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Abstract. In this article, we present a privacy preserving genomic data dissemination algorithm
based on compressed sensing. We participated in the challenge at the iDASH on March 24, 2014
in La Jolla, California and the result of the challenge are available online 1. In our proposed method,
we are adding noise to the sparse representation of the input vector to make it differentially private.
First, we find the sparse representation using SubSpace Pursuit and then perturb it with sufficient
Laplacian noise. We also compared our method with a state-of-the-art compressed sensing privacy
protection method [1].
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1 Introduction

Most genomic datasets are not publicly accessible, due to privacy concerns. Patients’ ge-
nomic data contain identifiable markers and can be used to recognize the presence of an
individual in a dataset. Prior research shows that this re-identification is possible when
only a very small set of Single Nucleotide Polymorphisms (SNPs) is made public, or even
only the frequencies of different SNPs across a population are released [2] . To protect pa-
tients, the data owners are restricted to a predefined application and evaluation procedure.
Then an agreement (like IRB approval) needs to be signed before the use of data is permit-
ted. This process often takes months to complete and imposes significant restrictions to the
researchers.

One solution to the problem can be to let each data owner publish a set of pilot data to
help data users choose the right datasets based on their needs. Such pilot data are slightly
modified (noise-added) from the original data to ensure that individuals information is
protected. The data owners release these pilot data with the noise parameters and the
privacy protection mechanism that they used [3]. A data user then can download, run any
kind of association tests and compare the outcomes with the other datasets outputs to get
an idea which datasets may be useful. With such information, the researchers can approach
the owners of the most relevant datasets for further research and with proper agreements.

1http : //www.humangenomeprivacy.org
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To tackle this pilot data generation problem, numerous privacy protection frameworks
have been proposed [4, 5] and differential privacy is one of the most widely-recognized
frameworks to provide a guarantee against privacy attacks [6, 7, 8]. In a nutshell, if a query
result from a privacy protected dataset is almost identical after modifying or deleting just
one of the records, the dataset is considered differentially private [9]. This gives strong
guarantee that the existence of a record cannot be inferred, even if one is allowed to make
any arbitrary query.

In particular, we propose to generate differentially private datasets using compressed
sensing techniques [10]. The inputs to the proposed method are sequences of genomic nu-
cleotides. We first find the location of SNPs and then calculate the empirical distribution of
nucleotides for each SNP. Then, we use a compressed sensing technique to find the sparse
representations of SNP frequencies and add Laplacian noises to them. The compressive
sensing mechanism allows us to use less noise than other differentially private methods
under certain conditions [1].

In the following, we review the basics of compressed sensing, which is the inspiration
of this work. After that, differential privacy will be reviewed and the proposed genome
privacy protection mechanism is explained in detail. We then present experimental results
of proposed method and finally give a brief conclusion.

2 Background

2.1 Compressed Sensing

In this section, we briefly review the theory of the compressed sensing and its major pro-
cesses and elements2. Consider an input vector d ∈ Rn that we want to represent it by a vec-
tor x ∈ Rn using an orthonormal basis (a transform matrix) Ψ ∈ Rn×n where d = Ψx ∈ Rn
and x is a s-sparse vector (s < n) which means x has at most s nonzero entries (see Figure
1).

Note that if x is not a sparse vector, by zeroing the very small coefficients of x, we can make
it sparse and this new vector still keeps the most amount of information of the original
vector [13, 14, 15, 16]. Furthermore, the orthonormal basis Ψ can be a standard transform
basis like wavelet basis or discrete cosine transform basis. The vector d is the input of the
compressed sensing method.

Compressed sensing is divide into two processes: a “sampling process” and a “reconstruc-
tion process”. The sampling process of compressed sensing reduces the size of input from
n to k = O

(
s log(n/s)

)
through projecting the input d into the output y using a random

matrix Φ ∈ Rk×n, i.e., y = Φd ∈ Rk. The random matrix Φ is typically composed of inde-
pendent and identically distributed (i.i.d.) entries from a symmetric Bernoulli distribution
(see Figure 2).

The reconstruction process of the compressed sensing exactly or approximately recon-
structs the original data from the compressed samples y. Using an l1-Norm minimization
method like Orthogonal Matching Pursuit (OMP)[17] or SubSpace Pursuit (SSP)[18], the
recovered answer x̂ is close to the original x even in the presence of noise (see Figure 3).

Mathematically, the l1-Norm minimizer finds the approximate solution of

x̂ = arg min
x′
‖x′‖0, subject to ‖y −Ax′‖2 < η (1)

2for more information, please read [10, 11, 12]
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Figure 1: The sparse representation of the natural signals; d is a one dimensional signal that
can be represented in a transform domain by a sparse vector x where the transform basis
are the columns of the matrix Ψ ∈ Rn×n. Note that a vector is sparse if most of its elements
are equal to zero. Here, the white squares represent zero elements.

Figure 2: The sampling process of the compressed sensing method; d is an input signal and
a random matrix Φ ∈ Rk×n maps d to a measurement vector y ∈ Rk which reduces the size
of the input signal from n to k = O

(
s log(n/s)

)
.

where the resulting x̂ will likely to be a sparse vector (x′ is a dummy variable), A = ΦΨ,
‖x‖0 := |{i : xi 6= 0}|3 and η is a error threshold that determines how close x̂ is from the
original vector x. A smaller η forces x̂ to be closer to x. If we want to guarantee an s-sparse

3‖x‖1 :=
∑n

i=1 |xi| and ‖x‖p :=
(∑n

i=1 x
p
i

)1/p
where p > 1
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x̂, we may consider the following optimization problem instead:

x̂ = arg min
‖x′‖0≤s

‖y −Ax′‖2. (2)

Figure 3: The reconstruction process of the compressed sensing method; y is a measurement
vector and A = ΦΨ ∈ Rk×n. The l1-minimizer “selects” the smallest set of A’s columns as
the solution which is sparse and its error is less than the threshold η. Note that the columns
marked by black are the selected ones.

2.2 SubSpace Pursuit [18]

SubSpace Pursuit (SSP) is an l1-Norm minimization method which has a reconstruction ca-
pability comparable to Linear Programming (LP) methods, and has the benefit of very low
reconstruction complexity just as matching pursuit techniques for very sparse signals. For
any sampling matrix A satisfying the restricted isometry property (RIP) [19] with a con-
stant parameter independent of K, the SubSpace Pursuit algorithm can recover arbitrary
K-sparse signals exactly from its noiseless measurements.

When the measurements are inaccurate and/or the signal is not exactly sparse, the re-
construction distortion is of order a constant multiple of the measurement and/or signal
perturbation energy. More precisely, for very sparse signals with K = O(

√
N), the compu-

tational complexity of the SubSpace Pursuit algorithm is upper bounded by O(mNK), but
can be further reduced to O(mNlogK) when the nonzero entries of the sparse signal decay
slowly 4.

4We refer readers to [18] for the details of the SubSpace Pursuit.
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2.3 Differential Privacy

A randomized algorithm f is ε–Differential Private if for all adjacent datasets D and D′,
and any possible output D̂ in the output space of f

Pr[f(D) = D̂]

Pr[f(D′) = D̂]
≤ eε. (3)

The Laplacian mechanism [20] is commonly used in data disturbing methods to achieve
differential privacy, which adds noises generated from a Laplacian distribution to the out-
put of a query on the dataset. The amount of noise to be added is based on the sensitivity
of the computed data. The sensitivity represents the maximum change of the output when
a single modification happens to a dataset. For any f , and all adjacent datasets D and D′,
the sensitivity of f can be calculated as follows:

∆f = max
D,D′
‖f(D)− f(D′)‖1. (4)

3 Proposed Method

The proposed privacy protection method is based on compressed sensing principle. The
inputs are sequences of genomic nucleotides (A, C, G, T ) from multiple subjects. First,
we process the input genomic sequences to identify the locations of the Single Nucleotide
Polymorphisms (SNPs). Basically, we go through each location of all sequences and mark
the location as SNP if the corresponding nucleotides vary among different sequences. Then
we keep only the SNP locations as representatives of the original genome sequences and
count the frequencies of nucleotides at each SNP location. At a SNP location, the nucleotide
that has minimum counts is called “minor” and the nucleotide occurred most is called
“major”. The frequencies of these majors and minors will be manipulated in the proposed
method below.

To have a differentially private data, we are using the compressed sensing technique and
adding noise to the genomic data representation in the transform domain. As it was ex-
plained in section 2.1, we need to specify an input vector y, a random matrix Φ and a trans-
form matrix Ψ for the compressed sensing process. The input vector y is the frequency of
the minor SNPs which we have obtained from pre-processing step. The random matrix
Φ is a binary independent and identically distributed (i.i.d.) Bernoulli distributed matrix
which on average, half of the coefficient in each row and each column are “1”s and the rest
are equal to “0”s. We choose Haar wavelet transform (HWT) [21, 22] in this work because
we can readily allocate an ε budget that ensures differential privacy [23, 1, 24].

In our proposed method, we are adding noise on to the sparse representation of the input
vector to make it differentially private. We first compute the matrix A = ΦΨ and then
obtain x̂ (the sparse representation of the y) using SubSpace Pursuit [18]. To make sure that
the amount of the noise that we are adding is sufficient to guarantee differential privacy,
we add Laplacian noise, Lap

(
2×

√
k
ε

)
, to all element of the sparse representation according

to the geometric noise mechanism [24]. Note that the elements in the sparse representation
are corresponding to those on a HWT tree (see Figure 4), therefore based on [23], we double
the amount of noise when we move up one step in the wavelet tree from the leaves to the
root. We denote the noise-added sparse representation as x∗. Finally, to get the publishable
data y∗, we apply the inverse transform on x∗ as follows:

y∗ = Ψx∗, (5)
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Figure 4: The Haar wavelet tree structure of [(0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 2), (2, 3),
(3, 0), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (3, 7)]. Note that each (x, y) shows one entry
in the array. The node (0, 0) is the root of the wavelet transform tree and the nodes (3, t),
where t is a number between 0 and 7, are the leaves of the wavelet transform tree.

where the Ψ is the Haar wavelet transform matrix. Algorithm 1 shows a summary of the
proposed method.

4 Experimental Results

To evaluate the proposed method, we participated in the challenge at the iDASH (UCSD–
based National Center for Biomedical Computing: NIH U54HL108460) workshop 5 on
March 24, 2014 in La Jolla, California and the results are available on-line at [25]. The
challenge was about sharing aggregate human genomic data (i.e., allele frequencies) to
preserve the privacy of the data and to maximize the utility of the data for Genome–Wide
Association Studies (GWAS). We applied the proposed method on the two datasets from
the case and control groups of individuals: the case group includes 411 individuals from
the Personal Genome Project [26] 6, and the control data includes 174 participants from the
CEU population in HapMap [27] 7. There are two test sets: the first one consists of 311
SNP sites of the human chromosome 2 and the second one consists of 600 SNP sites of hu-
man chromosome 10. Table 1 shows the result of proposed method on these two test sets
compared to the SNP–Based baseline of the challenge organizers.

In our proposed method, we are adding noise on to the sparse representation of the input
vector to make it differentially private. We first compute the matrix A = ΦΨ and then
obtain x̂ (the sparse representation of the y) using SubSpace Pursuit [18]. To make sure that
the amount of the noise that we are adding is sufficient to guarantee differential privacy,
we add Laplacian noise, Lap

(
2×

√
k
ε

)
, to all element of the sparse representation.

The SNP–Based algorithm treats the allele counts across multiple SNP sites as a histogram,
and add Laplacian noises to the allele counts. The privacy budget ε = 1 is used for all cases.

5http://www.humangenomeprivacy.org
6http://www.personalgenomes.org/
7http://hapmap.ncbi.nlm.nih.gov/index.html.en
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Algorithm 1 : Proposed Differentially Private Protection using Compressed Sensing Algo-
rithm for Genomic Data
Inputs: a set of genome sequences X
Pre-processing: Converting genome sequences to SNP sequences
Initialization: Set the initial parameters:

• Find the frequencies of major and minor for each SNP location

• Generate sampling matrix Φ from a Bernoulli i.i.d. distribution

• Generate Haar wavelet transform matrix Ψ

• Calculate matrix A = ΦΨ

• Consider an array contains the frequencies of minors as input vector y

Adding Noise: Add Laplacian noise:

• Find x̂, a sparse representation of the input vector y using SSP [18] where y = Ax̂

• Add sufficient Laplacian noise (see last paragraph of proposed method for details)

Post-processing:

• y∗ = Ψx∗

Output: the noise-added differentially private version of SNP frequencies y∗

Figure 5: The online privacy evaluation [25] of the proposed method on chromosome 2
with p-value 0.01

The power of the likelihood ratio test [28, 29] is a privacy risk measure which is the num-
ber of case individuals who can be recognized with confidence level more than a threshold.
The lower likelihood ratio power level shows that the perturbed data has less risk of re-
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Data Set SNP–Based baseline Proposed Method Significant SNPs #

Dataset 1

Power 0.05 0.61
Cutoffs TPR FPR TPR FPR
5× 10−2 0.864 0.844 1.0 0.941 22

10−3 0.632 0.774 1.0 0.884 19
10−5 0.642 0.700 1.0 0.879 14

Dataset 2

Power 0.4 0.005
Cutoffs TPR FPR TPR FPR
5× 10−2 0.933 0.924 1.0 0.958 45

10−3 0.800 0.862 1.0 0.909 15
10−5 0.625 0.788 1.0 0.876 8

Table 1: Results of the proposed method on the challenge datasets. The Dataset 1 refers to
200 participants with 311 SNPs on chromosome 2 and Dataset 2 refers to 200 participants
with 610 SNPs on chromosome 10. The power is defined as the ratio of identifiable individ-
uals in the case group using the likelihood ratio test. The false positive rate (FPR) and true
positive rate (TPR) based on χ2 test are listed per different cutoff thresholds. In addition,
the last column corresponds to the number of significant SNPs.

Figure 6: The online privacy evaluation [25] of the proposed method on chromosome 10
with p-value 0.01

identification. Figures 5 and 6 show the power of the proposed method evaluated on two
different datasets. The dots in those figures represent the log likelihood ratio statistic Ti
[28] for each individual i in the case and test group. The horizontal line shows the 0.99 con-
fidence level for re-identifying of an individual from the case group based on the estimated
log likelihood test statistic values of test group individuals. As shown in these figures, 40
case individuals can be identified in the chromosome 2 with p–value 0.01 but none of the
case individuals is identifiable in chromosome 2 with the same p–value. Therefore the pro-
posed method has better performance on the chromosome 10 compare to the chromosome
2.

Moreover, the utility of a privacy protection method can be estimated based on the χ2 test

TRANSACTIONS ON DATA PRIVACY 9 (2016)
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to enumerate the significant SNPs with different cutoff p–values. As Table 1 shows, the
proposed method has higher true positive on the perturbed data compared to the SNP–
Based baseline algorithm. Figures 7 and 8 show the utility of the proposed method obtained
from the online evaluation tool WIDGET [25]. In particular, they show the box plot of the
positive (P), negative (N), true positive (TP), false positive (FP), true negative (TN) and
false negative (FN) SNPs detection after running 1000 times on chromosomes 2 and 10,
respectively. In addition, these figures also show true negative rate (SPC), false predictive
value (PPV), negative predictive value (NPV), false positive rate (FPR), true positive rate
(TPR) and accuracy (ACC).

In addition to the challenge, we select 180 SNPs of the Personal Genome Project [26] and
partition it into two subsets. The first subset is used as a control group. We modified the
frequencies of randomly selected SNPs on second subset and generated 3 new datasets A,
B, and C with different levels of utility (with 27, 9 and 4 significant SNPs, respectively). We
then perturbed each resulting dataset with different privacy protection methods, and com-
puted the p-value of each SNP using the χ2 test. We then ranked the utility of the perturbed
datasets based on the test result. We expect that the order of utility should preserve after
applying privacy protection. Namely, dataset A should have the highest utility and C the
lowest. However, we observed that such order did not always preserve. Actually, dataset
A did not even always maintain its highest utility after applying privacy protection. We
summarize these observations in Table 2. “Best pick” percentage counts the fraction of
cases when A maintains a highest utility after privacy protection. Similar, “correct order”
percentage specifies the fraction of cases when the order of utility is preserved. In this
experiment, the proposed method appears to dominate the control methods.

Correct Order % Best Pick %
SNP–Based baseline 19.34 34.54

Reference [1] 24.85 47.52
Proposed Method 25.02 75.12

Table 2: Percentages of “best pick” and “correct order” for the SNP–Based baseline, Refer-
ence [1] and the proposed method.

5 Conclusion

In this work, we present a privacy preserving genomic data dissemination algorithm based
on the compressed sensing. The inputs to the proposed method are sequences of the ge-
nomic nucleotides from multiple subjects. The method first estimates the locations of the
SNPs, then it transforms the frequencies of SNPs into the sparse domain. Finally, Laplacian
noise is added to all element of the sparse representation according to [24] to ensure differ-
ential privacy of the output. The proposed method is evaluated through the iDASH 2014
privacy challenge and with the SNP data from the Personal Genome Project.
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Figure 7: The online utility evaluation [25] of the proposed method on chromosome 2 with
p-value 0.01
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Figure 8: The online utility evaluation [25] of the proposed method on chromosome 10 with
p-value 0.01
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