures undefined.
A natural question arises about whether optimal generalization methods exists in data

sanitization for discrimination protection, where “optimal” means that the number of gen-
eralizations introduced by the method is minimal. The answer is negative. In Appendix A,
we deal with the opposite problem tackled so far, namely with showing t-closeness using
α-protection. We present a polynomial time reduction under the general assumption that
the sensitive attribute is multi-valued. This is an interesting result on its own. α-protection
is at least as difficult as t-closeness even in the (apparently) simple framework of binary
PD and decision attributes. NP-harness of generalization methods for discrimination pro-
tection follow then from analogous results for t-closeness.

Theorem 16. The problem of finding an α-protective partition of a dataset with the minimum
number of generalizations is NP-hard.

Proof. See Appendix A.

We are then forced to look at heuristics algorithms for discrimination protection.

TRANSACTIONS ON DATA PRIVACY 7 (2014)



Using t-closeness anonymity to control for non-discrimination 111

Algorithm 1 dMondrian.Anonymize(P , t)

1: if no d-allowable cut for P then
2: return PND ranges(P)
3: else
4: A← choose PND dimension(P)
5: v← find median(P , A)
6: P1← {σ ∈ P | σ[A] ≤ v }
7: P2← {σ ∈ P | σ[A] > v }
8: return Anonymize(P1, t) ∪ Anonymize(P2, t)
9: end if

5.1 From Mondrian to dMondrian

A well-known multidimensional recoding model for k-anonymity was proposed in [19],
together with an intuitive greedy algorithm called Mondrian. Alg. 1 reports an adaption
of the algorithm, called dMondrian, for data protection against discrimination inference.
dMondrian follows a divide & conquer pattern common to space partition algorithms, such
as in kd-tree construction and in decision tree induction. Starting from a set of tuples P
(initially the whole table to be sanitized), the procedure computes, if it exists, an axis-
parallel cut along a PND attribute that partitions P into subsets P1 and P2 on which the
procedure is recursively applied. If no such cut exists for P , then the values of every PND
attribute are replaced by the range “[min, max]” of such an attribute in P . This substitution
is performed by the PND ranges() function in Alg. 1. Differently from what would occur
by a direct application of the Mondrian algorithm, we prevent cutting on the PD attribute,
which in Thms. 10 and 15 plays the role of a QI. Moreover, notice that the PND ranges()
function changes only the values of PND attributes. The combined effect is that PD values
are always left unchanged by dMondrian.
Let us now discuss how cuts are defined, starting from their definition in the original Mon-

drian algorithm. We assume that the domain dom(A) of any PND attribute A is ordered.
This is immediate for continuous attributes, while it requires an additional input from the
user for categorial attributes. A (multidimensional) cut A ≤ v is allowable [19] if it parti-
tions a k-anonymous set of tuples into two sets (respectively, tuples σ such that σ[A] ≤ v,
and tuples σ such that σ[A] > v) that are both k-anonymous. Notice that a cut A ≤ v is
allowable iff the cut A ≤ vm is allowable, where vm is the median value of A in the set
P . Since the median value leads to the most balanced partitions, the Mondrian algorithm
adopts median-partitioning. Its extension to t-closeness, called tMondrian [20], simply re-
quires that each partition resulting from a cut is t-close, instead of (or in addition to being)
k-anonymous. We extend the notion of allowable cuts to non-discrimination protection by
introducing d-allowable (for “discrimination allowable”) cuts, which check the t-closeness
proof condition (where the sensitive attribute is now the decision attribute) for the subsets
of the protected and unprotected groups in the resulting partitions. The need for checking
two subsets is motivated by the fact that generalizations over the PD attribute are not per-
mitted, hence cuts must explicitly check t-closeness over the two PD attribute values. Let
us first introduce a useful notation.

Definition 17. The maximum variational distance of a contingency table (see Fig. 1) is:

τ = max{|p1 − p−|, |p2 − p−|}

τ(R) denotes the maximum variational distance of the contingency table of the dataset R.
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Sample dataset

ID purpose emp sex decision

1 housing no female -
2 housing no female -
3 housing no female +
4 housing no male -
5 housing no male +
6 housing yes female -
7 housing yes female +
8 housing yes female +
9 housing yes male -
10 housing yes male -
11 housing yes male +
12 housing yes male +
13 car no female +
14 car no male -
15 car no male +
16 car yes female -
17 car yes male +

Output of dMondrian

ID purpose emp sex decision

1 housing-car no female -
2 housing-car no female -
3 housing-car no female +

13 housing-car no female +
4 housing-car no male -

14 housing-car no male -
5 housing-car no male +

15 housing-car no male +
6 housing-car yes female -

16 housing-car yes female -
7 housing-car yes female +
8 housing-car yes female +
9 housing-car yes male -

10 housing-car yes male -
11 housing-car yes male +
12 housing-car yes male +
17 housing-car yes male +

Figure 3: Sample dataset and dMondrian output for t = 0.25.

We are now in the position to introduce d-allowable cuts.

Definition 18. Let P be a set of tuples. A cut A ≤ v is d-allowable for P , where A is a PND
attribute and v ∈ dom(V ), if for P1 = {σ ∈ P | σ[A] ≤ v} 6= ∅ and P2 = {σ ∈ P | σ[A] >
v} 6= ∅, it turns out τ(P1) ≤ t and τ(P2) ≤ t.

By replacing conditions P1,P2 6= ∅ with |P1|, |P2| ≥ k, we add the requirement of k-
anonymity for the dataset in output. Differently from k-anonymity, however, if A ≤ v is
d-allowable, then A ≤ vm is not necessarily d-allowable. However, we keep using the
heuristics of Mondrian of testing cuts only at median values (see find median() in Alg. 1)
because it has two main advantages. First, dMondrian can be used to control both α-
protection and k-anonymity at the same time. Second, the search space of the algorithm
is kept reasonably low. In fact, it consists of a search tree space with O(D) levels, where
D =

∑

i=1,...,N−2 log |dom(Ai)| is the sum of the logarithm of domain sizes of PND at-
tributes. Notice that the actual number of levels depends on the parameter t, which prunes
the search space. At each level, a scan of the tuples in the input dataset R is performed to
compute d-allowable cuts, which requires O(ND|R|), where N is the number of attributes.
Summarizing, the computational complexity of dMondrian is O(ND2|R|).

Finally, when more than one PND attribute has a d-allowable cut, the function choose -
PND dimension() implements the heuristics of choosing the cut that produces the lowest
maximal variational distance, i.e., such that max{τ(P1), τ(P2)} in Def. 18 is minimal.

Example 19. The sample dataset in Fig. 3 regards past decisions on granting a loan to
applicants based on the purpose of the loan, on whether the applicant is employed, and
on the sex of the applicant. The proportion of negative decisions is p− = 8/17 = 0.47. Fix
t = 0.25. The following contingency tables:

purpose=housing decision
sex - +

female 3 3 6
male 3 3 6

6 6 12

purpose=car decision
sex - +

female 1 1 2
male 1 2 3

2 3 5
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emp=no decision
sex - +

female 2 2 4
male 2 2 4

4 4 8

emp=yes decision
sex - +

female 2 2 4
male 2 3 5

4 5 9

allow for computing the maximum variational distances for the cuts w.r.t. the purpose and
emp attributes. It turns out: τ(purpose=housing) = max{|0.5 − 0.47|, |0.5 − 0.47|} = 0.03;
τ(purpose=car) = max{|0.5−0.47|, |0.33−0.47|}= 0.14; τ(emp=no) = max{|0.5−0.47|, |0.5−
0.47|} = 0.03; τ(emp=yes) = max{|0.5− 0.47|, |0.4− 0.47|} = 0.07. Both cuts on purpose and
on emp are d-allowable. dMondrian selects the cut on emp because:

0.07 = max{τ(emp=no), τ(emp=yes)} < max{τ(purpose=housing), τ(purpose=car)} = 0.14

The search tree space of dMondrian consists of this single cut. In fact, for both branches
emp=no and emp=yes, there is no d-allowable cut on purpose. E.g., the contingency table:

emp=no
purpose=car decision

sex - +

female 0 1 1
male 1 1 2

1 2 3

shows that τ(emp=no,purpose=car) = max{|0− 0.47|, |0.5− 0.47|}= 0.47 > t = 0.25. In both
branches, the purpose attribute takes values housing and car. They are generalized to the
range housing-car. The dataset in output by dMondrian is shown in Fig. 3. The horizontal
line separates the outputs of the two branches of the search tree.

Summarizing, for an input table R, dMondrian.Anonymize(R, t) returns a t-close dataset,
hence bdf (t)-protective, obtained by generalizing PND attributes. Actually, in the limit
case that there is no d-allowable cut for the whole R, the procedure returns PND ranges(R),
which is τ(R)-close, because cuts involving the PD attribute are not permitted. Therefore,
for t ≤ τ(R) we can only conclude that dMondrian.Anonymize(R, t) is bdf (τ(R))-protective.

Theorem 20. dMondrian.Anonymize(R, t) is bdf(max{t, τ(R)})-protective w.r.t. f().

Example 21. In Sect. 6, we will experiment on the German credit dataset. It consists of
1000 tuples of applicants to a loan, with the sex of applicants as the PD attribute. There
are 300 negative decisions, hence p− = 0.3. Restricting to female applicants, there are
109 negative decisions out of 310 applicants, hence p1 = 0.352. For males, there are 191
negative decisions out of 690 applicants, hence p2 = 0.277. Any call to the Anonymize()
procedure leaves unchanged the PD attribute. Hence, the itemset sex=female is 0.052-close
(where 0.052 = |p1 − p−|), and the itemset sex=male is 0.023-close (where 0.023 = |p2 − p−|).
For t < 0.052 = τ(R), the only way to obtain a t-close output would be to generalize all
attributes, including the PD one. While this is reasonable in the case of t-closeness, and
it can occur in Mondrian, it is not for α-protection, because it would make discrimination
measures undefined. As a consequence, the empty PND itemset has a RD value of p1−p2 =
0.075. There is no way of generalizing the input dataset to obtain a value of the RD measure
lower than 0.075. This is an intrinsic limitation of non-perturbation methods.
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Algorithm 2 dSabre.Anonymize(P , t)

1: A← cover (AN−1 = protected , AN = −)
2: B ← cover (AN−1 = protected , AN = +)
3: C ← cover(AN−1 = unprotected , AN = −)
4: D ← cover (AN−1 = unprotected , AN = +)
5: φ← (A,B, C,D)
6: return Dichotomize((|A|, |B|, |C|, |D|), t)

Algorithm 3 dSabre.Dichotomize((a, b, c, d), t)

1: if a+ b+ c+ d < 2 then
2: G ← takeOut(φ, (a, b, c, d))
3: return PND ranges(G)
4: else
5: a1← floor(a/2), a2← a− a1

6: b1← floor(b/2), b2← b− b1
7: c1← ceil(c/2), c2 ← c− c1
8: d1← ceil(d/2), d2← d− d1
9: if τ (a1, b1, c1, d1) ≤ t and τ (a2, b2, c2, d2) ≤ t then

10: return Dichotomize((a1, b1, c1, d1), t) ∪ Dichotomize((a2, b2, c2, d2), t)
11: else
12: G ← takeOut(φ, (a, b, c, d))
13: return PND ranges(G)
14: end if
15: end if

5.2 From Sabre to dSabre

Sabre [5] (Sensitive Attribute Bucketization and REdistribution framework) is the state-of-
the-art algorithm for data sanitization with regard to the t-closeness model. We adapt the
algorithm to deal with discrimination data protection by proposing dSabre in Algs. 2–3. As
in dMondrian, the core algorithm of dSabre is a recursive procedure Dichotomize, shown as
Alg. 3, which generates equivalence classes. In dMondrian, the split of a node in the search
tree is “guided” by the dataset to be sanitized. Specifically, d-allowable cuts depend on the
distribution of values in the set of tuples at current node. However, tuples may be unevenly
distributed to child nodes, even though the median partitioning heuristics tries and do so.

In dSabre, each node is associated with a contingency table, with the root having the con-
tingency table of the whole dataset. Then a node is split by evenly distributing the entries
of its contingency table between the left and the right child (lines 5-8 in Alg. 3). The split is
simply based on numbers, not on attribute values. Nevertheless, it can be checked whether
it is allowable because the proof conditions of Def. 18 are actually stated on numbers from
contingency tables. The notations τ(a1, b1, c1, d1) and τ(a2, b2, c2, d2) at line 9 denote the
maximum variational distance of the contingency tables of the two child nodes. An allow-
able split ensures that there are tuples in the dataset that can be selected according to the
entries of the contingency tables of the child nodes. If the split is allowable, the procedure is
recursively called on its child nodes (line 10). If the split is not allowable (lines 12-13) or the
input contingency table cannot be split into non-empty ones (line 1-3), then an equivalence
class has to be generated. How? A contingency table (a, b, c, d) states that a tuples have
to be chosen from the protected group with negative decision, b from the protected group
with positive decision, c from the unprotected group with negative decision, and d from
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- +

female 4 4

male 4 5

2 2

2 3

2 2

2 2

1 1
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1 1

1 1
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1 1

1 1

1 1
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1 1
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0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

0 0

1 1
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Output of dSabre

ID purpose emp sex decision

1 housing no-yes female -
3 housing no-yes female +
4 housing no-yes male -
5 housing no-yes male +
11 housing no-yes male +
6 housing yes female -
7 housing yes female +
9 housing yes male -
12 housing yes male +
2 housing-car no female -
13 housing-car no female +
14 car no male -
15 car no male +
16 housing-car yes female -
8 housing-car yes female +
10 housing-car yes male -
17 housing-car yes male +

Figure 4: dSabre search tree space and output for the dataset in Fig. 3 and t = 0.25.

the unprotected group with positive decision. Such four buckets are pre-selected at lines
1-4 of Alg. 2, and stored in the variable φ. The generation of an equivalence class then takes
out from each bucket an appropriate number of tuples. The resulting set of tuples G (see
lines 2 and 12 of Alg. 3) is generalized to an equivalence class through the PND ranges()
procedure, which replaces PND values by their range of variation. In order to have such
ranges as small as possible, a nearest-neighbor approach is adopted. The first element to be
inserted in G is chosen randomly from the bucket4 with the lowest ratio of its current size
divided by the number of elements to be selected from it. The other elements are selected
from each bucket by looking at the nearest-neighbors of the first element in such a bucket.
We adopt Euclidian distance between tuples based on the normalized5 rank order of the
values of attributes. This is motivated by the fact that ranges in output are intended to
minimize the number of distinct values generalized. Finally, by adding to the test condi-
tion at line 1 of Alg. 3 “a1 + b1 + c1 + d1 ≥ k and a2 + b2 + c2 + d2 ≥ k”, we achieve, in
addition, k-anonymity of the dataset in output.

Example 22. Reconsider Ex. 19. Recall that p− = 0.47 and t = 0.25. The search tree space
of dSabre is shown in Fig. 4 (left). The top contingency table is the one for the whole
dataset. It is split between the left and the right branches by halving numbers, as de-
scribed in Alg. 3, as far as the maximum variational distance is lower than or equal to t.
E.g., for the leftmost leaf in Fig. 4, we have τ(1, 1, 1, 2) = max{|0.5− 0.47|, |0.33− 0.47|} =
0.14 ≤ t. Its contingency table cannot be further split, since by halving the numbers, we
get τ(1, 1, 0, 1) = max{|0.5 − 0.47|, |0 − 0.47|} = 0.47 > t. For the other leaves, we have
τ(1, 1, 0, 0) = τ(0, 0, 1, 1) = max{|0.5 − 0.47|, |0.47− 0.47|} = 0.03 ≤ t by recalling that p1
is set to p− (resp., p2 = p−) when n1 = 0 (resp., n2 = 0) – see Sect. 3.3. For contingency
tables in the leaves of the search tree space, dSabre selects tuples in the buckets in φ. E.g., for
the leftmost leaf in Fig. 4, the first tuple is randomly selected in the bucket of females with
negative decision, say the one with ID= 1. The other four tuples are its nearest-neighbors,

4This heuristics has better experimental performances than the original Sabre approach of a random selection
of the bucket from which to pick up the first element.

5A value with rank r ∈ [1, dom(A)] in an ordered attribute A, has normalized rank (r − 1)/(|dom(A)| − 1).
E.g., the normalized ranks of values 1, 5 and 100, are (1− 1)/2 = 0, (2− 1)/2 = 0.5 and (3− 1)/2 = 1.
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PND atts t min-max
name tuples discrete continuous p− τ (R) p̂−

German credit 1000 6 1 0.3 0.052 0.7
Adult 48842 6 1 0.761 0.087 0.761

Census-Income 299285 9 3 0.938 0.028 0.938

Table 1: Summary information on experimental dataset. τ(R) is the maximum variational
distance of the whole dataset. p̂− = max{p−, 1− p−}.

with respect to the PND attributes, from the other bucktes. Tuples with IDs 3, 4, and 5 have
its same PND attribute values. There is no further tuple with the same PND values in the
bucket of male with positive decisions. Thus, the fifth tuple is the one with ID= 11, which
differs in the value of emp. All the selected tuples assume instead the value purpose=housing.
The equivalence class of that contingency table and of the others in the search tree space
are outputted by dSabre as shown in Fig. 4 (right), separated by horizontal lines. Contrast-
ing them with the output of dMondrian (see Fig. 3), we observe that six less generalizations
of values have been performed by dSabre. Tuples with ID= 6, 7, 9, 12, 14, and 15 are left
unchanged by dSabre.

Let us consider now the computational complexity of dSabre. The search tree space of
dSabre consists of at most log|R| levels, with a total of L ≤ |R| leaves. At each leaf, one
tuple is chosen from some bucket and the others are searched among its nearest-neighbors.
In the worst case, we have a total complexity of O(L + NL(|R| − L)), where N is the
number of attributes. This is maximum when L = |R|/2, and amounts at O(N |R|2); and it
is minimum when L = |R|, and amounts at O(|R|). Interestingly, when L = 1, it amounts
at O(N |R|). Thus, complexity starts increasing as the search space increase (L = 1), reach
a maximum (L = |R|/2), and then goes down to a minimum (L = |R|). Since the number
L of leaves is a (monotonically increasing) function of the parameter t, which prunes the
search space, we expect that dSabre has a bell shape running time as a function of t.
We conclude this subsection with the same protection guarantee of Thm. 20.

Theorem 23. dSabre.Anonymize(R, t) is bdf (max{t, τ(R)})-protective w.r.t. f().

6 Experiments

We have implemented the dMondrian and dSabre algorithms in Java, adopting some opti-
mizations well-suited for divide & conquer algorithms [27]. The input relational table is
stored in main memory by columns; each column stores integer indexes to actual values;
and integer indexes respect the ordered of values in the domain of the column attribute.
This structure save space, while not impacting on the performances. In fact, dMondrian
compares column values by their order rank, and dSabre computes distance based on nor-
malized order rank. dSabre uses kd-trees to store buckets in φ. The additional space required
is linear in the size of the input dataset.
The experiments reported in this section consider classical datasets available from the

UCI Machine Learning repository.6 The German credit dataset consists of 1000 records over
bank account holders. We set 7 PND attributes: credit history, purpose, credit amount,
employment, other payment plans, housing, and existing credits. The PD attribute is per-
sonal status with “not-single women” as the protected group. The decision attribute is the

6http://archive.ics.uci.edu/ml

TRANSACTIONS ON DATA PRIVACY 7 (2014)



Using t-closeness anonymity to control for non-discrimination 117

-1

-0.5

 0

 0.5

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

R
D

τ

minsupp=20

τ vs RD
upper bound
lower bound

 0

 2

 4

 6

 8

 10

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

R
R

τ

minsupp=20

τ vs RR
upper bound
lower bound

 0

 0.5

 1

 1.5

 2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

R
C

τ

minsupp=20

τ vs RC
upper bound
lower bound

 0

 2

 4

 6

 8

 10

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

O
R

τ

minsupp=20

τ vs OR
upper bound
lower bound

-1

-0.5

 0

 0.5

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

E
D

τ

minsupp=20

τ vs ED
upper bound
lower bound

-1

-0.5

 0

 0.5

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

E
D

τ

minsupp=3

τ vs ED
upper bound
lower bound

Figure 5: German credit dataset. Scatter plots of maximum variational distance (τ ) vs dis-
crimination measures.

bad/good credit rating assigned to the bank account holder, with “bad credit” as the neg-
ative decision. The Adult dataset contains census information on 48848 individuals. We set
6 PND attributes: age, workclass, education, marital-status, occupation, and relationship.
The PD attribute is race, with “non-white” individuals as the protected group. The decision
attribute is income, which can be <50K or ≥50K dollars, with “<50K” as negative decision.
Finally, Census-Income is another census dataset, which contains 299285 tuples with 12 PND
attributes: age, class of worker, education, wage per hour, marital status, industry, occupa-
tion, sex, member of a union, region of residence, household summary, worked weeks. PD
and decision attributes are the same as in Adult. Summary information on the datasets is
reported in Table 1. In particular, t min-max is the meaningful range for the parameter t in
input to dMondrian and dSabre (see Ex. 21 for the calculation of τ(R) for German credit).

The datasets fit well the motivations of the introduction. In the German credit dataset, we
want to protected non-single women from being associated to failure in re-paying loans (in
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Figure 6: German credit dataset. Scatter plots after processing the dataset by dMondrian (top)
and dSabre (bottom), with parameter t = 0.15.

some context not known a-priori), hence with the risk of being discriminated in subsequent
credit evaluation. In the Adult and Census-Income datasets, we want to protect non-whites
from being associated with low income, hence with the risk of being discriminated, e.g., in
home loans, or segregated, e.g., in suburban neighborhoods or in specific job positions.

Fig. 5 reports scatter plots for the German credit dataset computed as follows. A point refers
to a closed PND itemset with minimum support of 20 (or 2%), i.e., such that n ≥ 20 in the
4-fold contingency table of its cover. The y-axis is the value of a discrimination measure
for that cover. The x-axis is the maximum variational distance τ (see Def. 17). The bounds
on discrimination measures imposed by variational distance as stated in Thms. 10 and 15
are also shown in Fig. 5 – now including both lower and upper bounds. The scatter plots
highlight that those bounds are not of theoretical interest only, but they can be reached in practice.
When comparing proportions of the protected group vs the unprotected group (as in RD,
RR, RC, and OR) there are contexts reaching the bounds even for high values of τ . When
comparing proportions of the protected group vs the general population (as in ED, ER, and
EC) the bounds are reached for low values of τ , or when focusing on contexts with very
low minimum support – as it can be noticed by contrasting the two scatter plots for the ED
measure, one with minimum support of 20 and the other of 3. Intuitively, this is due to the
fact that variation of the protected group from the average is always lower or equal than
variation of the protected group from the unprotected group.

Fig. 6 shows the scatter plots for the RD and RR measures after the German credit dataset
has been sanitized by dMondrian and dSabre for input parameter t = 0.15. As expected,
there is no closed PND itemset with maximum variational distance τ > 0.3, with RD >
bfRD(0.15) = max{2 · 0.15, 0.15 + 0.3, 1} = 0.3, nor with RR > bfRR(0.15) = min{0.3 +
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Figure 7: German credit dataset. Distributions of RD and RR values.

0.15, 1}/max{0.3 − 0.15, 0} = 3. Since our results hold irrespectively of the minimum support,
such a statement is true for any (closed) itemset – even though the figure plots only closed
PND itemsets with a minimum support of 20. The dataset sanitized by dMondrian has
a wider range of the discrimination measure values, whilst dSabre yields narrow ranges.
This is made clearer by Fig. 7, showing the distributions of the RD and RR measures for the
original and the processed datasets. Distributions flattened around 0 for RD and around 1
for RR denote less discriminatory datasets. Both dMondrian and dSabre improve the degree
of discrimination of the sanitized dataset over the original one, with values below the upper
bounds bdRD(0.15) and bdRR(0.15). However, dSabre produces less discriminatory datasets.
The actual maximum and minimum RD and ED values in a processed dataset are shown

in Fig. 8 for the German credit and Adult datasets. Such extreme values depend on the min-
imum support used to extract closed PND itemsets to be plotted. Formally, the function:

bdf (R, k) = max{f(B) | B closed PND itemset s.t. |coverR(B)| ≥ k} (1)

returns the maximum value of a discrimination measure f() over PND closed itemsets of a
dataset R with minimum support k. The maximum value of a dataset processed by dSabre
with input parameter t and for a minimum support k is then bdf (dSabre.Anonymize(R, t), k).
Contrast the bottom plots in Fig. 8, which report the extreme values for different minimum
support thresholds. Those values approach the bdf (t) limit for lower and lower minimum
support thresholds of closed PND itemsets. Summarizing, if no requirement is stated on a
minimum support threshold of the contexts of possible discrimination, then the bounds stated in
Thms. 10 and 15 can be considered sharp in practice.
Discrimination data protection has to be traded-off with an unavoidable information loss.

Since our approach has adapted existing algorithms for data anonymity, we inherit the
information loss performances of such algorithms. According to [5], we consider the stan-
dard information loss metric (LM) defined as:

LM =
∑

QI itemset Q

supp(Q)L(Q) L(Q) =
∑

i=1,...,N−1

range(vi)− 1

|dom(Ai)| − 1

where a QI attribute in our context is any PND or PD attribute, and, for Q being A1 =
v1, . . . , AN−1 = vN−1, the loss L(Q) is the sum of losses of its attribute values, with range(vi)
denoting the number of values of dom(Ai) generalized by vi. LM ranges from 0 (no value
has been generalized) to 1 (all values collapsed).
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Figure 8: Extreme values of scatter plots after processing German credit and Adult by dMon-
drian and dSabre. Ranges of input parameter t are shown in Table 1.

Fig. 9 shows the information loss due to data sanitization by dMondrian and dSabre at the
variation of the input parameter t. The superiority of dSabre over dMondrian for lower val-
ues of t is visible, and it is inherited from the better performances of Sabre over tMondrian
for the t-closeness data anonymity model [5]. Plots of dSabre have abrupt lines because a
whole new level at a time appears in the search tree as t grows (see Fig. 4). In summary, an
analyst has to trade-off the benefits of a formal bound on discrimination measures achieved
by data sanitization (see Fig. 8) with the loss of data utility that is introduced (see Fig. 9).
This is analogous to what occurs in the context of data anonymization for privacy protec-
tion. Our approach provides the necessary tools for applying the trade-off analysis in the scenario
of discrimination data sanitization. The bottom right plot in Fig. 9 instantiates the trade-off
analysis for the RD and ED discrimination measures, by showing the loss metric for the
output of dSabre at the variation of the bound bdf (t) imposed by Thm. 10.
Discrimination data protection has to be traded-off also with utility of the sanitized dataset.

According to [5] again, we consider as utility metric the median relative error defined as
follows. Consider a count query:

SELECT COUNT(*)

FROM dataset

WHERE Aπ1
in [v1, w1] AND . . . AND Aπn

in [vn, wn] AND AN in [vn+1, wn+1]

where Aπ1
, . . . , Aπn

are PND or PD attributes, AN is the decision attribute, and ranges
[vi, wi] are drawn uniformly from the domain of the attributes. Such count queries occur
frequently in typical data analysis reports or data mining algorithms. The relative error of a
query is defined as |est − prec|/prec where prec is the count result over the original dataset,
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Figure 9: Information loss metric for dMondrian and dSabre.

and est is the count result estimated on the sanitized dataset. The estimation assumes a
uniform distribution of tuples in the domains of values of an attribute. The median relative
error is the median error over 10K randomly generated count queries with n uniformly
distributed in [1, 5] and with non-zero prec value (needed to prevent division by zero).

Fig. 10 shows the utility metric of datasets sanitized by dMondrian and dSabre at the vari-
ation of the input parameter t. dSabre definitely outperforms dMondrian on all values of t
for German credit and Adult, but not for Census-Income. The reason can be attributed to the
“curse of dimensionality”, a well-known phenomenon in k-anonymity [1]. dSabre is more
sensitive than dMondrian to high dimensionality datasets or high cardinality attributes due
to the direct use of nearest-neighbor search. The bottom right plot in Fig. 10 shows the util-
ity metric plots for Census-Income where the two highest cardinality attributes (wage per
hour and age) have been removed. dSabre is now comparable to dMondrian.

Let us consider now efficiency issues. Fig. 11 reports the elapsed execution times of the
sanitization procedures on the Adult and Census-Income datasets for a commodity PC with
Intel Core i5-2410@2.30 GHz with 4Gb of RAM and Windows 7 OS. Elapsed times of dMon-
drian increase with t due to the fact that the search tree grows with t, and each level of the
search tree adds a complexity linear in the size of the dataset. Elapsed time plots follow a
typical pattern of space partitioning algorithms, such as decision tree builders [29], at the
variation of the stopping parameter. dSabre exhibits a different pattern, which is consistent
with its computational complexity discussed in Sect. 5.2. For low t values the search space
is small, for high t values the need for costly nearest-neighbor searches decreases, and for
middle t values the cost reaches a maximum. Fig. 11 highlights such a bell shape.

In summary, dSabre is preferable to dMondrian for datasets with low dimensionality and
low attribute cardinality because it has similar running time performances (Fig. 11), lower
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Figure 10: Median relative error utility metric for dMondrian and dSabre.

ranges of the discrimination measures in the sanitized output (Fig. 7 and 8), better informa-
tion loss (Fig. 9), and better utility (Fig. 10). dMondrian is instead preferrable to dSabre for
medium to large dimensionality datasets or for datasets with large attribute cardinalities.

7 Related work

Data sanitization for discrimination prevention. Approaches for building classifiers that
do not make discriminatory decisions may rely on data sanitization of the training set [28].
Existing techniques for data sanitization adopt perturbation approaches by changing val-
ues of the PD attribute or of the decision attribute. The approaches in [11, 16, 23] massage
the dataset by promoting (from - to + decision value) some individuals of the protected
group and/or demoting (from + to -) individuals of the unprotected group using some
heuristics. [11] ranks individuals on the basis of the number of contexts of possible dis-
crimination they appear in. [16] adopts the prediction confidence of a classifier for rank-
ing individuals in the protected and in the unprotected groups. [23] adopts a measure of
the bias observable by an individual in the decisions between the top nearest neighbors
of the protected group and the top nearest neighbors of the unprotected group. None of
the approaches provides a formal guarantee on the level of α-protection of the sanitized
dataset, as we did with the bounds of Thms. 10 and 15. As an additional limitation, [11]
deals with nominal attributes only, because it heavily relies on association rule mining.
We can instead cope with continuous attributes by letting the sanitization algorithms per-
form a discrimination-oriented discretization. Moreover, [16] considers the RD measure
only at the grain of the whole dataset, i.e., only a single context of possible discrimina-
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Figure 11: Elapsed times of dMondrian and dSabre on Adult and Census-Income.

tion is guaranteed to be sanitized. Nevertheless, since there are intrinsic limitations of
non-perturbation methods (see Ex. 21), an hybrid approach trading off massaging with
generalization must necessarily be pursued to achieve the best from the two approaches.
Impact of anonymization on non-discrimination. [10] discusses how data anonymization

techniques that improve k-anonymity affect the degree of α-protection w.r.t. the RR (called
slift) and ER (called elift) measures. The techniques of global and local recoding generaliza-
tions, and of cell, record, and value suppressions are considered. For instance, it is found
that generalization may lead an α-protective dataset to be non α-protective anymore. This
result may seem in contrast with our findings. Two observations clarify this. First, if the
original dataset is α-protective, and the transformed dataset is only α′-protective for α < α′

and for no lower α′, then this is still consistent with the fact that the original dataset is t-
close and α < α′ ≤ bdf (t), where bdf (t) is the bound from Thms. 10 and 15. Second, [10]
assumes a relaxed definition of α-protection, where the (equivalent of the) PND-itemset B
in Def. 4 has a minimum support k, rather than a non-empty cover. As a consequence
of generalization, some infrequent PND itemsets may become frequent, and then their
discrimination measure value becomes relevant, whilst in the original dataset it was not
accounted for. Using the notation (1), this can be formally stated as:

bdf (Anonymize(R), k) 6≤ bdf (R, k).

Achieving both anonymization and non-discrimination. The recent paper [12] consid-
ers the problem of sanitizing a dataset both w.r.t. k-anonymity for a given set of QIs, and
w.r.t. α-protection (w.r.t. RR and ER) for PD attributes that are assumed to be at also QIs. It
is the first paper that applies a non-perturbation transformation methods for discrimination
prevention. The paper considers k-anonymity, a model for preventing identity disclosure
attacks, whilst we reasoned about t-closeness, a privacy requirement for preventing at-
tribute disclosure attacks. The paper adopts a full domain generalization approach, which
generalizes all instances of a value in the domain of an attribute to a same ascendent of
that value in the hierarchy of the domain. The authors adapt the Incognito algorithm for
searching the space of all possible k-anonymous full domain generalizations that are also
α-protective. Full domain generalization is one of the earliest approaches for k-anonimity,
and it has been superseded, both in utility of the sanitized dataset and in efficiency of sani-
tization algorithms, by the multidimensional generalization approaches considered in this
paper. However, Incognito is optimal with regard to full domain generalizations, whilst
Mondrian and Sabre are heuristical algorithms (since the multidimensional generalization
problem is NP-hard). Moreover, multidimensional generalization suffers from the problem

TRANSACTIONS ON DATA PRIVACY 7 (2014)



124 Salvatore Ruggieri

of data exploration, caused by the co-existence of specific and generalized values in the san-
itized dataset, which makes data exploration and interpretation more difficult than in the
case of full domain generalization. Finally, compared to this paper, [12] considers other
alternative privacy models in addition to k-anonymity (attribute disclosure and differen-
tial privacy) and alternative discrimination analyses (indirect discrimination and genuine
occupational requirement), but it does not cope with tokenism nor with disjunctive items.
[13] proposes a methodology for achieving both k-anonymity and α-protection (w.r.t. RR)

in knowledge disclosure, specifically in the disclosure of frequent itemsets. The approach
consists of first applying additive sanitization to control for k-anonymity, and then a form
of anti-discrimination additive sanitization to control for α-protection. The second step
does not affect k-anonymity since it adds tuples to the dataset. In contrast, our approach
can tackle (the stronger model of) t-closeness and α-protection in a single step. Since we
establish t-closeness to ensure bdf (t)-protection, we have that the dataset sanitized is at the
same time t-close and bdf (t)-protective. Moreover, we have highlighted simple variants of
dMondrian and dSabre imposing also k-anonymity on the sanitized datataset.
Differential privacy and non-discrimination. Throughout this paper, we have consid-

ered the legal principle of “group proportional representation”: fixed a subset of PND at-
tribute values, the protected and unprotected groups must be proportionally represented
in a context of possible discrimination. This is sometimes known as group fairness. Another
legal principle is to “treat like cases alike”, leading to a notion of individual fairness. Here,
similarity of individuals is measured by some (agreed and public) distance function, de-
fined over the space of individuals’ characteristics, i.e., over all PND attributes. [8] formal-
izes the principle of individual fairness by expressing similarity of decisions as a distance
between the probability distributions of decisions assigned to individuals. The approach is
then related theoretically to ǫ-differential privacy where, rephrasing the legal principle of
individual fairness, “tables that are alike should answer alike” to a given query. Our work
complements [8]: together they relate concepts of group/individual fairness in discrimina-
tion analysis to techniques of t-closeness/ǫ-differential privacy in data anonymization.
(n, t)-closeness. t-closeness has been relaxed in [21] to (n, t)-closeness by requiring the

distribution in a q-block to be close to the distribution of some natural superset of the q-
block whose size is at least n. Natural supersets are those obtained by generalizing (over a
hierarchy of values) one of the values in the QI itemset of the q-block. For instance, natu-
ral supersets of age=20-25 and zip=561* are age=20-30 and zip=56** respectively, assuming
that 20-30 is the father of 20-25 and 56** is the father of 561* in the hierarchy of attribute
values. Our results can be extended to (n, t)-closeness by replacing any usage of p− by the
proportion pnats− of negative decisions in the natural superset of the PND-itemset under
consideration.
Utility metrics for discrimination analysis. We have adopted an utility measure of the

sanitized dataset based on (median relative error of) count queries. Some literature on dis-
crimination prevention [4, 12, 16, 23] adopt instead the classification accuracy of the pre-
dictions made by a classifier trained from a sanitized dataset. Such an approach, however,
would require a “ground truth” test set having no discriminatory decision. Otherwise, we
would be comparing a possibly fair prediction (yet inaccurate) with a possibly discrimina-
tory one (yet accurate).
[11] considers utility metrics for discrimination sanitization of knowledge, specifically of

association rules. The authors exploit approaches from the privacy literature on associa-
tion rule hiding (see [35]). They consider a misses cost of sanitization, as the percentage of
patterns that are not anymore extractable from the sanitized dataset, and a ghost cost, as the
percentage of new patterns that were not extractable from the original dataset.
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8 Conclusions

The contribution of this paper was twofold.

First, we have related the analytical tools of t-closeness in privacy data anonymization
and of α-protection in non-discrimination data analysis by showing that t-closeness im-
plies bdf(t)-protection for a discrimination measure f(), and by showing that t-closeness
reduces to α-protection in polynomial time. The former result covers contexts of possible
discrimination expressed as conjunctions of, possibly disjunctive, items. The latter result
allowed us to conclude NP-harness of multidimensional generalization-based data saniti-
zation for discrimination data protection.

Second, by exploiting the discovered implication, we have systematically obtained dMon-
drian, a multidimensional generalization algorithm, and dSabre, a bucketization and re-
distribution algorithm, as adaptions of well-known algorithms for k-anonymity and t-
closeness. This is is a methodological contribution linking data anonymization research
to non-discrimination research. Our results guarantee a formal bound on the discrimi-
nation protection of the dataset sanitized by such algorithms. No previous approach on
discrimination-aware data mining can provide such a guarantee.

Experiments showed that dSabre performs better than dMondrian, for low-dimensionality
datasets, but it suffers from a curse of dimensionality problem. As one would expect, an
anti-discrimination analyst has to trade-off discrimination protection with information loss
and utility of the sanitized dataset. The proposed framework provides the necessary tools
for conducting such trade-off anayses.

Several challenging issues for future research are raised by the results of this paper, regard-
ing the interplay of privacy-preserving data mining and discrimination-aware data mining.
A first research direction is to study how the relation between t-closeness and α-protection
extends to the case of multi-valued decisions, such as interest rate range, and PD attributes,
such as race, without resorting to binarization. The problem here is that, while several dis-
tance functions between probability distributions have been considered in the data privacy
literature, the discrimination literature restricts to statistical test (such as the χ2-test) of the
significance of the uneven distribution of values in a n × m contingency table. It would
be interesting to import distribution distances from the privacy literature to the purpose of
defining discrimination measures in the general case. Second, the idea of relating models
of privacy to models of discrimination can be at the basis of the adaption of approaches for
privacy-by-design, where some guarantee is provided on data privacy while performing a
certain task, to design approaches for anti-discrimination-by-design, where now the guaran-
tee is on non-discrimination while taking a certain decision. Finally, an intriguing research
line follows from the parallel between the role of an anti-discrimination analyst and the
one of an attacker. It is then natural to investigate whether attack models considered in
the privacy literature can be translated into helpful, legally-grounded, methodologies for
discrimination analysis in the hands of anti-discrimination authorities.
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decision
group - +

protected a rs− a rs
unprotected c rs− c rs

a+ c 2rs− (a+ c) 2rs

a = rs
∑

i=1,...,M
pi≥psi

pi c = rs
∑

i=1,...,M
pi≥psi

psi s = |coverR(Q)| r = |R|

Figure 12: Contingency table of cover red(R)(Q).

A Appendix

Throughout the paper, we have assumed that sensitive attributes are binary. Let us now
relax this assumption. Let dom(AN ) = {s1, . . . , sM} be the set of sensitive attribute val-
ues, and psi be fraction of tuples having sensitive value si in the whole dataset, i.e., psi =
supp(AN = si). Variational distance for a QI itemset Q can be rewritten as follows [20]:

VD(Q) =
1

2

∑

i=1,...,M

|pi − psi | =
∑

i=1,...,M
pi≥psi

pi − psi

where pi is the fraction of tuples in the cover of Q with sensitive value si.

Let us now introduce a transformation that will be useful to reduce (in polynomial time)
the notion of t-closeness to the one of α-protection. Let R be a relational table with at-
tributes A1, . . . , AN , where AN is the sensitive, possibly multi-valued, attribute and A1,
. . . , AN−1 are QIs. Let r = |R| be its size. We define a table red(R) with attributes
A1, . . . , AN−1, group, decision where group has values protected and unprotected, and decision

has values “-” and “+”. Attributes A1, . . . , AN−1 are considered as PND attributes, group
as the PD attribute, and decision as the decision attribute. For every QI itemset Q defined
as a1 = v1, . . . , aN−1 = vN−1 and having a non-empty cover S = cover (Q) of size s = |S|,
red(R) includes 2rs tuples defined as follows. All tuples σ are such that σ[Ai] = vi for
i = 1, . . . , N − 1, i.e., they support Q as well. The values of PD and decision attributes
are defined according to the contingency table in Fig. 12. a/r is the number of tuples in S
whose sensitive value occurs with frequency greater than or equal to its frequency in the
whole dataset. (a− c)/r is the number of tuples in S that should have changed their sensi-
tive values to make the distribution of S equal to the one of the whole dataset. Both a and
c are integer values, since pi and psi are fractions over s and r respectively. The multiplica-
tion by a factor of r in Fig. 12 is purposely designed for this. The following is immediate
by definition of a and c.

Lemma 24. a/(rs)− c/(rs) = VD(Q).

Finally, notice that |red(R)| = 2|R|2. We have the following polynomial time reduction.

Theorem 25. A relational table R is t-close iff red(R) is t-protective w.r.t. RD. Moreover, red(R)
can be computed in polynomial time from R.
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Proof. red(R) can be computed in polynomial time by first sorting R lexicographically, and
then scanning covers of QI itemsets. For each cover of size s, the generation of the 2rs
tuples of red(R) takes linear time. Summarizing, red(R) can be computed in O(|R|2) time.
Suppose now that red(R) is t-protective w.r.t. RD. Let Q be a QI itemset of R with non-

empty cover. By definition of red(R), Q can be seen as a PND itemset of red(R). Then, by t-
protection RD(Q) ≤ t. From Fig. 12, it is immediate to observe that RD(Q) = a/(rs)−c/(rs)
and then, by Lemma 24, we conclude VD(Q) = RD(Q) ≤ t. Summarizing, R is t-close.
Conversely, suppose that R is t-close. Consider a PND itemset B with non-empty cover

w.r.t. red(R). We have:

cover red(R)(B) =
⋃

B′∈base(B)

cover red(R)(B
′) (2)

where base(B) is the set of QI itemsets B′ such that B′ ⊇ B. Notice that the covers in the
union are disjoint. Let aB

′

, cB
′

and sB
′

be the values a, c and s in Fig. 12 for the cover of B′.
For the cover of B, it turns out from (2) that:

a =
∑

B′∈base(B)

aB
′

c =
∑

B′∈base(B)

cB
′

s =
∑

B′∈base(B)

sB
′

(3)

which implies:

RD(B) =

∑

B′∈base(B) a
B

′

rs
−

∑

B′∈base(B) c
B

′

rs
=

1

s

∑

B′∈base(B)

(aB
′

− cB
′

)

r

By Lemma 24, (aB
′

− cB
′

)/r = sB
′

VD(B′). Since R is t-close, we have VD(B′) ≤ t and

then (aB
′

− cB
′

)/r ≤ sB
′

t. This implies:

RD(B) ≤
t

s

∑

B′∈base(B)

sB
′

= t

where the last equivalence follows from the equation on s in (3). Summarizing, red(R) is
t-protective w.r.t. RD.

Notice that in the proof of the only-if part of the theorem, we do not incur in the Simpson’s
paradox because the protected and the unprotected groups have been generated purposely
with an equal number of tuples in each context of possible discrimination.
Problems that are hard for t-closeness translate to hard problems for α-protection. Thm. 16

is about NP-harness of the optimal generalization problem for discrimination protection.

Theorem 16.

Proof. By definition of red(R) any generalization of attribute values for a dataset R with
cost c corresponds to a generalization for red(R) with cost 2cr (where the factor 2 is due
to doubling tuples for protected and unprotected groups, and the factor r is due to multi-
plication of tuples), and vice-versa. By Thm. 25, we have that the optimal generalization
problem for t-closeness of R is reducible in polynomial time to the optimal generaliza-
tion problem for α-protection of red(R). The conclusion of the theorem follows from NP-
harness of optimal generalization problem for t-closeness [22].
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