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Abstract. Secure keyword search in shared infrastructures prevents stored documents from leaking
sensitive information to unauthorized users. A shared index provides confidentiality if it is exclu-
sively used by users authorized to search all the indexed documents. We introduce the Lethe index-
ing workflow to improve query and update efficiency in secure keyword search. The Lethe workflow
clusters together documents with similar sets of authorized users, and creates shared indices for con-
figurable document subsets accessible by the same users. We examine different datasets based on
the empirical statistics of a document sharing system and alternative theoretical distributions. We
apply Lethe to generate indexing organizations of different tradeoffs between the search and update
cost. We show the robustness of our method by obtaining configurations of similar low costs from
application of prototype-based and density-based clustering algorithms. With measurements over an
open-source distributed search engine, we experimentally confirm the improved search and update
performance of the particular indexing configurations that we introduce.
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1 Introduction

Keyword search is an indispensable service for the automated text retrieval of diverse stor-
age environments, such as personal content archives, online social networks, and scalable
cloud facilities. As the accumulated data is becoming predominantly unstructured and
heterogeneous, the role of text processing remains crucial in big-data analytics [15]. Stor-
age consolidation increasingly moves sensitive data to public infrastructures and makes
insufficient the confidentiality achieved by storage access control alone. For instance, the
aggregation of personal data from seemingly unrelated sources is currently recognized as
severe threat to the privacy of individuals [19].

An inverted index is the typical indexing structure of keyword search. The stored doc-
uments are preprocessed into a posting list per keyword (or term) with the occurrences
(or postings) of the term across all the documents. A single index shared among multiple
users offers search and storage efficiency. However, it can also leak confidential informa-
tion about documents with access permissions limited to a subset of the users [7, 9, 29, 35].
The problem persists even if a query is initially evaluated over the shared index, and the
inaccessible documents are later filtered out before the final result is returned to the user [9].

A known secure solution serves queries from a shared index by restricting access to the
postings of searchable documents, and filtering out early the postings of documents that
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are inaccessible to the user [9]. In online social networks, recent research applies advanced
list-processing operators and cost models to improve secure search efficiency [7]. First, it
organizes the friends of each user into groups based on characteristics of the search work-
load. During query handling, it intersects the list of documents that contain a term against
the list of documents authored by the querying user or members of her friend groups.

A different secure solution partitions the document collection by search permissions, and
maintains a separate index for each partition [35]. The indices are systematically encrypted
by the client before they are remotely hosted by a service provider. The document collection
is indexed by a limited number of indices and query handling is restricted to documents
searchable by the querying user. Variations in the search permissions of different docu-
ments can increase the number of indices. Smaller indices can be completely eliminated by
replication of their contents to private per-user indices, but at increased document dupli-
cation across the indices and corresponding update cost.

In the present study, we aim to achieve low search latency and update resource require-
ments by limiting both the number of indices per user and the document duplication across
the indices. We group by search permissions the documents into families, and cluster to-
gether the families with similar permissions. We maintain a single index for the documents
searchable by a maximal common subset of users in a cluster. Cluster documents whose
users lie outside the above subset are inserted into either per-user private indices or addi-
tional multi-user indices.

Our indexing organization for secure keyword search is innovative because we: (i) Use
prebuilt secure indices to skip unnecessary I/O and list filtering during query time and
avoid the consumption of extra resources. (ii) Effectively balance the number of searched
and maintained indices through configurable merging of indices for documents with com-
mon authorized users. (iii) Experimentally demonstrate achieving low search and indexing
time for workloads with different empirical and theoretical characteristics. To the best of
our knowledge, Lethe represents the first application of index clustering to achieve effi-
ciency in secure keyword search.

In Sections 2 and 3 we present the Lethe indexing workflow and our prototype implemen-
tation. In Sections 4 and 5 we describe our experimentation environment and analyze our
experimental results. In Section 6 we examine previous related research, and in Section 7
we summarize our conclusions and plans for future work.

2 Indexing Organization

We next provide the basic assumptions and goals of our work, and describe the stages of
the Lethe indexing workflow that we propose. We summarize the definition of the symbols
involved in the Lethe workflow at Table 1.

2.1 Assumptions and Goals

We target collections of text documents in shared storage environments accessible by mul-
tiple users. The system applies access control to protect the confidentiality and integrity of
the stored documents from actions of unauthorized users. We designate as owner the user
who creates a document, and as document searchers the users who are allowed to search for
the document by keywords and read its contents. The system preprocesses the documents
content into the necessary indexing structure to enable interactive search through keyword
criteria set by the searchers. In our indexing organization we set the following goals:
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Definition of Symbols
Symbol Description Properties
AT relation of search permissions ⊆ DT × ST

c cluster
CT set of family clusters from dataset T
Dc document set of cluster c =

⋃
f∈Fc

Df

Di
c document set of cluster intersection Pc = Dc

Df document set of family f ⊆ DT

Dd
f document set of family difference Pf = Df

DT document set of dataset T
De

u document set of private collection Pu ⊆ DT

f family = (Df , Sf )

FT set of document families in dataset T
Fc family set of cluster c |Fc| ≤ |Dc|
IT set of indices for dataset T
Ic shared index of cluster intersection Pc ∈ IT

If shared index of family difference Pf ∈ IT

Iu private index of searcher u ∈ IT

Ls searcher similarity ∈ [0, 1]

Mf access bitmap of family f

Nc
c number of created clusters ≤ Nr

c

Nr
c number of requested clusters

Pu private collection of searcher u = (De
u, {u})

Pc intersection of cluster c = (Di
c, S

i
c)

Pf difference of family f = (Dd
f , S

d
f )

Rd
f duplication product = |Dd

f | · |Sd
f |

Si
c searcher set of cluster intersection Pc =

⋂
f∈Fc

Sf

Sf searcher set of family f ⊆ ST

Sd
f searcher set of family difference Pf = Sf − Si

c

ST searcher set of dataset T
T dataset = (DT , ST , AT )

Td duplication threshold ∈ [0,∞)

u searcher user

Table 1: We summarize the definition of symbols used in the description of Lethe.

• Security Ensure that the indexing structure provides confidentiality of the searched
documents with respect to the document contents and their statistical characteristics
(e.g., number of documents, term frequency).

• Search efficiency Minimize appropriate metrics (e.g., average, percentile) of the search
latency per query.

• Indexing cost Minimize the document insertion I/O activity and indexing storage
space required for the entire collection.

We require that users be authenticated by the system and receive authorization to only
search for documents with the necessary access permissions. Accordingly, we build a sep-
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Figure 1: The four stages of the Lethe workflow.

Algorithm 1: Crawler
Input: O: folder location
Output: T : dataset

1 // Crawl documents and searchers of dataset
2 DT ← get doc ids(O)
3 ST ← get searcher ids(O)
4 AT ← get search perms(O)
5 T ← (DT , ST , AT )

arate index for each document subset with common access permissions. We assume that
search with encrypted keywords over encrypted documents does not necessarily hide the
search activity and stored content from the storage provider or co-located unauthorized
searchers [35, 37, 41]. Therefore, we examine secure multi-user search orthogonally to stor-
age encryption.

2.2 Lethe workflow

In order to realize our goals we need to build an indexing organization based on the search
permissions of the documents. Thus we introduce the Lethe workflow consisting of four
basic stages to crawl the document metadata, cluster together the documents with similar
searchers, map the documents to indices, and build the indices in the search engine (Fig. 1).

Crawler For a text dataset T = (DT , ST , AT ), we define as DT the set of documents, ST
the set of searchers, and AT ⊆ DT × ST the document-to-searcher relation that identifies
the users who are allowed to search each document. At the first stage of Lethe, we crawl
the names (e.g., paths) and permissions (e.g., allowed searchers) of the documents in the
dataset. Thus we assign unique identifiers to the documents and searchers of T generating
the sets DT , ST , and AT (Algorithm 1).

Clusterer We group into a separate family f = (Df , Sf ) each set of documents Df ⊆ DT
with identical set of searchers Sf ⊆ ST generating the set of families FT (as further ex-
plained in Section 3). In order to maintain a single index for the searchers who are common
among similar families, we need to identify those families with substantial overlap in their
searcher sets. We address this issue as a universal clustering problem over the searchers of
the families in FT . We parameterize the clustering method appropriately to assign every
family to exactly one cluster (i.e., without omitting any family as noise).

Let searcher similarity Ls ∈ [0, 1] be a configurable parameter to adjust the number of com-
mon searchers across the families of each created cluster. We generate a set CT of family
clusters, where each cluster c ∈ CT contains a set Fc of families and each family f ∈ Fc con-
tains the document setDf ⊆ DT (Algorithm 2). The document setDc of cluster c is derived
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Algorithm 2: Clusterer
Input: T : dataset, Ls: searcher similarity
Output: FT : family set, CT : set of family clusters

1 // Create document families
2 Table Families
3 for each document d in DT do
4 key ← get searcher ids(d, T )
5 Families(key).add doc(d)
6 end
7 for each family f in Families do
8 Df ← get doc ids(f)
9 Sf ← get searcher ids(f)

10 FT ← FT ∪ {(Df , Sf )}
11 end
12 // Cluster families by Ls

13 CT ← family clustering(FT , Ls)

f6
f4

f3

f5

Cluster

Family

c3f1

f2

c1

c2

Figure 2: Clustering by searcher similarity Ls. We show an example of six document fami-
lies f1, f2, f3, f4, f5, f6 grouped into three clusters c1, c2, c3.

from the union of the documents contained across all the families of c, i.e., Dc =
⋃

f∈Fc
Df .

As a clustering example, in Fig. 2 we show the document families f1, f2, f3, f4, f5, f6 par-
titioned into the three clusters c1 = {f1, f2, f3}, c2 = {f5} and c3 = {f4, f6} resulting from
the choice of Ls.

Mapper We define as IT the set of indices needed to securely index the dataset T . We
strive to map each family f to the minimum number of indices required to securely handle
keyword queries over Df , but also minimize the total number |IT | of indices maintained
for the dataset. First, we dedicate to every searcher u ∈ ST the private collection Pu =
(De

u, {u}), where De
u ⊆ DT is the set of documents exclusively searchable by user u. We

assign to Pu a private index Iu ∈ IT containing all the documents of De
u.

Let the cluster intersection of cluster c ∈ CT be a pair Pc = (Di
c, S

i
c), with Di

c = Dc the
contained documents and Si

c =
⋂

f∈Fc
Sf the intersection of searchers in the families of Fc.

From the family definition, the documents in Di
c are searchable by all the searchers in Si

c. If
Si
c 6= ∅, we dedicate a separate index Ic ∈ IT to the intersection Pc.
For every family f ∈ Fc, we define a family difference Pf = (Dd

f , S
d
f ), where Dd

f = Df and
Sd
f = Sf − Si

c. The set Sd
f contains the searchers of f not included in the Si

c of intersection
Pc. If Sd

f 6= ∅, the users of Sd
f should be allowed to securely search for documents in Dd

f .
In order to support search over each family difference Pf , an extreme approach is to insert

all documents d ∈ Dd
f to all the private indices Iu, u ∈ Sd

f . However, a difference Pf may
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Algorithm 3: Mapper
Input: T : dataset, CT : set of family clusters, Td: duplication threshold
Output: IT : set of specified indices

1 // Create private indices
2 for each user u ∈ ST do
3 De

u ← get private docs(u, T )
4 Iu ← create index(De

u, {u})
5 IT ← IT ∪ {Iu}
6 end
7 for each cluster c in CT do
8 Fc ← get families(c)
9 // Find cluster intersection

10 Si
c ←

⋂
f∈Fc

Sf

11 Di
c ←

⋃
f∈Fc

Df

12 // Dedicate index to cluster intersection

13 if (Si
c 6= ∅) then

14 Ic ← create index(Di
c, Si

c)
15 IT ← IT ∪ {Ic}
16 end
17 // Identify family differences
18 for each family f in Fc do
19 Sd

f ← Sf − Si
c

20 // Dedicate index to family difference

21 if (Sd
f 6= ∅) then

22 Dd
f ← Df

23 // Approximate document duplication

24 Rd
f ← |Dd

f | · |Sd
f |

25 if (Rd
f ≥ Td) then

26 If ← create index(Dd
f , Sd

f )
27 IT ← IT ∪ {If}
28 else
29 // Add docs to private indices

30 for each user u ∈ Sd
f do

31 add docs(Iu, Dd
f )

32 end
33 end
34 end
35 end
36 end

contain a relatively large number |Dd
f | of documents searchable by a considerable number

|Sd
f | of users. Hence, we could end up with a large number of documents duplicated across

the private indices of many users. At the other extreme, we could dedicate a separate
index If ∈ IT to every difference Pf with Sd

f 6= ∅. However, this approach runs the risk
of generating a large number of indices, each serving a small number of documents and
searchers.

We introduce the duplication product Rd
f = |Dd

f | · |Sd
f | to approximate the potential doc-

ument duplication resulting from indexing a family difference. Although not examined
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Rf < Td

IfIc
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f2 :

f3 :
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1
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2

Df
3

1 1

d

Figure 3: Cluster mapping to intersection, difference and private indices based on compar-
ison of Rd

f to the duplication threshold Td. We show an example with four indices based
on cluster c1 of three families f1, f2, f3 from Fig. 2.

further, for increased accuracy of Rd
f over diverse document sizes, an alternative approach

could be to replace |Dd
f | with the total number of postings contained in all documents

d ∈ Dd
f .

Subsequently, the decision of whether we should create a dedicated index If depends on
how Rd

f compares to the configurable duplication threshold Td. We assume that Rd
f < Td

implies an affordable cost of inserting the documents d ∈ Dd
f to private indices Iu, u ∈

Sd
f . Instead, Rd

f ≥ Td suggests that devoting a separate index If to the difference Pf is
preferable. We use pseudocode to summarize the above steps in Algorithm 3.

An optimization that we also examine is to pursue additional duplication reduction by in-
tersecting the searchers of the differences Pf , f ∈ F ′

c, for appropriate family subsets F ′
c ⊂ Fc

of all the clusters c ∈ CT . Thus, we strive to take advantage of possible searcher similarity
across all the family differences of the entire dataset (further explained in Section 5.2).

Continuing the example of Fig. 2, in Fig. 3 we show the cluster c1 consisting of three fami-
lies with common searchers S1, S2, S3, S4. We create an intersection index Ic1 that contains
the documents Df1 ∪ Df2 ∪ Df3 of the three families and is accessible by the searchers
S1, S2, S3, S4. We create a difference index If1 for the searchers S12, S14, S15 and the docu-
ments Df1 . Instead, we copy the documents of Df3 to the private indices IS9

and IS10
of

the respective searchers S9 and S10.
Indexer We insert each document d ∈ DT to the appropriate indices of IT specified by

the above mapping stage. In order to keep low the I/O activity required by the search
engine for index building, we generate each index separately through a specification of
the allowed searchers and contained documents (Algorithm 4 further explained in Section
3). We have experimentally validated that the alternative approach of specifying to the
search engine the list of indices containing each document leads to lower storage locality
and higher I/O activity during index creation.

As new documents are added to the collection, we seek to use existing indices to securely
serve all the searchers of each document. Periodically, we repeat the previous clustering
and mapping stages to optimize the search over the accumulated document collection.
Deletions or modifications of inserted documents are handled with the necessary changes
of the index contents and potential reorganization of their mapping to documents.
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Algorithm 4: Indexer
Input: T : dataset, IT : set of indices
Output: Search engine with prebuilt document indices for authorized searchers

1 // Build indices by document batches
2 Batch batch
3 for each index i in IT do
4 batch.set searchers(i, Si)
5 for each document d in Di do
6 batch.load text(i, d, T )
7 if (batch.size() ≥MAX BATCH SIZE ∨ no more documents) then
8 search engine.build index(batch)
9 batch.clear docs()

10 end
11 end
12 end

3 Lethe Prototype

Based on the above workflow design, our software prototype consists of four components:
(i) crawler, (ii) clusterer, (iii) mapper, and (iv) indexer.

The crawler specifies a unique identifier for each document and gathers information about
the permitted document searchers. The clusterer organizes the documents into families ac-
cording to their searchers, and then clusters the families based on their relative searcher
similarity Ls. We insert each document identifier into a hash table by using as key the re-
spective list of authorized searchers (Algorithm 2). The documents with identical searchers
belong to the same family and have their identifiers stored at the same entry of the table.

The searchers of family f are concisely represented through the access bitmap Mf . The
bitmap length is equal to the total number of users |ST | in the dataset. The bit value of Mf

is set to 1 at the positions specified by the identifiers of the searchers u ∈ Sf . Families with
similar access bitmaps are grouped into the same cluster, which is represented as a vector
of family identifiers. The clustering algorithm that we use either receives the number of
clusters as input (e.g., K-medoids), or determines it automatically based on the provided
value of searcher similarity Ls (e.g., DBSCAN) [38].

Within each cluster, the mapper identifies the cluster intersections and family differences
and specifies their contained documents and authorized searchers, respectively. We assign
a dedicated index to each cluster intersection. However, we use a dedicated index, or
the private indices of the respective searchers, for each family difference according to the
duplication product Rd

f and the duplication threshold Td. The indexer receives the index
specifications from the mapper and splits each index into document batches (Algorithm 4).
Then it communicates with the search engine to insert the documents of each batch to the
respective index after the necessary initialization.

The search engine serves queries by using the permitted indices of each authorized searcher.
In our prototype implementation, we use the Elasticsearch distributed search engine [16].
Elasticsearch is free, open-source software written in Java and based on the Apache Lucene
library. It uses one or multiple servers (nodes) to store the indices and serve incoming
queries. If an index contains a large amount of documents, it is split into smaller parts,
called shards. Each shard can be placed on a separate node or replicated on multiple nodes
for improved performance and availability.
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4 Experimentation Environment

Starting from the published statistics of a real dataset, we generate a synthetic workload
and several variations derived from theoretical distributions of different permission pa-
rameters. We obtain our experimentation results with a prototype implementation of the
Lethe workflow, which includes indexing and query handling over the Elasticsearch search
engine.

4.1 Document Datasets

We generate synthetic document collections with searcher lists based on published mea-
surements of an existing dataset (DocuShare [36]), or controlled variations of permission
parameters according to theoretical distributions. From DocuShare, we set the number of
users to 200, user groups to 131, documents to 50000, and the maximum group size to 50.
Accordingly, we also configure the maximum number of users per document equal to 29
and the maximum number of groups per document equal to 7.

We uniformly assign users as group members, but determine the size of each group based
on either the DocuShare statistics, or the Zipfian distribution with α = 0, 0.7, or 2.2. We also
uniformly assign users and groups to each document, but specify the number of users and
groups allowed to search each document either according to the DocuShare statistics, or
based on the Zipfian distribution with α = 0, 0.7, or 2.2.

We evaluate our solution over the first 50000 documents (820MB) of the GOV2 dataset
from the TREC 2006 Terabyte track [39]. Our query set consists of the 50000 standard
queries from the Efficiency Topics in the TREC 2006 Terabyte track [39]. The average num-
ber of terms per query is equal to 2.8.

4.2 Clustering

We use a partitioning clustering algorithm to exclusively assign each family to a single
cluster. Each family is represented by an access bitmap consisting of asymmetric binary
attributes to track the document accessibility by individual searchers. We measure object
closeness with the Jaccard similarity coefficient, which is commonly used for objects with
asymmetric binary attributes [38].

We primarily use the DBSCAN (density-based spatial clustering of applications with noise)
algorithm because it automatically determines the number of clusters by locating regions
of high density separated by regions of low-density [17]. For n points, the computational
complexity of DBSCAN is O(n2) in the worst case, and O(n log n) if efficient spatial data
structures are used for neighborhood search; the space complexity of DBSCAN isO(n) [38].
The algorithm uses the parameter Eps, as the radius delimiting the neighborhood area of
a point, and the parameter MinPts, as the minimum number of points in a neighborhood
required to form a cluster. In our experiments, we set MinPts = 1 and Eps = Ls.

Alternatively we use the K-medoids algorithm, a prominent partitioning clustering method
based on K-means [21]. As medoid is chosen the most representative point of a group of
points. The method can be widely applied to different types of data because it only re-
quires a proximity measure for each pair of objects. The algorithm chooses a number of
initial medoids according to the user-specified parameter K, and then repeatedly attempts
to minimize the distance between the points of each cluster and the respective medoid. The
computational complexity of K-medoids with k clusters and n points is O(k(n − k)2) per
iteration [27].
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In our experiments we vary the parameter K to examine the sensitivity of the obtained
results. For clarity, we refer to the numberK of requested clusters with the symbolNr

c , and
the number of clusters actually created by the algorithm with the symbol N c

c .
A proper initialization method is crucial for the convergence to a solution that is close

to optimal. For improved clustering accuracy, the K-means++ initialization chooses uni-
formly the first medoid, and then picks each subsequent medoid with probability propor-
tional to the squared distance of the point from its closest medoid [2]. In our experiments,
we combine K-medoids with K-means++ [34].

4.3 System Implementation

We implemented the crawler, clusterer and mapper in C/C++ with STL, and the indexer in
Perl (v5.10.1). In our experiments, we use Elasticsearch v0.90.1. We execute the Lethe work-
flow and the Elasticsearch client on a machine with one quad-core x86 2.33GHz processor,
4GB RAM, 1 GbE link, and two 250GB 7.2KRPM SATA disks. The clustering algorithm
in each experiment takes limited amount of time in the order of tens of seconds. We run
Elasticsearch on two servers, each with two quad-core x86 2.33GHz processors, 4GB RAM,
1 GbE link, and two 7.2KRPM SATA disks of capacity 500GB and 1TB. Each server devotes
2GB of RAM to the execution of Elasticsearch. All the machines use Debian v6.0 squeeze
with Linux kernel v2.6.32. Next we experimentally evaluate and analyze several important
properties of our workflow.

5 Measurement Results

We first examine in detail the indexing characteristics of alternative clustering algorithms
and configurations. Then we measure the performance of query handling and require-
ments of index building for the DocuShare dataset over the Elasticsearch distributed search
engine. We also examine the sensitivity of indexing costs to different parameters and
group distributions. Finally, we analyze the security and efficiency characteristics of our
approach.

5.1 Cluster-based Indexing

We applied the Lethe workflow to organize into clusters the document families of Do-
cuShare. In Figure 4, we show the number of created clusters and documents per cluster
for the DBSCAN and K-medoids algorithms. The DBSCAN algorithm results into two ex-
treme cases: Ls = 0% with 1 cluster of 1475 families and 50000 documents, and Ls = 100%
with 1475 single-family clusters of 33.9 average documents per cluster (Fig. 4a). Instead, a
moderate Ls = 60% creates 929 clusters with 53.8 documents per cluster.

Using the K-medoids algorithm, we experimented with different numbersNr
c of explicitly

requested clusters (x axis) in the range 1-1475. In Fig. 4b, the number N c
c of created clusters

on the right y axis lies in the range 1-664. Indicatively, the algorithm leaves 811 empty
clusters when 1475 are requested. The average number of documents per cluster varies
from 50000 in 1 cluster to 75.3 in 664 clusters. In particular, when we set Nr

c = 929, the
algorithm creates N c

c = 480 clusters with 104.2 documents per cluster.
In Fig. 5, we examine in detail the number of intersection (Ic), difference (If ), and private

(Iu) indices resulting from different Ls and Td values. As we vary Td from 0 to ∞ with
DBSCAN in Figures 5a-d, the total number of indices drops considerably. Accordingly, the
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Figure 4: For the synthetic dataset based on DocuShare[36], we examine the number of
created clusters and the number of documents per cluster across differentLs andN c

r values.

maximum number of indices decreases from 1561 at Td = 0 (Ls = 50%), to 703 at Td = 500
(30%), 337 at Td = 1500 (40%), and 292 at Td →∞ (50%). In our measurements, most of the
difference indices at Td ≤ 1500 correspond to families of clusters with empty intersection.
Higher Td values suppress the creation of difference indices and replicate more documents
across the private indices. Thus, setting Td →∞minimizes the total number of indices.

In Figures 6a-d, we show the detailed breakdown into different types of indices created
by the K-medoids algorithm. The maximum number of indices varies from 1659 at Td = 0,
681 at Td = 500, 391 at Td = 1500 to 364 at Td →∞. In comparison to DBSCAN, K-medoids
creates more indices in several cases except for Td = 500. A notable difference between the
two algorithms is that the number of intersection indices created by K-medoids lies in the
range 91-164, unlike the respective count of DBSCAN that lies significantly lower in the
range 1-92. This is an important observation because intersection indices take advantage
of the searcher similarity among the documents for improved index sharing.

Arguably, we need to balance the indices per searcher against the indices per document
in order to achieve high performance in both search and update operations. For instance,
setting Ls = 60% and Td = 1500 to DBSCAN lets the mapper specify a moderate number
of 298 indices: 84 shared indices for cluster intersections, 14 indices for specific family
differences, and 200 private indices for individual searchers (Fig. 5c). Next we examine in
detail how different indexing configurations affect the estimated search and build cost.

5.2 Search and Update Cost with DBSCAN and K-medoids

The search cost is determined by the number of document lists merged for the search result
and depends on the number of indices per searcher. In Fig. 7a, we examine different values
of Ls and Td over DocuShare with DBSCAN. The indices per searcher vary in the range
35.8 - 79.6 at Td = 500, and the range 11.6 - 22.5 at Td = 1500. Setting Ls = 0% or 100%
tends to maximize the indices per searcher, because it only permits a limited amount of
index sharing within each cluster (of a single family or diverse families). On the contrary,
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setting Ls = 60% usually minimizes the indices per searcher due to index sharing within
both cluster intersections and family differences. However, setting Td → ∞ suppresses
the index sharing of family differences and inverts the effect of Ls; then Ls = 0% or 100%
minimizes the number of indices per searcher.

The cost of index building depends on the average number of indices that handle a doc-
ument and have to be updated during document insertion. In Fig. 7b, we examine the
sensitivity of indices per document to Ls and Td with DocuShare. For example, setting
Td = 1500 or Td → ∞ varies the number of indices per document in the ranges 7.8 - 11.7
and 53.5 - 60.1, respectively. As before, higher Td values discourage the creation of shared
indices, dedicated to family differences, and replicate more documents across the private
indices. At Td = 0 or 500, the curves remain almost flat and the number of indices drops to
about 1 or 5.

From our observations on the search and update cost from Figures 7a,b we notice diverse
effects across the Ls and Td parameters. In particular, Ls leads the two costs to low or peak
values depending on Td. On the contrary, a higher Td consistently decreases the search cost
but increases the update cost. We found as one reasonable choice setting Ls = 60% and Td
= 1500 to combine 11.6 indices per searcher with 7.8 indices per document. If we reduce Td
to 500 in DocuShare, the search cost increases by a factor of 3 (from 11.6 to 35.8), and the
corresponding update cost only drops by 41% (7.8 to 4.6).

In Figures 7c,d we also examine the indices per searcher and per document across different
values of N c

c and Td with K-medoids. Setting Td = 1500 lowers the indices per searcher in
the range 10.9 - 22.3 and leads to indices per document in the range 7.1 - 11.7. Subsequently,
with N c

c = 415 clusters, we get 11.6 indices per searcher and 7.1 indices per document. This
outcome is remarkably close to the respective search cost of 11.6 and update cost of 7.8
obtained above with the suggested configuration of DBSCAN.

We additionally investigated the possibility of further clustering together the searchers
of the family differences. We did that with the expectation of further reducing the indices
per searcher and per document through aggressive index sharing. Although not included
in our shown figures, with DBSCAN, we end up with 12.2 indices per searcher and 7.6
indices per document for Ls = 60% and Td = 1500. With K-medoids, the configuration with
N c

c = 334 and Td = 1500 leads to 11.1 indices per searcher and 6.9 indices per document.
Both these configurations of DBSCAN and K-medoids have costs comparable to the results
taken above without difference clustering. Due to its limited benefit, we decided to skip
this optimization for the rest of our experiments.

More generally, appropriate values of Td and Ls or N c
c can flexibly balance the indices per

searcher and per document according to the operation characteristics of the workload and
the optimization objectives of the service provider (e.g., optimize the system for handling
search or update operations more frequently). In the rest of our experiments, we only use
DBSCAN, because we found the choice of Ls more intuitive in comparison to N c

c , which is
indirectly generated through the user-specified Nr

c input parameter of the K-medoids.

5.3 Elasticsearch

In Fig. 8, we experimentally consider indexing the DocuShare dataset using five configura-
tions with Ls = 60% or 100%, and Td = 0, 500, 1500 or Td → ∞. We examine a number of
clients concurrently submitting back-to-back queries against the Elasticsearch engine. Each
client independently submits 6000 queries uniformly chosen from a standard pool of 50000
queries. We use the first 1000 queries for cache warmup in the Elasticsearch nodes, and
only report the response time from the last 5000 queries per client.
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In Fig. 8a, we show the average response time measured over three experiment runs with
coefficient of variation CV<0.07. The response time lies in the range 17.7 - 73.5ms with 1
client, and the range 21.8 - 774.2ms with 16 clients. It is remarkable that Ls = 60% with
Td = 1500 leads to response time in the range 17.8 - 21.8ms, and Td = 500 expands the
range to 17.7 - 52.0ms. Essentially, family similarity in clusters allows multiple documents
to be served by shared intersection or difference indices (Figures 5b,c) and leads to low
query response time. On the contrary, Td = 0 was found in Fig. 5a to create a large number
of indices; as a result, some queries take up to several seconds and increase the average
measured time accordingly.

In Fig 8b, we illustrate the cumulative fraction of queries across the measured values of re-
sponse time. On the left, the curves with Ls = 60% and Td = 500 or 1500 almost overlap with
at least 96% of the queries responded within 50ms. At the right side, with Ls = 100% and
Td → ∞, the respective percentage drops below 19%. We attribute this poor performance
of the last case (100%,∞) to excessive document duplication and required storage space,
which does not allow the indices to simultaneously fit in memory (further demonstrated
by Fig 8d explained below).

We additionally measure the query throughput for 1 to 16 clients in Fig. 8c. We notice
that throughput rises by a factor of 9.2, from 37.0q/s to 339.8q/s, in case (60%, 1500), but
only reaches 201.1q/s in curve (60%, 500). In the remaining cases, throughput stays below
39.7q/s (e.g., Ls = 60 and Td = 0 at 2 clients) as a result of the number of indices accessed
per query, or the total amount of indexing information involved in query handling.

We illustrate the resource requirements of index building in Fig 8d. The elapsed time and
storage space vary in the ranges 12.9 - 307.2min and 0.5 - 22.7GB, respectively. Setting Ls

= 100% with Td = 0 or Td → ∞ leads the requirements at the low or high end of the above
ranges. Instead, Ls = 60% keeps the measured values in-between, but close to the low end,
e.g., 46.5min and 3.4GB for Td = 1500. This outcome makes sense, because Ls = 60% creates
a moderate number of indices as a result of clustering, unlike Ls = 100% that creates a
minimum or maximum number of indices (Fig. 5).

5.4 Size Distribution of Searcher Groups and Permission Lists

We also explore the sensitivity of the search and update cost to variations in the distribution
of group size or number of users and groups per document.

As an intermediate step, in Fig. 9a we illustrate the cumulative fraction of groups corre-
sponding to different numbers of searchers. In three curves the group size follows Zipfian
distribution with α set to 0 (uniform), 0.7, or 2.2, but it follows the DocuShare empirical
statistics in the fourth curve. Fig. 9a illustrates that a low α equally distributes the sizes
across the different searcher groups, unlike higher α values that narrow the larger sizes to
fewer groups. From Fig. 9b it follows that the closer to uniform (α = 0) the distribution gets,
the higher the number of searchers per document becomes. Thus, lower α values are likely
to require more indices per searcher and per document for secure query handling.

In Fig. 9c, we set the number of users and groups per document to the statistics of Do-
cuShare or Zipfian distribution. Thus we specify directly the number of entries in the
permission lists rather than indirectly through the size of the searcher groups. Although
somewhat higher, the number of searchers per document follows similar trends to those
of Fig. 9b. It is interesting that the DocuShare statistics have average number of searchers
per document roughly corresponding to Zipfian group size with α = 1.2 (not shown), but
Zipfian number of users and groups per document with α = 2.2. Starting with these basic
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observations, we next examine in detail the sensitivity of the search and update cost to the
Zipfian distribution of the searcher groups and the permission lists.

In Fig. 10, we examine the search cost for Zipfian group sizes of α = 0, 0.7, or 2.2. With
higher α, the number of indices per searcher decreases because more groups have smaller
size (Fig. 9a), a searcher belongs to fewer groups, and a smaller number of indices handle
the documents of the searcher. For different Ls and Td values, we notice the same trends
already observed in the original DocuShare dataset in Fig. 7 (e.g., Ls = 60% reduces the
indices per searcher for Td 6→ ∞). The impact of Ls diminishes as α increases, because the
lower similarity among the searchers reduces the opportunity for index sharing.

In Fig. 11, we show the search cost for Zipfian distribution of the number of users and
groups per document. In comparison to Fig. 10, the indices per searcher is higher across the
different values of α. Also, in Fig. 11 the reduction of indices per searcher at moderate Ls

remains about the same as α increases, unlike a corresponding drop in Fig. 10. Additionally,
we found the Zipfian number of users and groups for α = 0, 0.7 and 2.2 resulting into up
to 62, 83 and 124 intersection indices (not shown), respectively, unlike 133, 100 and 93
obtained from variation of the group size. Our results suggest that the more intersection
indices of the group size translate into lower search cost due to improved index sharing
among the searchers.

In Fig. 12 we consider the sensitivity of the indices per document (update cost) to the
Zipfian distribution of group size. By setting α = 0, 0.7 and 2.2, the maximum number of
indices per document drops from 79.0 down to 69.0 and 51.8, respectively. This behavior
follows from the decreasing group sizes at higher α and the lower document duplication
across the private indices. Within each plot, there is a low point reached at Ls = 60% for Td
= 1500 or→ ∞, and a respective peak at Td = 0 or 500. As with the search cost above, the
number of indices per document is substantially less sensitive to Ls at increasing α.

We also examine the effect from Zipfian number of users and groups per document in
Fig. 13. Setting α = 0, 0.7 or 2.2 reduces the maximum number of indices per document from
83.0 to 74.7 and 59.5, respectively. Setting Td → ∞ to suppress the difference indices, Ls =
60% reduces the update cost for decreasing α in Fig. 13 rather than increasing α value in
Fig. 12. Essentially, the Zipfian users and groups with higher α lead to increased number of
indices per document in comparison to Zipfian group size, and provide more opportunity
for index sharing with the appropriate similarity settings of DBSCAN.

Overall, the Lethe method leads to different combinations of search and update costs,
based on the available similarity of authorized users across variations of the group size
and number of users and groups per document.

5.5 Further Analysis and Discussion

Our experiments provide strong evidence for an improved method to achieve secure and
efficient keyword indexing. An insecure shared index typically implements document
ranking based on sensitive statistics of the entire indexed dataset, such as the number
of documents that contain a queried term and the total number of documents. For in-
creased efficiency during query processing, search engines often precompute approximate
document scores and sort the postings accordingly before they store them compressed on
disk [1, 41, 20].

Secure filtering of inaccessible documents requires that the search engine selectively re-
trieve the postings of accessible documents and calculate their ranking scores for the query-
ing searcher [9]. Hence, search I/O time can be wasted for unnecessarily retrieving post-
ings that will be discarded through filtering, or for seeking over them. Also, the compu-
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tation of document scoring relies on user-specific statistics (e.g., total number of accessible
documents) that have to be calculated during query processing instead of being precom-
puted earlier during index building. Moreover, efficient user-specific filtering requires a
substantial amount of main memory in the servers of the search engine to keep the access
permissions of individual users.

Our method is secure because query processing only involves indices of documents that
the searcher is fully permitted to access. At the same time, we avoid the I/O cost of selective
posting retrieval per index, the extra computational cost for user-specific document scoring
and list processing, and the main memory dedicated to access permissions [7]. For ranking
purposes, we only merge the result lists obtained from multiple indices, as typically already
done by parallel and distributed search engines [20].

The clustering of document families allows serving the common searchers in the cluster
intersection with a single index. The resulting reduced number of indices per searcher
translates into smaller number of result lists to be generated and merged during query
handling. Our method is robust with respect to two distinct clustering methods that we
examined, as they both end up to indexing configurations with similar search and update
costs.

In terms of space requirements, existing secure solutions either fully replicate each doc-
ument to the private index of every authorized searcher, or duplicate the documents to
the private indices of authorized users that remain outside the shared indices, or fully
avoid duplication by using a single index at extra I/O and computational cost of query
processing [35]. Our method flexibly controls indexing duplication through threshold Td
for preventing the insertion of the same document to an excessive number of private in-
dices. Thus, we create extra shared indices if the number of documents and their common
searchers justify the additional indexing cost for a family difference.

The seemingly similar problem of role mining applies data mining techniques to auto-
matically discover roles from existing system configuration data. Roles are intermediate
hierarchical constructs that facilitate the assignment of permissions to users by system ad-
ministrators. Role mining aims to hierarchically organize overlapping permission sets into
roles to efficiently assign the authorized permissions to each user [32, 40]. Role mining al-
gorithms generate a prioritized sequence of roles or a complete state of role-based access
control. To this end, they minimize a cost measure, such as the number of roles, or the
number of user assignments and permission assignments [25].

We claim that index clustering is a different problem because it identifies similar searcher
sets of documents to build a shared index for those documents that are accessible by the
same searchers. Subsequently, it assigns each user to a disjoint set of indices that cover all
the documents that the user can access. Both the flat organization of the document clusters
and the disjointness of the indices that serve each user make index clustering distinct. Our
optimization objective is to balance the number of indices per user against the amount of
document duplication across different indices. We leave for future work the possible alter-
native approach of examining index clustering as a problem of cost optimization similar to
the way that role mining was formulated in previous research.

6 Related Work

We compare our work with related research results previously developed for secure text
indexing, remote storage of encrypted documents, and online social networks.
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In preliminary prior work, we introduced the Lethe workflow to create secure configura-
tions of shared inverted indices [23]. We subsequently did extensive experimental study of
the characteristics of different indexing configuration across a range of empirical and the-
oretical datasets, and measured the search and update performance over an open-source
distributed search engine [24]. This manuscript unifies our above prior work and expands
it in several ways, most notably by including consideration of the K-medoids clustering
algorithm in comparison to DBSCAN, examination of Zipfian number of users and groups
per document, and investigation of the benefit from aggressively clustering together the
family differences for further index sharing.

Secure Indexing Büttcher and Clarke examined relevance-ranking search on the vector
space model [9]. Secure search must only deliver query results of files searchable by the
querying user. A system-wide index is insecure because it can leak sensitive information
about file and term statistics. A solution integrates security restrictions into query process-
ing so that the index manager only returns the parts of posting lists that are accessible to the
user. However, this approach leads to performance slowdown in some cases and occupies
substantial amount of main memory to keep the access permissions.

Singh et al. logically organize the filesystem into access-control barrels, which are sets
of files with identical access privileges [35]. The system constructs a separate index per
barrel, and restricts query handling to permitted barrels. An access credentials graph is
constructed with the access credentials of users, groups and barrels as nodes, and edges
that minimally connect users to their groups and barrels. The maintained indices are safely
reduced by eliminating barrels of size below a configured threshold. Instead, we apply a
clustering method to control the document duplication across different indices.

Li et al. maintain a list of permitted users with each term. At configurable loss of ranking
and security accuracy, they combine list nodes of similar inverse document frequency and
use a Bloom filter to store the corresponding users [22]. Zerr et al. store appropriately
transformed relevance scores in an untrusted server to avoid disclosing information about
the indexed data [41]. Pang et al. safeguard the content and result of user queries over the
vector space model [28]. The document server uses a partially-encrypted suppressed index
to handle queries, but the system allows only authorized users to prune false positives and
retrieve the matching documents.

Bawa et al. organize the providers of documents into privacy groups and build bit vectors
to summarize the terms of the documents in each privacy group [4]. A designated host
constructs a privacy-preserving index from the bit vectors to identify the privacy groups
that match a query. In relational databases, information flow control has been applied
to serve large amounts of confidential information to many users [33]. A different study
aims to improve metadata search efficiency by hierarchically partitioning the filesystem by
access permissions but leaves for future study the full merging of partitions with identical
permissions, which we do in document families [29].

Encrypted Storage Song et al. describe techniques to securely search remote documents
maintained in encrypted form [37]. The client queries the server through a key and a plain-
text or encrypted keyword. The server identifies keyword locations through linear scan
of the encrypted documents. Chang and Mitzenmacher use an encrypted bitmap to en-
code the presence of particular keywords in a document [10]. The user submits a permuted
keyword identifier along with a key to search for specific encrypted documents. Similarly,
the Mafdet system inserts keyed hashes of document keywords into a Bloom filter at the
server [3]. Thus, a client only submits keyword hashes to search for documents.

Damiani et al. enable access control for database-as-a-service systems [13]. They group
users by access privileges and create a user hierarchy from the possible user sets and sub-
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sets. In order to reduce the number of keys per user, they exploit key derivation methods to
derive the keys of lower-level nodes from keys of predecessors. For simpler key manage-
ment, they also transform the directed acyclic graph of the user hierarchy into an equivalent
tree structure. Other related research applies data possession proofs to prevent file hiding
into the cloud by unauthorized clients [26].

CryptDB supports keyword search over individually encrypted words of a text column
in a relational database [31]. Pervez et al. assume that both files and inverted indices
are stored in encrypted form at the cloud [30]. Authorized users submit encrypted search
criteria to a third party, which homomorphically encrypts them before their transmission
to the cloud server. The cloud server uses a user-specific key to re-encrypt the index for
query evaluation.

The Sedic system partitions data according to security levels, and only replicates sanitized
data to the public cloud for MapReduce processing [42]. PRISM transforms the problem
of keyword search over encrypted files into privacy-preserving map and reduce tasks [8].
Secure search of big data returns the records matching a query without revealing the query
or its results to the provider [14]. Approximate string matching between two parties is se-
curely implemented without third-party involvement by estimating whether the distance
of two encrypted Bloom filters lies below a threshold [5]. Overall, the above research fo-
cuses on indexing or processing of encrypted data in cloud storage.

Online Social Networks Keyword search in social networks is possible through a set
of inverted indices with each index containing posting lists of documents from particular
users. Access control is enforced through intersection of the search result with the identi-
fiers (author list) of documents authored by a particular set of users [6]. Alternative cost
models are examined to optimally include specific friends in the author list of each user.
Furthermore, the HeapUnion operator is introduced to efficiently process multiple lists of
document identifiers [7].

Hummingbird is a microblogging system that cryptographically hides from a user the
topics on which other users follow her, and from third parties the fact that a user fol-
lows another user on a specific topic [12]. Cheng et al. enable fine-grain specification of
access-control policies in user-to-user, user-to-resource and resource-to-resource relation-
ships over social networks [11]. Hails provides data-flow confinement at the client and
server so that mutually-untrusted web applications can interact safely [18]. These are gen-
eral issues of access control in social networks beyond our study scope.

7 Conclusions and Future Work

We use clustering to identify documents with similar sets of authorized searchers. Ac-
cordingly, we generate shared indices for documents with common authorized searchers
of sufficient volume. We experimentally use tunable parameters to combine low numbers
of indices per user and per document. Our method is relatively insensitive to alternative
clustering algorithms and parameter variations that we experimented with. Our measure-
ments over a distributed search engine confirm that our indexing organization achieves
higher search and update performance. As future work, it is interesting to analytically
model the operation costs and study index clustering as a cost optimization problem. We
additionally plan to experimentally explore different types of access permission clustering
over a broader dataset collection from collaborative environments, cloud storage and social
networks.
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Figure 5: The types of indices created across different Td and Ls values over DocuShare
with DBSCAN. Intersection indices refer to cluster intersections, private indices are dedi-
cated to specific searchers, and difference indices correspond to document families in clus-
ters with empty or non-empty intersection.
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Figure 6: The types of indices created across different Td and Ls values over DocuShare
with the K-medoids algorithm.
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Figure 7: The number of indices per searcher (search cost) and per document (update cost)
of the DocuShare dataset for DBSCAN (a,b) and K-medoids (c,d).

TRANSACTIONS ON DATA PRIVACY 8 (2015)



Index Clustering for Secure Multi-User Search 51

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1  2  4  8  16

A
vg

 R
es

po
ns

e 
Ti

m
e 

(m
s)

Number of Clients

Search Time - DocuShare

Ls=100%,Td=0
Ls=60%,Td=0
Ls=100%,Td→∞
Ls=60%,Td=500
Ls=60%,Td=1500

(a)

 0

 20

 40

 60

 80

 100

 20  40  60  80  100  120  140  160

Q
ue

rie
s 

(%
)

Response Time (ms)

Search Time (1 client)

Ls=60%,Td=1500
Ls=60%,Td=500
Ls=60%,Td=0
Ls=100%,Td=0
Ls=100%,Td→∞

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1  2  4  8  16

Th
ro

ug
hp

ut
 (q

/s
)

Number of Clients

Search Performance - DocuShare

Ls=60%,Td=1500
Ls=60%,Td=500
Ls=100%,Td→∞
Ls=60%,Td=0
Ls=100%,Td=0

(c)

 0

 50

 100

 150

 200

 250

 300

 350

 400

Ls=100%,T
d=0

Ls=60%,T
d=0

Ls=60%,T
d=500

Ls=60%,T
d=1500

Ls=100%,T
d→∞

 0

 5

 10

 15

 20

 25

 30

Ti
m

e 
(m

in
)

D
is

k 
S

pa
ce

 (G
B

)

Index Building - DocuShare

Time
Disk Space

12
.9

15

16
.9

96

28
.6

28
7

46
.4

66

30
7.

22
2

0.
50

5

0.
65

7

2.
05

5

3.
38

9

22
.6

90

(d)

Figure 8: We show (a) the average response time and (b) the cumulative fraction of queries
with different response time along with (c) the query throughput of serving DocuShare
over Elasticsearch. (d) We compare the time and storage space of index building by Elas-
ticsearch across different similarity and duplication parameter values.
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Figure 9: For different distributions of the group size, we illustrate (a) the cumulative frac-
tion of groups containing different numbers of searchers, and (b) the average number of
authorized searchers per document. (c) For different distributions of the number of users
and groups per document, we show the average number of searchers per document.
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Figure 10: For Zipfian distributions of group size, increasing α reduces the indices per
searcher.
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Figure 11: The number of indices per searcher for number of users and groups per docu-
ment following the Zipfian distribution with α = 0, 0.7 and 2.2.
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Figure 12: We illustrate the number of indices per document for Zipfian distribution of
group size. A higher α value of the distribution reduces the indices per document.
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Figure 13: The number of indices per document for Zipfian distribution of the number of
users and groups in the permission list of each document, with α = 0, 0.7 and 2.2.
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