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Abstract. Feature selection is based on the notion that redundant and/or irrelevant variables bring 

no additional information about the data classes and can be considered noise for the predictor. As 

a result, the total feature set of a dataset could be minimized to only a few features containing 

maximum discrimination information about the class. Classification accuracy is used as the 

evaluation measure in guiding the feature selection process. At the same time, such measure does 

not take into account the privacy of the resulting dataset. In this work, we introduce E(S) a multi-

dimensional privacy-aware evaluation function in automatic feature selection that enables the DH 

to select and eventually release the best subset according to its desired efficacy (e.g., accuracy), 

privacy, and dimensionality of the resulting dataset. 

 

Keywords. Feature selection, privacy, data mining, classification, evaluation measure 

1 Introduction 

Datasets, including financial, medical, revenue records, and so on, create new opportunities for 

knowledge discovery. We need to ensure, however, that personally identifiable information is 

protected in them; yet, the analytical value of the datasets is preserved. 

High dimensionality, an essential characteristic of many large data sets, makes learning tasks 

(e.g., classification) challenging, and therefore dimensionality reduction tools such as feature 

selection become indispensable. Dimensionality reduction can be achieved by the elimination, 

extraction, and engineering of features. By reducing the number of features, feature selection aims 

to enhance the understandability of data, lower the computational cost, reduce a negative impact of 

the curse of dimensionality, and improve the predictive performance of learning algorithms 

(Chandrashekar and Sahin, 2014). In this work, we consider that features and attributes are 

synonymous.  

PPDP (Privacy Preserving Data Publishing) is concerned with developing tools and methods 

that enable the publishing of data in an insecure environment. PPDP aims at publishing modified 

data such that while individuals’ privacy is preserved, the published data remains practically 
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useful (Fung et al, 2010). In general, PPDP does not make assumptions about how the data will be 

used. In the past, different privacy-preserving methods have been proposed aiming to sustain the 

data utility for certain data mining tasks (Fung et al., 2005; Iyengar, 2002; LeFevre et al., 2006; 

Wang et al., 2004). Similarly, our work addresses the situation when the data is published for the 

purpose of being explored  by data mining methods. 

We assume a scenario that consists of a Data Holder (DH) who holds the original data on the 

one hand and, a Data Recipient (DR) who wants the data in order to apply certain data mining 

tasks on the other hand. In our work, we assume that the DR wants to classify the dataset. The DH 

uses automatic feature selection and publishes a customized dataset, which takes the intended 

analysis task of the DR into consideration. Since the dataset is going to be published in an insecure 

environment, in practice, it will also be available to an attacker. However, since the dataset is 

tailored for a given analysis task, if the attacker uses the same dataset to do, say, clustering 

analysis instead, the results would be misleading and of less or no value. The DH and the DR 

could be a hospital and a research center respectively. As such, we assume that the DR is the 

legitimate user of the released dataset. 

Generally, the goal of automatic feature selection is to obtain the most optimal feature set that 

provides for the algorithm’s best performance. In our work, we incorporate privacy considerations 

“during” the feature selection. As such, the feature selection process is guided in a way that the 

DH can predict the amount of inference of an individual sensitive attribute to the attacker who has 

access to sophisticated data mining tools. We introduce a multi-dimensional privacy-aware 

evaluation function in order to evaluate the potential privacy-aware attribute subsets and obtain the 

best subset according to the DH’s desired preferences of efficacy (e.g., accuracy), privacy, and 

dimensionality of the resulting dataset.  

The contribution of this work is twofold: First, we consider a case where the target class and 

the sensitive attribute are the same, i.e., C = SA. This implies that the goal of the adversary and 

the goal of the legitimate user/analyzer of the dataset is the same. This is an extension of the 

methodology proposed in (Jafer et al., 2015a) in which we consider C! = SA. In that work, we 

assumed that the goal of the adversary and the goal of the legitimate user/analyzer is different. 

Second, it introduces a new multi-dimensional measure for a privacy aware feature selection. 

Rather than obtaining only a list of candidate privacy-aware attribute subsets, we introduce an 

evaluation function E(S) in order to select a single best subset according to the DH’s desired 

accuracy, privacy, and dimensionality (number of attributes in the resulting subset) preferences.  

In the remaining parts of this work, we first start by discussing feature selection and privacy 

in Section 2. We then, introduce the main characteristics of the proposed methodology in (Jafer 

et al., 2015a) in Sections 3 an d 4 .We show how this methodology could be adapted to the case of 

C = SA with slight modification (Section 4). We then introduce the multi-dimensional evaluation 

function in Section 5 .We show the experimental results (Section 6) of a two dimensional plot of 

candidate privacy-aware attribute subsets (corresponding to C!=SA), followed by the results of 

implementing the proposed E(S) evaluation function.  

2 Feature Selection and Privacy 

In this section we discuss some background information about feature selection and privacy and 

related work. 

 The main goal in feature selection is to obtain an optimal feature set which can be a set 

that consists of all strongly relevant features and weakly relevant features that are non-redundant 

(Yu and Liu, 2004). Tsamardinos and Aliferis (Tsamardinos and Aliferis, 2003) proposed that the 

feature selection problem must include a classifier (or an ensemble of classifiers) in addition to a 

performance metric. As such, the optimal attribute subset is considered the one which would 
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maximize the performance metric, and yet has the minimum cardinality. Two main categories of 

automatic feature selection techniques are wrappers and filters. Wrappers conduct a search for a 

good attribute subset using the learning algorithm itself as part of the evaluation function. In 

contrast, filters use general characteristics of the data in order to evaluate attributes. The main 

advantage of wrappers is that, they usually result in higher performance compared with filters, 

and in cases where performance is the main objective they become very practical. The main 

disadvantage of wrappers is that due to their frequent interaction with the predictor, they turn out 

to be slower.  

Most work in the area of PPDP does not make any assumption about an intended analysis 

task applied on the dataset. In many domains such as healthcare, finance, etc., however, it is 

possible to identify the analysis task beforehand. In general, considering a particular publishing 

scenario is a fruitful direction and leads to identifying the best algorithm based on the scenario at 

hand (Ayala-Rivera et al., 2014).  Incorporating such knowledge of the ultimate analysis task 

may improve the quality of the anonymized data while protecting the privacy of individuals. 

However, even when the ultimate analysis task is defined, say, building a classification model, 

one challenging issue is handling high-dimensional data. As the dimensionality of data increases, 

data analysis such as classification becomes substantially harder. In some cases, data becomes so 

sparse leading to the “curse of dimensionality” (Powell 2007). It is possible that in the case of 

classification the available training data may be very small. Therefore, there will be very few data 

objects in order to create a reliable model which assigns a class to all possible objects. As a 

result, large numbers of features may lead to lower classification accuracy. Furthermore, a 

dataset with high dimensionality is considered a serious problem in many classification 

techniques due to the associated memory usage and computational cost (Janecek et al. 2008). 

Therefore some recent works in (Jafer, 2014) and (Jafer et al., 2014b) have considered using 

feature selection, a well known dimensionality reduction tool, for privacy preserving purposes. In 

(Jafer et al., 2014b), it was shown that when feature selection is used off-the-shelf (and without 

any privacy considerations) it may be utilized towards privacy protection. The justification is 

that, removing irrelevant and redundant attributes implicitly results in the removal of some of the 

quasi-identifier attributes. In other words, it is very possible that some of the eliminated 

irrelevant and/or redundant features are quasi-identifiers, so they get removed by default. In order 

to single out an individual in a dataset, the set of all Quasi-Identifier (QI) attributes is needed. 

When some of these QIs get removed by feature selection, identity disclosure becomes more 

difficult. Moreover, with fewer QI attributes less modification is required and hence more details 

of relevant attributes are preserved. This, as shown in (Jafer et al., 2014b), results in higher utility 

at the same privacy level (i.e., higher utility at same k in case of k-anonymity (Sweeney, 2002)). 

The work in (Jafer et al., 2014b) considers the role of feature selection as a privacy preserving 

tool in the context of k-anonymity. 

In (Jafer et al., 2014c), feature selection combined with k-anonymity was utilized in order to 

increase the count of the resulting contingency tables. In the non-interactive model, one way of 

achieving differential privacy (Dwork, 2006) is to obtain a contingency table and then, add noise 

to it. The work showed that, when k-anonymity is preceded by feature selection, the resulting 

contingency tables built from k-anonymized dataset would have higher counts. As such, when 

Laplace noise is added to these counts to achieve ε-differential privacy, the utility of the 

published dataset is preserved. Although the cited works consider feature selection as a privacy-

preserving tool, the feature selection procedure itself is not privacy-aware.  

Recently, privacy-aware filters and wrappers have been addressed in (Jafer et al., 2014a) and 

(Jafer et al., 2015b) respectively in which filters and wrappers are turned into privacy-aware 

processes. These works have two common aspects. First, they mainly focus on protecting against 

identity disclosure with the notion of QI attributes clearly identified and utilized in the solution. 
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Second, they do not consider the feature selection’s very evaluation measure. Rather, a privacy 

layer is built on top of the already existing automatic feature selection process.  

In a recent work (Jafer et al., 2015a), we presented a two-dimensional view of potential 

privacy-aware subsets of attributes considering the accuracy and the privacy of a given subset 

simultaneously. In other words, we modify the very evaluation process to make it privacy-aware 

and do not make any assumption about the QI attributes. 

We build our current work upon (Jafer et al., 2015a) and further extend it by enabling the DH 

to choose a single best subset according to his/her desired trade-off. We adapt (with 

modification) part of the proposed methodology in (Jafer et al., 2015a) in order to obtain the 

candidate privacy-aware attribute subsets.  

3 Measuring Privacy-preserving Feature Selection 

We will set up the stage for introducing the new evaluation function by some background 

information about the steps that are taken in order to generate privacy-aware candidate attribute 

subsets. We first start with the case where C!=SA which was extensively discussed in (Jafer et 

al., 2015a). We then, show how the algorithms introduced  in (Jafer et al., 2015a) could be 

slightly modified in order to adapt the case where C=SA. 

3.1 Basic Notations 
We assume that  D is  a dataset with tuple set T={t1, t2, …, tn} and attribute set A={a1, …, am}. 

We also assume that D is a subset of some larger population P. As such, we have a distribution of 

the attribute values in D that represents the distribution of the population as a whole. We refer to 

the  sensitive attribute (e.g., medical condition of patients) as SA . We follow the 

assumption that, the sensitive attribute will be released without any modification. However, the 

association between individuals and their sensitive attributes should be kept private. Attribute C 

 is referred to as the target class attribute. Baseline attribute subset BL corresponds  to a 

subset of attributes in A excluding SA and C. That is, BL  A\(C  SA). In (Jafer et al., 2015a), 

we assumed that C and SA are different. In other words, we assumed that the goal of the 

adversary differs from the legitimate user of the dataset (e.g., researcher). In this work, we focus 

on the case where C=SA. Baseline accuracy subset BLC refers to a subset of all attributes except 

SA (i.e., A- SA). Baseline privacy subset BLP refers to a subset of all attributes except C (i.e., A - 

C). Figure 1 illustrates these subsets. A dataset DBLP is the projection of the tuple set T onto the 

attributes in BLP and a dataset DBLC is the projection of tuple set T onto the attributes in BLC. 

These notations will be used throughout the paper. 
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Figure 1: Dataset D and the projection of attributes (case C!=SA) 

 

3.2 Defining the PBI Measure of Privacy  
The measure of privacy Privacy Breach Increase (PBI) (Jafer et al., 2015a) is inspired by the 

notion of “empirical privacy” proposed in (Cormode et al., 2013). Similar to “empirical privacy”, 

our measure represents the precision with which the attacker can infer the sensitive values of 

individuals from released data. It is inspired by a widely adopted notion of privacy breach which 

refers to the correct posterior inference of an adversary about sensitive values in the data. Such 

measure considers a sophisticated attacker who will use data mining tools for his/her attack. The 

empirical privacy studies the increase/decrease of attacker’s inference ability as a function of the 

amount of anonymization (Cormode et al., 2013). For example, how much such inference 

changes when the dataset is k=100 anonymized vs. when k=1000 anonymized. In the PBI 

measure, privacy breach increase (or decrease) is considered as a function of the selected 

attributes in the final dataset (or implicitly, the number of eliminated attributes). The work in 

(Cormode et al., 2013) considers an adversary who would use the output Anon(D) (where Anon 

refers to an anonymization mechanism) to build a classifier in order to attack anonymized data. 

With the assumption that feature selection is done prior to anonymization, we consider an 

attacker who will use  only the selected features (compared with the complete feature set i.e.,  

baseline dataset) in order to build a classifier to predict the sensitive attribute. We study the 

impact of the reduction of selected attributes on the overall ability of the attacker to correctly 

predict the value of the sensitive attribute.   

   We assume that DS represents the projection of a selected attributes set S on the dataset D 

(where S  A\C). This projected dataset is used to build a model of the data in order to classify 

SA. In our terminology,  (DS) and (DBLP) refer to the accuracy of correctly predicting 

the value of SA.  We build a classifier using  DS and DBLP respectively. 

 

Definition 1: Given dataset D, a projected dataset DS, and the baseline dataset , we 

compute Privacy Breach Increase (PBI) as 

 

                                                  (1) 

 

We utilize  PBI as a measure used to represent privacy in terms of how easy/difficult it is to 

correctly predict the sensitive attributes using a given attribute set. Implementing formula (1), the 
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following outcomes are possible: if PBI is positive, this is an indication that the privacy risk of 

DS is higher than the baseline dataset. Likewise, a negative value of PBI indicates that the 

privacy risk of DS is lower than the baseline dataset. PBI is computed as the percentage of the 

baseline privacy. The minimum privacy breach is referred to as distribution privacy DistP. The 

amount of allowed PBI of a given dataset is chosen by DH. For example, if the PBI associated 

with a given attribute subset is (-10%), it means that it becomes (10%) more difficult for the 

attacker to correctly predict the correct value of SA for a given individual when compared with 

attacking the baseline dataset. The distribution privacy is simply the distribution of the sensitive 

attributes which represents the population distribution and is known to the adversary (since the 

assumption is that the sensitive attributes will be released). If we are able to publish a dataset in 

which the prediction of the sensitive attribute is not more than the sensitive attribute distribution 

DistP, even if the attacker uses the same dataset in order to infer the values of the sensitive 

attribute, his/her posterior belief will not change as the result of releasing the dataset. This 

observation could be related to the notion of ε-differential privacy in which the privacy of any 

individual should not be substantially (bounded by ε) disclosed as a result of participation in a 

statistical database. 

One remaining question is that, to what extend the proposed method is robust against 

malicious attacks in which the attacker would explore in-depth understanding of the data (e.g., 

correlation between attributes, etc.)? Our privacy objective of a selected subset is achieved 

proportional to the baseline. In other words, we ensure that the privacy breach due to the release 

of a given dataset (with selected features) is lower than that of the baseline and below a given 

threshold. To this end, the aim is that to minimize the capability of the attacker in correctly 

predicting the correct value of SA as a result of dataset release. We insist that, the purpose here is 

to limit and control the amount of inference of sensitive attribute(s) due to the release of the 

dataset. Our aim is to control the difference between the prior and posterior belief of the attacker 

(i.e., before and after seeing the released dataset). If the attacker is able to infer SA using external 

databases, such inference will be made anyway and  regardless of releasing/not releasing the 

dataset held by DH. In other words, it is DH’s responsibility to manage the dataset he/she owns 

and that needs be released. Furthermore, we assume that the recipient of the dataset (DR) is a 

well-known and trusted entity for a given analysis purpose.  

3.3 Application of PBI  

Objective: We want to find attribute subset S  A\(C  SA) such that (1) the probability of 

achieving correct posterior inference about the sensitive attribute (i.e., SA) of an individual based 

on S is below a given threshold α (privacy) and (2) the difference between the performance of the 

baseline attribute subset BL and the selected attribute subset S (in terms of predicting the target 

attribute C) is not statistically significant or is in favor of the selected attribute subset (efficacy). 

Formally, we want to find  

 

 (2)                

From this objective, it is possible to obtain more than one attribute subset which satisfies the 

above constraints. We refer to these attribute subsets as candidate privacy-aware attribute 

subsets. Depending on the user’s preferences, within the space of candidate privacy-aware 

subsets,  four possible regions could be identified which are shown in Figure 2. We want to 

enable the user to select a trade-off between performance (i.e., classification accuracy) and 

privacy (i.e., PBI) based on his/her requirements and priorities. The user might be willing to give 
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up some utility in order to gain more privacy and vice versa. Each point in Figure 2 represents a 

selected attribute subset with two associated values (Perf(DS), PBI(DS)).  

Perf(DS) refers to the accuracy of the attribute subset in predicting the target class C. PBI(DS) 

refers to the increase in the likelihood of privacy breach of the attribute subset S in predicting the 

sensitive attribute SA compared with the baseline. DistP_PBI refers to the PBI associated with 

the distribution of the sensitive attribute in the whole dataset w.r.t the baseline. This is the 

maximum privacy guarantee and is unaffected by the records in the dataset. These regions are 

listed as follows: 

▪ Region I (NW): The attribute subsets in this region have a PBI(DS) and Perf(DS) higher 

and lower than the baseline respectively. In other words, any other candidate attribute 

subset in other regions will surpass the attribute subsets in this region because provide either 

better performance or better privacy or both. NW, in other words, is the worst region to be 

at.  

▪ Region II (NE): The attribute subsets in this region result in higher PBI(DS). However, 

they achieve higher performance compared with the baseline. 

▪ Region III (SW): The attribute subsets in this region have performance that is lower than 

the baseline performance; however, their PBI(DS) is also lower than the baseline.  

▪ Region IV (SE): The attribute subsets in this region achieve better performance compared 

with the baseline while incurring less potential privacy breach since their PBI(DS) is lower 

than that of the baseline. This is the best region/location to be at PBI(DS) = DistP_PBI. 

 

 
Figure 2: Illustration of performance vs. privacy trade-off. 

4 Candidate Privacy-aware Attribute Subset 

Generating System 

The initial privacy-aware feature selection system consists of two  subsystems, namely, Ranker 

and Candidate Subset Generator (Figure 3). The details of each of these subsystems are provided 

in the following subsections. 
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Figure 3: Candidate Privacy-aware Attribute Subset Generating System 

4.1 Correlation-aware Attribute Ranking 
Each attribute may have a different privacy risk associated with it. We first generate two ranked 

lists of attributes, namely, a performance rank (PerfR) and a privacy rank (PrivR). Let us focus 

on the privacy rank (PrivR). We want to determine the impact of each attribute on correctly 

predicting the sensitive attribute SA. Our assumption is that SA differs from the target attribute 

C. First, we build a classifier using attributes in BL with respect to SA, i.e., to obtain BLP 

(See Section 3.1 .(In order to find the privacy risk of each attribute, only one attribute is 

removed at a time. Our algorithm then, finds the projection of tuple set T onto the attributes in the 

remaining attribute set and then calculates the accuracy of the projected dataset with respect to 

SA. The difference between the accuracies of DBLP and the projected dataset is calculated. This 

difference indicates the impact of removing a given attribute on increasing/decreasing the 

accuracy of predicting the SA attribute. In the following step, we rank the attributes from lower 

to higher. When the attribute’s ranking is higher it would have a higher contribution in correctly 

classifying SA, i.e., the attribute is more risky. As such, PrivR will consist of attributes that are 

ranked from lower to higher privacy risk.  

We follow the same logic in order to obtain PerfR. There is, however, a difference. We 

assume that the baseline attribute set is  BLA. We take a step by step approach. We start from the 

complete list of attributes. Attributes are then, eliminated one-by-one. After that, we build a 

classifier using the remaining attributes in order to predict the target class attribute C. Finally, the 

difference between the accuracies of DBLA and the projected dataset is calculated and the ranked 

list of attributes according to their performance attribution is obtained. PerfR ranks the attributes 

from higher to lower. This algorithm is shown in Figure 4. The output of this algorithm consists 

of two ranked lists of attributes PrivR and PerfR which will be used as input to the “Privacy-

aware Candidate Subset Generator” algorithm (Section 4.3).  

 The reason for ranking privacy and performance lists differently (lower to higher, higher to 

lower respectively) is that when the ranked list is used in the next algorithm, in backward 

elimination, starting from the last attribute in the ranked list, we tend to, first, remove attributes 

that have higher privacy risk and lower impact on performance. 

4.2 Searching for Candidate Attribute Subsets 
In many search problems, the path to the goal is irrelevant (Russell et al., 2010). As such, it is 

possible to consider different types of algorithms that do not give importance to the path at all. In 
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other words, what is important is the solution state. Local search algorithms operate using a 

single node and move only to neighbors of that node. There are two main advantages associated 

with the local search algorithms as stated in (Russell et al., 2010): (1) they need very little 

memory because the paths followed are not retained. (2) They usually find reasonable solutions 

in large or infinite state spaces where it is not suitable to use systematic algorithms. In addition to 

finding goals, one of the main benefit(s) of using local search algorithms is that they are very 

useful in order to solve optimization problems. In optimization problems, the goal is to find the 

best state according to given objective function. 

 

Input: Dataset D (A attributes and T tuples, sensitive attribute SA, target attribute C) 

  

BL = A\ (SA      BL = {BL1, BL2, …, BLk} 

 BLP = BL  SA 

 BLC = BL  C 
 DBLP = proj(D, BLP) 
 DBLC= proj(D, BLC) 
 Perf_BLP = Acc(DBLP) 
 Perf_BLC = Acc(DBLC) 
 

 //This function returns a list of all attributes ranked according to the required order. 
 Rank((attribute, value), order); order{high_to_low,low_to_high}:  
  
 for (i = 1, i ≤ k, i++) 
 { 
  BLtemp_i = BLP-{BLi} 
  DBLtemp_i = proj(D, BLtemp_i) 
  BLPi = Perf_BLP - Acc(DBLtemp_i) 
  PrivR         ({BLi}, BLPi)  
 } 
  
 PrivR = Rank(PrivR, low_to_high) 
 for (j = 1, j ≤ k, j++) 
 { 
  BLtemp_j = BLC-{BLj} 
  DBLtemp_j = proj(D, BLtemp_j) 
  BLCj = Perf_BLC - Acc(DBLtemp_j) 
  PerfR         ({BLj}, BLCj)  
 

 } 
 PerfR = Rank(PerfR, high_to_low) 

 
  Output: privacy-based ranked attributes (PrivR), performance-based ranked  

        attributes (PerfR) 

 
Figure 4: Privacy-based and Performance-based Ranking Algorithm. 

 
Objective function is also considered a heuristic cost function. In addition to the local hill-

climbing search, there are other local search algorithms such as simulated annealing, local beam 
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search, and genetic algorithms, which are beyond the scope of this paper. To this end, in the 

context of search, we identify our search space to be the space of all subsets. Obviously, with n 

attributes such search will include 2n possibilities. After all, this is the main reason why wrappers 

usually follow heuristic approaches (e.g., best-first with forward selection or backward 

elimination). Our search for a privacy-aware candidate subset is informed or heuristic in the 

sense that the subsets are selected based on an evaluation function. This evaluation function is 

guided by the rank of attributes in the PrivR and PerfR list since the order in which the attributes 

are eliminated is dictated by these ranks. In our search we aim to remove one attribute at a time 

and therefore we conduct a local search. Therefore, we essentially follow a stepwise backward 

elimination procedure. We use backward elimination in order to preserve features whose 

usefulness requires other features. The very definition of stepwise backward elimination is that 

we start with the full set of attributes and then, at each step, remove the worst attribute that 

remains in the set. Such selection of the “worst” attribute is dictated by the PerfR and PrivR. Our 

search is guided by both PerfR and PrivR. In the case of PerfR we rank the attributes based on 

their relevance with respect to the target class. Therefore, worst attributes refer to the ones that 

are the least predictive. When the search is guided by the PrivR list, worst attributes refer to the 

ones that are most predictive of the sensitive attribute. After each removal the remaining subset is 

tested against the accuracy and the privacy requirements. If both requirements are met the given 

subset is added to the list of candidate subsets. If not, the last removal is cancelled and the next 

attribute in the ranked list is removed. 

In our search methodology, similar to hill climbing, only one node is expanded at a time with 

the goal of finding local maxima. This is different than best first search where the goal is to find 

global maxima and either to find an optimal solution or to empty the complete open list.  Such 

inability to find an optimal solution is well understood in the context of privacy-aware feature 

selection. The very definition of optimal feature subset in the case of regular wrapper is to obtain 

a feature subset with minimum number of attributes that has the highest predictive accuracy. 

From formula (2), in a privacy-aware feature selection, we conduct a search for subsets that 

satisfy our efficacy and privacy requirements simultaneously. In most of the cases, however, it is 

not possible to find a given subset with the highest efficacy and lowest PBI simultaneously. This 

objective becomes less realistic if we add a third requirement of having minimum number of 

attributes. Therefore, our search aims to obtain a list of subsets (hence, candidate subsets) that 

satisfy the efficacy and privacy requirements.  

Obtaining a single subset is an extra step beyond generating candidate privacy-aware attribute 

subsets by means of incorporating accuracy, privacy, and dimensionality weights based on the 

DH’s preferences. As such, it becomes possible to narrow down the search for a feature subset to 

a single subset according to the DH’s preferences. Introducing a multi-dimensional evaluation 

function is the main contribution of this work. We start with the background information that 

precedes the definition of the proposed multi-dimensional evaluation function. 

To the best of our knowledge, no other work has considered a privacy-aware evaluation 

function in feature selection. In the existing solutions, feature selection is performed separately 

and hence, no comparison study was conducted. Furthermore, in the proposed privacy-aware 

feature selection measure, the process of feature selection is tied to a search for local maxima and 

not global maxima. The reason is that, as was mentioned earlier in this section, the search is 

guided by a privacy factor (via PrivR) and a utility factor (via PerfR) and we are not searching 

for the best subset, rather several candidate subsets that satisfy utility and privacy thresholds. We 

then use the evaluation function in order to find the best subset according to some preferences. 

Therefore, execution time is implicitly improved when the technique is compared with wrapper-

based feature selection where searching the entire space for the best subset turns out to be very 

slow, especially in large datasets. 



A Multi-dimensional Privacy-aware Evaluation Function in Automatic 

Feature Selection 155 

 

 

 

TRANSACTIONS ON DATA PRIVACY 10 (2017) 

4.3 Candidate Attribute Subsets Generator 
Following the step of finding ranked lists of attributes in PerfR and PrivR, we implement a 

backward elimination search technique which is guided by these ranked lists. The main reason 

for calculating two ranked lists of PerfR and PrivR, as mentioned in the previous section, is to 

identify subsets of attributes that consider either performance or privacy as their main priority. 

With such an approach, we provide the DH/publisher with greater flexibility when selecting the 

final subset of attributes. 

The input to our candidate attribute subset generator algorithm includes dataset D, the PrivR 

list, the PerfR list, the value of Perf_BLC (Performance of baseline attribute set BL with respect 

to the target class C), and the value of Perf_BLP (Performance of baseline attribute set BL with 

respect to SA). We start from the bottom of a given list. This list could be either PrivR or PerfR. 

We then, eliminate the attributes, attribute by attribute. With each elimination, both privacy and 

performance constraints are checked. If both constraints are satisfied this attribute is removed and 

the search proceeds to the next one. If one of the constraints is violated, we do not eliminate this 

attribute and go to the next attribute in the list. This process is repeated until any further 

elimination would violate one of the constraints or when the attribute list is used up.  

Using the output of privacy-aware candidate attribute subset generator algorithm we populate 

the PBI(DS) vs. Perf(DS) diagram. Therefore, each point in that diagram (Figure 6) represents a 

subset of attributes. It was mentioned earlier in this section that our favorite subsets of attributes 

are in region IV. Presumably, we are interested in a candidate attribute subset in IV with the 

minimum number of features. DH is responsible for controlling the amount of privacy prior to 

release of a dataset (with selected feature vector). As such, the DH needs to ensure that there is 

no other subset that is better (in terms of PBI) that the ones selected in region IV. 

We selected the Pima dataset in order to show our approach in detail (Jafer et al., 2015a). We 

consider that the goal is to build a C4.5 classifier. The attacker’s  goal is to build a classifier in 

order to infer the sensitive attributes of the individuals.  The Pima dataset consists of 768 records 

and nine attributes, namely, Preg, Plas, Pres, Skin, Insu, Mass, Pedi, Age, and Class attribute. 

These attributes are defined in the UCI repository. The attributes refer to number of times 

pregnant, plasma glucose concentration at 2 hours in an oral glucose tolerance test, diastolic 

blood pressure ( mm Hg), Triceps skin fold thickness (mm), 2-Hour serum insulin (mu U/ml), 

Body mass index (weight in kg/(height in m)^2), Diabetes pedigree function, Age (years), and 

Class variable (0 or 1) respectively.   We assume that Preg is the SA, in other words, the number 

of times pregnant is consider sensitive attribute. The class attribute refers to whether a given 

patient has/does not have diabetes.  

 
Input: Dataset D (A attributes and T tuples, sensitive attribute SA, target attribute C),   

{PrivR|PerfR}, Perf_BLC  (Performance of baseline with respect to C), Perf_BLP 

(Performance  

of baseline with respect to SA ) 

 

     RankedList= {R1, R2, …, Rk}  // depending on the input either {PrivR|PerfR} 

     n= 0; 

     for (i = k, i>0, i--) 

     { 

           S = RankedList – {Ri} 

           S_C = S  

           S_SA = S  
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           DBS_C = proj(D, S_C) 
           DBS_SA= proj(D, S_SA) 

           if ((Acc(DBS_C)  Perf_BLC         ||

 
 { 
      PBI(DBS_SA) = ((1- Err(DBS_SA))/ Perf_BLP) -1 

      if(PBI(DBS_SA)   ) { 
           Candidate_Privacy_Aware_Subset[n]        (S, Acc(DBS_C ), PBI(DBS_SA)) 
            n++ 
      } 
  } else { // the elimination of {Ri} violates the utility requirements, we need  
                        //  to put  it back and continue with the next attribute in the ranked list 

      RankedList = RankedList {Ri} 
  } 

      } 

 Output: Candidate_Privacy_Aware_Subset 

 
 

Figure 5: Privacy-aware Candidate Subset Generator. 

 
The first step includes obtaining PerfR and PrivR ranks. These ranks are as follows: 

 

PerfR = {Plas,Mass,Pres,Skin,Age,Pedi,Insu} 

PrivR = {Skin,Insu,Pres,Mass,Pedi,Plas,Age} 

 

After obtaining the ranks, following backward elimination strategy guided by these ranks, we 

eliminate the attributes step-wise and obtain the associated Perf(DS) and PBI(DS) for the 

remaining attribute subset. These results corresponding to PerfR and PrivR are shown in Table 1 

and  Table 2 respectively.  

Following a feature’s elimination we run a t-test and record the difference in the performance 

of the projected dataset from the remaining attribute subset and the baseline. Hereafter, when we 

refer to the PBI(DS) and Perf(DS) of attribute subset we implicitly refer to the projected dataset 

where its feature vector includes the subset S. The baseline performance for this dataset is 

73.70%. If the performance is higher than the baseline or does not differ significantly, this is an 

indication that this attribute subset satisfies our performance requirements.  In other words, the 

combination of the attribute subsets in Table 1 and  Table 2 refers to the list of attribute subsets 

that yield acceptable performances. ⨁/⊖ refers to a significantly higher/lower performance 

compared to the baseline performance. 

 
Table 1: Pima - C4.5. PerfR-based candidate attribute subsets. 

Subset S Perf(DS) p-value PBI(DS) 

Plas_Mass_Pres_Skin_Age_Pedi (A) 75.26⨁ 0.044 0.97 

Plas_Mass_Pres_Skin_Age (B) 75.52⨁ 0.009 1.29 

Plas_Mass_Pres_Skin (C) 73.83 0.931 -3.08 

Plas_Mass_Pres (D) 74.35 0.599 -3.08 

Plas_Mass (E) 74.48 0.525 -2.75 

Plas (F) 73.04 0.626 -2.75 
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Note that in  Table 2, elimination of the Plas attribute significantly reduces the performance 

compared with the baseline. In such a case, following the algorithm, Plas is put back and the next 

attribute in the PrivR rank i.e., Pedi is eliminated and candidate attribute subset H is obtained. 

 
Table 2: Pima - C4.5. PrivR-based candidate attribute subsets. 

Subset S Perf(DS) p-value PBI(DS) 

Skin_Insu_Pres_Mass_Pedi_Plas 

(G) 

73.96 0.8544 

-3.24 

Skin_Insu_Pres_Mass_Pedi 66.15⊖ 0.0015 N/A 

Skin_Insu_Pres_Mass_Plas (H) 73.57 0.9318 -3.08 

Skin_Insu_Pres_Plas (I) 72.91 0.6115 -3.08 

Skin_Insu_Plas (J) 73.30 0.7542 -3.08 

Skin_Plas (K) 73.30 0.7542 -3.08 

 
The corresponding two-dimensional diagram of the candidate attribute subsets is shown in 

Figure 6. Each point in this diagram refers to an attribute subset. For consistency and simplicity 

an alphabetic letter is given to each attribute subset. It is possible to identify the four regions 

discussed earlier in Figure 2. The dotted line in Figure 6  refers to . We assume that  is equal 

to the majority class distribution of SA i.e., DistP_PBI. For abbreviations, each of the subsets is 

identified with  a corresponding alphabetic letter. Technically, the most ideal attribute subsets 

include H, C, G, D, and E. We are interested in the attribute subset with fewer numbers of 

attributes. The number of attributes associated with H, C, G, D, and E are 5, 4, 6, 3, and 2 

respectively. Therefore, we may select E = {Plas, Mass} as the final attribute subset.  

 
Figure 6: Pima dataset - C4.5 - PBI(DS) vs. Perf(DS). 

 
For comparison purposes, let us consider a generic wrapper feature selection that is not 

privacy-aware. The selected features using best-first greedy search (with both forward and 

backward elimination directions) includes {Plas, Pres, Mass, Age}. The performance of the 

projected dataset using these features is 75.78% which is higher than that of E (i.e., 74.48 %). 

However, the PBI associated of WFS  (Wrapper-based Feature Selection) is 2.43% which is 

beyond our accepted . In fact, when generic wrapper is used, the DH cannot have any control 

over the PBI of the resulting dataset. However, with the privacy-aware evaluation measure the 

amount of privacy breach increase can be controlled and managed by DH. 
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4.4 Extension of PBI and Ranker for the case where (C=SA) 
So far, we assumed that the goal of the attacker and the legitimate user of the dataset is different 

(hence, C!=SA). It is possible that these goals are the same in which both try to predict the value 

of C, one for legitimate purposes and the other for malicious purposes. The algorithms discussed 

so far could be modified slightly to adapt to such change. For simplicity, we assume that our 

dataset format is represented in Figure 7. 

 
Figure 7: Dataset D and the projection of S attributes (case C=SA). 

 
As before, the assumption is that the sensitive attribute will be released without any modification. 

However, the association between individuals and their sensitive attributes should be kept secret. 

Attribute C  represents the target class attribute. Baseline attribute subset BL refers to a 

subset of attributes in A excluding SA and C. That is, BL  A\C. 

Our modified measure of privacy i.e., Privacy Breach Increase is a slight alternation of the 

PBI measure introduced in (Jafer et al., 2015a) for the case where C = SA.  

   Let DS represent the projection of a selected attributes set S on the dataset D (where S  

A\C). We use DS to build a model of the data in order to classify C. Assume that (DS) and 

(DBL) refer to the accuracy of correctly predicting the value of SA when the classifier is 

built using  S and BL respectively. 

 

Definition 2: Given dataset D, a projected dataset DS, and the baseline dataset , we 

compute the modified PBI as 

 

                               (3) 

 

Furthermore, contrary to the case of C!=SA (in which PrivR and PerfR are independent), 

when C=SA, PerfR and PrivR will be dependent and will have a reverse relation. The 

methodology of generating privacy-aware candidate attribute subsets in both cases is the same. 

The main idea being that a two-dimensional plot of Perf(DS) vs. PBI(DS) is obtained and the 

four regions explained are populated as discussed in Section 3.3. 
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5 Towards A Multi-dimensional Privacy-aware 

Evaluation Function 

The Evaluator  Subsystem (which is an extension of the subset shown in Figure 3) implements 

the proposed multi-dimensional privacy-aware evaluation function E(S). This extension is shown 

in Figure 8. We  consider three factors, namely, the performance associated with a given subset 

S, i.e., Perf(S), the privacy associated with S, i.e., Priv(S), and the number of attributes in S, i.e., 

Num(S).  

Ideally, within the list of candidate subsets, we are looking for a subset which has the best 

Perf(S) (i.e., argmax(Perf(S))), the best privacy (in the case of PBI as the privacy measure, the 

lowest PBI) (i.e., argmin(PBI(S))), and the least number of attributes (i.e., argmin(Num(S))).  

 

 
 

Figure 8: The Evaluator subsystem. 

 
In practice, a given subset might satisfy none, some, or all of these combinations. We can list 

the possible combination of these factors being either true or false as follows. In binary encoding, 

(23 =) eight combinations may exist. These combinations are shown in Table 3.  

It is very likely that we obtain three datasets each satisfying only one condition. In fact, the 

majority of cases belong to case ‘A’. Let us use a running example (the Pima dataset from the 

UCI repository and the case of C4.5 classifier) in order to discuss this observation. After 

obtaining a list of candidate subsets of attributes, the number of attributes Num, the privacy 

breach increase PBI, and the performance Perf associated with each of the candidate subsets are 

recorded. The results are shown in  Table 4. We keep a baseline dataset for reference and 

comparison purposes. 
Table 3: 23 combinations of the three identified factors. 

Combination argmax(Perf(S)) argmin(PBI(S)) argmin(Num(S)) 
A F F F 
B F F T 
C F T F 
D F T T 
E T F F 
F T F T 
G T T F 
H T T T 
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Table 4: The Num, PBI, and Perf associated with candidate subsets (Pima-C4.5). The corresponding 

combination category is shown in the last column. 
Subset Num PBI Perf Combination 

baseline 8 0 73.835 A 
plas_mass_preg_skin_pedi_age_pres 7 1.409 74.875 E 
plas_mass_preg_skin_pedi_age 6 1.231 74.744 A 
plas_mass_preg_skin_pedi 5 0.889 74.491 A 
plas_mass_preg_skin 4 0.711 74.359 A 
plas_mass_preg 3 0.711 74.359 A 
plas_mass 2 0.882 74.486 A 
plas 1 -1.072 73.043 B 
insu_pres_age_pedi_skin_preg_plas 7 -1.942 72.401 C 
insu_pres_age_pedi_skin_plas 6 -0.708 73.312 A 
insu_pres_age_pedi_plas 5 -1.238 72.920 A 
insu_pres_age_plas 4 -1.241 72.919 A 
insu_pres_plas 3 -0.893 73.175 A 
insu_plas 2 -1.072 73.043 A 

 
We highlight the cells with argmax(Perf(S)), argmin(PBI(S)), and argmin(Num(S)). 

Therefore, we identify three subsets that each satisfy only one ideal requirement i.e., having the 

best performance, the lowest PBI, or the least number of attributes. These datasets belong to 

combinations ‘E’, ‘C’, and ‘B’ respectively. However, the remaining datasets belong to 

combination ‘A’ where none of the requirements are satisfied.  

Our proposed evaluation function E(S) relaxes such restrictions and provides the DH with the 

flexibility of choosing a given factor (being performance or privacy or dimensionality of the 

data) over other(s). Since the main goal of feature selection is to reduce the dimensionality of 

data, we consider the number of attributes in the selected subset to be another factor. Our 

evaluation function is independent of a specific performance measure or privacy measure. It is a 

function that combines/blends the two measures in such a way that the DH could exercise its 

privacy/utility preferences. The proposed measure is called E(S) and is obtained as,  

(4)                                                               
where prf, prv, and num are the rank of a given subset within the set of candidate subsets with 

respect to Perf(S), PBI(S), and Num(S) respectively. In other words, rather than considering only 

the maximum or the minimum value of performance, privacy, or number of attributes of a given 

subset (which is highly limited as it was discussed earlier), we consider prf, prv, and num 

associated with each candidate subset within the set of candidate subsets.  

w1, w2, and w3 refer to the weights given to each of these factors (ranks). We assume that, ∑ 

w = 1, i.e., w1 + w2 + w3 = 1. Associating weights with the aforementioned factors has two 

benefits: First, it makes the combinatory evaluation function generalizable. In other words, we 

can ignore any of the factors by setting its corresponding weight to 0. Second, it allows the DH to 

evaluate/select the subsets based on his/her preferences. For example, by setting w2 = 4 * w1, the 

privacy of the attribute subset is given four times the level of importance compared with the 

performance of the subset, and so on. When no preference is given to any of the factors, the 

default case refers to w1= w2 = w3 = 1/3. In selecting the values of w1, w2, and w3, we 

considered different cases based on realistic scenarios. In some cases we are more interested in 

protecting the privacy to a achieve a given threshold, say k value (in k-anonymity privacy model). 

In other cases we want to give higher importance to utility while privacy is preserved at an 

acceptable level, etc. This is reflected in the experimental results and their corresponding 

figures/plots as it follows. 

 Technically, the goal of the Evaluator subsystem is to apply the evaluation function and to 

obtain a single selected subset with the best E(S) given the selected weights: 
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f(E(S)) = argmax(E(S)) | w1, w2, w3)                                                             (5)     
 

Table 5: The candidate attribute subsets, their corresponding Perf(S), PBI(S), and Num(S) and their ranks 

(pima-C4.5). prf  with respect to performance (lowest being the worst and highest being the best), prv with 

respect to PBI (highest being the worst and lowest being the best). 

Subset n 
Num. 
(R) PBI 

PBI 
(R) Perf 

Perf 
(R) 

baseline 8 1 0 7 73.835 8 
plas_mass_preg_skin_pedi_age_pres 7 2 1.409 1 74.875 14 
plas_mass_preg_skin_pedi_age 6 4 1.231 2 74.744 13 
plas_mass_preg_skin_pedi 5 6 0.889 3 74.491 12 
plas_mass_preg_skin 4 8 0.711 5 74.359 9 
plas_mass_preg 3 10 0.711 5 74.359 9 
plas_mass 2 12 0.882 4 74.486 11 
plas 1 14 -1.072 10 73.043 4 
insu_pres_age_pedi_skin_preg_plas 7 2 -1.942 14 72.401 1 
insu_pres_age_pedi_skin_plas 6 4 -0.708 8 73.312 7 
insu_pres_age_pedi_plas 5 6 -1.238 12 72.920 3 
insu_pres_age_plas 4 8 -1.241 13 72.919 2 
insu_pres_plas 3 10 -0.893 9 73.175 6 
insu_plas 2 12 -1.072 10 73.043 4 

 
Continuing with our running example (the Pima dataset – C4.5), for each of the candidate subsets 

(and the baseline dataset) we obtain the prf, prv, and num ranks (Table 5). To examine our 

evaluation function E(S), we consider three cases. In each of these cases, we want to use E(S) in 

order to obtain a single subset according to our preferences (applied via weights). In case 1 we 

assume that (w1 = w2 = w3). In case 2, we give  performance twice the importance of privacy 

(w1 = 2 * w2), and in case 3, we give privacy three times the importance of performance (w2 = 3 

* w1) . The E(S) results associated with the candidate attribute subsets is shown in Table 6. We 

distinguish between two categories of subsets, those obtained based on PerfR (shown in the top 

bracket in Table 6) and those obtained based on PrivR (shown in the bottom bracket in Table 6). 

From Table 6 we notice that in general when performance is given higher importance 

compared with privacy, the subsets corresponding to PerfR result in higher E(S). On the other 

hand, when privacy is given more importance compared with performance, subsets 

corresponding to PrivR have higher E(S). This is in line with the observation that, the subsets 

obtained based on PerfR ranking have higher accuracy compared with those which are based on 

PrivR ranking. On the other hand, the PBI of the corresponding subsets based on  PrivR ranking 

is lower than the corresponding subsets that are obtained based on  PerfR ranking.  

We plot the diagrams associated with subset/E(S) combinations and show the results in Figure 

9.  

 
Table 6: The E(S) results associated with candidate subsets corresponding to the selected weights (Pima 

dataset - C4.5). 
 E(S) 
Subset (w1 = w2 = w3) (w1 = 2w2) (w2=3w1) 

baseline 5.328 6 6 
plas_mass_preg_skin_pedi_age_pres 5.661 7.75 3.8 
plas_mass_preg_skin_pedi_age 6.327 8 4.6 
plas_mass_preg_skin_pedi 6.993 8.25 5.4 
plas_mass_preg_skin 7.326 7.75 6.4 
plas_mass_preg 7.992 8.25 6.8 
plas_mass 8.991 9.5 7 
plas 9.324 8 9.6 

PerfR 
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insu_pres_age_pedi_skin_preg_plas 5.661 4.5 9 
insu_pres_age_pedi_skin_plas 6.327 6.5 7 
insu_pres_age_pedi_plas 6.993 6 9 
insu_pres_age_plas 7.659 6.25 9.8 
insu_pres_plas 8.325 7.75 8.6 
insu_plas 8.658 7.5 9.2 

 

 
Figure 9: The E(S) corresponding to different weight ratios with respect to  candidate subsets (Pima-C4.5). 

 
From this diagram, when w1= w2 = w3, subset {plas} is the selected. When w1= 2 * w2, 

subset {plas, mass} is selected, and when w2 = 3 * w1, subset {insu, pres, age, plas}is selected.  

6 Experiments 

We used four datasets from the UCI repository. Two relatively large datasets include the 

Adult dataset (consists of 45,222 records) and the Diabetes dataset (consists of 101,766 

records). We also considered two smaller datasets i.e., the Pima dataset and the Liver 

Patient dataset. The records with missing attribute values were eliminated. We obtained 

the results using two classification algorithms, namely, C4.5. and N.B. 10-fold cross 

validation was performed to evaluate the results and a statistical significant t-test was used to 

compare the results. We used Weka1 and R2 in order to conduct our experiment. Weka is a 

                                                      
1  http://www.cs.waikato.ac.nz/ml/weka/ 

PrivR 

http://www.cs.waikato.ac.nz/ml/weka/
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collection of machine learning algorithms that are used for data mining tasks. R is a language and 

environment for statistical computation and graphics. 

We consider both cases of C!=SA and C=SA. For the case of C!=SA a PBI(DS) vs. Perf(DS) 

plot is obtained and the four regions discussed in Section 3.3 are shown . We obtain the list of 

candidate attribute subsets and identify the location of each selected attribute subset within the 

PBI(DS) vs. Perf(DS) diagram. It is then up to the DH to choose appropriate  and identify the 

legitimate attribute subset from the list of available attribute subsets. It might be the case that DH 

provides a list of features (not the dataset) and the corresponding classification accuracy and 

communicates those to DR. DH only provides those attributes that satisfy the privacy 

requirements.  

For the case of C=SA the evaluation function is implemented and the corresponding E(S) 

values for each combination of the weights is obtained. The case of Pima-C4.5 was discussed in 

details earlier in Section 5  .It was mentioned that, the proportion of w eights, especially between 

w1 and w2,  is the choice of the DH. Having proportional relations between weights such as w1 = 

4 * w2 , w2= 7 * w1 is one way of representing the relative weights. However, it is possible to 

consider any value for each of the weights as long as their sum is equal to 1.0. For instance the 

DH might decide to consider 0.34, 0.42, and 0.24 for w1, w2, and w3 respectively.  

Let us consider the results associated with Pima-N.B. case. After obtaining PerfR and PrivR 

and generating the candidate-subsets, we record the Perf(S), PBI(S), and Num(S) of each of these 

subsets and rank them based on the methodology discussed in Section 5  .The final results are 

shown in Figure 10.  

From Figure 10, when w1= w2 = w3, subset  {plas} is selected. When w1=2*w2, and w2 = 

0.333, subset {plas, mass, pedi, preg} is selected. When w2=3*w1, and w1 = 0.2, subset {plas} is 

selected. We could have selected subset {skin, pedi, plas} or {pedi, plas} since they have the 

same E(S) value of 9.8. However, in such cases where there is a tie (and more than one subset 

have the maximum E(S) associated with them) , we may select the subset with least number of 

attributes i.e., {plas}. 

We consider the Adult dataset next. In this case, different proportions of the weights are 

assumed. The corresponding results are shown in Figure 11. 

                                                                                                                                               
2  https://www.r-project.org/ 

 

https://www.r-project.org/
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Figure 10: The E(S) corresponding to different weight ratios with respect to  candidate subsets (Pima-N.B.). 

 
Depending on the chosen weights for performance, privacy, and number of attributes, 

different values of E(S) per candidate subset are obtained. We record the E(S) corresponding to 

argmax(E(S)) | w1, w2, w3) associated with each case (i.e., selected weight ratio) and list the 

results along best subset in Table 7. 

Following the same methodology, similar observations are made in the case of Adult-N.B. 

and the Diabetes and Liver Patients datasets (both case of N.B. and C4.5 classifiers). In each case 

for different selected weights the corresponding E(S) is obtained.  

Once again, it is possible to select an attribute subset with the best E(S) according to a given 

selected weighting i.e., to obtain argmax(E(S)) | w1, w2, w3). For instance, consider the case 

where w1, w2, and w3 are 0.15, 0.3, and 0.55 respectively. In such case, the best E(S) 

corresponds to the subset {CG, CL, EN, RE} which implies that given those weights it represents 

the best selected subset. Similarly, with the same weights the second best attribute subset would 

correspond to {CG, CL, EN, AG, RE}. 
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Figure 11: The E(S) corresponding to different weight ratios with respect to  candidate subsets (Adult – 

C4.5). 

 
We conducted further experiments with Adult dataset (case of N.B. classifier) and other 

datasets i.e., Diabetes and Liver Patients datasets (both case of N.B. and C4.5 classifiers). The 

results are shown in Appendix A. 

In general, the results show that by introducing the E(S) evaluation function it is possible to 

identify a single attribute subset based on the DH preferences. In each case, with different 

combinations of privacy, utility, and dimensionality weighting it becomes possible to make 

decisions about the accepted/desired trade-off between these three factors, especially the privacy 

and utility factors. It should be noted that the proposed evaluation function is generalizable. That 

is, by setting any of the weights (or a combination of two of them) to zero, it is still possible to 

use the measure to evaluate the attribute subsets. All possible combinations are listed in Table 8.  

x, y, z are the weights chosen by the DH.  

 

 
Table 7: Best f(E(S)) and its corresponding selected attribute subset given the weight selected by the DH. 

Weights Best Subset E(S) 

w1 w2 w3   

0.60 0.20 0.20 CG, CL, EN, AG, RE, HW 15.4 
0.60 0.15 0.25 CG, CL, EN, AG, RE, HW 16.5 

0.15 0.30 0.55 CG, CL, EN, RE 15.5 

0.15 0.75 0.1 CG, CL, EN, RE, WO, MS, RC, NC, ED, FW, OC 16.7 

0.1 0.8 0.1 CG, CL, EN, RE, WO, MS, RC, NC, ED, FW, OC 15.75 
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Table 8: Possible combinations when one weight or two weights are set to zero. 

w1 w2 w3 E(S) 

0 0 1 w3.num (or num) 

0 1 0 w2.prv (or prv) 

1 0 0 w1.prf (or prf) 

0 x y w2.prv + w3.num 

x 0 y w1.prf + w3.num 

x y 0 w1.prf + w2.prv 

x y z w1.prf + w2.prv + w3.num 

 
From Table 8 we notice that, E(S) = prf is a special case where the evaluation is based on the 

performance factor only. Such E(S) (which depends only on the performance (e.g., accuracy)), 

reminds us of the evaluation used in regular non privacy-aware wrappers. In wrappers, the impact 

of addition/removal of a given attribute is evaluated by calculating the accuracy of the resulting 

attribute subset compared with accuracy of the preceding subset.    

Here, the main question is, how to choose  such that it provides enough privacy. In 

selecting , the very characteristics of the dataset should be taken into consideration. In general, 

any value of  < 0 (i.e., being in regions III and IV) indicates more privacy when compared with 

baseline’s PBI i.e., 0. Controlling the amount of privacy is ultimately the choice of the DH. 

Given the desired weight of performance, privacy, and number of attributes, the best subset 

that results in the highest E(S) among candidate subsets is selected and returned by the privacy-

aware feature selection system that employs the proposed evaluation function. We selected PBI 

as the privacy measure associated with each selected subset of attributes. However, the measure 

of privacy, in such a solution could be any innate measure since our combinatory evaluation 

measure considers the rank of the privacy factor (prv) among possible candidates independent of 

the specific privacy measure that is used. The same argument is made about the performance 

measure. We consider accuracy in our experiments but it could be any other performance 

measure such as AUC, precision, etc. Once again, what E(S) is concerned about is the rank of the 

performance factor (prf) with respect to the other candidate subsets.  

This evaluation function could be applied even in the case where the original dataset is 

anonymized and when feature selection is applied on that anonymized data.   

Recall that E(S) is not tied to a particular utility/privacy measure. It is mainly used for 

comparison purposes in order to compare candidate subsets and to select the one with maximum 

value. We just mentioned that by setting the weights of one or two factors to zero, the measure 

still could be used to evaluate the subsets based on the remaining factor(s). The flexibility of the 

proposed measure also implies that we could easily expand/extend E(S) to include more factors if 

necessary.   

In addition to obtaining the maximum E(S) according to chosen weights, we can also get a 

ranked E(S) for the same weight ratios. This gives the DH more flexibility in trading-off 

performance, privacy and dimensionality of the resulting dataset. For example, the DH will have 

the option of obtaining second best subset, third best subset, and so on. 
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7 Conclusions and Future Work 

In this work, we introduced a multi-dimensional privacy-aware evaluation function in automatic 

feature selection. This work is built upon and is an  extension of previous work (Jafer et al., 2015a) 

in order to evaluate the potential attribute subsets and obtain a single best subset according to the 

desired preferences of efficacy (e.g., accuracy), privacy, and dimensionality of the released 

dataset. With the proposed multi-dimensional evaluation function, it is possible to give 

proportional weights or absolute weights to each of the identified factors, namely, efficacy, 

privacy, and dimensionality of the resulting dataset. This enables the DH to exercise its 

preferences and obtain a single best subset according to a given objective. 

In our current work, we apply E(S) to the candidate attribute subsets in order to evaluate them 

and to obtain the subset with maximum E(S) in a given setting. The E(S) evaluation measure in 

its extended (complete) form i.e., E(S)=𝑤1.𝑝𝑟𝑓+𝑤2.𝑝𝑟𝑣+𝑤3.𝑛𝑢𝑚 could be plugged in to 

existing feature selection techniques. We will use  E(S) (on-the-fly) as the evaluation measure 

during forward selection or backward elimination in wrappers.  In such cases, rather than 

obtaining the complete list of candidate privacy-aware subsets, at each step, we can compare the 

associated{prf, prv, and num} rank of the updated subset (due to adding/removing of an attribute) 

with the {prf, prv, and num} rank of the preceding subset and maintain the subset with higher 

E(S) given the weight. This logic will be applied to both cases of forward selection and backward 

elimination.  

A potential future work is to measure the efficiency of our proposed solution with regard to 

the execution time. We can further examine the practicality and the scalability of the technique in 

real world scenarios/datasests.  

Another future direction is to develop a multi-dimensional utility measure that will deliver its 

results in a multi-dimensional space (or at least 2-dimensional space, privacy and efficacy 

(accuracy) being the two dimensions). With such a measure, it becomes possible to  select the 

right point in this two dimensional space based on the Pareto efficiency. In other words, we 

develop a methodology to identify the best point (being the best subset of attributes) in which no 

further improvement of privacy (or efficacy) is possible without harming efficacy (or privacy)  

respectively. In a similar setting, such a right point could be obtained based on Multi Criterion 

Decision-Making (MCDM). MCDM refers to a class of methods based on the idea that, given a 

set of decision criteria and alternatives, what would be the best alternative.  
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Appendix A: The E(S) plots Corresponding to Different 

Datasets 

 

The following E(S) plots correspond to different dataset/algorithm combinations. In each case, 

the E(S) corresponding to different weight ratios with respect to  candidate subsets is shown. 

Depending on the selected ratio, a best subset is identified.  

Figure 12 shows the E(S) corresponding to Adult-N.B. Depending on the w1, w2, and w3 

weights, the E(S) of a given subset is calculated. Furthermore, we can identify the best E(S) 

given the weight combinations. For example, when w1, w2, and w3 weights are 0.6, 0.15, and 

0.25 respectively, the best subset corresponds to {CG, RE, MS, OC, ED, EN, AG, HW, SX, NC, 

WO, RC}.  

 

 
 

Figure 12: The E(S) corresponding to different weight ratios with respect to  candidate subsets (Adult – 

N.B.). 
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Figure 13 shows the E(S) corresponding to the Diabetes dataset and the C4.5 classifier. When 

w1, w2, and w3 are 0.25, 0.5, and 0.25, subset {NI, DDID, DI, D3, Age, ME, ASID, Insu} gives 

the highest E(S) score. For the same weights, however, the lowest E(S) score is associated with 

{NI, DDID, Age, Me, ASID, Insu}. 

 

Figure 13: The E(S) corresponding to different weight ratios with respect to  selected candidate subsets 

(Diabetes - C4.5). 

 

 

Figure 14 corresponds to Diabetes – N.B. When the w1, w2, and w3 weights are 0.6, 0.15, and 

0.25 respectively, subset {NI, DI, NE, D2, DDID, ND, Glim, Age, Gen, DiaMed, D3} results in 

the best E(S) score.  
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Figure 14:The E(S) corresponding to different weight ratios with respect to  selected candidate 

subsets (Diabetes - N.B.). 

 

 

 

In the case of Liver Patients – C4.5, The best E(S) corresponds to the subset {AG, TP, SAIA} 

when the w1, w2, and w3 weights are 0.8, 0.1, and 0.1 respectively. The same subset has the best 

E(S) when the weights are 0.6, 0.15, and 0.25 respectively.  
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Figure 15: The E(S) corresponding to different weight ratios with respect to  candidate subsets (Liver 

Patients - C4.5). 

 

 

Figure 16 refers to the case of LiverPatients – N.B. When the w1, w2, and w3 weights are 0.8, 

0.1, and 0.1, the best E(S) is associated with the subset  {AAP, SAIA, Gender, AG, ALB, TP, 

DB}. 
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Figure 16: The E(S) corresponding to different weight ratios with respect to  candidate subsets (Liver 

Patients - N.B.). 

 

 

 


