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Abstract. Searchable encryption allows one to store encrypted documents on a remote honest-but-
curious server, and query that data at the server itself without requiring the documents to be de-
crypted prior to searching. This not only protects the data from the prying eyes of the server, but
can also reduce the communication overhead between the server and the user and local processing
at the latter. Previous research in searchable encryption have investigated exact match search on key-
words and boolean expression search on keywords. In this work1, we first propose a novel secure
and efficient multi-keyword similarity searchable encryption (MKSim) that returns the matching data
items in a ranked order manner. Unlike many existing schemes, our search complexity is sublinear
to the total number of documents that contain the queried set of keywords. Our theoretical analysis
demonstrates that the proposed scheme is provably secure against adaptive chosen-keyword attacks,
the strongest form of security sought in searchable encryption. Next, we develop a proof-of-concept
prototype that we use for experimentation on a large-scale real-world dataset and evaluate the effi-
ciency and scalability of our solution. Finally, we extend the MKSim protocol to the multi-user setting
in which the data owner wishes to provide selective access to his encrypted document corpus to more
than one user.

Keywords. searchable encryption, multi-keyword ranked search, homomorphic encryption, distributed
broadcast encryption

1 Introduction

Cloud computing enables new types of services where the computational and network re-
sources are available online through the Internet. One of the most popular services of cloud
computing is data outsourcing. For reasons of cost and convenience, public as well as pri-
vate organizations can now outsource their large amounts of data to the cloud and enjoy the
benefits of remote storage and management. At the same time, confidentiality of remotely
stored data on untrusted cloud server is a big concern. In order to reduce these concerns,
sensitive data, such as, personal health records, emails, income tax and financial reports,

1The current work is the extended version of [14].
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are usually outsourced in encrypted form using well-known cryptographic techniques. Al-
though encrypted data storage protects remote data from unauthorized access, it compli-
cates some basic, yet essential data utilization services such as plaintext keyword search.
A simple solution of downloading the data, decrypting and searching locally is clearly in-
efficient since storing data in the cloud is meaningless unless it can be easily searched and
utilized. Thus, cloud services should enable efficient search on encrypted data to provide
the benefits of a first-class cloud computing environment.

Researchers have investigated this problem quite extensively in the context of encrypted
documents [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19]. Solutions generally involve
building an encrypted searchable index such that its content is hidden from the remote
server yet allowing the corresponding documents to be searched. These solutions differ
from each other mostly in terms of whether they allow single keyword search or multi-
keyword search, and in terms of the types of techniques they use to build the trapdoor
function that facilitates the search. A few of them, most notably [4, 5, 6], allow the notion of
similarity search. The similarity search problem consists of a collection of data items that
are characterized by some features, a query that specifies a value for a particular feature,
and a similarity metric to measure the relevance between the query and the data items.
However, these techniques either do not allow searching on multiple keywords and rank-
ing the retrieved document in terms of similarity scores or are very computationally inten-
sive. Moreover, none of these schemes are resistant against adaptive adversaries [9]. Taking
into account large volumes of data available today, there is need for efficient methods to
perform secure similarity search over encrypted data outsourced into the cloud. Finally,
these works are mostly confined to the single user setting – the owner of the encrypted
document corpus is the one to search it. If an arbitrary group of data users need to search
the encrypted document corpus, existing schemes fail to manage their access privileges.
In this work, we propose a novel secure and efficient multi-keyword similarity searchable
encryption scheme that returns the matching data items in a ranked order.

Our contributions. In this work, we focus on the problem of constructing similarity
searchable encryption scheme for the purpose of making practical searchable cryptographic
cloud storage systems.

Our contributions can be summarized as follows:

1. We present a secure searchable encryption scheme that allows multi-keyword query
over an encrypted document corpus and retrieves the relevant documents ranked
based on a similarity score.

2. We construct the searchable encryption scheme that is CKA2-secure in the random
oracle model[20, 9]. Our scheme achieves semantic security against adaptive adver-
saries that choose their search queries as a function of previously obtained trapdoors
and search outcomes.

3. We present a construction that achieves the optimal search time. Unlike many previ-
ous schemes that are glued to the linear search complexity, our search is sublinear to
the total number of documents that contain the queried set of keywords. We perform
a thorough experimental evaluation of our solution on a real-world dataset.

4. We extend the searchable encryption to multi-user setting, where an arbitrary group
of data users can submit queries to the remote server to search an encrypted docu-
ment collection. We design a scheme supports distributed setup, where participants
choose their own secret key rather than receive the key from a trusted authority.
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The rest of the paper is organized as follows: Section 2 gives an outline of the most re-
cent related work. In Section 3 we discuss the threat model for our problem space, give
an overview of the system model, notations and preliminaries and introduce the building
blocks used in our solution. In Section 4, we provide the framework of the proposed search-
able encryption scheme and define the necessary security terms and requirements. Security
analysis is given in Section 5. Performance evaluation as well as comparison to other exist-
ing schemes is given in Section 6. The extension of our solution towards an arbitrary group
of users is presented in Section 7. Finally, Section 8 is devoted for the concluding remarks.

2 Related Work

Searchable encryption has been an active research area and many quality works have been
published [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 18, 15, 16, 19, 17, 21, 22]. Traditional searchable
encryption schemes usually build an encrypted searchable index such that its content is
hidden to the server, however it still allows performing document search. Song et al. [1]
were the first to investigate the techniques for keyword search over encrypted outsourced
data. The authors begin with the idea to store a set of plaintext documents on data stor-
age servers (e.g., mail servers and file servers) in encrypted form to reduce security and
privacy risks. The work presents a cryptographic scheme that enables indexed search on
encrypted data without leaking any sensitive information to the untrusted remote server.
Goh [2] developed a Bloom filter-based secure index, which results in the search cost pro-
portional to the number of files in collection. The scheme requires a linear search time and
provides some false positive results. Curtmola et al. [9] gave the first solution that en-
ables sublinear search time over the encrypted document collection. In proposed solution
the searchable index consists of a keyword trapdoor and encrypted document identifiers
whose corresponding data files contain the keyword. Moreover, they proposed a multi-
user solution that includes an arbitrary group of users (authorized by the data owner) that
can submit search queries to the cloud server. Moataz et al. [15] proposed a boolean sym-
metric searchable encryption scheme. Here, the scheme is based on the orthogonalization
of keywords according to the Gram-Schmidt process. Orencik’s solution [16] proposed
a privacy-preserving multi-keyword search method that utilizes minhash functions. Re-
cently, Strizhov et al.[28] presented a substring searchable encryption scheme that allows
substring search queries over encrypted cloud data and also finds positions of the substring
within encrypted document collection.

Boneh et al. [3] developed the first searchable encryption using an asymmetric key set-
tings, where anyone with the public key can write to the data stored remotely, but the users
with private key invoke search queries. Another asymmetric solution is described by Di
Crescenzo et al. in [21], where the authors propose a public-key encryption scheme with
keyword search based on a variant of the quadratic residuosity problem.

All secure index based schemes presented so far are limited in their usability since they
support only exact match in the context of keyword search without considering the fre-
quency/importance of keywords in the document collection. Wang et al. [4] studied the
problem of secure ranked keyword search over encrypted cloud data. The authors explore
a statistical measure approach that embeds the relevance score of each document during the
establishment of searchable index before outsourcing the encrypted document collection.
The authors propose a single keyword searchable encryption scheme using ranking crite-
ria based on keyword frequency that retrieves the most relevant documents. Cao et al. [5]
present a multi-keyword ranked search scheme, where they used the principle of “coordi-
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nate matching” that captures the similarity between a search query (that includes multiple
keywords) and encrypted documents. Here, the search query and stored documents are
represented as high dimensional vectors and similarity measure is used to determine the
rank of each document. However, their index structure uses a binary representation of doc-
ument terms, and thus the ranked search does not differentiate between documents with
higher number of repeated terms from documents with lower number of repeated terms
(e.g., documents which contain all query keywords are ranked equally).

The problem of searching on encrypted data can be solved using the work of Goldreich et
al. [23] on Oblivious RAM (ORAM). This approach provides the strongest levels of security,
where the remote server does not learn any information about the stored data or the search
queries (including the access pattern). However, this approach requires many rounds of
interaction and has a high overhead for the remote server and the client. Stefanov et al. [25]
propose a relatively practical ORAM scheme; however it involves large communication
and storage costs. Moataz et al. [26] develop a tree-based ORAM scheme that aims to
achieve a sublinear communication complexity. However, recent work by Naveed et al.
[27] showed that using ORAM in searchable encryption does not completely eliminate the
access pattern leakage and does not provide any meaningful reduction in leakage.

Blanton et al. [6, 8] look at the problem of secure outsourcing of sequence comparisons to
remote servers. Their approach uses the edit distance [24] metric to measure the similarity
between two strings with different lengths. This technique can be utilized for similarity
search over encrypted data. However, the technique is quite inefficient owing to the high
computational overhead involving a large number of comparisons.

3 Background and Building Blocks

3.1 System & Threat Model

Consider a cloud data hosting service that involves three entities: data owner, cloud server
and data user. The data owner may be an individual or an enterprise, who wishes to out-
source a collection of documentsD = (D1, D2, . . . , Dn) in encrypted formC = (C1, C2, . . . , Cn)
to the cloud server and still preserve the search functionality on outsourced data. Ci = ES [Di]
is the encrypted version of the document Di computed using a semantically secure en-
cryption scheme E with a secret key S. To enable multi-keyword ranked search capa-
bility, the data owner constructs searchable index I that is built on m distinct keywords
K = (k1, k2, . . . , km) extracted from the original dataset D. Both I and C are outsourced
to the cloud server. To securely search the document collection for one or more keywords
K̄ ∈ K, the authorized data user uses search trapdoor (distributed by the data owner) that
generates the search request to the cloud server. Once the cloud server receives such re-
quest, it performs a search based on the stored index I and returns a ranked list of en-
crypted documents L ⊆ C to the data user. The data user then uses the secret key S,
securely obtained from the data owner, to decrypt received documents L to original view.

We assume a honest-but-curious threat model for the cloud server. The cloud server is
honest, that is, it is always available to the data user and it correctly follows the designated
protocol specification, and it provides all services that are expected. The curious cloud
server may try to perform some additional analysis to breach the confidentiality of the
stored data. In the rest of the paper, the cloud server and the adversary are the same entity.
That way, the adversary has access to the same set of information as the cloud server. For
this work, we are not concerned about the cloud server being able to link a query to a
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specific user; nor are we concerned about any denial-of-service attacks.

3.2 Notations and Preliminaries

Let D = (D1, D2, . . . , Dn) be a set of documents and K = (k1, k2, . . . , km) be the dictio-
nary consisting of unique keywords in all documents in D, where ∀ i ∈ [1,m] ki ∈ {0, 1}∗.
C = {C1, C2, . . . , Cn} is an encrypted document collection stored in the cloud server. Ii
is a searchable index associated with the corresponding encrypted document Ci. If A is
an algorithm then a ← A(. . .) represents the result of applying the algorithm A to given
arguments. Let R be an operational ring, we write vectors in bold, e.g. v ∈ R. The nota-
tion v[i] refers to the i-th element of v. We denote the dot product of u, v ∈ R as u ⊗ v =∑
i=1 u[i] · v[i] ∈ R. We use bxe to indicate rounding x to the nearest integer, and bxc, dxe

(for x ≥ 0)to indicate rounding down or up.

Definition 1. Symmetric Key Encryption Scheme (SKE): A symmetric encryption scheme
SKE = (Gen, Enc, Dec) consists of three algorithms, as follows:

• Gen: the key generation algorithm, is a probabilistic algorithm that returns a string K.
Let Keys(SKE) denote the set of all strings that have non-zero probability of being
output by Gen. The members of this set are called keys. We denote K ← Gen for the
operation of executing Gen and letting K denote the key returned.

• Enc: the encryption algorithm, is a probabilistic algorithm that takes a keyK ∈Keys(SKE)
and a plaintext M ∈ {0, 1}?. It returns a ciphertext C ∈ {0, 1}?. We write C ←
Enc(K,M) for the operation of executing Enc on K and M and letting C denote
the ciphertext returned.

• Dec: the decryption algorithm, a deterministic algorithm that takes a keyK ∈Keys(SKE)
and a ciphertext C ∈ {0, 1}?. It returns some M ∈ {0, 1}?. We write M ← Dec(K,C)
for the operation of executing Dec on K and C and letting M denote the message
returned.

The SKE scheme is correct if for any key K ∈ Keys(SKE), any sequence of messages
(M1, . . ., MQ) ∈ {0, 1}?, and any sequence of ciphertexts (C1 ← Enc(K,M1), . . . , CQ ←
Enc(K,MQ)) that may arise in encrypting (M1, . . ., MQ), it is the case that Dec(K,Ci)
= Mi for each Ci 6= ⊥ (i ∈ [1;Q]). A symmetric-key encryption scheme SKE is secure
against chosen-plaintext attacks (CPA) (executed by the adversary with an access to encryp-
tion oracle) if produced ciphertexts do not leak any useful information about the original
plaintexts[7].

We also make use of pseudo-random function (PRF), which is a polynomial-time com-
putable function that cannot be distinguished from random functions by any probabilistic
polynomial-time adversary.

Definition 2. Pseudorandom function (PRF): A function f : {0, 1}k × {0, 1}n → {0, 1}l is
a (t, ε, q)-pseudorandom function if

• Given a key K ∈ {0, 1}k and an input X ∈ {0, 1}n there is an algorithm to compute
FK(X) = F (X,K).

• For any t-time oracle algorithm A, we have:

|PrK←{0,1}k [AfK ]− Prf∈F[Af ]| < ε (1)

where F = {f : {0, 1}n → {0, 1}l} and A makes at most q queries to the oracle.

TRANSACTIONS ON DATA PRIVACY 9 (2016)



136 Mikhail Strizhov, Indrajit Ray

3.3 Term Frequency-Inverse Document Frequency

One of the main problems of information retrieval is to determine the relevance of docu-
ments with respect to the user information needs. The most commonly used technique to
represent the relevance score in the information retrieval community is Term Frequency-
Inverse Documents Frequency measure[31, 32, 33]. It is computed based on two inde-
pendent measures - the Term Frequency and the Inverse Document Frequency. The Term
Frequency (TF) is a statistical measure that represents the frequency of repeated terms in
documents. The TF value calculates the number of times a given term appears within a
single document. The Inverse Documents Frequency (IDF) is a measure of a term’s impor-
tance across the whole document collection. It is defined as the logarithm of the ratio of
the number of documents in a given collection to the number of documents containing a
given term. The consequence of IDF definition is that rarely occurring terms have high IDF
values and common terms have low IDF value. In judging the value of a term for ranking
representation, two different statistical criteria come into consideration. A term appearing
often in one single document is assumed to carry more importance for content representa-
tion than a rarely occurring term. On the other hand, if that same term occurs as frequently
in other documents of the collection, the term is possibly not as valuable as some other
terms that occur less frequently in the remaining documents. An example of this conun-
drum is illustrated by the occurrence of prepositions in English language documents. This
suggests that the ranking of a given term as applied to a given document can be measured
by a combination of its frequency of occurrence and an inverse function of the number of
documents in the collection. Therefore, we use the product of term frequency and the in-
verse documents frequency (TF-IDF) for the ranking function in our search. A term with
higher TF-IDF value is more relevant to the user’s query than the term with lower TF-IDF
value.

We adopt the following equation for TF-IDF measure from [33]:

WTi,j = log (fi,j + 1)× log

1 +
n

n∑
k=1

χ(fi,k)

 (2)

where fi,j specifies the TF value of term j in the document Di, n is the total number of
documents in the corpus and n

n∑
k=1

χ(fi,k)
denotes the IDF value of term j among the entire

collection D.
To provide the ranked results to user’s queries we choose to use the dot product as sim-

ilarity metric. We use vector space model[31], where the documents and search query are
represented as high dimensional vectors. The similarity metric is measured by applying
the dot product between each document vector and the search query vector as follows:

dotprod(Di, Q) = Di ⊗Q, (3)

where Di is a vector that represents i-th document and Q is a query vector.

3.4 Homomorphic Cryptosystem

We now review definitions related to homomorphic cryptosystem. Our definitions are
based on Gentry’s works [29] and [30], but we slightly relax the definition of decryption
correctness, to allow a negligible probability of error.
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Definition 3. Homomorphic encryption (Hom): Let s denote the security parameter. Fix
a function l = l(s). An l-homomorphic encryption Hom for a class of circuits {Cs}s∈N
consists of four polynomial-time algorithms Gen, Enc, Dec, and Eval such that:

• Gen: The key generation algorithm, is a probabilistic algorithm that takes the security
parameter s as input and outputs a public key PK and secret key SK.

• Enc: The encryption algorithm, is a probabilistic algorithm that takes a public key PK
and a message m ∈ {0, 1} as input, and outputs a ciphertext c.

• Dec: The decryption algorithm, is a deterministic algorithm that takes the secret key
SK and a ciphertext c as input, and outputs a message m ∈ {0, 1}.

• Eval: The homomorphic evaluation algorithm, takes as input a public key PK a circuit
C ∈ Cs, and a list of ciphertexts c1, . . . , cl(s), and outputs a ciphertext c?.

The following correctness properties are required to hold:

1. For any s, any m ∈ {0, 1}, and any (PK,SK) output by Gen(s), we have m =
Dec(SK,Enc(PK,m)).

2. For any s, any m, . . . ,ml, and any C ∈ Cs, we have

C(m1, . . . ,ml) = Dec(SK,Eval(PK, (C,Enc(PK,m), . . . , Enc(PK,ml)))) (4)

We use the standard notion of security against chosen-plaintext attacks (CPA-security).

Definition 4. CPA security: Let Hom = Gen, Enc, Dec, Eval be a homomorphic encryp-
tion scheme. Let s be the security parameter, A be an adversary and there is a probabilistic
experiment CPAHom,A(s) that is executed between the challenger and the adversary:

• Generate (PK,SK)← Gen(s).

• The adversary outputs (m0,m1, stA)← A
(·)
1 (PK).

• The bit is chosen at random, i.e b← {0, 1}.

• The adversary runs number of polynomial queries c← Enc(PK,mb).

• The adversary outputs bit b
′ ← A

(·)
2 (c, stA).

Homomorphic encryption scheme Hom is CPA-secure if for all polynomial-size adver-
saries A,

Pr[CPAHom,A(s) = 1] ≤ 1

2
+ negl(s), (5)

where the probability is over the choice of bit b and the coins of Gen and Enc.

There are many homomorphic encryption scheme available in the literature. However,
in this paper, we use Brakerski et al.[34, 35] homomorphic cryptosystem since it provides
the efficient “batching mode” property where a single ciphertext represent a vector of en-
crypted values and single homomorphic operation on two such ciphertexts applies the
homomorphic operation component-wise to the entire vector.
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4 Multi-keyword Similarity Searchable Encryption (MKSim)

Recall that we are targeting the following scenario: the data owner creates secure search-
able index and sends it along with encrypted data files to the cloud server. The index is
constructed in such a way that it provides enough information to perform the search on
the outsourced data, but does not give away any information about the original data. Once
the server receives the index and encrypted document files, it performs a search on the
index and retrieves the most relevant documents according to data user’s query.

4.1 Algorithm Definitions

Definition 5. Multi-keyword Similarity Searchable Encryption (MKSim): An index-based
MKSim scheme over a set of documents D is a tuple of five polynomial-time algorithms
(Gen, BuildIndex, MakeQuery, Evaluate, Decrypt), as follows:

1. S1, S2, PK, SK ← Gen(1s): a probabilistic algorithm that is run by the data owner to
setup the scheme. The algorithm outputs a set of secret keys S1, S2, SK and public
key PK.

2. (I, C) ← BuildIndex(S1, S2, PK,D,K): a probabilistic algorithm run by the data
owner that takes as input a collection of documents D, a keyword dictionary K
and keys S1, S2 and PK, and outputs a collection of encrypted documents C =
{C1, C2, . . . , Cn} and searchable index I .

3. Ω←MakeQuery(S2, PK,K, K̄): a probabilistic algorithm run by the data user that
inputs keys S2 and PK, keyword dictionary K and multiple keywords of interest K̄,
and outputs the search query Ω.

4. L ← Evaluate(PK, I,Ω, C): a deterministic algorithm run by the cloud server. The
algorithm inputs a public key PK, searchable index I , search query Ω and set of en-
crypted documents C. The algorithm outputs a sequence of identifiers L ⊆ C match-
ing the search query.

5. Di ← Decrypt(S1, SK,Li): a deterministic algorithm that takes as input secret keys
S1 and SK, and a ciphertext Ci and outputs a document Di.

An index-based MKSim scheme is correct if ∀ s ∈ N, ∀ S1, S2, PK, SK generated by
Gen(1s), ∀ D, ∀ (I, C) output by BuildIndex(S1, S2, PK,D,K), ∀ K̄ ∈K, and 1 ≤ i ≤ n,

Evaluate(PK, I,MakeQuery(S2, PK,K, K̄), C) = L
∧
Decrypt(S1, SK,Li) = Di (6)

4.2 MKSim Security Model

In this section we focus on security definitions for our scheme. Security goal of any search-
able encryption scheme is to reveal nothing (no meaningful information) to the adversary.
Our goal is to provide two following security guarantees:

• Given a searchable index I and a set of encrypted document C = (C1, C2, . . . , Cn) to
the adversary, no valuable information about the original documents D = (D1, D2,
. . . , Dn) is leaked to the adversary.
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• Given a set of search queries Q = (Q1, Q2, . . . , Qm) generated by the data user, the
adversary cannot learn any information about the content of the search query Qi or
the content of the documents in the search outcome.

To hide the plaintext document collection we require the symmetric key encryption scheme
SKE (see Definition 1) to have the pseudo-randomness against chosen-plaintext attacks
(PCPA) security guarantee which assures that the ciphertexts are indistinguishable from
random2. We outline the PCPA-security of SKE scheme as following experiment:

Definition 6. PCPA security: Let SKE = (Gen,Enc,Dec) be a symmetric key encryption
scheme, s be the security parameter, A be an adversary and there is a probabilistic experi-
ment PCPASKE,A(s) that is run as follows:

• Output the secret key S1← Gen(1s).

• The adversary A is given oracle access to Enc(S1, ·).

• The adversary A outputs a message M (e.g., plaintext document D).

• Let C0 ← Enc(S1,M) and C1
R←− C, where C denotes the set of all possible cipher-

texts. A bit b is chosen at random and Cb is given to the adversary A.

• The adversary A is again given to the oracle access to Enc(S1, ·), and A runs number
of polynomial queries to output a bit b

′
.

• The experiment outputs 1 if b = b
′
, otherwise 0.

Symmetric key encryption scheme SKE is PCPA-secure if for all polynomial-size adver-
saries A,

Pr[PCPASKE,A(s) = 1] ≤ 1

2
+ negl(s), (7)

where the probability is over the choice of bit b and the coins of Gen and Enc.

Achieving the second security property is difficult and and most known searchable en-
cryption solutions [15, 37, 9, 2, 17] reveal some information from the search queries, namely
access pattern and search pattern. In MKSim scheme we follow the similar approach to
weaken the security guarantees and allow some limited information to the adversary. We
begin with definitions of the history, access pattern and search pattern, and then we give the
definition of trace that combines definitions of history, access and search patterns.

Definition 7. History: Let K̄ be a collection of keywords of interest, D be a collection of
documents and Ω = {Ω1, Ω2, . . ., Ωq} be a vector of q search queries. The history of search
queries is defined as H(D,Ω).

Definition 8. Access Pattern: Let K̄ be a collection of keywords of interest,D be a collection
of documents and Ω = {Ω1, Ω2, . . ., Ωq} be a vector of q search queries. The access pattern
induced by a q-query history H(D,Ω), is defined as follows: α(H) = (D(Ω1), D(Ω2), . . . ,
D(Ωq)), where D(Ωi) denotes the set of documents that match search query Ωi.

2Note that symmetric key encryption schemes such as AES in counter mode satisfy the PCPA-security defini-
tion.
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Definition 9. Search Pattern: Let K̄ be a collection of keywords of interest,D be a collection
of documents and Ω = {Ω1, Ω2, . . ., Ωq} be a vector of q search queries, The search pattern
of the history H(D,Ω) is a symmetric binary matrix σ(H) such that for 1 ≤ i, j ≤ q, the
element in the ith row and jth column is 1 if Ωi = Ωj , and 0 otherwise.

The access pattern represents the results of search queries Q sent to the cloud server, and
specifically, the document identifiers corresponding to each query. The search pattern rep-
resents a historical observation of queries searched for. We combine both access pattern
and search pattern to form the definition of trace, as follows:

Definition 10. Trace: Let K̄ be a collection of keywords of interest, D be a collection of
documents and Ω = {Ω1, Ω2, . . ., Ωq} be a vector of q search queries. The trace induced by
the history H(D,Ω) is a sequence τ(H) = (|D1|, |D2|, . . . , |Dn|, α(H), σ(H)) comprised of
the lengths of document collectionD = (D1,D2, . . .,Dn), and the access and search patterns
induced by the history H(D,Ω).

Unlike security definitions originally presented in [9], our searchable encryption scheme
introduces a randomization of a search query that enables the data user to hide the search
pattern. Thus, queries are different even if they are generated for the same set of keywords
of interest. The definition of randomized queries is given as:

Definition 11. Randomized query: Let Ω1≤i≤q be a sequence of q generated search queries
with the same set of keywords K̄. We say that the scheme has (q, ε)-randomized query if:
∀i, j ∈ 1, q Pr(Ωi = Ωj) < ε.

Our security model uses the simulator-based definition approach that includes the view
from adversary and the simulator. Adaptive security means that the adversary generates
the history adaptively, that means that the results of previous search queries are taken into
account. We outline simulation-based experiments in the following definition:

Definition 12. Adaptive Semantic Security: LetMKSim = (Gen, BuildIndex,MakeQuery,
Evaluate, Decrypt) be an index-based similarity searchable encryption scheme, s be the se-
curity parameter, andA = (A0, . . . , Aq) be an adversary such that q ∈N and S = (S0, . . . ,Sq)
be a simulator. Consider the following probabilistic experiments Real?MKSim,A(s) that is
executed between the challenger and the adversary, and Sim?

MKSim,A,S(s) that is executed
between the adversary and the simulator:

Real?MKsim,A(s): Sim?
MKSim,A,S(s):

(D,K, stA)← A0(1s) (D,K, stA)← A0(1s)
(S1, S2, PK, SK)← Gen(1s) (I, C, stS)← S0(τ(D,K))
(I, C)← BuildIndex(S1, S2, PK,D,K) (K̄1, stA)← A1(stA, I, C)
(K̄1, stA)← A1(stA, I, C) (Ω1, stS)← S1(stS, τ(D, K̄1))
Ω1←MakeQuery(S2, PK,K, K̄1) for 2 ≤ i ≤ q
for 2 ≤ i ≤ q (K̄i, stA)← Ai(stA, I, C,Ω1, . . . ,Ωi−1)
(K̄i, stA)← Ai(stA, I, C,Ω1, . . . ,Ωi−1) (Ωi, stS)← Si(stS, τ(D, K̄1, . . . , K̄i))
Ωi ←MakeQuery(S2, PK,K, K̄i) let Ω = {Ω1, Ω2, . . ., Ωq}

let Ω = {Ω1, Ω2, . . . , Ωq} output o = (I, C,Ω) and stA
output o = (I, C,Ω) and stA

where stA is the state of adversary, stS is the state of the simulator. We say that MKSim is
adaptively semantically secure if for all polynomial-size adversariesA = (A0, . . . , Aq) such
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that q is polynomial in s, there exists a non-uniform polynomial-size simulator S = (S0, . . . ,
Sq) such that for all polynomial-size R:

|Pr[R(o, stA) = 1]− Pr[R(ō, ¯stA)]| ≤ ε, (8)

where (o, stA) ← Real?MKSim,A(s), (ō, ¯stA) ← Sim?
MKSim,A,S(s) and the probabilities are

over the coins of Gen and BuildIndex and MakeQuery.

This completes our security model requirement for MKSim solution, and we are now
ready to present scheme details.

4.3 MKSim Construction

Setup Phase. Our searchable scheme is based on SSE-2 inverted index data construction
previously introduced in [9]. We enhance SSE-2 scheme with addition of TF-IDF statistical
measurement and dot product for ranked search. We show that our construction is very
efficient and it achieves the same semantic security guarantees as SSE-2 scheme. Fig. 1
shows an outline of MKSim scheme.

Our searchable index consists of two main algorithms: building the lookup filter T , based
on SSE-2 construction and building the TF-IDF table Φ, based on TF-IDF word impor-
tance. We create a lookup filter T whose entries have of the form (keyword, value). For
each keyword k ∈ K we add an entry in T whose value is the document identifier with
the instance of keyword k. Note, for a given keyword k and the set of documents that
contains the keyword k, we derive a label k||j for keyword k with j-th document iden-
tifier. For example, if “colorado” is contained in document D5, then k||j is “colorado1”.
Formally, we represent the family of k with matching j-th documents as follows: Fk =
{k||j : 1 ≤ j ≤ |D(k)|}, where |D(k)| represents the list of matching documents. For in-
stance, if “state” is contained in set of four document (D2, D4, D10, D13), then family Fk
is {“state1”, “state2”, “state3”, “state4”} and we add the following entries in lookup table
T : (state1, 2), (state2, 4), (state3, 10) and (state4, 13). In our construction, searching for
keyword k becomes equal to searching for all labels in a form of k||j in the family Fk.

We guard the unique number of words in each document by adopting the idea of padding
the lookup filter T such that the identifier of each document appears in the same number of
entries. To protect the keyword content in the table T , we use the pseudo-random permuta-
tion π with secret parameter S2 such as {0, 1}S2 × {0, 1}l+log2(n+max)→{0, 1}l+log2(n+max),
where max denote the maximum number of distinct keywords in the largest document in
D, n is the number of documents in D and each keyword is represented using at most l
bits. Our lookup table T is ({0, 1}l+log2(n+max) × {0, 1}log2(n) × {p}), where p = max ? n.

In our second step, for each distinct keyword kj in a document Di, we calculate the TF-
IDF measure using Equation 2. We then construct the TF-IDF table Φ where each row corre-
sponds to the document identifier Di and each column is the keyword in the dictionary K.
Each cell element in Φ contains the TF-IDF value of a keyword kj . Unfortunately, outsourc-
ing the table elements to the cloud leaks some important information. It is well known
fact[38] that an adversary (in our case, the cloud server) may know some of keywords and
their TF distributions. Using this information, an adversary can infer the keyword index
or even the document content. Based on this observation, we decided to improve the se-
curity of our solution. Our table includes the set of dummy keywords Z that are added to
the keyword dictionary K. This gives us the randomness that hides the original keyword
distribution of TF-IDF values. Finally, we use the CPA-secure homomorphic cryptosystem
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Gen(1s) : generate S1 ← SKE.Gen(1s) and S2
R←− {0, 1}s. Sample SK, PK ←

Hom.KeyGen(). Output S1, S2, SK and PK.
BuildIndex(S1, S2, PK,D,K) :
Initialization:

1. scan document corpus D, extract k1, k2, . . ., kp ← from Di.
2. construct dictionary K with dummy Z.
3. for each k ∈ K, build D(k)(i.e., the sequence of documents with k).

Build lookup filter T :
1. for each ki ∈ K:

• for 1 ≤ j ≤ |D(ki)|:
– value = id(Di,j), where id(Di,j) is the jth identifier in D(ki).
– set T [πS2

(ki||j)] = value.

2. let p̄ =
∑
ki∈K |D(ki)|. If p̄ < p, assign value = id(D) for all Di ∈ D for exactly max

entries, set the address to random values.
Build TF-IDF table Φ:

1. for each Di ∈ D
• for each kj ∈K

– WTi,j ← TFIDF(kj) (i.e., calculate TF-IDF value for keyword kj).

• set Φi = Hom.Enc(PK,WTi) (i.e., apply homomorphic encryption Hom with
public key PK on vector WTi).

Output:
1. for each Di ∈ D, let Ci ← SKE.Enc(S1, Di).
2. output (I, C), where I = (T,Φ) and C = {C1, C2, . . . , Cn}.

MakeQuery(S2, PK,K, K̄) :

1. for each keyword kj ∈ K̄, set tj = (πS2(kj ||1), . . . , πS1(kj ||n)).
2. for each keyword kj ∈ K̄, calculate WTj ← TFIDF(kj).
3. set x =Hom.Enc(PK,WT) (i.e., encrypt vector WT using homomorphic encryption
Hom with public key PK).

4. output search query Ω = (t,x).
Evaluate(PK, I,Ω, C) :

1. Find all matching identifiers id← T [t].
2. for all j ∈ [1; |id|], calculate scoreCj = Hom.Eval(PK, (ΦCj ,x)). (i.e. with public key
PK, execute homomorphic dot product (multiplication and addition) between ΦCj

and x).
3. output results {scoreC1

, . . . , scoreCid
}.

Decrypt(S1, SK,Li) :
1. set scoreDi =Hom.Dec(SK, scoreLi) (i.e., decrypt scoreCi usingHomwith secret key
SK).

2. select (scoreDi
)m

top-m←−−− {scoreD1
, . . . , scoreDid

} (i.e. select top-m documents with
highest scores).

3. output (Di)m← SKE.Dec(S1, Ci), where i ∈ [1;m].

Figure 1: MKSim Construction
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Hom to protect the values of TF-IDF table Φ. We apply Hom.Enc() with public key PK on
each row of TF-IDF table Φ.

Once both the lookup filter T and TF-IDF table Φ are constructed, we use PCPA-secure
symmetric key encryption scheme SKE with secret key S1 to encrypt each document Di,
i.e. Ci = SKE.Enc(S1, Di). We outsource searchable index I = (T,Φ) and encrypted
collection C = {C1, C2, . . . , Cn} to the cloud server. Now the collection is available for
selective retrieval from the cloud server.

Search Phase. To search the keywords of interest K̄, the data user contacts the data owner
to receive the search trapdoor. The trapdoor includes the keyword dictionary K with IDF
values for each keyword inK, the set of (S1, S2, PK, SK) keys, the pseudo-random permu-
tation π, homomorphic cryptosystem Hom and symmetric-key encryption scheme SKE.
Note, the trapdoor learning process is a one-time operation and the data user does not need
to contact the data owner anymore. The data owner inputs the set of keywords of inter-
est K̄ to the search trapdoor. The trapdoor generates a search query in form of Ω = (t, x),
where t corresponds to the lookup search query and x corresponds to the TF-IDF search
query. The lookup search query t is the output of the pseudo-random permutation π with
secret key S2. The TF-IDF search query x is the result of applying the homomorphic en-
cryption Hom.Enc with public key PK on the output of TF-IDF measure calculated using
Equation 2 on set of keywords of interest K̄. Finally, the data user sends resulted search
query Ω = (t, x) to the cloud server.

Once Ω received, the server locates the matching document identifiers in the lookup filter
T as T [t]. Now the cloud server executes the homomorphic dot product Hom.Eval (that
includes homomorphic multiplication and homomorphic addition) between the TF-IDF
search query x and rows in the TF-IDF table Φ that correspond to the matching document
identifiers. The cloud server sends the set of resulted ciphertexts {scoreC1

, . . . , scoreCid
}

back to the data user.
The data user decrypts each polynomial scoreCi

using Hom.Dec with secret key SK to
form scoreDi

. The data user retrieves the top-m documents with highest similarity scores
from the cloud server. Using SKE.Decwith secret key S1, the data user decrypts matching
documents to the original view.

5 Security Analysis

We now focus on the security evaluation of proposed searchable encryption scheme. We
focus on two security properties:

• We prove that our scheme is CKA2 secure[20, 9] and achieves the strongest semantic
security against adaptive adversaries.

• We demonstrate that inserting dummy keywords provides randomized search queries.
It is important to show that the search queries generated by our scheme are different
for the same set of keywords of interest, making the adversary difficult to collect and
distinguish the document outcomes.

Theorem 13. If π is a pseudo-random permutation,Hom is CPA-secure and SKE is PCPA-secure,
then MKSim = (Gen, BuildIndex, MakeQuery, Evaluate) scheme is adaptively secure.

Proof. We are going to describe a polynomial-size simulator S = {S0, . . . , Sq} such that
for all polynomial-size adversaries A = {A0, . . . , Aq}, the outputs of Real?MKSim,A(s) and
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Sim?
MKSim,A,S(s) are computationally indistinguishable. Consider the simulator S = {S0,

. . . , Sq} that adaptively generates the output o? = (I?, C?, Ω?) as follows:

• S0(1s, τ(D)): the simulator has a knowledge of history H that includes the number
and the size of the documents. S0 starts with generating C?i

R←− {0, 1}|Di| where i ∈
[1, n] and searchable index I? = (T ?,Φ?). Here T ? R←− {0, 1}l+log2(n+max) is a lookup
filter, and Φ?

R←− {0, 1}K×n is a TF-IDF table. S0 now includes I? in stS and outputs
(I?, C?, stS). Since, with all but negligible probability, stA does not include secret S2,
T ? is indistinguishable from the real lookup table T . Otherwise S0 can distinguish
between the output of pseudo-random permutation π and a random values of size
l+ log2(n+max). Similarly, simulated TF-IDF table Φ? is indistinguishable from the
real Φ due to the CPA security of homomorphic encryptionHom, otherwise one could
distinguish between the output of Hom.Enc and a random string of size K × n. At
the same time, stA does not include secret S1, thus the PCPA security of SKE scheme
will guarantee that the output C? is indistinguishable from the real ciphertext.

• S1(stS, τ(D,Ω1)): now the simulator S1 has a knowledge of all document identifiers
corresponding to the search query Ω1. However the search query does not disclose its
structure and the content. Recall that D(Ω1) is the set of all matching document iden-
tifiers. For all 1 ≤ j ≤ |D(Ω1)|, the simulator first makes an association between each
document identifier id(Dj) and a generated search query such that (D(Ω1)i, I

?
i ) are

pairwise distinct. S1 then creates Ω?1 = (t?, x?), where t? R←− (id(D1), . . . , id(|D(Ω1)|))
and x?

R←− {0, 1}K . S1 stores the association between Ω?1 and Ω1 in stS, and outputs
(Ω?1, stS). Since, with all but negligible probability, stA does not include secret S2, the
output t?1 is indistinguishable from the real generated query t1 otherwise one could
distinguish between the output of π and a random string of size l + log2(n + max).
Similarly, simulated x? is indistinguishable from the real x due to the CPA security of
homomorphic encryption Hom, otherwise one could distinguish between the output
of Hom.Enc() and a random string of a size K. Thus, Ω?1 is indistinguishable from
Ω1.

• Si(stS, τ(D,Ω1,Ω2, . . . ,Ωq)) for 2 ≤ i ≤ q: first Si checks if the search query Ωi was
executed before, that is, if it appeared in the trace σ[i, j] = 1, where 1 ≤ j ≤ i − 1.
If σ[i, j] = 0, the search query has not appeared before and Si generates the search
query as S1. If σ[i, j] = 1, then Si retrieves previously searched query, and constructs
Ω?i . Si outputs (Ω?i , stS), where Ω?i is indistinguishable from real Ωi. The final output
Ω = (Ω?1, . . . , Ω?q) is indistinguishable from generated query (Ω = Ω1, . . . , Ωq), and
outputs of experiments Sim?

MKSim,A,S(s) and Real?MKSim,A(s) are indistinguishable.

Theorem 14. Injection of dummy keywords provides randomized search queries.

Proof. Let us consider two search queries Ω1 and Ω2, both constructed from the same key-
word set K and a randomly chosen set of dummy keywords Z1 and Z2 from a dictionary
Z of a size n = |Z|. We are aiming to prove that: ∀i, j i 6= j Pr(Ωi = Ωj) < ε where ε tends
to zero as n increases.
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We first estimate the probability Pr(k) that the intersection Z of two sets Z1,Z2 ⊆ Z is
equal to some value k. We have:

Pr(k) =
#of ways of choosing Z1, Z2 with |Z| = k

# of ways of choosing Z1, Z2
(9)

Note, there are
(
n
k

)
choices for Z. If Z1 has size k, then there is one choice for Z1, and we

can choose Z2 arbitrarily from 2n−k possibilities. If Z1 has size k + 1, then there are
(
n−k

1

)
choices for Z1 and 2n−k−1 choices for Z2. Let m = n− k, then there are

m∑
j=0

2m−j
(
m
j

)
=

3m possible choices for Z1,Z2 with intersection Z. Thus, there are 3n−k
(
n
k

)
possible ways

of choosing the subsets. Since there are 4n ways of choosing any two subsets of Z , we

have the following: Pr(k) =
3n−k(n

k)
4n . We now evaluate Pr(k) with input k → 0: limk→0

Pr(k) = limk→0
3n−k(n

k)
4n =

(
3
4

)n. As n increases, limk→0Pr(k)→ 0 and hence Theorem 14 is
preserved .

6 Performance Evaluation

In this section, we will focus on the performance evaluation of proposed solution. We first
present the complexity analysis of MKSim scheme and then focus on thorough experi-
mental evaluation of our solution using a real-world dataset.

6.1 Complexity Analysis

We compare MKSim scheme with previous searchable encryption solutions in Table 1.
Our comparison is based on the following metrics: matching technique, query randomiza-
tion, security, search time and index size. Matching technique describes if solution supports
exact match or similarity match. Query randomization describes the support of randomized
search queries. We use security notations from [9] to describe the security of each solution.
Search time is the time to invoke search on the index that is constructed from the document
collection D of size n. Note that previous solutions are able to achieve the linear search
complexity within the total number of documents in the collection. In contrast, the search
in our solution is proportional to the number of documents that contain a set of keywords
of interest. Finally, we measure the size of the searchable index. Our searchable index I
consists of a lookup filter T of size O(nm) (where n is the size of document collection and
m is the size of keyword dictionary K) and a TF-IDF table Φ of size O(nm), which makes
the total ciphertext having the size of O(nm).
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Table 1: Comparison of several searchable encryption schemes. n is size of the document
collectionD,m is the size of the keyword spaceK, δ is the number of documents containing
keywords of interest K̄.

Scheme Matching Query
Randomization Security Search

Time
Index
Size

Song et al. [1] Exact no CPA O(n) N/A
Goh et al. [2] Exact no CKA1 O(n) O(n)
Curtmola et al.[9] (SSE-1) Exact no CKA1 O(δ) O(n+m)
Curtmola et al.[9] (SSE-2) Exact no CKA2 O(δ) O(nm)
Cao et al. [5] Similarity yes CKA1 O(n) O(nm)
Moataz et al. [15] Exact yes CKA2 O(n) O(nm)
Orencik et al. [16] Exact no CKA2 O(n) O(nm)
MKSim Similarity yes CKA2 O(δ) O(nm)

6.2 Performance

We have developed and implemented a multi-threaded proof-of-concept prototype ofMKSim
scheme using C++ language. Our implementation includes 37 classes with a total of 10200
lines of code. Our prototype leverages two cryptographic libraries: libtomcrypt 3 and HElib
4. Libtomcrypt is portable C cryptographic library that supports symmetric ciphers, one-
way hashes, pseudo-random number generators, and a plethora of support routines. We
use libtomcrypt to build the lookup filter T and encrypt the document collection. HElib
is a C++ cryptographic library for homomorphic encryption available as an implementa-
tion of Brakerski et al. [36] scheme. We utilize HElib homomorphic cryptosystem since
its one the few homomorphic toolkits that efficiently supports multiplication operation on
the ciphertexts. Specifically, it provides the efficient “batching mode” property where a
single ciphertext represents a vector of encrypted values. Thus, single homomorphic op-
eration (i.e., multiplication) on two such ciphertexts applies the homomorphic operation
component-wise to the entire vector. We use HElib to build the TF-IDF table Φ and com-
pute the similarity measure of a search query and set of stored encrypted documents.

We show a thorough experimental evaluation of the MKSim scheme on a real-world
dataset: the Internet Request for Comments (RFC) database [39], which is a collection of
plaintext documents that consists of a large number of technical keywords describing dif-
ferent specifications, protocols, procedures and events in the Internet. All experiments
have been performed on a 6 core Intel(R) Xeon(R) E5645 @ 2.40GHz processor and 98 GB
memory running 64-bit Fedora 21 distro with the 3.19 kernel. We setup our prototype to
use 20 pthread[40] threads in all experiments. The cloud server, data owner and data user
applications were run on the same machine, as the network communication overhead was
assumed to be negligible. In our evaluation we measure the computation and commu-
nication overheads of proposed solution. Specifically, we measure the overheads of the
BuildIndex, MakeQuery and Evaluate algorithms presented in n Section 4.1.

Encryption Overhead. In this section, the overheads associated with the encryption pro-
cess will be detailed. First, we study the size of keyword dictionary K = (k1, k2, . . . , km)
extracted from RFC documents D = (D1, D2, . . . , Dn) of different sizes. Figure 2 shows the
number of distinct keywords extracted from 250 to 2000 RFC documents. Figure 3 shows

3https://github.com/libtom/libtomcrypt
4https://github.com/shaih/HElib
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that the storage overhead of keyword dictionary is nearly linear with the size of the dataset.

Figure 2: RFC Keyword Dictionary. Figure 3: RFC Keyword Dictionary Size.

Figure 4: Lookup Filter T Generation. Figure 5: Lookup Filter T Size.

Second, we study computation and communication overheads for BuildIndex algorithm.
Our building index algorithm consists of two phases: constructing lookup filter T and TF-
IDF table Φ. Figure 4 shows the time cost of constructing the lookup filter T using RFC
documents of different sizes. The lookup filter T consists of applying a pseudo-random
permutation on each keyword from the dictionary and labeling the output with document
identifier where the keyword appeared. Figure 5 shows the storage requirements of lookup
filter T .

Next, we measure the overhead related to TF-IDF table Φ. Our TF-IDF table Φ construction
consists of computing the TFIDF table for each extracted keyword from RFC dataset and
applying Brakerski’s homomorphic cryptosystem in “batching mode” on each document
row. We show the time cost of generating the TF-IDF table Φ in Figure 6 and the storage
overhead in Figure 7. Although the time of building TF-IDF table Φ is not a negligible
overhead for the data owner, this is a one-time operation before sending the encrypted
documents to the cloud server.
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Figure 6: TF-IDF Table Φ Generation. Figure 7: TF-IDF Table Φ Size.

Table 2: Search Queries.

Search Query 1 (SQ-1) OSPF BGP MIME XML iSCSI
Search Query 2 (SQ-2) Encryption Framework Certificate Authorization Authentication

Search Overhead. To evaluate the search overhead, we leverage two types of search in-
puts in our prototype. The first search query (SQ-1) describes five popular acronyms in the
RFC dataset, while the second search query (SQ-2) is a set of general keywords describ-
ing technical security standards for the Internet. Table 2 shows the keywords used in our
experiments.

First, we measure the performance of theMakeQuery algorithm. This overhead ofMakeQuery
consists of calculating a pseudo-random permutation applied on each queried keyword
and calculating Brakerski’s homomorphic encryption on each weighted keyword. Figure 8
shows the time cost for generating trapdoors for both SQ-1 and SQ-2 using keyword dic-
tionaries of different sizes. Our results demonstrate that time cost to construct both SQ-1
and SQ-2 search queries stays mostly constant.

Second, we test the overhead of the Evaluate algorithm. The Evaluate execution at the
cloud server consists of calculating similarity scores (i.e., homomorphic dot product) be-
tween a given search query and stored searchable index I . Table 3 shows the experimental
results for RFC documents of different sizes. For each search input we measure the num-
ber of documents that match the lookup filter T and the time cost of calculating similarity
scores for a set of selected documents. For example, for SQ-1 search input and RFC collec-
tion of 1500 documents, there are 472 documents that match the lookup filter T and it takes
a total of 1427 seconds to measure similarity scores of selected 472 documents. Our results
demonstrate that lookup filter T allows the cloud server to efficiently select the set of doc-
uments that contain the queried set of keywords without the need of calculating similarity
scores for all documents in the dataset.

Third, using the results from Table 3 we measure the time cost to calculate the similarity
score for each selected document. We define the Similarity Search Performance (SSP) met-
ric as follows: SSP (Q) = tΦ

nK̄
, where tΦ corresponds to total time cost to calculate similarity

scores for selected documents in Φ and nK̄ corresponds to the number of documents that
match the search query in T . Figure 9 shows the SSP metric for both SQ-1 and SQ-2 search
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Table 3: Search Query 1 and Search Query 2 Execution Results.

Search Query 1 Search Query 2
Number of
Documents

Number of Matching
Documents in T

Execution
Time in Φ (s)

Number of Matching
Documents in T

Execution
Time in Φ (s)

250 85 217 152 341
500 173 454 307 738
750 255 680 462 1169

1000 324 873 608 1618
1250 400 1107 753 2068
1500 472 1427 919 2738
1750 562 1807 1071 3429
2000 626 2089 1220 3989

Table 4: Different Size Query Execution Results.

1000 Documents 2000 Documents
Search Query

Size
Number of Matching

Documents in T
Execution

Time in Φ (s)
Number of Matching

Documents in T
Execution

Time in Φ (s)
5 11 57 123 518
10 222 643 1069 3634
25 286 807 1080 3694
50 340 924 1131 3867

100 571 1537 1172 3998
250 916 2424 1418 4880
500 959 2543 1892 6530

1000 988 2605 1950 6609

queries. Our results demonstrate that the cloud server has an average overhead of 2.8 sec-
onds on each similarity score calculation. Also, Table 4 shows the experimental results for
search queries of different sizes. We use two collections of sizes 1000 and 2000 documents
and varied the size of search query. The results show that our search is proportional to the
number of documents that contain a set of keywords of interest. In short, we notice that
the MKSim protocol, although uses homomorphic encryption, adds minimal overhead on
computation and storage. We believe that proposed solution can be easily deployed in a
real-world cloud environment.

7 Group Multi-keyword Similarity Searchable Encryption
(GMKSim)

In order to make an important step toward widespread use of searchable encryption, exist-
ing solutions need to include mechanisms to efficiently support hundreds even thousands
cloud users in the system[41]. In this section we consider a multi-user scenario that in-
volves a data owner that wishes to share a documents and multiple data users that want to
query encrypted data using the cloud server.

Curtmola et al. [9] were the first to extend their single-user scheme with broadcast encryption[42],
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Figure 8: Time Cost of Generating Trapdoor. Figure 9: Cloud Similarity Search Time.

where the data owner is able to outsource an encrypted document collection to the cloud
server and an arbitrary group of users is allowed to query the data. Broadcast encryption
allows the data owner to distribute a shared secret key to a group of data users. However,
this solution might not work in a real-world cloud deployment that involves potentially
large number of on-demand data users since only one key is shared among all users and
each user revocation requires a new key to be distributed to the remaining users. It is de-
sirable that each data user could keep its own secret key, which makes key management
easier and more efficient.

We propose a new Group Multi-keyword Similarity Searchable Encryption (GMKSim)
scheme that solves the problem of managing access privileges and searching multiple key-
words over encrypted cloud data. Our extension is based on distributed broadcast encryp-
tion scheme[44] that supports a distributed setup where the data owner sets up the system,
but each user generates their own key when joining the system. In fact, we remove the
burden of key management from the data owner and let group establishment run by par-
ticipating data users (i.e., data users are allowed to pick desired participants and establish
a shared key to search remote encrypted data). We first give the set of definitions and secu-
rity notions of GMKSim scheme. Later we present an efficient construction of GMKSim that
combines the idea of a single-user MKSim scheme with distributed broadcast encryption
scheme.

7.1 Preliminaries

We begin with the definition of witness pseudo-random function (WPRF). Informally, a wit-
ness PRF for anNP language L is a PRF F such that anyone with a valid witness that x ∈ L
can compute F (x) without the secret key, but for all x 6∈ L, F (x) is computationally hidden
without knowledge of the secret key. Formally, a witness PRF is defined as follows:

Definition 15. Witness Pseudo-Random Function (WPRF)[44]: A witness PRF is a triple
of algorithms (Gen, F, Eval) such that

• Gen: a probabilistic algorithm that inputs a security parameter λ and a circuit R : X
×W→ {0, 1}, and outputs a secret function key fk and a public evaluation key ek.

• F : a deterministic algorithm that inputs the function key fk and an input x ∈ X, and
outputs some output y ∈ Y for some set Y.

TRANSACTIONS ON DATA PRIVACY 9 (2016)



Secure Multi-keyword Similarity Search 151

• Eval: a deterministic algorithm that inputs the evaluation key ek, an input x ∈ X and
a witness w ∈W, and produces an output y ∈ Y or ⊥.

The following correctness property is required to hold:

Eval(ek, x, w) =

{
F (fk, x) if R(x,w) = 1

⊥ if R(x,w) = 0
for all x ∈ X, w ∈W.

A multiparty key exchange protocol allows a group of g users to simultaneously post a
message to a public bulletin board, retaining some user-independent secret. After reading
off the contents of the bulletin board, all users establish the same shared secret key. The
multiparty key exchange protocol consists of the following algorithms:

Definition 16. Non-Interactive Multiparty Key Exchange protocol (NIKE-WPRF)[44]: Let
G : S → Z be a pseudo-random generator with |S|/|Z| ≤ negl. Let WPRF = (Gen, F,
Eval) be a witness PRF. Let Rg : Zg × (S × [g])→ {0, 1} be a relation that outputs 1 on in-
put ((z1, . . . , zg), (s, i)) if and only if zi = G(s). The non-interactive key exchange protocol
consists of:

• Publish(λ, g): a probabilistic algorithm that takes as input the security parameter λ
and the group order g. It computes (fk, ek)

R←− Gen(λ,Rg). Next, it picks a random
seed sk

R←− S and compute z ← G(sk). It outputs a secret key sk and public values
(z, ek), where sk is kept secret and (z, ek) are published to the bulletin board.

• KeyGen({zi, eki}i∈[g], sk): a deterministic algorithm that inputs group g and user’s
secret sk. It outputs a group key k = Eval(eki, (z1, . . . , zg), (sk, i)).

Broadcast encryption[42] allows an encryptor (data owner) broadcast a message to a sub-
set of recipients (data users). The system is said to be collusion resistant if non-data users
can learn information about the plaintext. Boneh et al.[43] recently proposed a new dis-
tributed broadcast encryption that is based on NIKE where data users generate secret keys
on their own and simply append their corresponding public values to the broadcast public
key. Unlike existing broadcast encryption schemes[45, 46, 47] where participants are as-
signed their secret key by a trusted authority (data owner), distributed broadcast scheme
has no trusted authority and each user generates a secret key for itself. However, scheme
in [43] is based on the indistinguishable obfuscation, for which none practical construction
is known[44]. Most recent work by Zhandry et al. [44] proposes a distributed broadcast
encryption scheme that replaces indistinguishable obfuscators with a witness PRFs. The
scheme is simpler and much more efficient that current obfuscation candidates. We use the
following definition of distributed broadcast encryption scheme:

Definition 17. Distributed Broadcast Encryption over NIKE (BE-NIKE-WPRF) [44]: Dis-
tributed broadcast encryption scheme over multi-party non-interactive key exchange pro-
tocol consists of four following algorithms:

1. Setup: a probabilistic algorithm to setup BE-NIKE-WPRF scheme. The algorithm
outputs a secret parameter λ and group order g.

2. Join(λ, g): a probabilistic algorithm to join the scheme that is executed by each par-
ticipant. The algorithm inputs a secret parameter λ and group order g. The algorithm
invokes NIKE-WPRF.Publish(λ, g) to output secret sk and public values (z, ek). The
user makes (z, ek) publicly available to other participants.
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3. Enc({zi, eki}i∈[g], sk,m): a probabilistic algorithm to encrypt messagem under shared
key. The algorithm inputs the set of public values {zi, eki}i∈[g], secret key sk and
plaintext message m. The algorithm runs NIKE-WPRF.KeyGen({zi, eki}i∈[g], sk) to
derive the shared key k. The algorithm outputs a ciphertext c which is the encryption
of message m using the shared key k.

4. Dec({zi, eki}i∈[g], sk, cm): a deterministic algorithm to decrypt cm. The algorithm
invokes NIKE-WPRF.KeyGen({zi, eki}i∈[g], sk) to derive k. If k 6=⊥, then algorithm
decrypts cm using k and outputs the original message m.

This completes cryptographic preliminaries used in our solution. We are now ready to
present the GMKSim scheme.

7.2 Algorithm Definitions

Definition 18. Group Multi-keyword Similarity Searchable Encryption (GMKSim): An
index-based GMKSim scheme over a set of documents D is a tuple of eight polynomial-
time algorithms GMKSim = (Gen, BuildIndex, Join, SetupGroup, Revoke, MakeQuery,
Evaluate, Decrypt), as follows:

1. (S1, S2, PK, SK, λ, g) ← Gen(1s): a probabilistic algorithm run by the data owner
to setup the GMKSim scheme. The algorithm invokes MKSim.Gen with an input of
a secret parameter s, and outputs a set of keys S1, S2, PK, SK. The algorithm runs
BE-NIKE-WPRF.Setup to output secret parameter λ and group order g.

2. (I, C) ← BuildIndex(S1, S2, PK,D,K): a probabilistic algorithm run by the data
owner to encrypt a document collectionD. The algorithm invokesMKSim.BuildIndex
with an input of keys S1, S2 and PK, a document collection D and a keyword dictio-
nary K. It outputs a searchable index I and a set of encrypted documents C.

3. (sk, (z, ek)) ← Join(λ, g): a probabilistic algorithm run by each data user to partic-
ipate in the scheme. The algorithm invokes BE-NIKE-WPRF.Join with an input of
secret parameter λ and group order g. It outputs a pair (sk, (z, ek)).

4. cr← SetupGroup({zi, eki}i∈[h], sk): a probabilistic algorithm run by the group owner
to establish the group h ⊆ g of authorized data users. The algorithm runs BE-NIKE-WPRF.Enc
with an input of public values {zi, eki}i∈[h], group owner’s secret key sk and a sam-
pled secret r. The output is encrypted ciphertext cr.

5. cr←Revoke({zi, eki}i∈[h\o],, sk): a probabilistic algorithm run by the group owner to
remove a user o from the set of authorized users. The algorithm invokes BE-NIKE-WPRF.Enc
that inputs the set of public values {zi, eki}i∈[h\o], group owner’s secret key sk and a
new secret r. The output is encrypted ciphertext cr.

6. Ω ← MakeQuery(S2, PK,K, K̄, cr): a probabilistic algorithm run by a data user to
construct a search query. The algorithm invokes BE-NIKE-WPRF.Dec with an input
of public values {zi, eki}i∈[h], secret key sk and ciphertext cr. It outputs a secret r.
If r 6=⊥, the algorithm invokes MKSim.MakeQuery with keys S2, PK, keyword
dictionary K, and set of keywords of interest K̄. The output is a search query Ω
encrypted under secret r.
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7. L ← Evaluate(PK, I,Ω, C, cr): a deterministic algorithm run by the cloud server.
The algorithm invokes BE-NIKE-WPRF.Dec an input of public values {zi, eki}i∈[h],
secret key sk and ciphertext cr, and it outputs secret r to decrypt search query Ω.
The algorithm runs MKSim.Evaluate with an input of public key PK, searchable
index I , search query Ω and set of encrypted documents C. The algorithm outputs a
sequence of identifiers L ⊆ C.

8. Di ← Decrypt(S1, SK,Li): a deterministic algorithm that inputs a set of secret keys
S1, SK and an encrypted document Li. The algorithm outputs a document Di.

We now formalize the security of proposed scheme.

• We require that the cloud server should not learn anything about the documents: an
adversary with an access to searchable index I and encrypted document collection C
= (C1, C2, . . . , Cn) should learn nothing about original documents D = (D1, D2, . . . ,
Dn)

• We require that the cloud server should not learn anything from the search queries
beyond the access and search patterns: an adversary with an access to a search queries
(Q1, Q2, . . . , Qm) generated by the data user learns nothing about the content of each
search query Qi or the content of resulted documents.

• We require the revocation for the data users: once a data user removed from the set
of authorized data users, he/she is no longer able to execute a search over encrypted
documents.

In GMKSim we use the adaptive semantic security notion of a single-user MKSim scheme.
It provides the security against an adaptive adversary: cloud server does not learn anything
about the documents and search queries beyond the access and search patterns. However,
with an addition of access privilege property, we need to expand our security definitions
towards the Revoke algorithm. We define the probabilistic experiment Rev as follows:

Definition 19. Revocation: LetGMKSim= (Gen, BuildIndex, Join, SetupGroup, Revoke,
MakeQuery, Evaluate, Decrypt) be a group MKSim scheme, s be a security parameter,
and A = (A1, A2, A3) be an adversary. We use the following probabilistic experiment
RevGMKSim,A(s):

RevGMKSim,A(s):
S1, S2, PK, SK, λ, g← Gen(1s)
(stA, D,K)← A1(1s)
(skA, (zA, ekA))← Join(λ, g)
cr ← SetupGroup((zA, ekA), sk)
(I, C)← BuildIndex(S1, S2, PK,D,K)

stA ← A
O(I,C,stS,·)
2 (stA, skA, (zA, ekA), cr)

c
′

r ← Revoke((zA, ekA), sk)
Ω← A3(stA)

L← Evaluate(stS , PK, I,Ω, C, c
′

r)
if L 6= ⊥, output 1, otherwise output 0,

where O(I, C, stS, ·) is an oracle that inputs a search query Ω and outputs ciphertexts C
indexed by L← Evaluate(PK, I,Ω, C, c

′

r) if L 6= ⊥ and ⊥ otherwise. We claim that Revoke
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Figure 10: Group Hospital Example.

algorithm achieves user revocation if for all polynomial-size adversaries A = (A1, A2, A3)
the following is correct:

Pr[RevGMKSim,A(s) = 1] ≤ negl(s), (10)

where the probability is over the coins of Gen, Join, SetupGroup, Revoke and BuildIndex.

7.3 GMKSim Construction

Figure 11 shows the details of GMKSim = (Gen, BuildIndex, Join, SetupGroup, Revoke,
MakeQuery, Evaluate, Decrypt). In our construction we combine the ideas of a single-user
MKSim = (Gen, BuildIndex, MakeQuery, Evaluate, Decrypt) and a distributed broadcast
encryption scheme BE-NIKE-WPRF = (Setup, Join, Enc, Dec). We require standard secu-
rity notions for broadcast encryption. Specifically, in addition of providing PCPA-security,
it provides revocation-scheme security against a group of all revoked users.

Our construction relies on a pseudo-random permutation ρ : {0, 1}r × {0, 1}t → {0, 1}t,
where r is the secret parameter and t is the size of search query Ω in the MKSim scheme.
We assume the honest-but-curious adversarial model for the cloud server. We also assume
that the cloud server does not collude with revoked users, otherwise our construction can-
not prevent a revoked user from executing a search.

To describe GMKSim in details we use following hospital example illustrated in Figure
10. Consider a doctor (data owner) that performed a blood test on a patient and wishes
to share resulted documents with group of nurses (data users) in the hospital. The doctor
considers building a searchable index I from the resulted documents D, and sending both
index I and encrypted results C to the hospital blackboard running on the cloud server.
To remove the burden of key management, the doctor enables distributed setup, where
each nurse generates its own secret key (when joining the system) and establishes a group
of authorized participants (e.g., a head nurse includes her subordinate nurses). The doc-
tor begins with sampling a secret parameter s, which is used as input to generate the set of
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Gen(1s) :
1. generate S1, S2, PK, SK ←MKSim.Gen(1s).
2. generate λ, g← BE-NIKE-WPRF.Setup(1s).

Output the key set S1, S2, PK, SK, secret parameter λ and group order g.
BuildIndex(S1, S2, PK,D,K) :

1. set (I, C)←MKSim.BuildIndex(S1, S2, PK,D,K).
Store (I, C) to the cloud server.
Join(λ, g) :

1. generate (sk, (z, ek))← BE-NIKE-WPRF.Join(λ, g).
Keep sk private, output (z, ek) to the cloud server.
SetupGroup({zi, eki}i∈[h], sk

1. pick h ⊆ g and get public values {zi, eki}i∈[h] from the cloud server.
2. sample r← {0, 1}s and compute cr ← BE-NIKE-WPRF.Enc({zi, eki}i∈[h], sk, r).

Output cr to the cloud server.
Revoke({zi, eki}i∈[h\o], sk)

1. set (h\o) ⊆ g and retrieve public values {zi, eki}i∈[h\o] from the cloud server.
2. sample new r←{0, 1}s and compute cr← BE-NIKE-WPRF.Enc({zi, eki}i∈[h\o], sk, r).

Output new cr to the cloud server.
MakeQuery(S2, PK,K, K̄, cr) :

1. retrieve cr and from the cloud server.
2. compute r← BE-NIKE-WPRF.Dec({zi, eki}i∈[h], sk, cr). If r = ⊥, output ⊥.
3. calculate Ω′←MKSim.MakeQuery(S2, PK, K, K̄).
4. set Ω← ρ(r,Ω′).

Output Ω.
Evaluate(PK, I,Ω, C, cr) :

1. compute r← BE-NIKE-WPRF.Dec({zi, eki}i∈[h], sk, cr).
2. compute Ω′← ρ−1(r,Ω).
3. output L←MKSim.Evaluate(PK, I,Ω′, C), where L ∈ C.

Output L.
Decrypt(S1, SK,Li) :
Output Di←MKSim.Decrypt(S1, SK,Li).

Figure 11: GMKSim Construction.

secret keys. The key generation algorithm outputs a set of keys S1, S2, PK, SK for a single-
user scheme, secret key λ and group order g for a distributed broadcast encryption scheme.
The doctor next invokes the BuildIndex algorithm of a single-user scheme MKSim out-
lined in Figure 1. The outputs are searchable index I and set of encrypted documents C.
Note, the searchable index I consists of a lookup filter T , based on SSE-2 construction, and
a TF-IDF table Φ constructed using a term weight importance. Next, each nurse launches
the Join algorithm with secret λ and group g (both distributed by the doctor) to generate
an output of (sk, (z, ek). Secret key sk is kept private, while (z, ek) are published to the
cloud server.

Now, the head nurse (group owner) creates a group of authorized users (other partic-
ipants) that are allowed to execute search over encrypted cloud data. The head nurse
launches the SetupGroup algorithm where she picks public values {zi, eki}i∈h of autho-
rized participants h ⊆ g, samples random secret parameter r, and uses the distributed
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broadcast encryption to output the ciphertext cr. Finally, head nurse sends cr to the cloud
server. Now the document collection is available for selective retrieval.

To search for a keywords of interest K̄, a nurse (data user) executesMakeQuery algorithm
that includes four steps. First, she contacts the cloud server and retrieves the ciphertext cr.
Next, she invokes the distributed broadcast encryption algorithm with her own secret sk,
public values {zi, eki}i∈h to recover the secret r. If r successfully recovered, she inputs
keywords K̄ to a single-user MKSim.MakeQuery algorithm that outputs search query Ω′.
Next, the nurse forms a permuted search query by applying PRP ρ with secret key r, i.e. Ω
= ρ(r,Ω) which is sent to the cloud server. The cloud server, upon receiving Ω, recovers the
search query by executing ρ−1(r,Ω). Here, the key r used in ρ is known only by the head
nurse, the cloud server and the set of authorized data users h. Once Ω′ is decrypted, the
cloud server executes a single-user MKSim.Evaluate algorithm to find a set of encrypted
documents that match K̄ keywords of interest.

If a nurse o is no longer an authorized user in group, the head nurse invokes the Revoke
algorithm on o. Specifically, the head nurse samples a new secret r′ and generate a new
cloud server ciphertext c

′

r using distributed broadcast encryption algorithm that exclude
the public values (z, ek) of nurse o. The new cloud ciphertext c

′

r is distributed to the cloud
server to replace the old cr. Since revoked data user o is not able to recover the new secret r′

in theMakeQuery algorithm, permuted Ω will not yield a valid search query after applying
ρ−1(r

′
,Ω) permutation at the cloud server. This simple extra layer given by the pseudo-

random permutation ρ prevents data users from performing successful search once they
are removed from the system. Proposed solution is very efficient since the cloud server
only needs to evaluate a pseudo-random permutation to decide whether a data user is
authorized to search an encrypted document collection.

The following theorem shows that the GMKSim scheme satisfies revocability.

Theorem 20. TheGMKSim= (Gen, BuildIndex, Join, SetupGroup, Revoke,MakeQuery,
Evaluate, Decrypt) achieves revocability according to Definition 19.

Proof. The proof is straightforward, and we only state the intuition behind the proof. The
revocation of proposed scheme relies on the following assumption. The PCPA-security of
BE-NIKE-WPRF scheme guarantees that the simulated search query Ω? is indistinguishable
from the real search query Ω. Indeed, this is true since decryption of the new message c

′

r

(generated by the group owner that excludes the public values of revoked user) will never
output a valid r′ that is used to generate the real Ω.

8 Conclusion

Searchable encryption is a technique that enables secure searches over encrypted data
stored on remote servers. We define and solve the problem of multi-keyword ranked search
over encrypted cloud data. In particular, we present an efficient similarity searchable en-
cryption scheme that supports multi-keyword semantics. Our solution is based two build-
ing blocks: Term Frequency - Inverse Document Frequency (TF-IDF) measurement and
homomorphic dot product. We use the dot product to quantitatively evaluate similarity
measure and rank the outsourced documents with their importance to the search query.
We show that our scheme is adaptive semantically secure against adversaries and able to
achieve optimal sublinear search time. We also presented a group scheme which extends
the original solution to support multiple parties. As future work, we plan to optimize the
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index construction algorithm of proposed solution. We also consider a system that allows
ranking search as well as efficient secure updates on the encrypted cloud data. Further-
more, we consider a solution that is secure against malicious cloud servers and it allows
data users to verify the correctness of returned results.
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