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Abstract. Studies that combine data from multiple sources can tremendously 

improve the outcome of the statistical analysis. However, combining data from 

these various sources for analysis poses privacy risks. A number of protocols have 

been proposed in the literature to address the privacy concerns; however they do 

not fully deliver on either privacy or complexity. In this paper, we present a 

(theoretical) privacy preserving linear regression model for the analysis of data 

owned by several sources. The protocol uses a semi-trusted third party and delivers 

on privacy and complexity. 

1. Introduction 

Regression is one of the most commonly used statistical tools in data analysis. It 

allows an investigator to model the relationship between a response variable and 

other variables that are assumed to influence such response. Response variables are 

usually indicators of performance and the other variables represent the attributes 

that affect this performance. For example, surgery completion time is an indicator 

of critical resources efficiency in hospitals [1]. Several studies looked for the 

attributes that cause these variation in surgery completion times [2]–[4], among the 

culprits, they found individual, team and organizational experience, learning curve 

heterogeneity and workload.  

Regression modeling usually assumes that the data is freely accessible. However, in 

practice, data could be distributed among multiple different locations, and owned 

by different data holders.  
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Enormous utility could be gained by combining data from multiple sources; a 

regression performed on the union of the datasets may have better properties than 

a regression done on an individual dataset. For example, a regression analysis on 

integrated databases from multiple hospitals for surgery completion time is more 

powerful than regression analysis on an individual dataset. 

However, the parties involved may not be willing to reveal their data as they might 

be competitors, or they may not mutually trust each other. Moreover, even if the 

data owners are willing to cooperate, legal and constitutional limitations would 

limit them from sharing some form of data such as personal health information [5].  

A number of linear regression protocols that address these privacy concerns have 

been proposed in the literature; however, these protocols are either not completely 

private [6], [7] or are very demanding of the data holders involved in terms of 

complexity (extensive message passing among the participants and exponential 

computation complexity at each site) [8], [9].  

We develop a privacy preserving linear regression protocol using a semi-trusted 

third party (the Evaluator). We show that our approach has several desirable 

properties. The complexity at each site is independent of the number of sites 

involved, and the complexity for the Evaluator is linear in the number of sites. 

Privacy of the health information is preserved and the statistical outcome retains 

the same precision as that of the raw data. Moreover, contrary to previous 

approaches, ours is complete [6]–[10]. It not only calculates the linear regression 

parameters for a fixed model, but also calculates the diagnostics for each model and 

presents a secure algorithm for selecting the model that has the best fit. These latter 

steps are in fact more important and more challenging than the calculation of the 

model parameters [5]. Two different model selection methods with varying levels 

of data sharing are presented: (i) The first method shares the integrated diagnostics 

for the models investigated, and (ii) the second method does not share the actual 

diagnostics, but only the maximal or minimal values (depending on the chosen 

diagnostic). An initial version of this work appeared in [11]. 

2. Linear Regression 

2.1 Basic Concepts 

Linear regression consists of modeling the relationship between a set of variables 

referred to as attributes (or independent variables) and a response variable (or 

output variable). It assumes that the relationship between the response variable 

and the independent variables is linear. Fitting a linear regression model consists of 
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a sequence of steps including estimation, diagnostics and model selection [12]. In 

what follows we give an overview of the steps involved, for more information the 

reader is referred to [12], [13]:  

Assume that a dataset is composed of n  vectors of input variables { x1,..., xn}  

where xi = { xi
1,...,xi

|D|} ∈ ℜ|D| ( ℜ  is the set of real numbers and D  is the set of 

attributes), and n  output variables y1,...,yn ∈ ℜ . We denote by X  the Dn ×  input 

matrix [ xi ] =

x1

x2
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. Linear regression 

is the problem of finding the subset Dd ⊆  of the attributes that affect and shape 

the response variable Y , and then learning the function ℜ→ℜ ||: df  that describe 

this dependency (of the output variables on the independent variables). Linear 

regression is based on the assumption that f  is approximated by a linear map, i.e. 

0
||)( ββ +=≈ d

iii xxfy  },...,1{ ni ∈  for some β =
β1
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∈ ℜ|d|,β0 ∈ ℜ , where 
||d

ix  

is the vector ix  restricted to the set of attributes d  in question. In linear regression 

literature, it is common to set β =

β0

β1

:
βd
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

, and to augment every row 
||d

ix  with 1 

(so 
||d

ix  is set to ]1[ ||d
ix ). With that, the formulae above can be restated as: 

||)( d
iii xxfy β=≈ , },...,1{ ni ∈ . In what follows, we abuse the notation and use the 

superscript d  instead of || d .  

Given a subset of attributes Dd ⊆ , to learn the regression model (i.e. to learn the 

function f ) we need to find β  such that 
d

ii xy β≈  best fits the dataset. The 

difference between the actual value iy  and the estimated 
d

ii xy β=ˆ  is referred to 

as the residuals: iii yy ˆ−=ε . The goal in linear regression is to find β  that 



6 F. K. Dankar 
 

 

 

 

 

TRANSACTIONS ON DATA PRIVACY 8 (2015) 

minimizes the square sum of the residuals (∑
=

n

i
i

1

2ε ). The method commonly used is 

referred to as the “least squares method” and is equivalent to solving the following 

equation:  

YXXX
TddTd 1)( −=β    (1) 

2.2 Model Selection 

Model selection (or variable selection) is the process of constructing a model that 

includes all relevant predicting variables. It is the process of determining the subset 

Dd ⊆  that best predicts the outcome variable �. For model selection, we require 

(i) a goodness of fit measures (or model diagnostics) to assess how well a given 

model fits the data and (ii) an efficient mechanism to search within the space of 

available solutions (note that the size of the space is size 2|�|) 
i. The most common goodness of fit measures are the Akaike Information 

criteria (or AIC), the Bayesian information criteria (or BIC) and the adjusted 
2R  measure (or 

2
aR ). All these measures are expressed as a function of the 

sum of squares statistics, specifically the total sum of squares (SST) and the 

residual sum of squares (SSE) (refer to Table 1). The goodness of fit 

measures are defined as follows: 

 

SSTdn

SSEn
Ra )1(

)1(
12

−−
−−=   (2) 

)1(2log ++= d
n

SSE
nAIC   (3) 

nd
n

SSE
nBIC log)1(log ++=  (4) 

A goodness of fit measure in itself has no meaning. It makes sense when it is 

compared to the measures for the other models. The model with lowest 

AIC, lowest BIC or highest 
2

aR is a model with the least information loss 

and thus is considered the best approximation to the real model. However, 

the evaluation of a model (defined by a set d  of predictors) is sometimes 

more involved. Analysts usually calculate and plot several different model 

diagnostics. Moreover, in the instance where two models have close 

diagnostics values (no single model is clearly the best), subsequent analysis 

is usually needed to determine the best model. For more information on 

these cases the reader is referred to [12], [13]. 
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ii. Several strategies for iterating within the subset of predictors exist in the 

literature. These strategies could be either approximations or exact 

strategies. Approximation methods are computationally efficient but do not 

result in the selection of an optimal solution (or the “best” solution). 

Stepwise regression (that includes forward selection, backward elimination 

and bidirectional elimination) is a set of approximation methods. In forward 

selection the modeler starts with no variables in the model. Variables that 

improve the model the most (based on a pre-defined measurement criteria) 

are added one by one until no variable improves the model. Backward 

elimination works in the reverse way, and bidirectional elimination 

combines both approaches. Other approximation algorithms have a 

systematic way of travelling within a subset of the set 2|�| of all possible 

models, the model with the best diagnostic (among the tested ones) is 

selected. The genetic algorithm [14] is one such example. Each candidate in 

the solution space is assumed to be a mix of desirable and non-desirable 

properties. The algorithm evolves from one solution to a better one by 

altering (mutating) some of the non-desirable properties. 

Exact strategies evaluate all the 2|�| possible models and result in the 

selection of the “best” solution, however, these are not computationally 

efficient [13].  

 

Table 1. Summary Statistics, where ∑
=

=
n

i
iy

n
y

1

1
, and 

d
ii xy β=ˆ  

SSE  
∑

=

−
n

i
ii yy

1

2)ˆ(  

SST  2

1

)(∑
=

−
n

i
i yy  

3. Setting 

In this paper, we consider the case of a dataset that is horizontally distributed 

among 2≥k  data warehouses (or data owners). The different owners are 

interested in cooperatively studying the relationship between the independent and 

response variables, however they are not willing to share their data. The 
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relationship is assumed to be linear. This is sometimes referred to as privacy-

preserving linear regression protocol [5]: 

Let V  be the matrix X  augmented with column Y , i.e. ]:[ YXV = . We consider 

the setting of k  data holders, 1DW … kDW , each holding part of the matrix V . The 

division is assumed to be horizontal, i.e. each party holds a subset of the records of 

V . Denote by iV  the subset of matrix V  held by party i , then 

.
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. We denote by ���� = ∑ (�� − ��� )���
��������  and ���� =

∑ (�� − ��)���
��������  the local statistics for site �, i.e. ��� = ∑ �����

���  and ��� =
∑ �����
���  

 

Before proceeding with an overview of the algorithm, we present two important 

properties for the horizontally distributed data: 

1. For any Dd ⊆ , 
dTd XX  can be extracted from XX T  by removing all 

entries ij  from matrix XX T  where either i  or j  do not represent a 

variable in d . The same applies for YX
Td . 

2. Given that || Dn > , for any Dd ⊆  we have that:  

 ∑
=

=
k

i

i
dT

i
ddTd XXXX

1

)(  and that  ∑
=

=
k

i
i

Td
i

Td YXYX
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 Hence Equation (1) is equivalent to:  

 )())((
1

1

1
∑∑

=

−

=

=
k

i
i

Td
i

k

i

d
i

Td
i YXXXβ   (5) 

 

In what follows, we present a privacy-preserving linear regression protocol that 

uses a third party. The third party is referred to as the Evaluator. The Evaluator is 

assumed to follow the protocol correctly however if some data holders are corrupt, 

then the Evaluator will collaborate with them to obtain sensitive information about 

the data. Similarly, it is assumed that a corrupt data holder will correctly follow the 

protocol. We assume that up to 1−l  data holders can be corrupt for some 
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,0 kl <<  thus, if 1=l  then all data holders are honest. The protocol is composed 

of 3 functions: 

(a) Pre-computations, (b) a core regression protocol (referred to as CP ), and (c) an 

iterative protocol referred to as IP :  

The pre-computations are done once at the beginning of the algorithm, then the IP  

protocol runs. It’s role is to iterate over different values of Dd ⊆ , calling CP  for 

each such value of d . The CP  protocol is performed by the evaluator with the 

collaboration of l  out of the k  data warehouses. CP  takes as input a subset Dd ⊆  

and computes β  and a model diagnostic for that given d .  

We consider two different scenarios related to model diagnostic: 

1. Every time a model diagnostic is securely calculated for a set of predictors 

d , its value is shared among the different parties, or 

2. The diagnostics are securely calculated for the different set of predictors d
but they are not shared. Whenever needed, the maximum (or minimum) 

among the encrypted values of a set of diagnostics can be securely 

calculated. That information is used to decide the best model in the set. 

The scenarios above have implications on the IP  protocol that can be used. If 

model diagnostics are disclosed to the different parties at every iteration, then their 

values may be used in guiding future iteration steps. Otherwise, if model 

diagnostics are not shared, then the model selection should be solely based on the 

order of the diagnostics [13]. 

In this paper, we will assume an all possible-subsets IP protocol, i.e., for every 

possible model (among the 2|�| models) we find its corresponding β , and either 
2

aR , AIC, or BIC (note that this can easily be substituted with another more 

efficient IP protocol). If model diagnostics are not to be shared, then the secure 

maximum (or minimum) is executed at the end after all diagnostics are securely 

calculated. 

 

An outline of the algorithm is presented in Figure 2, where the IP  function and the 

algorithm flow are presented in details. The remaining functions will be presented 

in details in Section 6. For more information on regression the reader is referred to 

[5], [13]. 
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4. Related Work 

A number of protocols have been proposed for the collaborative computation of 

linear regression when data is horizontally distributed among different parties [6]–

[10], [15]–[19]. These protocols respond to different levels of data privacy 

requirements (refer to Figure 1). The approximate approaches, displayed on the left  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 1. A hierarchical decomposition of the different private regression algorithms 

based on the type/amount of shared data 

 
 

side of Figure 1, are based on de-identification. The different parties collectively de-

identify their local dataset using anonymization techniques and secure multiparty 

Private Regression 

Share De-identified raw 
data 

Share intermediate 
regression results 

Share final regression 
results 

Share integrated 
statistics 

Share local 
statistics 

SMC Our method 

No raw data sharing 

Approximate    Exact 

(1)                                                           (2) 

(3) 
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computation protocols [16]–[18], [20]. An integrated dataset is built from the 

individual de-identified datasets and regression protocols are applied to the shared 

de-identified data. Although this approach is computationally efficient, its utility is 

questionable and is a function of the de-identification applied to the data. The exact 

approaches displayed on the right side of Figure 1 perform regression on exact 

data. We classified these approaches according to the type/amount of data shared 

to perform regression. In some approaches, intermediate regression results are 

shared among the different parties (1) These could either be local statistics (i.e. 

i
T

i XX , i
T

i YX , ���� and ����) or (2) integrated statistics (i.e. ���, ���, ���, and 

���). While in other approaches (3) only regression parameters are shared among 

the different parties (i.e.   and model diagnostics): 

 

1. Sharing local statistics: This approach was first introduced by Du et al in [7]. 

They suggest sharing local aggregate information. Each site i  shares with 

the other sites the aggregate values: i
T

i XX  and i
T

i YX . This way, each site 

first adds the aggregate information to obtain XX T  and YX T , finds the 

inverse of XX T , then uses Equation (1) to estimate the parameters   of the 

regression. To calculate model diagnostics, the sites share their respective 

local summary statistics ���� and ����, and uses these to calculate ��� and 

���. This method, although efficient, was criticized for being non-private as 

identifying information can be embedded in the shared local statistics [5], 

[8]. 

2. Sharing integrated statistics: Another protocol due to Karr et al [6] suggests 

using secure multiparty computation to securely compute the sum of the 

local statistics: i
T

i XX  and i
T

i YX . The final sums XX T  and YX T  are then 

shared among the different sites. The same applies for local summary 

statistics, i.e. a secure sum is performed for ���� and ����, the final sums, 

��� and ���, are shared among the different sites. This protocol, although 

efficient, was also deemed to be non-private. The reader is referred to [8] for 

examples of inappropriate disclosure from matrices XX T  and YX T . 

3. Sharing final regression results: We found three protocols under this 

category. Two of these protocols [8], [9] use secret sharing and 

homomorphic encryption to privately calculate XX T , 
1)( −XX T
and YX T , 

and then to securely multiply 
1)( −XX T
and YX T . Both solutions make 

heavy usage of secure multiparty computation. As such, all data holders 

must remain online throughout the entire procedure. In both of these 
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protocols, the main computational component is the secure inversion of 

)( XX T
 and its extensive usage of the secure multiparty matrix 

multiplication protocol of [21] extended to k  parties. Each use of this k -

party multiplication requires each pair of participants to execute a 2-party 

secure matrix multiplication protocol. This amounts to a total of 
2

)1( −kk
 

multiparty matrix multiplications. Such a k -party multiplication has each 

party executing a combination of k  homomorphic matrix multiplications 

and encryptions-decryptions under Paillier cryptosystem, as well as 

sending k  matrices to the other parties. 

The third protocol was presented in [10], it uses additive encryption and 

Yao Garbled circuits. The protocol uses two non-communicating semi-

trusted third parties. One party executes the algorithm, while the other 

holds encryption keys and generates garbled inputs.  The additive 

encryption is used to privately compute XX T  and YX T , and Yao Garbled 

circuits to privately find the inverse of XX T . While this solution does not 

require the involvement of all data holders, it requires two non-colluding 

semi-trusted parties each sharing part of the output. Moreover, the protocol 

requires the construction of garbled circuits. The construction of such 

circuits as well as its theoretical complexity were not tackled in the paper. 

The protocols discussed under this category are incomplete. They do not 

tackle the more important and challenging steps of the secure calculation of 

model diagnostics and of the selection of the final model. In fact they only 

present a way to calculate and share  . 
 

The algorithm presented in this paper falls under the third category, thus only the 

final regression results,  , are shared among the different parties. However, in 

addition to calculating the linear regression parameters   of a fixed model, the 

protocol calculates model diagnostics. As discussed earlier, for the calculation of 

model diagnostics we present two options: (i) the different parties either share the 

integrated model diagnostics, i.e. "#�, $%&, or '%&, or (ii) the parties can decide to go 

one step further in limiting data sharing and keep the integrated diagnostics for the 

different models private and disclose only the maximal (or minimal) value among 

all calculated diagnostics. A secure maximum/minimum protocol is presented for 

that purpose. Model selection in that case is based on the model with maximal '%&, 

maximal $%& or minimal 
2

aR . 
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5. Public Key Cryptosystem 

In Section 6 we present the privacy preserving regression protocol, but first, in this 

section, we introduce the properties of the public key cryptosystems that are used 

in our protocol. 

Given a message im , we denote its ciphertext by )( ipki mEncc =  where pk  is the 

public key used in the encryption. A ciphertext ci  can be decrypted using a secret 

key sk and a decryption function, mi = Decsk(ci ) . We will simply use )( imEnc /

Dec(ci )  when pk / sk is clear from the context. In our protocol, we use Paillier 

cryptosystem [22] for the case where 1=l  and threshold Paillier cryptosystem [23] 

when 1>l  for their useful homomorphic properties. 

Paillier cryptosystem is additively homomorphic, as such the sum of two messages 

can be obtained from their respective cyphertexts. For Paillier, this translates to  

)()()( jpkipkjipk mEncmEncmmEnc ×=+  [22]. Moreover, Paillier allows a limited 

form of homomorphic multiplication, in that we can multiply an encrypted 

message by a plaintext. It is done as follows: )()( ji
m

i mmEncmEnc j = . With these 

properties, one can subtract two messages via their cyphertexts as follows: 

�()*+� −+�, = )�)�-�, and divide any message homomorphicaly as follows: 

�() .�/�
� 0 = �()(1+�)-�. 

To simplify notation, given a matrix M , we let )(MEnc denote the entry-wise 

encryption of M . Thus, given two matrices A  and B , the two properties of the 

Paillier encryption allows us to calculate the encrypted product )(ABEnc  from 

)(AEnc  and B  as follows: ∏=
k

B
ikij

kjAEncABEnc )()( , where ijM  represents the 

thij  entry in Matrix M . Similarly, )(ABEnc  can be calculated from A  and 

Enc(B).  
 

In a ),( tn -threshold cryptosystem, the secret decryption key is distributed among 

n  different entities such that a subset of at least t  of them are needed to perform 

the decryption [23], [24]. I.e. in order for the decryption to occur, at least t  parties 

have to correctly perform their share of the decryption. The decryption shares are 

then combined to obtain the final decryption. 

Note that our protocol will be using the threshold Paillier [23] cryptosystem when 

1>l . This can be set up through a trusted party that will generate and distribute 
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the public and secret keys. The trusted party can then erase all information 

pertaining to the key generation. If no such trusted party is available, the keys can 

be generated using secure multiparty computations [25]. Although this requires 

more computation overhead from each data owner, it only has to be done once. As 

such, it is an acceptable tradeoff. 

In an ),( tn -threshold Paillier cryptosystem, the encryption is identical to the 

regular scheme. For the decryption, each party involved is required to compute the 

exponentiation of the ciphertext by their secret key. The product of these shares is 

then computed to proceed with the decryption. Since the validity of the decryption 

depends on the validity of the shares, threshold decryption protocols involve 

proofs of knowledge between each participant to prevent attacks by malicious 

parties. The complexity of the decryption is thus dominated by these proofs of 

knowledge [23]. 

We note that in our setting, each data owner will correctly execute the protocol 

even if they are corrupt, since they genuinely want the correct result. As such, we 

do not require the proofs of knowledge. This makes the threshold decryption only 

slightly more complex than the decryption in the setting 1=l . 

6. Protocol 

In what follows, we present the Pre-computation function (also referred to as Phase 

0), as well as the CP  function which is composed of two phases, Phase 1, and 

Phase 2: 

• In Phase 0 some pre-computations are done. These are the computations that do 

not depend on  , thus they can be computed once at the beginning of the 

Protocol. They are ���, ���,	 and ���. 

• The CP  protocol is executed several times for different subsets Dd ⊆ , it 

computes β  and a diagnostic for the given d  with the collaboration of l  out of 

k  data warehouses, say lDWDW ,...,1 . Phase 1 of CP  is dedicated to the 

calculation of the regression coefficients β  and Phase 2 is dedicated for the 

calculation of model diagnostics. 

We assume that all the inputs are integer valued, due to the use of Paillier’s 

cryptosystem. This is not a problem, as the data owners can multiply their data by a 

large non-private number. The effects of this multiplication can then be removed in 

intermediate/final results [21], [25]. 
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Figure 2. Algorithm flowchart assuming 
2

aR  diagnostic 

 

Before presenting the protocol, we first start with some basic functions used 

throughout the protocol. The protocol will be presented for the general case where 

1>l . When 1=l , some steps can be optimized to slightly reduce the number of 

Function PreComputation() 

{ 

 Phase 0 

} 

 

Function  

{ 

 Phase 1  # Calculates  for the model  

    with attributes . 

 Phase 2  # Calculates  for the model  

    with attributes . 

} 

 

Function  

{ 

  #Diagnostics vector 

  #Parameters’ vector  

For every  ∈ 4� # Power set of D 

 

 { 

 # Calculates  and 
 

for the     

model with attributes . 

  Append  to  

  Append  to  

 } 

SecureMin( ) 

} 
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messages sent. These steps are presented after the protocol in a separate section. 

We assume that the total number of records n  is public knowledge. 

 
 

6.1 Functions 

6.1.1 Basic functions 

The protocol uses several basic functions: 

Creating Random Matrices of size d×d, or CRM( d ): lDWDW ,...,1  and the 

Evaluator each generate a secret random dd ×  matrix ABB l ,,...,1  respectively. We 

denote by B  the product lBBB ...21 . 

Creating Random Integers, or CRI: lDWDW ,...,1  each generate a secret random 

integer lbb ,...,1  respectively, while the Evaluator generates two random secret 

integers a  and r . We denote by b  the product lbbb ...21 . 

Encryption Function for matrices, or )(MEnc , encrypts the entries of a matrix M  

and send the results to the Evaluator. This is an extension of the regular encryption 

function on integers. 

Decryption Function for matrices, or Dec(Enc(M )), decrypts the entries of the 

matrix Enc(M ) and send the results to the Evaluator. This function requires the 

involvement of l  data warehouses as well as the evaluator. The evaluator sends the 

matrix Enc(M ) to DW1,…, lDW , each of the data warehouses does its own share 

of decryption and sends the result to the Evaluator. The Evaluator combines the 

results to obtain M = Dec(Enc(M )). 

Right Matrix Multiplication Sequence Function, or RMMS( )(MEnc ), computes 

)(MBEnc . The Evaluator sends )(MEnc  to 1DW , who uses it to homomorphically 

compute )( 1MBEnc  using it secret matrix 1B . The result is then sent to 2DW , who 

in turn computes )( 21BMBEnc . The process repeats with 3DW ,…, lDW , and the 

result )(MBEnc  is sent back to the evaluator. 

Left Matrix Multiplication Sequence Function, or LMMS( )(MEnc ), computes 

)(BMEnc  It is similar to RMMS( )(, MEncB ), but the order on the data warehouse 

is reversed. 

Integer Multiplication Sequence Function, or IMS( )(mEnc ), the Evaluator sends an 

Encrypted value )(mEnc  to 1DW , who uses it to calculate the encrypted product 

1)()( 1
bmEncmbEnc = , using it secret integer 1b . The result is then sent to 2DW , 



Privacy Preserving Linear Regression on Distributed Databases   17 

 

 

 

 

 

TRANSACTIONS ON DATA PRIVACY 8 (2015) 

 

who in turn computes )( 21bmbEnc . The process repeats with 3DW ,…, lDW , and 

the result )(mbEnc  is sent back to the evaluator. 

Integer Removal Sequence Function, or IRS( )(bmEnc ), the Evaluator sends an 

Encrypted value )(bmEnc  to 1DW , who uses it to calculate the encrypted product 

1/1
1 )()/( bbmEncbbmEnc = , using its secret integer 1b . The result is then sent to 

2DW , who in turn computes ))/(( 21bbbmEnc . The process repeats with 3DW ,…,

lDW , and the result )(mEnc  is sent back to the evaluator. 

 

6.1.2 Secure maximum/minimum protocol 

In order to calculate the maximum/minimum diagnostic value privately, it is 

enough to come up with a protocol that privately compares two encrypted values. 

In what follows, we present a protocol that privately compares two encrypted 

values +� and +�, the protocol is executed by the evaluator with assistance from 

lDWDW ,...,1 : 

1. The evaluator computes �()(+� −+�) = 	�()(+�)�()(+�)-� and 

calls for CRI. Thus the evaluator and every site produce a random 

secret integer. 

2. The evaluator calls for IMS( ))(( 21 mmaEnc − ), and obtains 

�()(56(+� −+�)) . 
3. The Evaluator initiates 78)(�()(56(+� −+�))), if the returned 

result 56(+� −+�) is negative, then +� < +� otherwise, +� ≥ +�. 

Special considerations are to be taken depending on the encryption scheme used. In 

the case of a Paillier encryption scheme with public key N, the result will only be 

valid if |56(+� −+�)| < ;/2. This can be accomplished if |+�| and |+�| are 

bounded above by some value =/2 and the obfuscating values are chosen such that 

56 < ;/2=.  

 

6.2 Phase 0: Precomputations 

At the beginning of this Phase, the Evaluator initiates CRI , thus the l  data 

warehouses as well as the Evaluator generate a secret random integer each. This 

phase is composed of two main computations: 
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• Computations of )( XXEnc T
 and )( YXEnc T

: Each data holder iDW  

locally computes her full local matrices i
T

i XX , and i
T

i YX . She encrypts the 

matrices and sends them to the Evaluator. The Evaluator performs 

homomorphic additions and obtains )()(
1
∑

=

=
k

i
i

T
i

T XXEncXXEnc , and 

)()(
1
∑

=

=
k

i
i

T
i

T YXEncYXEnc . 

• Computation of Enc(>>?)=Enc( 2

1

)(∑
=

−
n

j
j yy ): Note that 2

1

)(∑
=

−
n

j
j yy = 

∑ ����
��� +∑ ��� −∑ 2�����

���
�
��� . Let A� = ∑ 2����

�B
���B����  and C� =

∑ ���
�B
���B���� . The computation proceeds as follows:  

o Each data warehouse iDW  sends their encrypted local aggregate 

∑
+= −

=
i

i

n

nj

ji

n

y

n 11

φ
 to the Evaluator.  

o The Evaluator homomorphically adds these values to get 

)()(
1
∑

=

=
n

j

j

n

y
EncyEnc , and then calculates ayEncyaEnc )()( = .  

o The Evaluator initiates IMS( )( yaEnc ) and receives )( ybaEnc . It 

then initiates ))(( ybaEncDec  and gets yba .  

o The Evaluator computes )( 222 yabEnc  and initiates 2 consecutive 

calls to ))(IMS( 222 yabEnc  which results in )(
22 yaEnc . The 

Evaluator then computes )(
2

yEnc .  

o The Evaluator propagates )( yaEnc  to all data warehouses. 

o Each data warehouse computes 

∏∑
+=+= −−

∑==
i

i

j
i

i

n

nj

y
n

nj
ji yaEncyayEncaEnc

1

2

1 11

)())2(()( δ  and 

)()(
1

2

1

∑
+= −

=
i

i

n

nj
ji yEncEnc α . Both are sent back to the Evaluator. 
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o The Evaluator computes )(
1
∑

=

k

i
iaEnc δ  and recovers )(

1
∑

=

k

i
iEnc δ . The 

Evaluator then proceeds to compute 

))(()()( 2

1

2

11
∑∑∑

===

−=+−=
n

j
j

k

i
i

k

i
i yyEncynEncSSTEnc δα . 

6.3 Protocol: DE(F) 
First, given d , the evaluator extracts the encryptions of YXZ

Td='  and 

dTd XXZ =  from )( XXEnc T
 and )( YXEnc T

 respectively. Then the Evaluator 

initiates CRM( d ) and CRI. These are necessary at every iteration of the protocol 

because the random integers and random matrices need to be refreshed for every 

value d . 

6.3.1 Phase 1: Computing G 

In this phase of the protocol, the Evaluator needs to compute '1ZZ − . The steps are 

the following:  

• The Evaluator computes )(ZAEnc , initiates RMMS( )(ZAEnc ) and receives 

)(ZABEnc . 

• The evaluator initiates ))(( ZABEncDec  and receives ZAB .  

• The evaluator computes 
1111 )( −−−− = ZABZAB  and calculates 

)( 11 β−− ABEnc  using 111 −−− ZAB  and )'(ZEnc . (note that if the matrix 
111 −−− ZAB  has non-integer values, then it can be multiplied by a large 

integer value, The effect of this integer can be removed from the final 

outcome  ). 

• The Evaluator obtains )( 1β−AEnc  by initiating LMMS( )( 11 β−− ABEnc ) and 

computes )(βEnc  homomorphically. 

• The Evaluator initiates ))(( βEncDec , recovers β  and sends it to all data 

warehouses. 

6.3.2 Phase 2: Model Diagnostics 

In this section we show how �()(���) can be securely calculated. Then we 

illustrate how )( 2
aREnc  can be calculated using �()(���) and �()(���). 

)(AICEnc  and )(BICEnc  could be calculated using similar procedures. 
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1. Computing Enc(SSE) for a Given F 

As each data warehouse iDW  recieves β , they calculate their local residuals: 

∑
+= −

−=
i

i

n

nj
jji yy

1

2

1

)ˆ(ζ , encrypt it and send it to the Evaluator. The Evaluator then 

adds the local residuals homomorphically to obtain 

)(...)()( 1 kEncEncSSEEnc ζζ ××= .  

2. Computing model diagnostics for a Given F 

In this subsection we illustrate how )( 2
aREnc  could be securely calculated using 

�()(���) and �()(���). Other model diagnostics can be calculated using similar 

procedures: 

• The Evaluator computes )(rSSEEnc  and )(aSSTEnc . He then initiates 

IMS( )(rSSEEnc ) and IMS( )(aSSTEnc ) and receives )(brSSEEnc  and 

)(baSSEEnc  respectively.  

• The Evaluator then initiates a decryption round for )(brSSEEnc  to obtain 

brSSE , and uses it to compute 
r

a
brSSEbaSSE = . 

• The Evaluator now calculates )( 2
aREnc  homomorphically. Assuming that & 

is a very large public integer, the computation proceeds as follows:  

o Evaluator computes 
�-�

(�-H-�)I#JJK converts it into an integer 

& �-�
(�-H-�)I#JJK then  

o Evaluator calculates ζα badn

n
C

a baEncCEncCREnc )1(

)1(

2 )()()( −−
−−

=   

• (Optional Step) The Evaluator initiates ))((
SST

SSE
EncDec  and propagates the 

result to the different warehouses so that 
2

aR  can be calculated with the 

public values n and d.  

6.4 Choosing the “best” model 

In order to choose the model that best fits the data, we present two options: 

1. Every time a model diagnostics is calculated, it can be decrypted by calling 

the Dec function, and then shared among all sites (last optional step of 

Section 6.5.2). or  
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2. We can wait until the encrypted diagnostics of all the different models are 

calculated, and we use our private minimum/maximum algorithm to find 

the model with the minimal AIC/BIC or the maximal 2
aR  (depending on 

which diagnosis we desire). The found model is designated as the best fit. 

6.5 Special Considerations for the case l=1 

For the case 1=l , all the data owners are assumed to be incorruptible and all the 

decryption and obfuscation is delegated to one data warehouse, say 1DW . As such, 

the steps that initiate a multiplication sequence (RMMS, LMMS or IMS) followed 

by a decryption can be reversed and merged. In other words, 1DW  can do the 

decryption first followed by the multiplication by its random number.  

For example, in the computation of �()(���) in Phase 0, steps 3 and 4 can be 

replaced by “The Evaluator sends )( yaEnc  to 1DW , who decrypts to obtain ya . 

1DW  then compute and send yba  back to the evaluator.” This will considerably 

reduce the complexity of 1DW ’s computations when working with matrices.  

Note that the role of 1DW  can be assumed by another semi-trusted third party 

(STTP) if available. In such case, the Evaluator and the STTP will together compute 

the CP  protocol. Both third parties should be trusted to follow the protocol 

correctly and to not communicate secretly outside the protocol. 

6.6 Protocol Modification 

In order to execute our linear regression protocol, the l  participating data 

warehouses have to be online throughout the whole process. It would be ideal if 

the remaining lk −  data warehouses could send their data at Phase 0, then stay 

offline throughout the remaining protocol. However this is not that case, these data 

warehouses have to participate in the calculation of ��� at each iteration of the CP  

protocol. With some changes to the protocol, it is possible for the data warehouses 

to send their fully encrypted matrices )( iXEnc  and )( iYEnc  to the Evaluator at the 

start of the protocol (i.e. in Phase 0) then stay offline for the whole process 

afterwards. The Evaluator can use these encrypted matrices to calculate �()(���) 
without the involvement of the lk −  data warehouses. In other words, for a given 

L	subset	of	7, and for every data warehouse �, the Evaluator can calculate 

)( iSSEEnc  using ),(, iXEncβ  and )( iYEnc  as follows: 

For every T ∈ {(�-� + 1,… , (�}, we calculate: 
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)()()ˆ( d
j

dl
jlj xEncxEncyEnc

k

β
β

== ∏
∈

,  

then, given �()(�Y�) and �()(��), we can use a series of CRI, Dec and Enc functions 

to calculate )ˆ( 2
jyEnc , )( 2

jyEnc  and )ˆ( jj yyEnc , which in turn can be used to 

calculate )( iSSEEnc = ∑
+−

−+
i

i

n

n
jjjj yyEncyEncyEnc

1

222

1

)ˆ()()ˆ( . 

The problem with this modification is that the data warehouses would give out 

their local number of records, knn ,..,1 . If this is considered private information, 

then the original protocol has to be followed. Note that this modification requires 

considerably more space and complexity at the Evaluator side as the 1 encrypted 

matrices have to be stored and then used to calculate )( iSSEEnc . 

7. Privacy Discussion 

In this section we study the privacy of our protocol and show that no party can 

learn any information other than the final results of the regression. We assume that 

1−l  parties are corruptible and that the total number of records, n , is public 

knowledge. 

Since Paillier is semantically secure [22], then no information can be gained from 

the ciphertexts exchanged throughout the protocol unless they are decrypted. 

However, since l  parties are required for a successful decryption, then the 1−l  

corrupted parties cannot perform decryption on their own, as such, we will only 

investigate privacy threats due to the decrypted values each party obtains. 

In Phase 0, all the values are encrypted except for yba . All l  active data owners 

and the evaluator have access to this value. If the corrupted data owners and the 

evaluator collaborate, they can remove a  and at most 1−l  of the random numbers 

added. In other words, they can reduce the value to yb' , where 'b  is the random 

unknown integer associated with the honest data warehouse. As 'b  is unknown, no 

information about y  can be recovered (note that In the case where 1=l , the active 

data owner obtains ya , but since a  is random and since 1DW  is incorruptible, no 

information about y  can be gained).  

The same reasoning applies for Phase 2, where all the information is encrypted 

except for brSSE , which is always obfuscated by at least one random integer (for 
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the case where 1=l , 1DW  can also obtain aSST  but no information about SSE  or 

SST  can be gathered since both are obfuscated by different random integers). 

In Phase 1, all the matrices are encrypted except for ZAB  that all active parties and 

the evaluator compute. Assuming that iDW  is the incorruptible party, then the 

evaluator and the corrupted parties can calculate iBZAB' , where 121 ...' −= iBBBB , 

'B  is known to them but not Z or $�. Thus, since $� is random, the evaluator cannot 

recover Z , even while knowing 121 ... −iBBAB .  

Thus, since all values in the protocol are either encrypted or obfuscated by some 

random values, no party can learn additional information from the protocol other 

than the final results of the computations. 

8. Complexity 

In this section, we evaluate the computational complexity of one protocol iteration. 

We will evaluate the individual burden on each participating party as well as the 

total complexity of the protocol. We abuse the notation and denote by d  the 

number of attributes in an iteration and by D  be the total number of attributes in 

the database. A message will be considered either as one value, encrypted or not.  

The complexity will be expressed in terms of some basic functional units. These 

units are homomorphic multiplication (HM) and homomorphic addition (HA), 

where (assuming that we are using an instance of Paillier with modulus 2m ) HA is 

equivalent to multiplying two integers modulo 2m , and HM is equivalent to 

computing an exponentiation modulo 2m  where the exponent is at most +. As 

such, 1 HM is equivalent to log	(+) HA [26]. 

With the above considerations, It follows that a message encryption is equivalent to 

2HM and 1HA (thus it is dominated by 2HM), while a standard decryption is 

essentially 1HM [22]. As for a ),( lk -threshold decryption, it is equivalent to having 

each of the l  involved parties compute one decryption and the evaluator to 

compute l  HA’s (for the product of the encrypted shares). As such, we can 

reasonably assume that ),( lk -threshold decryption is bounded above by a total 

computational complexity of l HM, making it only slightly more expensive than 

standard decryption. 

 

We will start by evaluating the complexity of the basic functions used throughout 

the protocol. 
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• )(MEnc : If ] is a gd ×  matrix, then the function involves dg  encryptions  

• )(MDec : If ] is a gd ×  matrix and since this function is performed by l  

data warehouses, it involves dgdecryptions and dg messages per data 

warehouses, l  Has and dg messages for the evaluator. 

• RMMS( )(MEnc ) and LMMS( )(MEnc ): These functions are performed 

collectively by the l  data warehouses on square matrices. If ] is a dd ×  

matrix, then to execute this function, each DW  has to send L�message to 

another DW and perform, at most, L^HM. That makes a total of _L�  

messages and at most 
3ld HM operations. 

• IMS( )(mEnc ) and IRS( )(bmEnc ): Each party sends one message to exactly 

one other party, and each participating data warehouse has to compute one 

HM. That makes a total of _ messages and _HM. 

• Secure Min/Max protocol: Step 1 of the protocol requires 1HM, 1HA and 

one message from the evaluator. Step 2 requires 1HM and one message 

from each of the l data warehouses. Step 3 requires 1HM per data 

warehouse, 1 message per party, and l HAs from the evaluator. Thus the 

overall protocol is governed by 2`HM and 2` messages from each data 

warehouse, while the evaluator needs tHM and 2t messages, where ` is the 

number of models checked.  

The complexity for the different phases of the protocol are depicted in Tables 2, 3 

and 4 below. The tables show the computational complexity as well as the number 

of messages performed by the Evaluator, by a regular DW  and by a participating 

DW . Since HM is the dominant operation, the computational complexity is 

governed by the number of HM operations. 

 

Table 2. Complexity of Phase 0 

Phase 0 Evaluator Regular DWs l DWs 

HM operations O(1) O(L�) O(L�) 

Messages O(k) O(L�) O(_L�) 

 

Table 3. Complexity of Phase 1 

Phase 1 Evaluator Regular DWs l DWs 

HM operations O(L^) 0 O(L^) 

Messages O(1L + L�) 0 O(_L�) 
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Table 4. Complexity of Phase 2 

Phase 2 Evaluator Regular DWs l DWs 

HM operations O(1) O(1) O(1) 

Messages O(k) O(1) O(l) 

 

Note that Phase 0 is performed once at the beginning of the protocol, while Phases 

1 and 2 iterate over subsets L of 7. Table 5 presents the complexity of the one 

iteration of the protocol.  

 

Table 5. Complexity of one iteration 

Phase 2 Evaluator Regular DWs l DWs 

HM operations O(L^) O(1) O(L^) 

Messages O(1L + L�) O(1) O((_L�) 

 

Note that, with the protocol modification suggested in Section 6.7, the evaluator 

would perform additional a((L) HM operations, and the participating 7bs would 

perform additional a(() HM operations. However, the regular 7bs would only 

participate in Phase 0 and remain idle in all iterations afterwards. 

 

As can be seen from this evaluation, the total complexity of the protocol per 

iteration is linear in k . The complexity of the Evaluator and the participating data 

warehouses depends only on the size d  of the matrices. This shows that our 

protocol allows the data owners to greatly reduce the computational power needed 

for a multiparty regression by making use of a STTP (the Evaluator). 

For the sake of comparison, we take a closer look at the complexity of the schemes 

presented in [9] and [8] at the level of each individual participants. For this we shall 

look mostly at the secure multiparty matrix multiplication protocol of [21] (which 

was followed in [9] and [8]). In the 2-party case, one party has to compute about 
23d HM operations while the second party has to execute about 3d HM operations. 

In the k -party protocol an average of 3kd HM operations is performed for each 

participating member.  

This multiparty secure matrix protocol is executed at least 2 times in [8] and up to 

248 times in [9] when computing the inverse of Z . We note that, for any k , our 

complete protocol )(dCP  involves less computational burden and messages for 

each party than a single matrix inversion in [8] or [9]. This is due to the fact that the 

individual complexity in our protocol is independent of k  for all participants but 

the Evaluator. 
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9. Discussion 

We presented a practical system that performs secure linear regression on 

horizontally distributed data. The different data holders do not share anything 

about their data apart from the regression parameters and the model diagnostics.  

Different from existing secure approaches, our approach is complete. It not only 

calculates the parameters β  of a fixed model, but also includes model diagnostics 

and selection, which are more important and more challenging steps [5]. Our 

model is superior in terms of complexity on the data holders end as the Evaluator 

absorbs most of the regression complexity.  

However the problem of secure regression is not completely solved. We still do not 

have a way to securely check the linearity property. In fact, if linearity holds at each 

site separately then it may not hold for the union of the data. On the other hand we 

still need to generalize the protocol to cover generalized linear models (such as 

Poisson regression).  

In addition to the above issues, extensions to this work would tackle issues related 

to data overlap between sites, missing data and measurement errors in a secure 

manner [9]. 

On the other hand, we are currently in the process of applying the protocol on the 

union of three datasets from the state of Pennsylvania (over 1.5 million records). 

The study aims to find the attributes that affect surgery completion times and come 

up with recommendations. The trusted third party (the Evaluator) is the IBM Cloud 

located at Western University.  
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