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Abstract. The ARX Data Anonymization Tool is a software for privacy-preserving microdata pub-
lishing. It implements methods of statistical disclosure control and supports a wide variety of pri-
vacy models, which are used to specify disclosure risk thresholds. Data is mainly transformed with
a combination of two methods: (1) global recoding with full-domain generalization of attribute
values followed by (2) local recoding with record suppression. Within this transformation model,
given a dataset with low dimensionality, it is feasible to compute an optimal solution with mini-
mal loss of data quality. However, combinatorial complexity renders this approach impracticable for
high-dimensional data. In this article, we describe the Lightning algorithm, a simple, yet effective,
utility-driven heuristic search strategy which we have implemented in ARX for anonymizing high-
dimensional datasets. Our work improves upon existing methods because it is not tailored towards
specific models for measuring disclosure risks and data utility. We have performed an extensive
experimental evaluation in which we have compared our approach to state-of-the-art heuristic al-
gorithms and a globally-optimal search algorithm. In this process, we have used several real-world
datasets, different models for measuring data utility and a wide variety of privacy models. The re-
sults show that our method outperforms previous approaches in terms output quality, even when
using k-anonymity, which is the model for which previous work has been designed.

Keywords. data privacy, anonymization, de-identification, statistical disclosure control, high-
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1 Introduction

The ARX Data Anonymization Tool is an open source software for privacy-preserving mi-
crodata publishing [34]. A typical use case is the de-identification of individual-level re-
search data prior to sharing it with others. The tool focuses on a priori disclosure risk control,
where data is sanitized in such a way that predefined thresholds on privacy risks are met
while loss of information is minimized. Risk thresholds are specified in terms of privacy
models, many of which have been developed by the computer science community. ARX
also supports a posteriori disclosure risk control, which is prevalent in the statistics commu-
nity and where privacy risks are balanced with data quality. For this purpose, the tool
enables users to browse a space of possible data transformations while offering methods
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for automatically and semi-automatically analyzing data utility and privacy risks. Also,
privacy and utility can be balanced by using different methods and parameters for mea-
suring both aspects. To achieve this flexibility, the tool utilizes an intuitive transformation
model which is implemented in a highly scalable manner. ARX exposes all functionality
via a comprehensive graphical user interface which provides wizards and visualizations
that guide users through the different phases of a data anonymization process [32].

Browse transformationsAnalyze risks Analyze utility

Figure 1: Screenshots of ARX’s perspectives for (1) analyzing re-identification risks,
(2) browsing the solution space and (3) analyzing data utility

As a basis for data anonymization, the tool constructs a solution space of possible data
transformations, which is then characterized using models for disclosure risks and models
for data quality (more details will be given in Section 2). Figure 1 shows three screen-
shots of perspectives provided by the tool. In the first perspective, re-identification risks
can be analyzed and compared between input and output data. In the second perspective,
data transformations are visualized as a list which can be filtered and sorted according
to privacy properties and data utility. The aim of the third perspective is to enable users
to manually analyze the utility of output datasets resulting from the application of a data
transformation. For this purpose, results of univariate and bivariate methods of descrip-
tive statistics are presented. While the methods implemented by ARX have been selected
with applications to biomedical data in mind, the tool is domain-agnostic and suited for
anonymizing a wide variety of datasets.

2 Background

A balancing of privacy and utility can be performed with ARX by choosing different pri-
vacy models, risk models, transformation methods and utility measures as well as by vary-
ing provided parameters. In this section, based on a comprehensive overview presented in
[32], we will address important methods implemented by our tool with a specific focus on
design aspects which motivated this work.

2.1 Privacy Models

In ARX, thresholds on privacy risks are represented by means of privacy models, which
require assumptions to be made about the (likely) background knowledge and goals of po-
tential attackers. The general attack vector assumed is linkage of a sensitive dataset with
an identified dataset (or similar background knowledge about individuals). The attributes
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which could potentially be used for linkage are termed quasi-identifiers (or indirect identi-
fiers, or keys). Such attributes are not directly identifying but they may in combination be
used for linkage. Moreover, it is assumed that they cannot simply be removed from the
dataset as they may be required for analyses and that they are likely to be available to an
attacker. Three types of privacy threats are commonly considered [26]:

• Membership disclosure means that linkage allows to determine whether or not data
about an individual is contained in a dataset [29]. While this does not directly dis-
close any information from the dataset itself, it may allow an attacker to infer meta-
information. If, for example, the data is from a cancer registry, it can be inferred that
an individual has or has had cancer.

• Attribute disclosure means that an attacker can infer sensitive attribute values about an
individual, i.e. information with which individuals are not willing to be linked with,
without necessarily relating the individual to a specific record in a dataset [27]. As
an example, linkage to a set of records can allow inferring information if all records
share a certain sensitive attribute value.

• Identity disclosure (or re-identification) means that an individual is linked to a spe-
cific data record [38]. This type of attack is addressed by many laws and regulations
worldwide and it is therefore often related to severe consequences for data owners.
From the definition of this type of disclosure it follows that an attacker can learn all
sensitive information contained about the individual.

Figure 2 shows an example dataset in which the attributes age and gender are considered
quasi-identifying, state is considered insensitive and diagnosis is considered sensitive. It
further shows a privacy preserving transformation of the dataset, which will be explained
in more detail in the following paragraph.

Quasi-identifying Insensitive Sensitive
Age Gender State Diagnosis
34 Male NY Pneumonia
45 Female MS Gastritis
66 Male NY Gastritis
70 Male TX Pneumonia
35 Female AL Pneumonia
21 Male AL Gastritis
18 Female TX Pneumonia
19 Female MS Gastritis

Quasi-identifying Insensitive Sensitive
Age Gender State Diagnosis

20-60 Male NY Pneumonia
20-60 Female MS Gastritis
≥61 Male NY Gastritis
≥61 Male TX Pneumonia

20-60 Female AL Pneumonia
20-60 Male AL Gastritis
? ? ? ?
? ? ? ?

Figure 2: Example dataset and a privacy-preserving transformation

To counter membership, attribute and identity disclosure, ARX supports arbitrary combi-
nations of several privacy models:

• k-Anonymity: This model aims at protecting datasets from identity disclosure [38]. A
dataset is k-anonymous if, regarding the attributes modeled as quasi-identifiers, each
data item cannot be distinguished from at least k − 1 other data items. This property
is also used to define equivalence classes of indistinguishable entries [35]. The output
dataset from Figure 2 fulfills 2-anonymity.

• `-Diversity, t-closeness and δ-disclosure privacy: These models aim at protecting
datasets against attribute disclosure [27, 25, 6]. Different variants exist of `-diversity
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and t-closeness, which offer different degrees of protection. The weakest model,
distinct-`-diversity, requires that ` different sensitive attribute values are contained
in each equivalence class [25]. The output dataset from Figure 2 fulfills distinct-2-
diversity. ARX also implements two stricter variants of this model: recursive-(c, `)-
diversity and entropy-`-diversity [27]. t-closeness requires that the distance between the
distribution of sensitive values in each equivalence class and their overall distribu-
tion in the dataset must be lower than a given threshold [25]. ARX implements two
variants of this model, one of which uses generalization hierarchies to calculate the
required distances. δ-disclosure privacy also enforces a restriction on the distances be-
tween the distributions of sensitive values but it uses a multiplicative definition [6].

• δ-Presence: This model aims at protecting datasets against membership disclosure
[29]. It requires that the disclosed dataset is explicitly modeled as a subset of a larger
dataset which represents the attacker’s background knowledge. The model enforces
restrictions on the probabilities with which it can be determined whether or not an
individual from the global dataset is contained in the research subset. Bounds for
these probabilities are calculated based on the sizes of equivalence classes [29].

• Sample- or population-based models: The previously described privacy models en-
force syntactic conditions on each individual equivalence class. ARX supports several
more complex models, which calculate disclosure risks based on the entire dataset
(sample-based models) or based on the relationship between the dataset and the un-
derlying population from which it was sampled (population-based models). A typical
example for the former type of models is strict-average risk, which enforces a threshold
on the average size of equivalence classes [14]. A typical example of the latter type of
methods are super-population models, which can be used to estimate population unique-
ness, i.e., the fraction of records in the dataset which are unique within the overall
population. Here, characteristics of the population are approximated with probabil-
ity distributions, where parameters are estimated from the empirical distribution of
the sizes of equivalence classes in a dataset. ARX currently implements the models
by Hoshino [18] and by Chen and McNulty [7]. Moreover, the tool implements the
model by Dankar et al. [9], which combines the above estimators with the model
by Zayatz [42] and which has been validated with real-world clinical datasets [9]. We
note that, to our knowledge, ARX is the only data anonymization tool which supports
using such statistical models for a priori disclosure risk control.

2.2 Transformation Model, Solution Space and Utility Measures

Data transformation in ARX is primarily performed with user-defined generalization hier-
archies, which can be created for categorical and continuous attributes.

...

*

61...... 19 60 99201

20-60

male female

*≤ 19

SexAge
Level 0

Level 1

Level 2

≥61

Figure 3: Examples of generalization hierarchies

Examples are shown in Figure 3. In these two simple hierarchies, values of the attribute
age are first categorized by transforming them into age groups and then suppressed, while
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values of the attribute sex can only be suppressed. In the example from Figure 2, the at-
tribute age has been generalized to the first level of the associated hierarchy. To support
on-the-fly categorization of continuous variables, hierarchies in ARX can be represented in
a functional manner, e.g. by means of intervals [32].

Level 0

Level 1

Level 2

Level 3

(0,0)

(1,0) (0,1)

(2,0) (1,1)

(2,1)

Figure 4: Generalization lattice for the example dataset and hierarchies

The backbone of ARX’s data transformation functionality is global recoding with full-
domain generalization [20]. Global recoding means that the same transformation rule is
applied to identical values in different records of a dataset. Full-domain generalization
means that all values of an attribute are generalized to the same level of the associated
hierarchy. With this transformation model, it is possible to model the solution space as a
generalization lattice, which is a partially ordered set of all possible combinations of general-
ization levels of each attribute. An example utilizing the hierarchies for age and gender from
Figure 3 is shown in Figure 4. Each node represents a single transformation which defines
generalization levels for all quasi-identifiers. An arrow indicates that a transformation is a
direct generalization of a more specialized transformation which can be derived by incre-
menting one of the generalization levels defined by its predecessor. The original dataset is
at the bottom (0, 0), whereas the transformation with maximal generalization (2, 1) is at the
top. The output dataset from Figure 2 is the result of applying the transformation (1, 0) to
the input dataset.

Global recoding with full-domain generalization is often not flexible enough to produce
datasets of high quality [15]. For this reason, the tool combines this basic transformation
model with additional methods of local recoding. First, with microaggregation sets of val-
ues of an attribute can be made indistinguishable by replacing them with aggregates [15].
Second, record suppression can be used to automatically remove outliers from a dataset. As
a result of record suppression, less generalization is required to ensure that the remaining
records fulfill a given privacy model [22]. In the output from Figure 2 the last two records
have been suppressed. Third, as an alternative to simply removing outliers, ARX is also
able to apply different generalization schemes to different parts of a dataset. For the sake of
clarity, we will in the remainder of this article focus on global recoding via full-domain
generalization combined with local recoding via record suppression.

For assessing the quality of output data, ARX implements several general-purpose utility
measures. They are meant to support users with finding a transformation which provides
an adequate balance between privacy and data quality. Moreover, they can be used to per-
form automated a priori disclosure risk control, where the tool tries to find a solution to
a given privacy problem which maximizes data utility. ARX distinguishes between two
different types of measures. The first type of methods is based on the sizes of equivalence
classes. Important examples are Average Equivalence Class Size (AECS) [23], Discernibility
[4], Ambiguity [30] and KL-Divergence [27]. The second type of methods is characterized
by calculating independent values for each attribute which are then compiled into a global
value. In this case, the tool allows to assign weights to attributes which model their im-
portance. Examples of methods from this class are Height [24], Loss [19], Precision [39] and
Non-Uniform Entropy [13].
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3 Objectives and Outline
Automatically finding data transformations which adequately balance privacy and data
quality is a complex problem. Even for the simple k-anonymity privacy model, the prob-
lem of finding a solution which maximizes data quality is NP-hard for any k ≥ 3 [28].
When data is transformed with full-domain generalization, which is a very restricted way
of using generalization that results in relatively small search spaces, optimal solutions for
small problem instances can be computed by using globally-optimal search algorithms [20].
Compared to other approaches, the algorithm implemented by ARX achieves excellent per-
formance by utilizing sophisticated data compression schemes as well as various pruning
strategies [21, 20, 33]. However, it is easy to see that even these types of solution spaces
can become too large to be searched exhaustively: the size of a generalization lattice equals
the product of the heights of the generalization hierarchies. This means that the size of the
search space grows exponentially with the number of quasi-identifiers n for which such a
hierarchy has been defined (2O(n)). As a rule of thumb, an optimal solution can be com-
puted for datasets with up to about 15 quasi-identifiers, but the exact limit depends on the
size of the generalization hierarchies utilized.

To cope with the challenge of anonymizing high-dimensional datasets, various heuristic
search strategies have been proposed. However, these strategies focus on different trans-
formation models or they have been developed with a specific privacy model in mind.
Previous approaches are thus not well suited for ARX, which supports a broad range of
privacy models and measures for data utility. As a consequence, we have developed Light-
ning, a novel heuristic for anonymizing high-dimensional datasets which uses the given
mathematical model for data utility to guide the search process.

We have used the broad spectrum of methods supported by our tool to perform an exten-
sive evaluation in which we have compared our approach with state-of-the-art heuristic
search algorithms and with a globally-optimal algorithm. In this process, we have used
several real-world datasets, different measures for data utility as well as multiple privacy
models. The results of the experiments show that our approach outperforms previous so-
lutions in terms of output quality, even when using k-anonymity, which is the model for
which previous work has been designed. Moreover, our heuristic method constitutes a
valuable complement to globally-optimal algorithms.

The remainder of this article is structured as follows. In Section 4 we will present an
overview of previous approaches. In Section 5 we will describe our novel approach. In
Section 6 we will describe our experimental setup and in Section 7 we will present the
results. Finally, in Section 8, we will discuss our approach and conclude this paper.

4 Related Work
To our knowledge, two heuristic anonymization algorithms which use global recoding with
full-domain generalization have been proposed in the literature: DataFly [37] and the Im-
proved Greedy Heuristic (IGreedy) [3]. As the solution spaces considered are too large to be
searched exhaustively, the algorithms need a termination condition. In this context, both
methods utilize the concept of minimal anonymization [15]. This means that they perform
a bottom-up search which terminates as soon as a transformation has been found which
satisfies the given privacy model. Both approaches focus on the k-anonymity model.

The DataFly algorithm starts with the transformation which preserves the input dataset,
i.e. the bottom node in the generalization lattice, and iteratively increases the generaliza-
tion level of the attribute with the highest number of distinct values. IGreedy implements
an extension of this strategy. It also starts with the bottom node and in each iteration it
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selects one attribute for generalization. This decision is made in such a way that the result-
ing dataset has the smallest possible minimal equivalence class size. If the same minimal
class size may be achieved by generalizing different attributes it falls back on DataFly’s
strategy. Both algorithms terminate when they have found a transformation which results
in a dataset that fulfills all disclosure risk thresholds. Both strategies are not well suited for
ARX for three main reasons.

The first problem is related to the way in which record suppression is typically imple-
mented by data anonymization algorithms and also by ARX. Here, users are allowed to
specify a limit on the maximal number of records which may be removed from a dataset.
This is called the suppression limit [13]. Also, the set of records which need to be removed
from a dataset after a specific generalization scheme has been applied is identified by look-
ing at the equivalence classes: when class-based privacy models are used all records are
removed which are part of an equivalence class that does not conform to the specified
disclosure risk thresholds. Both DataFly and IGreedy assume that on any path from the
bottom node to the top node of the lattice there is a point at which disclosure risks fall be-
low the given threshold and that all further generalizations of this transformation are also
valid solutions to the given anonymization problem. This principle is called monotonicity.
While it is true that most privacy models are monotonic when data is transformed only with
global recoding via generalization, this is not true when the transformation model is com-
bined with record suppression as described above [22]. Consider a transformation which
is a valid solution to a given anonymization problem and in which at least one equivalence
class has been suppressed because it does not fulfill the specified disclosure risk require-
ments. When the dataset is further generalized, the suppressed equivalence class may be
merged with another equivalence class which did previously conform to the disclosure
risk requirements. However, the resulting class, now containing records from both classes,
may not conform to the privacy requirements. If this class contains too many records to
be suppressed without violating the suppression limit, the resulting dataset is not a valid
solution. Formal proofs can be found in Appendix A.

Secondly, with a transformation model which involves generalization followed by record
suppression, minimality does not imply any guarantees in terms of data quality. The rea-
son is that, in this transformation model, utility measures from all common models do not
decrease monotonically with increasing generalization. This is easy to see, as increasing
the amount of generalization may reduce the required amount of suppression, thereby in-
creasing overall data utility [22]. Moreover, in the general case there may be many different
minimal solutions to an anonymization problem, which are likely to have different proper-
ties in terms of data quality.

Thirdly, ARX is able to automatically balance the application of generalization and record
suppression to achieve optimal data utility [32]. It is thus reasonable to use a suppression
limit of 100%. In this case, all transformations in the search space are valid solutions to
the anonymization problem. DataFly and IGreedy will therefore return the transformation
with minimal generalization, which is always the bottom node of the generalization lattice.
This means that only record suppression will be used to anonymize a dataset, which is
likely to result in output data with sub-optimal quality.

5 Utility-Driven Anonymization of High-Dimensional Data
In this section, we will first describe the basic ideas behind our approach. We will then
introduce our notion and describe the building blocks of the Lightning algorithm. Finally,
we will present a detailed description of our method.
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5.1 Basic Idea and Notion

Data anonymization is a non-trivial optimization problem with two conflicting objectives:
minimizing disclosure risks while maximizing data utility. With a priori disclosure risk
control this contradiction is resolved by letting a human decision maker define a subjective
preference on one of the optimization goals, i.e. specific disclosure risk thresholds. What
remains is a simpler optimization problem in which the objective is to make sure that risk
thresholds are met while data utility is maximized. A priori anonymization methods can
still be used as a building block for balancing risks and utility, for example by repeatedly
executing them with different risk thresholds to construct a risk-utility frontier [8].

Globally-optimal anonymization algorithms are clearly designed to optimize data utility
[20]. However, related heuristic search strategies, i.e. DataFly and IGreedy, use objective
functions (maximizing distinct values per attribute and minimizing equivalence class sizes)
which are not directly related to either of both objectives but which are placed somewhere
in between measures for disclosure risks and data utility. Also, only the risk of identity
disclosure is considered while we aim at supporting a wide variety of privacy models.

The basic idea of the Lightning algorithm is to use the remaining objective function, i.e. the
maximization of data utility, to guide a heuristic search. Starting from the bottom node of a
given generalization lattice, our algorithm performs a best-first search by always selecting
the successor which results in an output dataset with highest utility. The search terminates
after a user-specified amount of time instead of when the first solution is discovered. This
is motivated by the fact that neither disclosure risk nor data utility is guaranteed to be
monotonic in our setup, as we have explained in the previous section.

We will use an object-oriented formalism to describe our approach. An object of type
Lattice represents the search space and lattice.bottom returns its bottom node while lat-
tice.height returns the level of its top node. An object of type Transformation represents a
transformation and transformation.utility returns its utility as a decimal number, transforma-
tion.successors returns a list containing all of its direct successors and transformation.expanded
returns whether or not the transformation has already been processed by the algorithm. We
will explain this operation in the next paragraph.

Algorithm 1: Function EXPAND

Input: Transformation transformation, Transformation optimum, Priority queue queue
1 begin
2 transformation.expanded← true
3 for (successor ∈ transformation.successors) do
4 if (¬successor.expanded) then
5 CHECK(successor, optimum)
6 queue.add(successor)

Our algorithm uses two basic building blocks.

• CHECK(transformation, optimum) takes two transformations as arguments. It applies
the first transformation to the dataset and determines whether the resulting dataset
meets the defined risk thresholds. Moreover, it computes the resulting utility (trans-
formation.utility). If the thresholds are met and the utility is higher than that of the
current optimum, optimum is updated accordingly. We will not explain the internals
of this function in more detail, but instead assume that it is provided by the runtime
environment, which in our case is ARX.
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• EXPAND(transformation, optimum, queue) takes three arguments. It marks the transfor-
mation as expanded, iterates through transformation.successors and calls
CHECK(successor, optimum) for all successors which have not already been expanded
previously. Moreover, it adds the successors to the given priority queue. In the queue,
transformations are ordered by utility from highest to lowest. Pseudocode for this
function is provided in Algorithm 1. It is assumed that the given transformation has
already been checked.

5.2 The Lightning Algorithm
In ARX our new algorithm complements our globally-optimal search strategy Flash [20].
We therefore call it Lightning. The algorithm starts by calling CHECK(lattice.bottom, opti-
mum) and then adding lattice.bottom to the global priority queue. During the remaining
execution time, the algorithm tries to find a solution which maximizes data utility by per-
forming a heuristic search. An important aspect of our algorithm is how it handles local
optima. We will explain this in a step-wise manner.
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Figure 5: Comparison of the first iterations of the three variants of our search strategy

The first variant of our algorithm performs a best-first search. In every step, it expands
the top element from the global queue. An example is shown in Figure 5. Here, a trans-
formation is marked with n, if it was expanded in the n-th iteration. An arrow between
transformations indicates that they have been expanded in order. Transformations colored
in dark gray denote the end of such a path, meaning that the search location has changed at
this point. As can be seen in the figure, the best-first strategy will often resemble a breadth-
first search, which in our context means that the lattice is traversed level by level [34]. The
reason is that, although not guaranteed, data utility is likely to decrease with generaliza-
tion. For high-dimensional datasets, which result in generalization lattices that are very
large and very wide, the consequence is that the best-first algorithm will mainly expand
transformations near the bottom. However, there are anonymization problems which re-
quire one or more attributes to be generalized to higher levels in order to meet disclosure
risk thresholds.

The second variant of our algorithm will for the remaining execution time perform a greedy
search. When a transformation is reached which does not have any unprocessed successors,
the algorithm performs backtracking. As is visualized in Figure 5, this variant will also
check transformations which are close to the top of the lattice. However, as lattices for high-
dimensional datasets become equally wide near the bottom and the top, the algorithm will
spend most of its execution time expanding transformations which define high levels of
generalization and thereby miss the opportunity to find solutions with better data utility.
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Algorithm 2: Main loop of the LIGHTNING algorithm
Input: Lattice lattice, Suppression limit suppression

1 begin
2 queue← new priority-queue
3 optimum← null
4 CHECK(lattice.bottom, optimum)
5 queue.add(lattice.bottom)
6 step← 0
7 while (next← queue.poll() 6= null) do
8 if (suppression 6= 0 ∧ (optimum 6= null ∨ node.utility ≥ optimum.utility)) then
9 step← step + 1

10 if (step mod lattice.height = 0) then
11 GREEDY(next, optimum, queue)

12 else
13 EXPAND(next, optimum, queue)

The final variant of our method, which is explained in Algorithm 2, implements a hybrid
strategy. It starts by performing a best-first search for n steps. Each step is one expand
operation. After n operations, it switches to a greedy search without backtracking. In
this phase, as is explained in Algorithm 3, it iteratively expands the transformation with
highest data utility until it reaches a transformation which does not have any unprocessed
successors. All transformations which have been checked during this process are added to
the global priority queue. The algorithm then returns to the best-first strategy for another
n steps. Lightning also implements a very simple pruning strategy. If the suppression limit
is 0% data utility will decrease monotonically with generalization for all common utility
measures [4, 23, 13, 19, 24, 39]. In this case, it will therefore exclude transformations from
the search process which result in datasets with a utility which is already lower than the
current optimum.

Algorithm 3: Function GREEDY

Input: Transformation transformation, Transformation optimum, Priority queue queue
1 begin
2 local-queue← new priority-queue
3 EXPAND(transformation, optimum, local-queue)
4 if (next← local-queue.poll() 6= null) then
5 GREEDY(next, optimum, queue)

6 while (next← local-queue.poll() 6= null) do
7 queue.add(next)

As a generic solution we chose to set the parameter n to lattice.height. This leads to a bal-
anced use of both search strategies, because each greedy phase will result in not more than
lattice.height expand operations. In Figure 5, a rectangular node indicates a transformation
at which a greedy search has been started. The example shows that Lightning consid-
ers transformations with a small amount of generalization, transformations with a large
amount of generalization as well as transformations in-between these two extremes.
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6 Experimental Setup

In this section, we will describe the setup of our experiments. We emphasize that all
datasets and generalization hierarchies used in our evaluation are publicly available [34].
Moreover, our implementation of all algorithms evaluated in this work is available online
as open-source software [5].

6.1 Privacy Models, Utility Measures and Parameters
We performed three kinds of experiments to evaluate different aspects of our solution:

• Firstly, we compared our algorithm with related work in terms of data utility. We
used suppression limits of 0% and 10% as well as a variant of our algorithm which
terminates when a minimally anonymous transformation has been found. This fol-
lows the experiments in previous work [37, 3] and thus provides comparability.

• Secondly, we compared our heuristic search strategy with a globally-optimal algo-
rithm. We investigated the quality of the solution found by the heuristic strategy
when terminating it after the amount of time required by the optimal algorithm
to classify the complete solution space. The results provide insights into potential
benefits which may be offered by heuristic strategies even when anonymizing low-
dimensional data. We used suppression limits of 0% and 100%, basically testing two
different transformation models: one with generalization only, and one with general-
ization and suppression. A suppression limit of 100% is a reasonable parameter in the
ARX system, as the implemented utility measures are able to automatically balance
the application of generalization and suppression. We note that we also experimented
with other suppression limits and obtained comparable results.

• Finally, we evaluated our approach with high-dimensional data with different num-
bers of quasi-identifiers. We investigated how the utility of the output of our algo-
rithm improved over time. We also used suppression limits of 0% and 100% to cover
two different transformation models.

In most experiments we focused on measures against identity disclosure, because it is
widely accepted that these are relevant in practice [11]. In particular, we used the
k-anonymity model with k = 5, which is a common parameter, e.g. in the biomedical do-
main [14]. Moreover, we enforced a threshold of 1% uniqueness within the US population
estimated with the model by Dankar et al. [9]. When we compared our solution to previ-
ous algorithms, variability was rather high as a consequence of using minimal anonymity
(cf. Section 4). Hence, we used additional privacy models and calculated workload aver-
ages. We chose the most well-known models against attribute and membership disclosure
with risk thresholds which have been proposed in the literature [11, 27, 25, 29]. We used
recursive-(c, `)-diversity and t-closeness based on the earth mover’s distance [25] using
generalization hierarchies. As parameters, we chose c = 4, ` = 3 and t = 0.2, which have
been proposed in the literature [27, 25]. Moreover, we used δ-presence with δmin = 0.05
and δmax = 0.15 for a randomly selected research subset containing 10% of the entries of
the respective dataset. These parameters have also been proposed in the literature [29].

We measured data utility with AECS, which is a model based on equivalence class sizes,
and with Loss, which is a model that is evaluated independently for each attribute. We
note that we have obtained similar results using other models [5].

The experiments were performed on a desktop machine with a quad-core 3.1 GHz Intel
Core i5 CPU running a 64-bit Linux 3.2.0 kernel and a 64-bit Oracle JVM (1.7.0).
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6.2 Datasets

In our evaluation we used six different datasets, most of which have already been uti-
lized for evaluating previous work on data anonymization. For experiments with low-
dimensional data, we used an excerpt of the 1994 US census database (ADULT), which is
the de-facto standard dataset for the evaluation of anonymization algorithms, data from
the 1998 KDD Cup (CUP), NHTSA crash statistics (FARS), data from the American Time
Use Survey (ATUS) and data from the Integrated Health Interview Series (IHIS).

Dataset Quasi-identifiers Records Transformations Size [MB]
ADULT 8 30,162 4,320 2.52
CUP 7 63,441 9,000 7.11
FARS 7 100,937 5,184 7.19
ATUS 8 539,253 8,748 84.03
IHIS 8 1,193,504 12,960 107.56

Table 1: Overview of the datasets used for comparing algorithms

An overview of basic properties of the datasets is shown in Table 1. They feature between
about 30k and 1.2M records (2.52 MB to 107.56 MB) with seven or eight quasi-identifiers
and one sensitive attribute. The search spaces consisted of between 4,320 and 12,960 trans-
formations.

Dataset Quasi-identifiers (height of hierarchy) Sensitive attribute (distinct values)
ADULT sex (2), age (5), race (2), marital-status (3), education (4),

native-country (3), workclass (3), salary-class (2)
occupation (14)

CUP zip (6), age (5), gender (2), income (3), state (2), ngif-
tall (5), minramnt (5)

ramntall (814)

FARS iage (6), irace (3), ideathmon (4), ideathday (4), isex (2),
ihispanic (3), iinjury (3)

istatenum (51)

ATUS region (3), age (6), sex (2), race (3), marital status (3), citi-
zenship status (3), birthplace (3), labor force status (3)

highest level of school completed (18)

IHIS year (6), quarter (3), region (3), pernum (4), age (5), mar-
stat (3), sex (2), racea (2)

educ (26)

Table 2: Overview of attributes in the datasets used for comparing algorithms

Table 2 shows additional details about quasi-identifiers and sensitive attributes in the
low-dimensional datasets. As can be seen, the generalization hierarchies used in our ex-
periments featured between 2 and 6 generalization levels. The sensitive attributes in the
datasets contained between 14 and 814 distinct values.

Dataset QIs Records Transformations Size [MB]
SS13ACS 15 68,725 51,018,336 2.06
SS13ACS 20 68,725 41,324,852,160 2.79
SS13ACS 25 68,725 17,852,336,133,120 3.36
SS13ACS 30 68,725 40,167,756,299,520,000 4.02

Table 3: Overview of the high-dimensional datasets used for evaluating scalability

For experiments with high-dimensional data we used a subset of responses to the Ameri-
can Community Survey (ACS), an ongoing survey conducted by the US Census Bureau on
demographic, social and economic characteristics from randomly selected people living in
the US [1]. It contains the data collected in the state of Massachusetts during the year 2013.
Each of the 68,725 records represents the response of one particular person. We selected
up to 30 of the 279 attributes of the dataset, focusing on typical quasi-identifiers, such as
demographics (e.g. age, marital status, sex), information about insurance coverage, social
parameters (e.g. education) and health parameters (e.g. weight, health problems).
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An overview of the different instances used of the ACS dataset is provided in Table 3.
Each representation contains 68,725 records. File sizes vary between about 2 MB and 4 MB.
The datasets contain between 15 and 30 quasi-identifiers, which resulted in search spaces
of between about 5 · 107 and 4 · 1016 transformations.

7 Results
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Figure 6: Overview of the average reduction in data utility as a result of performing mini-
mal anonymization with Lightning, DataFly and IGreedy compared to an optimal solution
(lower is better)

7.1 Comparison With Prior Work
A comparison of our approach with previous approaches is presented in Figure 6. It shows
the reduction in data utility which resulted from performing minimal anonymization of the
low-dimensional datasets with Lightning, DataFly and IGreedy compared to the optimal
solution: 0% represents a solution with optimal data utility, 100% represents a solution in
which all information has been removed from a dataset. The experiments were performed
with five different privacy models, two different utility measures and two different sup-
pression limits. We present workload averages which we defined as the geometric mean of
the results for all five datasets. Detailed numbers, which emphasize the results presented
in this section, can be found in Appendix B.

It can be seen that, on average, our approach outperformed previous solutions in terms
of data quality in most cases. When our approach did not provide the best utility, the
differences were almost negligible (e.g. (0.2)-closeness, 0% suppression limit, Loss and
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recursive-(4, 3)-diversity, 10% suppression limit, AECS). This is an interesting finding, as
Lightning was not designed to use minimality of the solution as a termination condition.
The results strongly indicate that performing a heuristic search guided by the target utility
measure is generally a good strategy. Our results also confirm the experiments by Babu
et al. which show that, on average, IGreedy performs better than DataFly [3]. Moreover,
the results show that heuristic algorithms which search for minimal solutions perform bet-
ter when using a transformation model which includes record suppression. The reason is
that with this transformation model, a smaller amount of generalization is required and
the variability of the quality of different transformations is lower. Variability increases
when more generalization is required, which means that heuristic search algorithms are
less likely to discover a good solution. In the results of our experiments this is also re-
flected by a decrease of the algorithms’ performance for privacy models which go beyond
protection against identity disclosure and which therefore required more information to be
removed from the datasets. Finally, the results also confirm our claim from Section 4 that
different solutions which are all minimal in terms of the degree of generalization used are
likely to have different properties in terms of data quality.

7.2 Comparison With a Globally-Optimal Algorithm

The aim of the experiments presented in this section was to compare our heuristic search,
which does only use pruning mechanisms in configurations in which utility is monotonic,
with a globally-optimal algorithm, which implements further pruning strategies. We used
Flash for this purpose [20]. Interesting parameters include a comparison of the time re-
quired by Flash and Lightning to search the complete solution space (Flash, Lightning).
Moreover, we investigated the quality of the result (Utility) found by the heuristic solution
when executed with a time limit which equals the time required by the globally-optimal
algorithm to characterize the complete solution space. Also, we report the time at which
this solution was found (Discovery).

0% Suppression limit 100% Suppression limit
Dataset Flash [s] Light. [s] Discov. [s] Utility [%] Flash [s] Light. [s] Discov. [s] Utility [%]

(5
)

an
on

ym
it

y ADULT 0.033 1.394 – – 0.847 1.375 0.048 100
CUP 0.032 21.964 – – 20.662 21.462 11.916 100
FARS 0.061 2.669 – – 2.219 2.766 1.752 100
ATUS 0.217 19.097 – – 11.109 18.421 0.424 100
IHIS 2.168 144.978 – – 51.573 170.599 1.082 100

(0
.0
1
)

un
iq

ue
ne

ss ADULT 0.184 0.110 0.076 100 9.359 10.028 0.074 100
CUP 16.353 36.409 12.484 100 109.540 109.605 75.819 100
FARS 7.554 20.947 5.237 ∼100 40.145 40.775 16.419 100
ATUS 0.067 0.058 0.058 100 273.027 285.699 0.058 100
IHIS 0.195 0.165 0.165 100 689.753 791.150 0.164 100

Table 4: Comparison of Flash and Lightning for the AECS utility measure

Table 4 shows a comparison of Flash and Lightning for the AECS utility measure, the five
low-dimensional datasets, suppression limits of 0% and 100% using (5)-anonymity and
(0.01)-uniqueness. We measured significant differences in the time required to search the
complete solution space. The differences were more significant when using (5)-anonymity,
as Flash implements a dedicated pruning strategy for this privacy model [20]. Our heuristic
strategy does not use this mechanism, because it is difficult to implement when the solution
space is not explicitly represented in main memory. When using (0.01)-uniqueness both
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algorithms employed the same pruning methods. Here, the differences in execution times
stem from the fact that the algorithms traverse the solution space in different ways. The
ARX runtime environment implements several optimizations which can be exploited best
when the solution space is traversed in a vertical manner [32]. On average, the depth-first
strategy implemented by Flash was thus more efficient than the heuristic strategy, which
also has a breadth-first component.

The fact that Flash implements more pruning strategies than Lightning is also the rea-
son why the heuristic algorithm was not able to find a solution for (5)-anonymity with
a suppression limit of 0% within Flash’s execution time. In most other cases, the heuris-
tic strategy found the optimal solution, or a solution which was very close to the optimum
((0.01)-uniqueness, 0% suppression limit, FARS datasets), in much less time than the
globally-optimal algorithm needed to search the complete search space. The largest dif-
ference was measured when anonymizing the ATUS dataset with (0.01)-uniqueness and a
suppression limit of 100%, where the time required by the heuristic strategy to find the op-
timum was only about 0.02% of the time required by the optimal algorithm to classify the
solution space. However, the heuristic strategy would need to search the complete solution
space as well to ensure that this is actually the optimum.

0% Suppression limit 100% Suppression limit
Dataset Flash [s] Light. [s] Discov. [s] Utility [%] Flash [s] Light. [s] Discov. [s] Utility [%]

(5
)

an
on

ym
it

y ADULT 0.027 1.579 – – 1.172 1.582 0.042 100
CUP 0.034 29.940 – – 30.012 29.892 7.056 100
FARS 0.062 3.674 – – 2.907 3.703 0.097 100
ATUS 0.219 32.625 – – 13.84 33.304 0.204 100
IHIS 2.203 127.193 – – 62.067 147.184 1.438 100

(0
.0
1
)

un
iq

ue
ne

ss ADULT 0.628 0.280 0.090 100 21.543 22.745 0.090 100
CUP 124.891 12.189 9.527 100 463.655 462.177 359.723 100
FARS 15.808 4.783 3.138 100 66.313 68.251 2.778 100
ATUS 0.157 0.148 0.148 100 373.064 380.183 0.149 100
IHIS 0.966 0.939 0.939 100 968.625 1196.804 0.995 100

Table 5: Comparison of Flash and Lightning for the Loss utility measure

Table 5 shows the results of performing the same set of experiments with the Loss utility
measure. It can be seen that with a 0% suppression limit and (0.01)-uniqueness, Light-
ning consistently outperformed Flash, even when searching the complete solution space.
In these cases very little generalization was required and both algorithms used the same
pruning strategies. Because Lightning starts its search at the bottom of the lattice, it quickly
discovered the global optimum and was able to exclude the remaining transformations
from the search process. Flash, however, starts its search in the center of the lattice and it
therefore needed to check a few more transformations to discover the optimum. This re-
sulted in significantly longer execution times, as evaluating this privacy model for a given
transformation requires to repeatedly solve a non-linear equation system which is compu-
tationally complex. In the other experiments with the Loss utility measure we obtained
results which are comparable to the results obtained when using AECS.

7.3 Evaluation With High-Dimensional Data

In this section we present the results of evaluating our algorithm with high-dimensional
data. We anonymized the SS13ACS dataset with a selection of 15, 20, 25, and 30 quasi-
identifiers as described in Section 6.2. This resulted in solution spaces consisting of between
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about 5 · 107 and 4 · 1016 transformations. In each experiment Lightning was executed with
a time limit of 600 seconds. We report the development of the utility of the anonymized
dataset over time: 0% represents the result with lowest data utility and 100% represents the
result with highest data utility found within the 600s time frame. The plots only show time
ranges in which output quality did change.
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Figure 7: Development of output quality when using (5)-anonymity (higher is better).

Figure 7 shows the results obtained when using (5)-anonymity. It can be seen that the
quality of the solution increased in finer steps and stabilized earlier when the transforma-
tion model involved generalization and suppression (no increase in utility after 58s com-
pared to after 590s without suppression). Data quality improved in finer steps when using
the Loss utility measure, especially with a 0% suppression limit. In no experiment the
algorithm was able to search the complete solution space within the time limit of 600s.
However, output quality often stabilized quickly. For example, with 15 quasi-identifiers
the best solution was already found after 0.9s (0% suppression limit), and after 0.2s (100%
suppression limit) respectively, when using the AECS measure.
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Figure 8: Development of output quality when using (0.01)-uniqueness (higher is better).

Figure 8 shows the results obtained when using (0.01)-uniqueness as a privacy model.
Without record suppression the solutions stabilized more quickly than in the previous ex-
periments. The reason for this is that (0.01)-uniqueness can be fulfilled with much less
generalization than (5)-anonymity and the pruning strategy implemented by Lightning is
therefore more effective. As a consequence, the algorithm was able to search the complete
solution space in all experiments with the dataset with 15 quasi-identifiers and a 0% sup-
pression limit. In all other experiments with a 0% suppression limit Lightning needed to
search for a significant amount of time to find a solution. Moreover, no solution with bet-
ter output quality could be found within the remaining time. With a record suppression
limit of 100% utility improved more often during the 600s time frame than in the previous
experiments.
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8 Discussion and Conclusion

In this article, we have presented a heuristic search algorithm for anonymizing data with a
broad spectrum of privacy models and models for measuring data utility. The key idea of
our approach is to perform a best-first search which aims to optimize output quality. Our
method combines this strategy with a greedy search to explore different areas of the solu-
tion space, including transformations with low degrees of generalization, transformations
with high degrees of generalization and transformations in between these extremes.

In contrast to previous approaches the concept of minimal anonymity is not well suited
in our context. The main reason is that we aim to support multiple privacy models, which
means that neither disclosure risks nor data utility are guaranteed to be monotonic when a
transformation model is used which combines full-domain generalization with class-based
record suppression (see Section 4). In the results of our experiments this is reflected by the
fact that different minimal solutions to most anonymization problems had very different
properties in terms of data utility (see Section 7.1 and Appendix B). As a consequence, we
designed our algorithm to terminate after a user-defined amount of time.

We have presented the results of an extensive evaluation in which we have compared our
method to state-of-the-art algorithms for anonymizing data with the same transformation
model. The experiments showed that our approach outperforms other heuristic algorithms
in terms of output quality and that it is often able to discover a good solution quickly. It
can therefore act as a valuable addition to globally-optimal algorithms, for example by first
performing a heuristic search with a short execution time limit and using a globally-optimal
algorithm only if the result is not satisfactory.

From a methodological perspective, we have presented a novel heuristic approach for
solving a computationally complex problem. Of course, it is not guaranteed that our
method performs as well as in our experiments when it is used in other setups. However,
the same is true for previous approaches and we have put specific emphasis on evaluating
our solution with a wide variety of different anonymization problems and datasets. The
results indicate that our method performs well in practice. We have further put specific em-
phasis on evaluating our method with models which protect data from identity disclosure,
because it is well-understood that these are of central relevance [11, 14]. We emphasize that
all datasets and generalization hierarchies which we have used in the experiments are pub-
licly available [34]. Moreover, our implementation of all methods which we have evaluated
in our experiments is available as open source software [5].

In this work we have focused on heuristic anonymization algorithms which use global
recoding with full-domain generalization. Other works have investigated heuristic meth-
ods for anonymizing data with different transformation models. For example, Fung et
al. [16] and Xia et al. [41] have developed approaches using subtree generalization. The
different heuristics use different objective functions. Fung et al. focus on finding a sin-
gle solution with a good trade-off between privacy and utility [16], while Xia et al. aim
to efficiently construct a risk-utility frontier [41]. Several algorithms have also been de-
veloped which transform data with microaggregation. Examples include the approach by
Domingo-Ferrer and Torra for achieving k-anonymity of attributes with different scales of
measure [10] and the approach by Soria et al. for combining k-anonymity with t-closeness
[36]. An additional line of research involves methods which use local recoding with at-
tribute generalization, for example, the approach by Goldberger and Tassa which supports
k-anonymity and `-diversity [17].

Different transformation models have different advantages and drawbacks. In ARX we
have implemented the model described in this article because it can handle a wide variety

TRANSACTIONS ON DATA PRIVACY 9 (2016)



178 F. Prasser, R. Bild, J. Eicher, H. Spengler, F. Kohlmayer, K. A. Kuhn

of privacy models, it is intuitive and because it has been recommended for anonymizing
data which is intended for use by humans (as opposed to, e.g., machine learning) [13]. On
the other hand, with full-domain generalization more information may be removed than
required [10]. With local recoding or subtree generalization this is not an issue, but the
results are complicated to analyze [36]. Microaggregation has the potential to offer the
best of both worlds, but in some domains, e.g. biomedical research, it has been argued
that pertubative methods can not be used [12]. In ARX we have implemented methods
for combining global recoding, local recoding and microaggregation [32]. However, these
techniques are just a first step and in future work we plan to further investigate how the
different types of data transformation can be integrated in a flexible and efficient manner.

In its current form our method is not well suited for anonymizing data with a very high
number of quasi-identifying attributes (e.g. more than 50), as complex inter-attribute rela-
tionships will result in unacceptable reduction of data utility [2]. Approaches for anonymiz-
ing such data can be important for handling longitudinal information, for example in the
biomedical domain where parameters are often collected repeatedly over a series of succes-
sive visits. One solution to this problem is to treat the data as transactional, i.e. set-valued,
which is a way to remove inter-attribute relationships. Specific privacy models have been
proposed for such data, for example km-anonymity [40] and (k, km)-anonymity [31]. In
future work we plan to integrate similar methods into our tool as well.

One of the key features for facilitating user interaction in ARX is its visualization of the
solution space. When using the heuristic algorithm, the tool only visualizes those parts
which have been explored by the algorithm. However, it offers a method for dynamically
expanding the solution space to transformations which have not yet been characterized.
We note that by implementing the approach described in this paper, ARX is the first open
source tool which supports automated anonymization of high-dimensional data.
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Appendix A

In this appendix, we will proof the non-monotonicity of `-diversity within a transformation
model consisting of generalization and suppression. For proofs regarding further privacy
models we refer the interested reader to [22].

A privacy model is monotonic, if the fact that a dataset fulfills the model implies that
any generalization of the dataset fulfills the model as well [4, 23]. It follows that in the
type of solution spaces investigated in this work, all (direct and indirect) generalizations
of a transformation which fulfills a privacy model also fulfill the privacy model [13]. It is
easy to see that this implies the reverse as well: all (direct and indirect) specializations of a
transformation which does not fulfill a privacy model will not fulfill the model either.

Distinct-`-diversity is monotonic within a transformation model consisting of general-
ization and suppression [27]. In this section, we will analyze the monotonicity of two
additional variants of `-diversity: entropy-`-diversity and recursive-(c, `)-diversity. The
former is the strictest instance of the `-diversity model but it may not be achievable for
some datasets. The latter is a more relaxed variant which aims at providing a good trade-of
between utility and privacy [27]. We will use a counterexample to proof that both models
are not monotonic within the given transformation model.

Less Generalized More Generalized
ID Age Diagnosis Anonymity Age Diagnosis Anonymity
0 [20-39] Colon cancer Recursive-(3,2)-diversity [20-79] Colon cancer None
1 [20-39] Stroke Entropy-1.8-diversity [20-79] Stroke
2 [20-39] Colon cancer [20-79] Colon cancer
3 [40-59] Colon cancer Recursive-(3,2)-diversity [20-79] Colon cancer
4 [40-59] Stroke Entropy-1.8-diversity [20-79] Stroke
5 [60-79] Stroke None [20-79] Stroke
6 [60-79] Stroke [20-79] Stroke
7 [60-79] Stroke [20-79] Stroke
8 [60-79] Stroke [20-79] Stroke
9 [60-79] Stroke [20-79] Stroke
10 [60-79] Stroke [20-79] Stroke
11 [60-79] Stroke [20-79] Stroke
12 [60-79] Stroke [20-79] Stroke
13 [60-79] Stroke [20-79] Stroke
14 [60-79] Stroke [20-79] Stroke

Figure 1: Non-monotonicity of recursive-(3,2)-diversity and entropy-1.8-diversity with a
suppression limit of 10 records

Figure 1 shows two generalizations of a dataset in which the attribute age is a quasi-
identifier and diagnosis is a sensitive attribute for which recursive-(3,2)-diversity and entropy-
1.8-diversity are to be achieved. The suppression limit is assumed to be 10 records.

We will use the following formalism: E is the set of equivalence classes in a dataset. For
any class e ∈ E, v(e) is the set of sensitive attribute values in the class. Moreover, p(e, s)
returns the relative frequency of a sensitive value s in v(e).

Non-Monotonicity of Entropy-`-Diversity

We will first review the formal definition of entropy-`-diversity. We will then prove its
non-monotonicity.
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Definition

The entropy of a sensitive attribute in an equivalence class e ∈ E is defined as

entropy(e) = −
∑

s∈e(v) p(e, s) · log2 p(e, s).

A dataset fulfills entropy-`-diversity, if for all equivalence classes e ∈ E

entropy(e) ≥ log2 `.

Proof of Non-Monotonicity

We first show that the dataset on the left fulfills entropy-1.8-diversity. To this end, we check
whether the classes l1, l2 and l3 fulfill the privacy model.

entropy(l1) = −( 23 · log2(
2
3 ) +

1
3 · log2(

1
3 )) = 0.9183 ≥ log2(1.8) = 0.8480.

entropy(l2) = −( 12 · log2(
1
2 ) +

1
2 · log2(

1
2 )) = 1.0 ≥ log2(1.8) = 0.8480.

entropy(l3) = −( 1010 · log2(
10
10 )) = 0.0 < log2(1.8) = 0.8480.

This shows, that l1 and l2 fulfill entropy-1.8-diversity, whereas l3 does not. As l3 contains
exactly 10 records it can be suppressed. As a consequence, the dataset fulfills entropy-1.8-
diversity.

Next, we show that the generalized dataset on the right does not fulfill entropy-1.8-diversity.

entropy(m1) = −( 3
15 · log2(

3
15 ) +

12
15 · log2(

12
15 )) = 0.7219 < log2(1.8) = 0.8480.

This shows, that m1 does not fulfill entropy-1.8-diversity. As the class contains more than
10 entries it cannot be suppressed. As a consequence, the dataset on the right does not fulfill
entropy-1.8-diversity and therefore is a non-anonymous generalization of an anonymous
dataset. This shows that entropy-`-diversity is not monotonic within the transformation
model investigated in this article. �

Non-Monotonicity of Recursive-(c, `)-Diversity

We will first review the formal definition of recursive-(c, `)-diversity. We will then prove its
non-monotonicity. We will use the following formalism: r(e, i) with 1 ≤ i ≤ m returns the
frequency of the i-th frequent sensitive value in a class e ∈ E.

Definition

An equivalence class e ∈ E fulfills recursive-(c, `)-diversity if

r(e, 1) < c · (r(e, `) + r(e, `+ 1) + ...+ r(e,m)).

A dataset fulfills recursive-(c, `)-diversity, if all equivalence classes fulfill
recursive-(c, `)-diversity.
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Proof of Non-Monotonicity

We first show that the dataset on the left fulfills recursive-(3, 2)-diversity. To this end, we
check whether the classes l1, l2 and l3 fulfill the criterion.

r(l1, 1) = 2 < 3 · r(c1, 2) = 3 · 1 = 3.
r(l2, 1) = 1 < 3 · r(c2, 2) = 3 · 1 = 3.
r(l3, 1) = 10 > 3 · r(c3, 2) = 3 · 0 = 0.

This shows, that l1 and l2 fulfill recursive-(3, 2)-diversity, whereas l3 does not. As l3 contains
exactly 10 records it can be suppressed. As a consequence, the dataset fulfills
recursive-(3, 2)-diversity.

Next, we show that the generalized dataset on the right does not fulfill
recursive-(3, 2)-diversity.

r(m1, 1) = 12 > 3 · r(m1, 2) = 3 · 3 = 9.

This shows, that m1 does not fulfill recursive-(3, 2)-diversity. As the class contains more
than 10 entries it cannot be suppressed. As a consequence, the dataset on the right does not
fulfill entropy-1.8-diversity and therefore is a non-anonymous generalization of an anony-
mous dataset. This shows that recursive-(c, `)-diversity is not monotonic within the given
transformation model. �
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Appendix B

In this appendix, we present the detailed results from which the workload averages in Sec-
tion 7.1 were compiled. The tables show a comparison of the data utility which resulted
from anonymizing the five low-dimensional datasets (ADULT, CUP, FARS, ATUS, IHIS)
with our approach, DataFly and IGreedy. We report the reduction in utility compared to an
optimal solution: 0% represents a solution with optimal data utility, 100% represents a so-
lution with the lowest possible data utility. All algorithms were configured to use minimal
anonymity as a termination condition. The experiments were performed for (5)-anonymity
and (0.01)-uniqueness with suppression limits of 0% and 10%. Utility was measured with
AECS and Loss.

0% Suppression limit 10% Suppression limit
Dataset Privacy model Lightning DataFly IGreedy Lightning DataFly IGreedy
ADULT (5)-anonymity 3.656 3.656 3.656 0.036 0.117 0.117
CUP (5)-anonymity 5.263 5.263 5.263 0.009 0.013 0.013
FARS (5)-anonymity 0.748 0.748 0.748 0.019 0.013 0.013
ATUS (5)-anonymity 0.346 4.652 4.652 0.003 0.003 0.003
IHIS (5)-anonymity 0.013 0.570 0.989 0.001 0.002 0.002
ADULT (0.01)-uniqueness 0.001 0.001 0.001 0.001 0.001 0.001
CUP (0.01)-uniqueness 0.000 0.000 0.000 0.000 0.000 0.000
FARS (0.01)-uniqueness 0.007 0.002 0.002 0.002 0.002 0.002
ATUS (0.01)-uniqueness 0.000 0.000 0.000 0.000 0.000 0.000
IHIS (0.01)-uniqueness 0.000 0.000 0.000 0.000 0.000 0.000
ADULT recursive-(4,3)-diversity 4.274 4.274 4.274 0.086 0.110 0.110
CUP recursive-(4,3)-diversity 8.696 8.696 8.696 0.008 0.017 0.017
FARS recursive-(4,3)-diversity 0.709 0.709 0.709 0.015 0.008 0.008
ATUS recursive-(4,3)-diversity 24.000 100 32.444 9.972 0.098 0.098
IHIS recursive-(4,3)-diversity 11.087 11.087 5.530 0.002 0.007 0.007
ADULT (0.2)-closeness 100 100 100 0.293 0.000 0.000
CUP (0.2)-closeness 0.000 0.000 0.000 0.204 0.051 0.051
FARS (0.2)-closeness 0.000 0.000 0.000 0.304 0.095 0.095
ATUS (0.2)-closeness 12.727 100 27.273 0.000 3.230 3.230
IHIS (0.2)-closeness 2.544 5.328 2.544 0.737 2.826 1.578
ADULT (0.05,0.15)-presence 7.895 7.895 7.895 3.556 3.556 3.556
CUP (0.05,0.15)-presence 100 100 100 6.173 6.173 6.173
FARS (0.05,0.15)-presence 3.538 3.538 3.538 4.395 4.395 4.395
ATUS (0.05,0.15)-presence 0.160 14.027 33.132 0.082 4.617 4.617
IHIS (0.05,0.15)-presence 0.024 0.509 0.509 0.002 0.559 0.559

Table 1: Relative information loss [%] of Lightning, DataFly and ImprovedGreedy for the
AECS utility measure (lower is better, best result has been highlighted).

Table 1 shows the results obtained with the AECS utility measure. It can be seen that the
individual results support the conclusions drawn from workload averages in Section 7.1.
Without record suppression, from a total of 25 experiments, our approach returned the best
result of all three algorithms in 23 experiments. In contrast, IGreedy found the best solution
in 19 and DataFly in 17 experiments. In 17 out of 25 experiments all three approaches
returned the same result. With a 10% suppression limit, our approach returned the best
results in 19 experiments. In contrast, IGreedy and DataFly returned the best solution in
15 experiments, respectively. In 8 out of 25 experiments, all three approaches returned the
same result.
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Table 2 shows the results obtained with the Loss utility measure. Without record suppres-
sion, from a total of 25 experiments, our approach returned the best result of all three algo-
rithms in 20 experiments. In contrast, IGreedy found the best solution in 11 and DataFly in
9 experiments. In 6 out of 25 experiments, all three approaches returned the same result.
With a 10% suppression limit, our approach returned the best results in 23 experiments. In
contrast, IGreedy and DataFly returned the best solution in only 8 experiments. In 7 out of
25 experiments all three approaches returned the same result.

0% Suppression limit 10% Suppression limit
Dataset Privacy model Lightning DataFly IGreedy Lightning DataFly IGreedy
ADULT (5)-anonymity 30.49 65.729 65.729 4.152 26.724 26.724
CUP (5)-anonymity 100 35.024 35.024 14.879 66.364 66.364
FARS (5)-anonymity 47.526 47.526 47.526 1.612 15.668 15.668
ATUS (5)-anonymity 16.564 53.744 53.744 7.652 7.652 7.652
IHIS (5)-anonymity 54.373 54.373 41.907 4.632 4.632 4.632
ADULT (0.01)-uniqueness 8.597 8.597 8.597 8.597 8.597 8.597
CUP (0.01)-uniqueness 3.93 12.972 12.972 3.93 12.972 12.972
FARS (0.01)-uniqueness 1.155 3.476 3.476 4.128 4.128 4.128
ATUS (0.01)-uniqueness 0.000 0.000 0.000 0.000 0.000 0.000
IHIS (0.01)-uniqueness 0.000 0.000 0.000 0.000 0.000 0.000
ADULT recursive-(4,3)-diversity 0.000 65.729 65.729 3.149 28.518 28.518
CUP recursive-(4,3)-diversity 100 51.395 51.395 6.48 65.669 65.669
FARS recursive-(4,3)-diversity 19.726 47.526 47.526 2.827 14.231 14.231
ATUS recursive-(4,3)-diversity 9.79 100 71.563 9.79 47.107 47.107
IHIS recursive-(4,3)-diversity 53.815 78.819 56.484 1.657 23.657 23.657
ADULT (0.2)-closeness 33.736 100 100 12.02 67.026 67.026
CUP (0.2)-closeness 13.169 13.169 13.169 46.284 77.471 77.471
FARS (0.2)-closeness 100 0.000 0.000 13.985 52.024 52.024
ATUS (0.2)-closeness 3.224 100 51.351 2.435 19.82 19.82
IHIS (0.2)-closeness 100 73.217 47.104 10.896 59.545 42.559
ADULT (0.05,0.15)-presence 19.616 63.135 63.135 0.000 65.76 65.76
CUP (0.05,0.15)-presence 100 100 100 100 38.109 38.109
FARS (0.05,0.15)-presence 30.439 34.231 34.231 40.621 43.858 43.858
ATUS (0.05,0.15)-presence 23.331 73.485 72.306 25.729 49.483 49.483
IHIS (0.05,0.15)-presence 75.702 53.422 53.422 53.876 53.87 53.87

Table 2: Relative information loss [%] of Lightning, DataFly and ImprovedGreedy for the
Loss utility measure (lower is better, best result has been highlighted).

The experiments clearly show that, on average, our approach outperforms previous solu-
tions in terms of data quality. Moreover, the difference in quality of data output is much
higher when utility is measured with Loss instead of AECS. As this measure captures fine-
grained differences in the quality of anonymized datasets, our strategy seems to be of gen-
eral relevance. Additionally, our results confirm the experiments by Babu et al. which show
that IGreedy performs better than DataFly [3].
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