
TRANSACTIONS ON DATA PRIVACY 9 (2016) 187–214

DBMask: Fine-Grained Access Control on
Encrypted Relational Databases
Muhammad I Sarfraz∗, Mohamed Nabeel∗∗, Jianneng Cao∗∗∗, Elisa Bertino∗

∗Purdue University, West Lafayette, IN, 47907, USA .
∗∗Oracle, Redwood City, CA, 94065, USA.
∗∗∗Institute for Infocomm Research, Singapore 13862.

E-mail: msarfraz@purdue.edu, nabeel.mohamed.nabeel@oracle.com,

caojn@i2r.a-star.edu.sg, bertino@purdue.edu

Received 29 September 2015; received in revised form 7 October 2016; accepted 7 October 2016

Abstract. DBMask is a system that implements encrypted query processing with support for complex queries
and fine grained access control with create, update, delete and cryptographically enforced read (CRUD) oper-
ations for data stored on an untrusted database server hosted in a public cloud. Past research efforts have not
adequately addressed flexible access control on encrypted data at different granularity levels which is critical
for data sharing among different users and applications. DBMask proposes a novel technique that separates fine
grained access control from encrypted query processing when evaluating SQL queries on encrypted data and
enforces fine grained access control at the granularity level of a column, row and cell based on an expressive
attribute-based group key encryption scheme. DBMask does not require modifications to the database engine,
and thus maximizes the reuse of the existing DBMS infrastructures. Our experiments evaluate the performance
of an encrypted database, managed by DBMask, using queries from TPC-H benchmark in comparison to plain-
text Postgres. We further evaluate the functionality of our prototype using a policy simulator and a multi-user
web application. The results show that DBMask is efficient and scalable to large datasets.

Keywords. Encrypted query processing; attribute-based group key management; database-as-a-service

1 Introduction
The increasing demand for cost-effective and efficient data management has resulted in organiza-
tions adopting the “database as a service” paradigm. According to such paradigm, data are managed
by a database management system (DBMS) hosted in a public cloud. By outsourcing data to the
cloud, organizations save the cost of building and maintaining a private database system and have
to pay only for the services they actually use. A market analysis firm projected an 86% annual in-
crease in organizations adopting the paradigm of “database as a service” and an increase in revenue
for “database as a service” providers from $150 million in 2012 to $1.8 billion by 2016. 1 How-
ever, data are the most valuable asset in an organization and inappropriate data disclosure puts the
organization’s business at risk.

1http://www.forbes.com/sites/oracle/2013/12/05/why-database-as-a-service-dbaas-will-be-the-breakaway-technology-of-
2014/

187

188 Muhammad I Sarfraz, Mohamed Nabeel, Jianneng Cao, Elisa Bertino

A solution commonly adopted to protect data confidentiality relies on encryption. However, the use
of encryption raises issues related to the efficient processing of queries on encrypted data. In order to
address such issues, various techniques such as bucketization [15, 16] and secure indexing [11, 26]
have been investigated. However, these techniques do not differentiate among authorized users
of the data and thus do not support flexible access control with different units of access control
granularity. This is inconsistent with the data sharing requirements of most real-world applications.
An additional requirement is that fine-grained access control be cryptographically enforced. When
the access control is not fully enforced using cryptography, the system is susceptible to bypasses and
SQL injection attacks. For example, a malicious user may trick the database into returning more
rows than a user has access to. The risk of such attacks can be reduced by utilizing cryptographic
enforcement since malicious users are unable to decrypt the result. Therefore, a suitable mechanism
for allowing the data owner to enforce fine-grained access control over data on untrusted cloud
server is to encrypt data through certain cryptographic primitives but disclose decryption keys only
to authorized users. While such a mechanism preserves confidentiality, it does not protect against
active attacks such as updating or inserting garbled data or deleting records. Since unauthorized
users do not have the keys to decrypt data, they cannot update or insert valid records, but can insert
or update garbled data and delete records. In this paper, we propose DBMask, a novel approach
to address fine-grained access control over encrypted data. DBMask is inspired by the CryptDB
project [20], which is the first research effort that has systematically investigated access control for
SQL queries on encrypted relational data. However, CryptDB suffers from limitations related to
both encrypted query processing and fine grained access control.

With respect to limitations related to encrypted query processing, CryptDB uses onions of encryp-
tion to support multiple ciphertexts where each ciphertext corresponds to an onion layer. Each layer
is applied to a specific query operation or purpose, and the encryption layers from the external layer
to the most internal layer are increasingly weaker. Given a specific query, the layers of the onion
are peeled off in order to support layer-specific query operations. Therefore, it is easy to see that the
support of query operations is at the cost of multiple decryptions of entire columns. In addition, al-
though onions offer multiple levels of security, the security level decreases over time when the outer
layers are removed. Hence, the real security level an onion can guarantee is the protection offered
by the inner most encryption. In DBMask, there are multiple ciphertexts where each ciphertext is
only a single layer of encryption to support a comparison operation. The data are never decrypted
to weaker encryptions inside the cloud server and therefore the security of the data does not weaken
over time. Another limitation is that CryptDB is unable to execute queries that cannot be processed
entirely on the server. For example, it does not support queries requiring both comparison and com-
putation on the same column. In contrast, DBMask architecture supports split execution of queries
using a filtering-refining procedure where query contents that cannot be processed entirely on the
server are processed at the proxy.

With respect to limitations related to fine grained access control, the row/cell level access control
mechanism by CryptDB is not cryptographically enforced. Instead, CryptDB always encrypts a col-
umn using a single key and utilizes a proxy based reference monitor to enforce row level access
control. When the access control is not fully enforced using cryptography, the system is suscepti-
ble to bypasses and SQL injection attacks as mentioned above. In comparison, the access control
mechanism in DBMask is cryptographically enforced. Additionally, the row/cell level specification
of access control policies in CryptDB is difficult to manage. CryptDB uses ‘speaks for’ relation-
ships that are specified at user level and each user is associated with many ‘speaks for’ relationships
making the management of policies difficult. In DBMask, specification of access control policies is
done using attribute based access control which is more expressive and easier to manage. Further,
CryptDB fails to process queries over data items encrypted with different keys for different users
based on an access control policy even though the users are authorized. DBMask on the other hand,

TRANSACTIONS ON DATA PRIVACY 9 (2016)

DBMask: Fine-Grained Access Control on Encrypted Relational Databases 189

addresses this problem by separating access control from encrypted query processing. This is one
of the novel contributions of our work. To this end, DBMask provides support for query processing
while at the same time supporting expressive access control policies.

DBMask is a novel solution that addresses all the limitations of CryptDB. Our contributions in-
clude:

• An approach to support relational query operators by adding a comparison friendly encrypted
column per column. Different algorithms such as order preserving encryption [7], symmetric
key based searcheable encryption [24] and so on can be plugged in, depending on column data
types and the security requirements.

• An approach based on an expressive attribute-based group key management scheme [23, 18,
17] to enforce access control policies with support for create, update, delete and cryptograph-
ically enforced read operations on outsourced databases at the granularity level of a table, a
column, a row as well as a cell. Under our approach, different portions of data are encrypted
by different keys according to the access control policies, so that only authorized users receive
the keys to decrypt the data they are authorized for access. Additionally, the enforcement
of access control policies is supported both through an application and internally through a
DBMS.

The paper is organized as follows. Section 2 discusses related work. Section 3 provides an overview
of DBMask and the adversarial model. Section 4 introduces a fine-grained access control model and
discusses its enforcement. Section 5 describes the key cryptographic constructs for SQL query
operators and briefly analyzes the security of each construct. Section 6 describes the evaluation of
encrypted queries over an encrypted database in the cloud server. Section 7 reports experimental
results. Finally, Section 8 outlines the conclusions of the work.

2 Related Work

In theory, it is possible to utilize fully homomorphic encryption [14] to perform any arbitrary oper-
ation that a relational database requires. However, current implementations of fully homomorphic
encryption are inefficient and are not suitable for practical applications [12]. With the increasing
utilization of cloud computing services, recent research efforts [8] have developed privacy preserv-
ing access control systems by combining oblivious transfer and anonymous credentials. Such ap-
proaches have similarities to ours but also limitations. Each transfer protocol allows one to access
only one record from the database, whereas our approach does not have any limitation on the number
of records that can be accessed at once since we separate the access control from query processing.
Another limitation is that the size of the encrypted database is not constant with respect to the orig-
inal database size. Redundant encryption of the same record is required to support access control
policies involving disjunctions. By contrast, in our approach the encryption is independent of the
policies.

Attribute based encryption (ABE) approaches [6] are also related to our work in that they support
expressive policies. However, they cannot handle revocations efficiently. Yu et al. [28] proposed an
approach based on ABE utilizing PRE (Proxy Re-Encryption) to address the revocation problem of
ABE. While such approach solves the revocation problem to some extent, it does not preserve the
privacy of the identity attributes as in our approach. Further, these approaches mostly focus on non-
relational data such as documents, whereas DBMask is optimized for relational data. Techniques for
efficient query processing over encrypted data have also been investigated. Hacigümüs et al. [15]

TRANSACTIONS ON DATA PRIVACY 9 (2016)

190 Muhammad I Sarfraz, Mohamed Nabeel, Jianneng Cao, Elisa Bertino

proposed a pioneering approach that makes it possible to perform as much query processing as pos-
sible at the remote database server without decrypting the data and then performing the remaining
query processing at the client site. Such approach uses a bucketization technique to execute approxi-
mate queries at the remote database server and then execute the original query over the approximate
result set returned by the remote server. Wong et al. [27] propose a scheme supporting secure query
processing by providing a set of elementary operators, like addition and multiplication, that work
on encrypted data for relational tables. Asghar et al. [2] propose a multi-user scheme that supports
searches of keywords or conjuctions of keywords on untrusted servers while enforcing authoriza-
tions at table/column level. While DBMask utilizes split processing between the cloud server and
the proxy for complex queries, DBMask is different in that it performs an exact query execution
whenever possible, uses specialized schemes to support relational operators, and enforces row/cell
level access control by using an attribute based group key management (AB-GKM) scheme [18, 17],
whereas the above approaches do not support fine-grained access control on relational data.

The idea of using specialized encryption techniques such as order preserving encryption [7] and
additive homomorphic encryption [19] to perform different relational operations has been intro-
duced in CryptDB [20]. The same idea has been extended to support complex analytical queries in
MONOMI [25]. As mentioned in Section 1, while these techniques lay the foundation for systematic
query processing and access control, they suffer from several limitations. Similar approaches that
utilize trusted hardware instead of an external proxy have also been proposed [3, 1]. Such approaches
improve performance as sensitive queries are processed inside the trusted module on decrypted data.
However, they require special expensive hardware modules as well as modifications to the existing
database query processor.

The solution discussed in this paper for supporting cryptographically enforced fine grained access
control using AB-GKM scheme was first proposed in [21]. However, our previous solution has
several limitations. It supports a simpler access control model with no support for enforcement of
CRUD permissions. Moreover, it only supports simple queries. In the current paper, we extend
DBMask to support CRUD permissions, complex queries and aggregates on the cloud server over
encrypted data. We also discuss data upload and content management of access control data in
detail. Additionally, the manual comparison between encrypted and trapdoor values for encrypted
query processing is replaced with support for comparison using the internal equality mechanisms of
a DBMS. Specifically, the access control enforcement mechanism is not only supported through an
application, but also internally by a database. The performance and functionality of the extended
approach are evaluated with additional experiments and a head-to-head comparison is constructed
with state-of-the-art approaches in the related field of work.

3 Overview
In this section, we provide an overview of our system architecture and the adversarial model.

3.1 System Architecture
Our system includes three entities: data owner, data user, and cloud server. Their interactions are
shown in Figure 1. Users register their identity attributes with the data owner and the data owner
generates secrets for the identity attributes and gives the encrypted secrets to users (step 1). The
data owner then uses different secret keys to encrypt different portions of data, according to the
access control policies. The encrypted data are uploaded to the cloud server (step 2). The data
owner updates the user-secret pair database at the proxy and caches encrypted keys (step 3). A data
user with authenticated identity attributes can verify itself to a proxy which is maintained by the

TRANSACTIONS ON DATA PRIVACY 9 (2016)

DBMask: Fine-Grained Access Control on Encrypted Relational Databases 191

data owner. The successful attribute based verification of the user to the proxy allows the proxy
to either derive or obtain one or multiple secret keys required to encrypt the user query (step 4).
Given a plaintext query submitted by the user, the proxy uses these keys to rewrite the query into
an encrypted query, which can then be executed on the encrypted data in the cloud server (step 5).
The encrypted query results are returned from the cloud server to the proxy (step 6), which decrypts
the results using the secrets established at the time of verification and forwards them to the data user
(step 7). If the query cannot be entirely executed on the cloud server, then the remaining portions
of the query are executed at the proxy after decrypting the results. Notice that during the query
processing stage, the cloud server learns neither the query being executed nor the result set of the
query. The above brief mentions of each step are described in detail in Section 6.

The motivation and need behind a proxy, an intermediate entity between a user and the untrusted
cloud server on the public cloud, is needed in order to abstract tasks such as query rewriting, splitting
the query execution if the query cannot be completely executed on the untrusted cloud server, and
decrypting query results. The proxy needs to be trusted since secret keys, the leakage of which
would compromise the entire database, are needed in order to decrypt the results returned from the
untrusted cloud server. The proxy is therefore maintained by the data owner which is fully trusted.
The proxy being managed by the data owner still poses the problem of insider threats. The proxy is
thus secured by insiders through the use of insider protection techniques [5].

The resources needed by the proxy are but not limited to (1) an in-memory database for processing
the results of a query that cannot be entirely processed on the server; (2) storing metadata of en-
crypted tables; and (3) storing and updating the user-secret database to prevent unauthorized access
to the proxy etc. In order for this model to be practical, a proxy must be small and require very little
computational and storage resources. Then it makes it practical for a data owner to outsource data
to the public cloud and maintain a small machine within the organization to implement the proxy. If
by contrast, the proxy machine has to be very large, then the motivation behind outsourcing the data
management to the public cloud is lost and a data owner may as well store data within the organi-
zation. The experiments in Section 7.1.1 show that the storage and computational resources needed
for the proxy are small.

3.2 Adversary Model
We assume that the data owner is fully trusted. All the secret keys, which are generated by the data
owner and stored at the proxy, are encrypted. Our key management scheme (see Section 5) requires
that these encrypted secret keys cannot be decrypted by the proxy alone. Instead, they can only be
decrypted by the proxy with the help of authorized data users. An attacker that has compromised the
proxy can access the keys of logged-in users. Consequently, it can also access the data, authorized to
those users. However, the secret keys of all the inactive users remain secure. In our model, the data
owner does not outsource the data encryption operation to the proxy, although the proxy is trusted.
This is to avoid a “single point of failure”. Otherwise, if the proxy were compromised at the pre-
processing stage (i.e., the stage at which the keys to encrypt data are generated), the whole system
would be compromised.

The cloud server is assumed to be honest-but-curious. It does not attempt to actively attack the
encrypted data, e.g., by altering the query answers or changing the encrypted data but instead is
passive. The cloud server is not given the key by which the ciphertext can be decrypted to obtain
the plaintext. Still, to support query processing, we develop techniques which allow the server to
efficiently evaluate SQL queries on encrypted data (see Section 6). The cloud server itself may be
compromised by external attackers. In such a case, data confidentiality is still preserved, since the at-
tackers cannot decrypt the data. However, such a compromise does not protect against active attacks
such as updating or inserting garbled data or deleting records. Suppose that an adversary launches

TRANSACTIONS ON DATA PRIVACY 9 (2016)

192 Muhammad I Sarfraz, Mohamed Nabeel, Jianneng Cao, Elisa Bertino

Figure 1: The system architecture

a bypass attack to gain direct access to the database. The adversary can access the data but cannot
decrypt it; the adversary will not be able to do an update since the keys are not known; the adversary
may insert records but cannot produce valid entries as the adversary does not know the keys; the
adversary can however delete the records. The only way to prevent malicious updates, inserts or
deletes would require modifications to the database engine. Our approach protects against malicious
reads and invalid updates/inserts aiming at compromising confidentiality. An adversary can how-
ever delete records and we do not claim to protect against such attacks. In essence, encryption does
not protect against active attacks such as updating or inserting garbled data or deleting records; a
mechanism to protect against such active attacks will require modifications to the database engine.

Users are not trusted in our system and the proxy establishes trust via certified identity attributes
issued by the data owner. DBMask does not store at the user side any secret key, which can be used
to decrypt the data. Otherwise, the problem of key distribution would be raised, and data would need
to be re-encrypted in case a user is compromised. Instead, our key management scheme assures that
the proxy is able to derive the secret keys only by collaboration with the authorized data user. Such
a procedure can be seen as a function: k ← f(As), where k is the secret key, As is the set of user’s
attributes, and f is a function representing the collaboration between the proxy and the user. Now
suppose that the user is compromised (i.e., its attributes are disclosed). To prevent unauthorized
data access, the data owner can update the attributes to As′, so as to prevent attackers with As from
posing as the authorized user any longer. Such a strategy makes it possible for the key k and the data
to remain unchanged.

4 Access Control Model

In this section, we describe our access control model in detail.

TRANSACTIONS ON DATA PRIVACY 9 (2016)

DBMask: Fine-Grained Access Control on Encrypted Relational Databases 193

4.1 Attribute-based Access Control
We utilize the attribute based access control (ABAC) model which has the following characteristics.

• Users have a set of identity attributes that describe properties of users. For example, organiza-
tional role(s), seniority, age and so on.

• Data is associated with ABAC policies that specify access control conditions in terms of iden-
tity attributes.

• A user whose identity attributes satisfy the ABAC policy associated with a data item is allowed
to access the data item.

We propose our basic ABAC model and formally define the model as follows:

Definition 1. Attribute Condition.
An attribute condition cond is an expression of the form:
“nameA op l”, where nameA is the name of an identity attribute A, op is a comparison operator
such as =, <, >, ≤, ≥, 6=, and l is a value that can be assumed by attribute A. We refer to an
expression over a set of attribute conditions as a Boolean Expression (BE).

Definition 2. Permission.
A permission is a cumulative permission represented by a bit mask composed of six bits where each
bit represents a permission. The default permissions are read (bit 1), write (bit 2), update (bit
3), delete (bit 4), create (bit 5), admin (bit 6) corresponding to SELECT, INSERT, UPDATE,
DELETE, CREATE and ALL SQL privileges respectively. A permission represented by ’D.WR’
implies read, write and delete permissions are granted and update permission is denied.

Definition 3. ABAC Policy.
Let T be a table. An ABAC access control policy (ACP for short) defined over T is a tuple (s, o, p)
where: o denotes a set of cells in T , s is a BE and p is a cumulative permission. Both s and p must
be satisfied in order to access o.

Definition 4. Group.
We define a group G as a set of users which satisfy a specific conjunction of attribute conditions in
an ABAC policy.

The idea of groups is similar to user-role assignment in role based access control (RBAC), but in
our approach, the assignment is performed automatically based on identity attributes. Given the set
of ABAC policies specified by the data owner, the following steps are taken to identify groups:

• Convert each ABAC BE into disjunctive normal form (DNF). Note that this conversion can be
done in polynomial time.

• For each distinct disjunctive clause, create a group.

Example 1: Consider the following two BEs defined over the attribute conditions C1, C2 and C3:
BE1 = C1 ∧ (C2 ∨C3) and BE2 = C2. Then the corresponding policies in DNF are as follows: BE1

= (C1 ∧ C2) ∨ (C1 ∧ C3) and BE2 = C2.

In this example, there are three groups G1, G2, G3 of users satisfying the attribute conditions
C1 ∧ C2, C1 ∧ C3, and C2 respectively. We exploit the hierarchical relationship among groups
in order to support hierarchical key derivation and improve the performance and efficiency of key
management. We introduce the concept of Group Poset as follows to achieve this objective.

TRANSACTIONS ON DATA PRIVACY 9 (2016)

194 Muhammad I Sarfraz, Mohamed Nabeel, Jianneng Cao, Elisa Bertino

Definition 5. Group Poset.
A group poset is defined as the partially ordered set (poset) of groups where the binary relationship
is ⊆.

4.2 Policy Attachment and Application Enforced vs Database Enforced Ac-
cess Control

Each column, row, or cell, depending on the desired level of access control, has an associated ACP.
In the case of column and cell level access control, the policy attachment is performed by adding an
additional column for each column in the table and in the case of row level access control, the policy
attachment is performed by adding a single additional column in the table (Please refer to Section 6.3
and 6.5 for explanation on policy attachment at different granularities of access control). Upon
receiving an SQL query from a user for table T , the proxy needs to determine the ACP attached to T
satisfied by the users attributes and restrict the query to only those columns, rows or cells depending
on the granularity level.

DBMask supports two enforcement mechanisms namely Application-enforced Access Control (App-
AC) and Database-enforced Access Control (DB-AC) for restricting the query to only those columns,
rows and cells that are satisfied by an ACP for a particular user/group. In the case of App-AC, the
restriction on a query is enforced by adding a predicate to the user query such that the predicate
“encodes” the satisfied ACP as shown by example queries (Query 2, 3, 7 and 8) in Section 6. In
the case of DB-AC, the restriction is enforced by using the native DBMS mechanism using grant
and revoke for satisfied ACP on users/groups with database accounts as discussed and shown by
example queries (Query 4, 5 and 9) in Section 6. The motivation behind providing support for both
mechanisms is due to the fact that both are adopted by real world applications and both mechanisms
have their advantages. For example, application level access control in comparison to database level
access control does not require creating database accounts for users and implementing complicated
access policy logic that can be difficult to express and update. On the other hand, application level
access control in comparison to database level access control is prone to programming errors and
malicious attacks that may violate principle of least privilege. The support of both mechanisms using
one underlying access control model and key management scheme demonstrates the expressiveness
and flexibility of DBMask.

4.3 Assigning Group Labels and Hierarchical Access Control
We label table cells by descriptive group names where each cell may have multiple groups associated
with it. If there is an ordering relationship between two groups associated with a cell, we discard
the more privileged group and assign only the less privileged group. When the proxy determines the
group(s) a user belongs to, it selects the most privileged groups. The idea is that a user in the more
privileged group can become a member of the less privileged group by following the hierarchical
relationship in the group poset. Note that the group label assignment indirectly attaches an ABAC
policy to a cell as described at the beginning of this section.

Hierarchical key encryption techniques reduce the number of keys to be managed. However, a
major drawback is that assigning keys to each node and giving them to users beforehand makes it
difficult to handle dynamics of adding and revoking users. We address this drawback while uti-
lizing the benefits of hierarchical model by proposing a hybrid approach combining broadcast and
hierarchical key management. We utilize a recently proposed expressive scheme called AB-GKM
(attribute based GKM) [18, 17] as the broadcast GKM scheme which is described in Section 5.1.
Instead of directly assigning keys to each node in the hierarchy, we assign a AB-GKM instance to
each node and authorized users can derive the key using the key derivation algorithm of AB-GKM.

TRANSACTIONS ON DATA PRIVACY 9 (2016)

DBMask: Fine-Grained Access Control on Encrypted Relational Databases 195

An AB-GKM instance is attached to a node only if there is at least one user who cannot derive the
key of the node by following the hierarchical relationship.

5 Cryptographic Constructs

In this section, we describe the cryptographic constructs used in our approach for securely evaluating
queries over encrypted data.

5.1 Key Management

Broadcast Group Key Management (BGKM) schemes [9, 4, 23] are a special type of GKM scheme
whereby the rekey operation is performed with a single broadcast without requiring private com-
munication channels. However, BGKM schemes do not support group membership policies over a
set of attributes. In their basic form, they can only support 1-out-of-n threshold policies by which a
group member possessing 1 attribute out of the possible n attributes is able to derive the group key.
The recently proposed attribute based GKM (AB-GKM) scheme [18, 17] provides all the benefits of
BGKM schemes and also supports attribute based access control policies (ACPs).

The idea behind the AB-GKM scheme is as follows. A separate BGKM instance for each attribute
condition is constructed. The BE is embedded in an access structure T . T is a tree with the internal
nodes representing threshold gates and the leaves representing BGKM instances for the attributes.
T can represent any monotonic policy. The goal of the access tree is to allow deriving the group key
for only the subscribers whose attributes satisfy the access structure T . Each threshold gate in the
tree is described by its child nodes and a threshold value. The threshold value tx of a node x spec-
ifies the number of child nodes that should be satisfied in order to satisfy the node. Each threshold
gate is modeled as a Shamir secret sharing polynomial [22] whose degree equals to one less than
the threshold value. The root of the tree contains the group key and all the intermediate values are
derived in a top-down fashion. A subscriber who satisfies the access tree derives the group key in a
bottom-up fashion.

We only provide the abstract algorithms of the AB-GKM scheme and refer the reader to [18] for
details. The AB-GKM scheme consists of five algorithms: Setup, SecGen, KeyGen, KeyDer and
ReKey. The Setup algorithm takes the security parameter `, the maximum group size N , and the
number of attribute conditions Na as input, and initializes the system. The SecGen algorithm gives
a userj , 1 ≤ j ≤ N , a set of secrets for each commitment comi ∈ γ, 1 ≤ i ≤ m. The KeyGen
algorithm takes the access control policy BE as the input and outputs a symmetric key K, a set of
public information tuples PI, and an access tree T . Given the set of identity attributes β, the set of
public information tuples PI, and the access tree T , the KeyDer algorithm outputs the symmetric K
only if the identity attributes in β satisfy the access structure T . The ReKey algorithm is similar to
the KeyGen algorithm. It is executed whenever the dynamics in the system change, that is, when-
ever subscribers join and leave or BEs change.

Brief security analysis: An adversary, who has compromised the cloud server, cannot infer the keys
used to encrypt the data from the public information stored in the cloud server as the AB-GKM
scheme is key hiding even against computationally unbounded adversaries. If an adversary has com-
promised the proxy, the AB-GKM secrets of the users who are currently online are compromised as
the proxy derives these secrets using users’ passwords and encrypted secrets. Since the data owner
performs the setup and key generation operations of the AB-GKM scheme, such an attack does not

TRANSACTIONS ON DATA PRIVACY 9 (2016)

196 Muhammad I Sarfraz, Mohamed Nabeel, Jianneng Cao, Elisa Bertino

allow the attacker to infer the secret information stored at the data owner. If such an attack is de-
tected, the proxy can invalidate the existing secrets of the online users and request the data owner
to generate new set of secrets using the AB-GKM scheme for the users without changing the under-
lying keys used to encrypt/decrypt the data. Since the secrets at the time of compromise and after
regeneration are different, it is cryptographically hard for the adversary to derive the underlying
encryption/decryption keys from the invalid secrets. Notice that, unlike a traditional key manage-
ment scheme, since the underlying encryption/decryption keys are not required to be changed, such
a compromise does not require to re-encrypt the data stored in the cloud server.

5.2 SQL-aware Comparison, Summation and Joins
DBMask provides support for both numerical and keyword comparison and is designed so that any
comparison friendly numerical or keyword encryption scheme can be utilized to perform relational
operations over encrypted data. In the case of numerical matching, we use two variants of AES
and Boldyreva et al.’s [7] schemes to support privacy preserving comparison without requiring the
decryption of numerical values. We refer to these approaches as privacy preserving numerical com-
parison (PPNC). For the purpose of reference to individual schemes, we refer to them as PPNC-
SEM, PPNC-DET and PPNC-OPE. PPNC-SEM provides the maximum security guarantee among
the PPNC comparison schemes and is constructed using 128-bit block AES together with a blinding
factor where a simple blinding factor would be,

grwhere g is a generator and r ∈ Zp

Since the goal is to reveal equality, the values are unblinded at the time of comparison by providing
the unblinding factor (g−r) to the data server where the server unblinds on the fly. The blind-
ing/unblinding mechanism is explained through example queries in Section 6.5. PPNC-DET has a
weaker security guarantee than PPNC-SEM as it is deterministic encryption and is constructed using
128-bit block AES. PPNC-OPE is Boldyreva et al.’s scheme and has the weakest security guarantee
among the PPNC schemes as it is an order-preserving encryption and the encrypted values reveal
order of the plaintext. Like numerical comparison, one can utilize any encrypted keyword com-
parison technique [24, 10]. We refer to this approach as privacy preserving keyword comparison
(PPKC). We adopt the keyword search technique proposed in [24] (PPKC-SEM) as it is better suited
to relational data and its implementation is available. DBMask provides support for aggregates over
encrypted data by implementing the Paillier cryptosystem [19]. We refer to the scheme for support-
ing summation over encrypted data as PPNC-HOM. PPNC-HOM can also be used for UPDATE
increment operations and evaluating averages. In order to perform the SUM operation on the server,
a user-defined function (UDF) is called that multiplies ciphertexts under PPNC-HOM encryption and
returns the result which is decrypted at the proxy. PPNC-HOM has the strongest security guarantees
among PPNC schemes. The ciphertext length for n-bit plaintext is n2.

DBMask also provides support for joins. In order to perform equality join, the joining columns
have to be encrypted with the same key so the server can see matching values between two columns.
Although the columns using either the PPNC or the PPKC scheme are encrypted with the same key in
our approach, they cannot be matched since values are semantically secure. One way to support join
would be to update one of the columns in the join operation at runtime to reflect its trapdoor values
and then perform the join operation, but this has high computational and bandwidth complexity as it
requires either downloading the encrypted values to the proxy, creating trapdoors and uploading to
the database server or keeping a mapping between the encrypted values and trapdoors at the proxy
and uploading it to database server prior to join operation. In order to efficiently perform join,
we use two schemes namely JOIN-SEM and JOIN-DET with varying security guarantees. JOIN-
SEM stores the blinded trapdoor values corresponding to the comparison friendly PPNC or PPKC

TRANSACTIONS ON DATA PRIVACY 9 (2016)

DBMask: Fine-Grained Access Control on Encrypted Relational Databases 197

encrypted values. JOIN-DET stores the unblinded trapdoor values corresponding to the comparison
friendly PPNC or PPKC encrypted values. JOIN-SEM provides better security guarantees than
JOIN-DET.

We provide an abstract description of how these comparison schemes are used in DBMask. The
above approaches can be summarized into four algorithms namely, Setup, EncVal, and GenTrap-
door, which we use for comparison in our cloud server based database system. The Setup algorithm
takes as input a set of parameters P and initializes the underlying encryption scheme required for
computations. Given a numerical or a keyword value x, the data owner produces an encrypted value
ex using EncVal algorithm that hides the actual value, but allows one to perform comparisons using
the trapdoor value. Given an input (numerical or keyword) value t, the proxy produces an encrypted
value et, called the trapdoor, using GenTrapdoor algorithm that is used with its corresponding en-
crypted value to perform comparisons. Given an encrypted value ex for x and a trapdoor value et
for t, the values are compared to output the result.

Brief security analysis: An adversary, who has compromised the cloud server, cannot infer the
plaintext values of the encrypted values except what is inherently revealed by the underlying encryp-
tion schemes since the private key is not stored at the cloud server. If an adversary has compromised
both the proxy and the cloud server, the adversary cannot directly infer the plaintext values using
the private information stored at the proxy since the private information used at the data owner to
generate the encrypted value and the private information used at the proxy to generate trapdoors is
different and it is cryptographically hard to derive one from the other. The adversary may however
do a brute force attack by repeatedly executing comparison operations to infer the plaintext values
of the encrypted values in the cloud server. Detection and prevention of such an attack is beyond the
scope of this paper.

6 Secure Query Evaluation Over Encrypted Data
In this section, we provide a detailed description of our privacy preserving query processing scheme
for encrypted databases in a public cloud. As mentioned in Section 3, our system consists of four
entities: data owner, proxy, cloud server and users. Our system undergoes the following phases:
system initialization, user registration, data encryption, data upload and content management and
data querying and retrieval. We now explain each phase in detail.

6.1 System Initialization
The data owner runs the Setup algorithm of the underlying cryptographic constructs, that is, AB-
GKM.Setup, PPNC.Setup and PPKC.Setup 2. The data owner makes available the public security
parameters to the proxy so that the proxy can generate trapdoors during data querying and retrieval
phase. The data owner also converts the BEs into DNF and groups users satisfying the same dis-
junctive clauses. As mentioned in Section 4, these groups are used to construct the Group poset to
perform hierarchical key derivation along with the AB-GKM based key management.

6.2 User Registration
Users first obtain their identity attributes certified by a trusted identity provider. These certified
identity attributes are cryptographic commitments that hide the actual identity attribute value but

2We use the dot notation to refer to an algorithm of a specific cryptographic construct. For example, AB-GKM.Setup
refers to the Setup algorithm of AB-GKM scheme.

TRANSACTIONS ON DATA PRIVACY 9 (2016)

198 Muhammad I Sarfraz, Mohamed Nabeel, Jianneng Cao, Elisa Bertino

still bind the value to users. Users register their certified identity attributes with the data owner
using the OCBE protocol. The data owner executes the AB-GKM.SecGen algorithm to generate
secrets for the identity attributes and gives the encrypted secrets to users. Users can decrypt and
obtain the secrets only if they presented valid certified identity attributes. The data owner maintains
a database of user-secret values. When a user or an identity attribute is revoked, the corresponding
association(s) from the user-secret database is (are) deleted. The user-secret database is also stored
at the proxy with the secrets encrypted using a password only each user possesses. Each user has
a different password encrypting her own secrets. Every time the user-secret database changes, the
data owner synchronizes its changes with the proxy.

6.3 Data Encryption

In our solution, each cell in an original table is expanded into multiple cells as shown in Figure 2. The
first cell is encrypted for fine-grained access control, the second cell represents the assigned group
labels, the third cell represents the permission mode rights on the cell (only in the case of App-AC
mechanism), the fourth cell is encrypted for privacy-preserving matching, the fifth cell is encrypted
using homomorphic encryption to support aggregates (this cell is optional), and the sixth cell stores
blinded or unblinded trapdoor value for join operation. We denote the column resulting from the
encryption for fine-grained access control as data-col, the one with associated group names as label-
col, the one with associated permission rights as mask-col, the one resulting from the encryption for
privacy-preserving matching as match-col, the one resulting from the homomorphic encryption for
aggregates as agg-col and the one resulting from storing trapdoor values as trap-col.

Figure 2: The expansion of each cell

Example 2: Consider Example 1 in Section 4 and suppose that C1, C2 and C3 are conditions de-
fined as follows. C1 = “level > 3”, C2 = “role = doctor” and C3 = “role = nurse”. Therefore, BE1

is satisfied by all users whose level is greater than 3 and who are either doctors or nurses. BE2 is
satisfied by all doctors. Let ACP1 = (G1, G3, ‘SELECT * FROM patients WHERE age < 40’,
‘DUWR’) and ACP2 = (G2, ‘SELECT age, diagnosis FROM patients WHERE age < 40 AND
diagnosis = ‘Asthma’, ‘.UWR’). Note that the table and column names in the Policy table (Table 1)
stored on the untrusted server are anonymized and the values encrypted with data owner’s group key.

We first discuss the creation of data-col. Given a cell in the original table, its encryption in the
corresponding data-col is generated by a secret key derived from the AB-GKM scheme [18, 17].

TRANSACTIONS ON DATA PRIVACY 9 (2016)

DBMask: Fine-Grained Access Control on Encrypted Relational Databases 199

Table 1: Policy Table
Table Columns Condition Groups Mask
Patient ID, Age, Diag-

nosis
Age < 40 G1, G3 ’DUWR’

Patient Age, Diagnosis Age< 40 AND Diag-
nosis = ’Asthma’

G2 ’.UWR’

The set of groups associated with a cell decide the key under which the cell is encrypted. For each
groupGi, a group secret keyKi is generated by executing the AB-GKM.KeyGen algorithm. In order
to avoid multiple encryptions (i.e., one group secret key for one encryption) in the case where a cell
is associated with multiple groups, the AB-GKM.KeyGen algorithm is again executed to generate
a master group key K using the group keys Ki’s as secret attributes to the algorithm e.g. the Age
value in row 4 in Table 3 is encrypted with a master key k23 generated from the AB-GKM instance
having k2 and k3 as input secrets with public information corresponding to this master key as PI23.
As a consequence, if a user belongs to any of the groups assigned to the cell, the user can access
the cell by executing the AB-GKM.KeyDer algorithm twice. The first execution generates the group
key and second derives the master key. Public information to derive the key is stored in a separate
table called PubInfo.

Table 2: PubInfo Table
Groups G1 G2 G3 G2, G3

PI PI1 PI2 PI3 PI23

Table 3: Encrypted Patient Table - Cell Level Access Control (App-AC)
ID-
enc

ID-
grp

ID-
mask

ID-com ID-trap Age-
enc

Age-
grp

Age-
mask

Age-
com

...

Ek3
(1) G3 DUWR compn comp′n Ek3

G3 DUWR compn ...
(1) (1) (35) (35)

Ek3 (2) G3 DUWR compn comp′n Ek3 G3 DUWR compn ...
(2) (2) (30) (30)

Ek0 (3) G0 A..... compn comp′n Ek0 G0 A..... compn ...
(3) (3) (40) (40)

Ek3 (4) G3 DUWR compn comp′n Ek23 G2,G3 DUWR... compn ...
(4) (4) (38) UWR (38)

We now discuss the creation of label-col. Given a set of cells that satisfy ACPs, each cell is as-
signed one or more group labels. If two groups are connected in the group poset, only the label of
less privileged group is assigned to the cell e.g. the Age value in row 1 in Table 3 is satisfied by both
G1 and G3 but only assigned label of less privileged group, G3. In terms of design for label-col, the
groups are pushed down to row/cell in order to support cell level access controlas shown in Tables 3
and 4. While it is true that updating the group column(s) in the case of change to an ACPwould
incur maintenance, it can be noted that the process of enforcing fine-grained access control becomes
very simple where only a predicate needs to be added in the WHERE clause as explained by exam-
ple queries in Section 6.5. Also note that multi-value group columns are normalized in the actual
implementation. These details are omitted from Tables 3 and 4 for the sake of brevity and page limit.

Now, let us discuss the creation of mask-col. Given a set of cells that satisfy ACPs, each cell is
assigned a bit mask that reflects the permissions granted to a group on that cell. If two or more groups

TRANSACTIONS ON DATA PRIVACY 9 (2016)

200 Muhammad I Sarfraz, Mohamed Nabeel, Jianneng Cao, Elisa Bertino

Table 4: Encrypted Patient Table - Row Level Access Control (DB-AC with PPNC-HOM)
ID-
enc

ID-
com

ID-
agg

ID-
trap

... Diag-
enc

Diag-
com

Diag-
trap

Groups

Ek3 compn comp′′n comp′n ... Ek3 compk comp′k G3

(1) (1) (1) (1) (HIV) (HIV) (HIV)
Ek3 compn comp′′n comp′n ... Ek3 compk comp′k G3

(2) (2) (2) (2) (Cancer) (Cancer) (Cancer)
Ek0

compn comp′′n comp′n ... Ek0
compk comp′k G0

(3) (3) (3) (3) (Asthma) (Asthma) (Asthma)
Ek23

compn comp′′n comp′n ... Ek23
compk comp′k G2,G3

(4) (4) (4) (4) (Asthma) (Asthma) (Asthma)

have access to the same cell, then the permissions of the groups are concatenated and represented by
a bit mask of the form bn...b2b1b0 where b0 represents the permissions granted to G0, b1 represents
the permissions granted to G1 etc. For example, the Age value in row 4 in Table 3 is satisfied by
both G2 and G3 and assigned the bit mask ’..DUWR...UWR’ where ’...UWR’ represents the
permissions granted to G2 and ’..DUWR’ represents the permissions granted to G3. Note that
the mask-col is only required in the case of App-AC mechanism and not in the case of DB-AC
mechanism.

We now consider the creation of match-col. Given a cell in the original table, its encryption in
the match-col is generated as follows. Our scheme supports both numerical matching and keyword
search for strings. If the cell is of numerical type, the PPNC.EncVal algorithm is used to encrypt the
cell value. If the cell is of type string, the PPKC.EncVal algorithm is used to perform the encryption.

We now consider the creation of agg-col. Given a cell of numerical type, the PPNC-HOM.EncVal
algorithm is used to encrypt the cell value. Note that the encryption of this column is optional.

Now, let us consider the creation of the trap-col. Given a cell in the original table, its value
in the trap-col is generated by the PPNC.GenTrapDoor/PPNC.GenTrapDoor*blinding factor or
PPKC.GenTrapDoor/PPKC.GenTrapDoor*blinding factor depending on the data type and the type
of join scheme. The blinding factor is as explained in Section 5.2.

Tables 3 and 4 show the final tables using the App-AC and DB-AC mechanisms respectively with
encrypted data-col’s, match-col’s and trap-col’s. The Ek(x) refers to the semantically secure en-
cryption of the value x using the symmetric key k, compn and compk refer to PPNC.EncVal and
PPKC.EncVal respectively, comp′n and comp′k refer to PPNC.GenTrapDoor and PPKC.GenTrapDoor
respectively and comp′′n refers to PPNC-HOM.EncVal.

6.4 Data Upload and Content Management

In order to allow access to authorized users based on ACPs, the data-col’s must be encrypted using
their respective group keys as explained above. In this section, we explain the step-wise mechanism
for data upload and efficient content management of data resulting from access control. We will first
explain content management of data resulting from access control. For each ACP defined by the
data owner being stored or updated at the cloud server, the following steps are taken:

• A view reflecting the data-col’s, label-col’s and mask-col’s of the set of cells satisfied by the
ACP is created.

• If the DB-AC mechanism is used, the groups associated with the ACP are granted privileges
(reflective of permission(s) in the ACP) on the view using grant SQL statement.

TRANSACTIONS ON DATA PRIVACY 9 (2016)

DBMask: Fine-Grained Access Control on Encrypted Relational Databases 201

• A trigger is created and associated with the view that fires with INSERT and UPDATE events
on the view. This trigger additionally calls a user-defined function (UDF) that takes as argu-
ments the group(s) and the permission(s) associated with the ACP and updates the data-col
value by encrypting it with a master key generated by the keys of group(s) taken as input argu-
ment, updates the label-col value to reflect the group(s) and updates the mask-col (if App-AC
mechanism) with the permission(s).

Example 3: Consider the ACP2 shown in Example 2. The mechanism explained above for content
management for both App-AC and DB-AC mechanisms is described below.

App-AC:

CREATE VIEW view patient G2 AS
SELECT Age-enc, Age-grp, Age-mask, Diag-enc, Diag-grp, Diag-mask
FROM Patient
WHERE Age-com < 40 AND Diag-com = ‘Asthma’;

CREATE TRIGGER trigger patient G2

AFTER INSERT, UPDATE ON view patient G2

EXECUTE PROCEDURE UDF UPDATE DATA(‘G2’,
‘UWR’);

DB-AC:

CREATE VIEW view patient G2 AS
SELECT Age-enc, Age-grp, Diag-enc, Diag-grp
FROM Patient
WHERE Age-com < 40 AND Diag-com = ‘Asthma’;

GRANT UPDATE, INSERT, SELECT ON view patient G2 TO G2

CREATE TRIGGER trigger patient G2

AFTER INSERT, UPDATE ON view patient G2

EXECUTE PROCEDURE UDF UPDATE DATA(‘G2’);

We now explain the data upload. The data-col’s corresponding to data being inserted are always
initially encrypted with data owner’s group key. The statement below describes a generalized SQL
INSERT statement.

INSERT INTO table VALUES (Ek0 (data-col), G0, ‘A.....’, compn|k(match-col), comp′n|k(trap-
col));

If the inserted data satisfies an ACP, then the trigger associated with the view reflecting the ACP
is fired that updates the data-col, label-col and mask-col using the mechanism explained above.
Similar is the case with SQL UPDATE where the data-col being updated is encrypted with data
owner’s group key. If the updated data satisfies an ACP, then the trigger associated with the view
reflecting the ACP is fired and the columns in the view are updated.

TRANSACTIONS ON DATA PRIVACY 9 (2016)

202 Muhammad I Sarfraz, Mohamed Nabeel, Jianneng Cao, Elisa Bertino

6.5 Data Querying and Retrieval

Processing a query over encrypted data is a filtering-refining procedure. The general algorithm
for processing queries on encrypted data is shown in Algorithm 1 and the details are as follows.
An authorized user sends a plaintext SQL query to the proxy, as if the outsourced database were
unencrypted. In other words, encryption and decryption of the data in the database is transparent to
users. The proxy parses the query and generates an abstract syntax tree of the query.

The query is first filtered (Lines 10-16) by removing clauses, aggregate functions, and predicates
with aggregate functions that cannot be computed on the server. The PART function (Lines 18-20)
then adds the columns referenced by filtered clauses or aggregate functions to the projections of the
filtered query. The query is then rewritten for the cloud server(Lines 22-24) by the REWRITE func-
tion by which each column to be included in the query result (i.e., column following the SELECT
keyword in the query) is replaced by its corresponding “data-col” and each predicate value in the
WHERE clause is replaced with the trapdoor value computed by the proxy using PPNC.GenTrapdoor
algorithm if the value is numeric or PPKC.GenTrapdoor algorithm if the value is a keyword. Ad-
ditionally, the REWRITE function in the case of App-AC adds a predicate to the WHERE clause
that determines the group(s) of the user requesting the query and wraps a UDF that evaluates the
permission(s) using a bit mask offset for each group when the rewritten query is sent to the cloud
server.

The cloud server executes the rewritten encrypted query over the encrypted database and filters
the tuples that do not satisfy the predicates in the query before sending back the encrypted result
set to the proxy (Line 25). The proxy generates the necessary keys for decrypting the result set
using the AB-GKM.KeyDer algorithm with the public information and the user secrets as well as
the hierarchical key derivation (Line 26).

If the proxy has removed some clauses and/or aggregate functions (e.g., SUM) from the original
query in the query filtering step, it populates an in-memory database with the decrypted result set
and refines the query result according to the constraints in the clauses and/or aggregate functions by
running the original query (Line 27-29). If no term from the query is removed, the decrypted result
set is the final result and the proxy sends the final plaintext result back to the user.

We now illustrate query processing in DBMask through example queries using both the App-AC
and DB-AC mechanisms. For each case, the queries reflect two scenarios. The first scenario which
we refer to as DBMask-SEC provides maximum security and uses PPNC-SEM for numerical com-
parison, PPKC-SEM for keyword search, JOIN-SEM for computing joins and the label columns
reflecting group information are encrypted. The second scenario which we refer to as DBMask-PER
provides best performance and uses PPNC-OPE for numerical comparison, PPKC-SEM for keyword
search, JOIN-DET for computing joins and the label columns are in plaintext.

A user having the attributes “role = doctor” and “level = 4” executes Query 1 through the proxy
server.

Query 1:
SELECT ID, Age, Diag
FROM Patient
WHERE Age > 35 AND Diag LIKE ‘Asthma’
ORDER BY Age ASC

Query 2:

TRANSACTIONS ON DATA PRIVACY 9 (2016)

DBMask: Fine-Grained Access Control on Encrypted Relational Databases 203

Algorithm 1 Pseudo-code for SECUREQUERYPLAN

1: Input: Q, abstract syntax tree (AST) for the query
2: M , metadata of the target table(s)
3: G, group(s) a user is member of
4: Output: P , a query plan for Q
5: for s in subqueries in Q do
6: SECUREQUERYPLAN(Q,M,G)
7: end for
8: FilterQ← Q
9: ProxyFilters← []

10: for f in FilterQ do
11: f ′ ←FILTER(f, F ilterQ) //query filtered at proxy
12: for f ′ 6= Nil do
13: Remove f from FilterQ
14: Add f ′ to ProxyFilters //remaining portions of query to be evaluated at proxy
15: end for
16: end for
17: for p in ProxyFilters do
18: if PART(p) in FilterQ.relations then
19: Add PART(p) to FilterQ.projections //forming the query to be computed on the server
20: end if
21: end for
22: for c in s.where clause ‖ s.select clause do
23: REWRITE(c, s,M,G)
24: end for
25: P ← SERVERSQL(FilterQ) // query computed on server
26: P ← DECRYPT(P) // encrypted results decrypted at proxy
27: if ProxyFilters 6= [] then
28: P ← PROXYSQL(P , ProxyFilters, Q) // remainder query executed at proxy
29: end if
30: return P

SELECT ID-enc, ID-grp, Age-enc, Age-grp,
Diag-enc, Diag-grp

FROM Patient
WHERE Diag-com LIKE PPKC.GenTrapdoor(‘Asthma’))

AND ID-grp LIKE PPKC.GenTrapdoor(‘G1’)
OR ID-grp LIKE PPKC.GenTrapdoor(‘G3’)
AND Age-grp LIKE PPKC.GenTrapdoor(‘G1’)
OR Age-grp LIKE PPKC.GenTrapdoor(‘G3’)
AND Diag-grp LIKE PPKC.GenTrapdoor(‘G1’)
OR Diag-grp LIKE PPKC.GenTrapdoor(‘G3’)
AND UDF Mask(ID-mask, [G1, G3], ‘R’)
AND UDF Mask(Age-mask, [G1, G3], ‘R’)
AND UDF Mask(Diag-mask, [G1, G3], ‘R’)

The proxy determines that the user is a member of groups G1 and G3. It thus re-writes the query
as Query 2 if the mechanism is App-AC and the underlying scenario is DBMask-SEC, as Query 3 if
the mechanism is App-AC and underlying scenario is DBMask-PER, as Query 4 if the mechanism
is DB-AC and the underlying scenario is DBMask-SEC and finally as Query 5 if the mechanism

TRANSACTIONS ON DATA PRIVACY 9 (2016)

204 Muhammad I Sarfraz, Mohamed Nabeel, Jianneng Cao, Elisa Bertino

is DB-AC and the underlying scenario is DBMask-PER. The rewritten queries are submitted to the
cloud server. Notice that:

• the comparison on the Age column in the WHERE clause and the ORDER BY clause are
removed from Query 2 and Query 4. The reason being that the cloud server does not have
sufficient information to compare or order the query results. In the case of Query 3 and Query
5, since the Age-com column is encrypted using PPNC-OPE scheme, the comparison and the
ordering can be done on the server.

• Query 4 and Query 5 are not encoded with group labels or permission(s) to restrict user access
to column, rows and/or cells that are not satisfied by an ACP. The reason being that the
enforcement is done internally by the DBMS as explained in Section 6.4.

Query 3:
SELECT ID-enc, ID-grp, Age-enc, Age-grp,

Diag-enc, Diag-grp
FROM Patient
WHERE Age-com > PPNC.GenTrapdoor(35)

AND Diag-com = PPKC.GenTrapdoor(‘Asthma’)
AND ID-grp LIKE ‘%G1%’
OR ID-grp LIKE ‘%G3%’
AND Age-grp LIKE ‘%G1%’
OR Age-grp LIKE ‘%G3%’
AND Diag-grp LIKE ‘%G1%’
OR Diag-grp LIKE ‘%G3%’
AND UDF Mask(ID-mask, [G1, G3], ‘R’)
AND UDF Mask(Age-mask, [G1, G3], ‘R’)
AND UDF Mask(Diag-mask, [G1, G3], ‘R’)

ORDER
BY Age-com ASC

The cloud server returns the encrypted row 4 to the proxy. In order to decrypt the resultset (row
4), the proxy requires the keys k3 to decrypt ID-enc column value, k23 to decrypt Age-enc column
value and Diag-enc column value. The proxy derives the key k3 using the AB-GKM scheme. To
derive key k23, the proxy uses k3 and PI23 to derive k23. The proxy then uses k3 and k23 to decrypt
the resultset and sends the resultset to the user. In the case of Query 2 and Query 4, the proxy or-
ders the plaintext resultset using its in-memory database before sending the final resultset to the user.

Query 4:
SELECT ID-enc, ID-grp, Age-enc, Age-grp,

Diag-enc, Diag-grp
FROM Patient
WHERE Diag-com LIKE PPKC.GenTrapdoor(‘Asthma’)

Query 5:
SELECT ID-enc, ID-grp, Age-enc, Age-grp,

Diag-enc, Diag-grp
FROM Patient
WHERE Age-com > PPNC.GenTrapdoor(35) AND

Diag-com LIKE PPKC.GenTrapdoor(‘Asthma’)
ORDER BY Age-com ASC

TRANSACTIONS ON DATA PRIVACY 9 (2016)

DBMask: Fine-Grained Access Control on Encrypted Relational Databases 205

Query 6:
SELECT p.Age, d.Description
FROM Patient p, Diagnosis d
WHERE p.ID = d.PatientID

A user having the attribute “role = doctor” executes Query 6 through the proxy server. The proxy
determines that the user is a member of the group G2, re-writes the query and submits it to the cloud
server. The rewritten query with the App-AC mechanism is Query 7 if the underlying scenario is
DBMask-SEC and Query 8 if the underlying scenario is DBMask-PER. Note that Query 7 performs
join by unblinding the trapdoor column on the fly. The blinding and/or unblinding mechanism of
trapdoor values and the process of equality matching is as explained earlier in Section 5.2. In Query
8, the joining columns are encrypted using a deterministic encryption scheme, namely JOIN-DET
and hence the join is done using the equality mechanism of the DBMS. Note that the join columns
do not need to be unblinded on the fly. The proxy receives and decrypts the encrypted result set
using the mechanism explained above and sends the plaintext result back to the user.

Query 7:
SELECT p.Age-enc, p.Age-grp, d.Description-enc,

d.Description-grp
FROM Patient p, Diagnosis d
WHERE UDF Compare(p.ID-trap * unblinding factor, =,

unblinding factor * d.PatientID-trap) AND
p.Age-grp LIKE PPKC.GenTrapdoor(‘G2’) AND
d.Description-grp LIKE PPKC.GenTrapdoor(‘G2’)
AND UDF Mask(p.Age-mask, [G2], ‘R’)
AND UDF Mask(d.Description-mask, [G2], ‘R’)

Query 8:
SELECT p.Age-enc, p.Age-grp, d.Description-enc,

d.Description-grp
FROM Patient p, Diagnosis d
WHERE p.ID-trap = d.PatientID-trap

AND p.Age-grp LIKE ‘%G2%’
AND d.Description-grp LIKE ‘%G2%’
AND UDF Mask(p.Age-mask, [G2], ‘R’)
AND UDF Mask(d.Description-mask, [G2], ‘R’)

Query 9:
SELECT ID-enc, Age-enc, Diag-enc, Groups
FROM Patient
WHERE Age-com > PPNC.GenTrapdoor(35) AND

Diag-com = PPKC.GenTrapdoor(‘Asthma’)
AND (Groups LIKE ’%G1%’ OR
Groups LIKE ’%G3%’)

ORDER BY Age-com ASC

Tables 4 shows the Patient table enforcing row level access control using the App-AC mechanism.
Row level access control is a special case in our scheme where there is only a single additional
label-col and mask-col (in the case of App-AC) in the table. Query 9 shows the transformation of
Query 1 issued by the same user under DBMask-PER scenario using DB-AC mechanism. The cloud

TRANSACTIONS ON DATA PRIVACY 9 (2016)

206 Muhammad I Sarfraz, Mohamed Nabeel, Jianneng Cao, Elisa Bertino

SELECT ps_partkey-enc, ps_partkey-grp,

ps_supplycost-grp, ps_supplycost-enc,

ps_availqty-enc, ps_availqty-grp

FROM partsupp ps, supplier s, nation n

WHERE ps_suppkey-trap = s_suppkey-trap

AND s_nationkey-trap = n_nationkey-trap

AND n_name-com = PPKC.GenTrapDoor(‘Germany’)

AND ps_partkey-grp LIKE %G2%

AND ps_supplycost-grp LIKE %G2%

AND ps_availqty-grp LIKE %G2%

AND UDF_Mask(ps_partkey-mask,G2,R)

AND UDF_Mask(ps_supplycost-mask,G2,R)

AND UDF_Mask(ps_availqty-mask,G2,R)

GROUP BY ps_partkey-com

SELECT ps_supplycost-enc,

ps_supplycost-grp, ps_availqty-enc,

ps_availqty-grp

FROM partsupp ps, supplier s, nation n

WHERE ps_suppkey-trap = s_suppkey-trap

AND s_nationkey-trap = n_nationkey-trap

AND n_name-com =

PPKC.GenTrapDoor(‘Germany’) AND

ps_supplycost-grp LIKE %G2%

AND ps_availqty-grp LIKE %G2%

AND UDF_Mask(ps_supplycost-mask,G2,R)

AND UDF_Mask(ps_availqty-mask,G2,R)

SELECT SUM(ps_supplycost-enc * ps_availqty-enc) AS value

FROM [R1]

HAVING SUM(ps_supplycost-enc * ps_availqty-enc) > (

SELECT SUM(ps_supplycost-enc * ps_availqty-enc) * 0.1

FROM [R2])

ORDER BY value DESC;

SUBQUERY 1 SUBQUERY 2

SERVERSQL [R1]
SERVERSQL [R2]

Filter & Rewrite

PROXYSQL

DecryptDecrypt

Result

Filter & Rewrite

Figure 3: Query 10 execution plan (Query 11 from TPC-H)

server returns encrypted row 4 to the proxy. The decryption mechanism of the returned results is as
explained above.

We now illustrate the processing of complex queries through the filtering-refining approach by call-
ing the SECUREQUERYPLAN algorithm on subqueries of an original query recursively to output the
final result. A user having the attributes “role = doctor” executes Query 10 with App-AC mecha-
nism under DBMask-PER scenario (Query 11 from TPC-H benchmark) through the proxy server.
The proxy determines that the user belongs to G2. Figure 3 shows the execution plan of Query 10.
Each subquery is filtered (e.g. SUM), rewritten (e.g. the joining columns are replaced with trap-
col’s), columns included in expressions that cannot be computed on the server are projected (e.g.
ps supplycost * ps availqty) and then the expressions are computed on the server. The intermediate
results are then decrypted and populated at the proxy where the original query is executed and the
results are returned.

Query 10:
SELECT ps partkey, SUM(ps supplycost * ps availqty)

AS value
FROM partsupp ps, supplier s, nation n
WHERE ps suppkey = s suppkey AND

s nationkey = n nationkey AND
n name = ’Germany’

GROUP BY ps partkey
HAVING SUM(ps supplycost * ps availqty) > (
SELECT SUM(ps supplycost * ps availqty) * 0.1
FROM partsupp, supplier, nation
WHERE ps suppkey = s suppkey AND

s nationkey = n nationkey AND
n name = ’Germany’)

ORDER BY value ASC

TRANSACTIONS ON DATA PRIVACY 9 (2016)

DBMask: Fine-Grained Access Control on Encrypted Relational Databases 207

6.6 Handling Change in Dynamics
6.6.1 User Dynamics

When users are added or revoked, or attributes of existing users change, the user dynamics of the
system change. This requires changing the underlying constructs. Since DBMask utilizes AB-GKM
scheme, these changes are performed transparently to other users in the system. When a new identity
attribute for a user is added to the system, the data owner simply adds the corresponding secret to
the user-secret database. Similarly, when an existing attribute for a user is revoked from the system,
the data owner simply removes the corresponding secret from the user-secret database. In either
scenario, the data owner recomputes the affected public information tuples and requires both the
proxy server and the cloud server to update the data. Notice that unlike traditional symmetric key
based systems, DBMask does not need to re-key existing users and they can continue to use their
existing secrets. Since no re-keying is performed, the encrypted data in the database remains the
same even after such changes. Therefore, DBMask can handle very large databases even when the
user dynamics change.

Example 4: Assume that a user having the attribute “role = doctor” is added to the system. This
affects only the group G2. The data owner executes the AB-GKM.Re-Key operation with the same
symmetric key k2 as the group key to generate the new public information PI ′2. The proxy and the
cloud server are updated with the new secret and the new public information respectively. Notice
that this change affects neither the secrets issued to other users nor the public information related to
other groups of which the new user is not a member.

6.6.2 ACP Dynamics

When an ACP is being updated or deleted, the data resulting from access control (data-col’s, label-
col’s and mask-col’s) need to be updated in order to prevent unauthorized access. The following
steps are taken when updating or deleting an ACP:

• the columns in the view associated with the ACP are updated in the following manner:

UPDATE view SET data-col = Ek0
(data-col), label-col = G0, mask-col = ‘A.....’;

• if the DB-AC mechanism is used, the groups associated with the ACP are revoked privileges
(reflective of permission(s) in the ACP) on the view using the revoke SQL statement.

• the view associated with the ACP and the trigger associated with the view are deleted.

In the case where an ACP is being updated, a new view reflecting the updated ACP is created and
a trigger is associated with the view as explained in Section 6.4.

7 Experiments
This section evaluates the performance overhead and the functionality of our prototype implementa-
tion. We implemented DBMask in C++ on top of Postgres 9.1 while not modifying the internals of
the database itself as all functionality on the cloud server side is implemented using UDF’s. We use
the memory storage engine of MySQL as the in-memory database at the proxy to store the contents
of a query when the execution of a query cannot be completed entirely on the cloud server. The

TRANSACTIONS ON DATA PRIVACY 9 (2016)

208 Muhammad I Sarfraz, Mohamed Nabeel, Jianneng Cao, Elisa Bertino

cryptographic operations are supported by using the NTL library3 while the access control policies
expressed as boolean expressions are converted into DNF using the boolstuff library4. The ‘data-col’
in each table is constructed with a 128-bit block size AES in CBC mode together with a random ini-
tialization vector while the ‘match-col’ is encrypted with a 128 bit key using the underlying PPNC
or PPKC schemes. The experimental setup is run on 3.40 GHz Intel i7-3770 8 core processors with
8 GB of RAM in Ubuntu 12.04 environment.

7.1 Performance Evaluation
We compare the performance of our prototype by running a TPC-H query workload utilizing only
a single group under row-level control with App-AC to evaluate only the encryption/decryption and
comparison schemes. The TPC-H query workload is composed of complex analytical queries with
support for sub-selects, aggregates over expressions, complex expressions in the FROM, WHERE,
GROUP BY, and HAVING clauses. There are 22 queries in total in the workload. The performance
of each query in the TPC-H workload is compared by running the queries on plaintext Postgres
server against running the queries through MONOMI and the proxy of our prototype using the
App-AC mechanism under the DBMask-PER scenario. We refer to the results from the case with-
out the support of SUM operation on the cloud server as DBMask and for the case with support
of SUM operation on the cloud server as DBMask-HOM. Additionally, the performance of select
queries from TPC-H workload is evaluated when equality comparisons are performed using manu-
ally implemented UDFs as is the case in the earlier work of DBMask [21] in contrast to performing
comparisons using the internal equality mechanism of a database, as is the case in the current work.
We refer to the results from earlier work as DBMask-UDF and from current work as DBMask.

Figure 4: Execution time of TPC-H workload running under Postgres, DBMask, DBMask-HOM
and MONOMI with scale factor 10

7.1.1 TPC-H

Figure 4 shows the execution time of all queries in TPC-H supported by both DBMask and MONOMI.
Note that Q13 and Q16 are neither supported by DBMask or MONOMI as the underlying PPKC
scheme does not provide support for keyword matching involving two or more patterns. MONOMI
does not support views and hence cannot run Q15. Additionally, Q21 due to correlating subqueries
times out with both DBMask and MONOMI. For the remaining queries, the results show that in com-
parison to running an unencrypted trace of TPC-H workload on Postgres, there is an overall increase

3http://www.shoup.net/ntl/
4http://sarrazip.com/dev/boolstuff.html

TRANSACTIONS ON DATA PRIVACY 9 (2016)

DBMask: Fine-Grained Access Control on Encrypted Relational Databases 209

in execution time by: 1.73x for DBMask, 2.34x for DBMask-HOM and 1.39x for MONOMI. The
most significant contributing factor to lower performance of DBMask in comparison to MONOMI
is due to larger table scans as DBMask stores multiple encryptions of each column in comparison to
MONOMI which stores only a single encryption of each column with few additional materialized
columns. The tables are larger for DBMask-HOM owing to large ciphertexts under homomorphic
encryption. However, in order to have an objective comparison, one must consider the hidden costs
and limitations associated with various optimization’s by MONOMI. First, MONOMI during the
setup phase takes as input a query workload to determine the encryption schemes of columns and to
materialize any additional columns (e.g. storing encryption of ps supplycost*ps availqty Q11) re-
lated to query operators that cannot be computed on the cloud server. Aside from the cost associated
with the training mechanism in the setup phase, any change in the query workload would require
that the table to be changed is downloaded, decrypted and then re-inserted. In comparison, DBMask
only requires the data owner to select the encryption schemes during the setup phase and a change
in query workload would have no effect on the database design. Second, MONOMI uses a packing
scheme that makes it possible to pack multiple values from a single row into one ciphertext for that
row in order to reduce ciphertext expansion and space overhead. However, the packing mechanism
significantly complicates the SQL UPDATE operation where only a subset of the values packed
into one ciphertext need to be updated. DBMask would not significantly benefit from the pack-
ing scheme as it provides support for SQL UPDATE operations as shown with TPC-C workload
in [21]. We consider an increase in the execution time by 1.73x in comparison to plaintext Postgres
for complex queries by DBMask to be modest considering the gains in confidentiality. In terms of
space utilization, MONOMI incurs a smaller overhead (1.7x) in comparison to DBMask (3.9x) and
DBMask-HOM (5.7x). The space over head imposed by DBMask is primarily due to the storage of
multiple encryptions of the same column so as to support a variety of SQL operations over encrypted
data. In addition, metadata e.g. storing Public Information (PI) to generate keys, and access control
policies and triggers for content management also contribute towards the additional space overhead
imposed by DBMask. To assess the computational resources utilized by the proxy, we assess the
processing time intervals for the queries in TPC-H workload with DBMask at the cloud server and
at the proxy. The average processing time for a query on the cloud server is 107s in comparison to
51s on the proxy. It can be noted that the average time added by the proxy is less than one third
of the total processing time. The breakdown of the time added by the proxy is as follows: 16%
for encryption/decryption, 26% for query rewriting and 58% for in-memory processing. The proxy
utilizes storage space of 318MB, contributed mainly by the in-memory database. It can be noted that
the computational and storage requirements for the proxy are small.

Figure 5: Execution time of Q10 with varying scale factors

TRANSACTIONS ON DATA PRIVACY 9 (2016)

210 Muhammad I Sarfraz, Mohamed Nabeel, Jianneng Cao, Elisa Bertino

Since the performance of queries heavily depends on the number of rows and their content, it is
interesting to see how the performance evolves given different scale factors. Figure 5 shows the
execution time of Q10 with varying scale factors. For DBMask as shown in Figure 5, execution
time increases linearly with increasing table size. However, for DBMask-UDF, query execution
time increases exponentially with increasing table size. The reason being that calling manually
implemented UDFs for equality comparisons is much slower than the internal equality mechanisms
for which a database is optimized and DBMask makes use of.

7.2 Functional Evaluation

We have also carried out experiments using a Policy Simulator (PS) on TPC-C query workload and
a web based scientific application called Computational Research Infrastructure for Science (CRIS)
in order to analyze the access control functionality of our prototype. The PS generates random
ACP’s using one attribute condition (a1 = x where a1 is the attribute condition and x is a set of
random values) and attaches the ACP’s to the tables in TPC-C using row level access control under
DBMask-PER scenario with both App-AC and DB-AC mechanism’s. Additionally, for the DB-
AC mechanism, the PS generates database accounts for all groups generated by random ACP’s. We
study the performance of the TPC-C workload by encoding the queries and evaluating the throughput
and the average encryption/decryption time with varying group sizes. We also evaluate the overhead
imposed when user dynamics and ACP dynamics change for the DB-AC mechanism with varying
group sizes and table sizes.

CRIS [13] is a web based application providing an easy to use system for managing and sharing
scientific data. The data in the form of projects, experiments and jobs residing in CRIS is of sensitive
nature and hence must be protected from unauthorized usage. To test the functionality of DBMask,
we select a workspace which acts as a container for all activities and data to be managed by a single
group of scientists consisting of 19 users. We define four ACP based on six attribute conditions over
user identity attributes that capture the access control requirements of this particular workspace in
CRIS. The users are arranged into groups and each group is assigned a randomly chosen secret using
AB-GKM. To evaluate the performance overhead imposed by DBMask and study the influence of
access control using App-AC mechanism, we run plaintext queries on Postgres and run the same
queries on DBMask at different granularities of access control, namely column level, row level and
cell level. The CRIS database has 87 tables with 298 columns in total.

 0

 1000

 2000

 3000

 4000

 5000

 100 150 200 250 300 350 400 450 500

Q
ue

rie
s/

se
c

Group Size

Postgres App-AC DB-AC

(a) Throughput of TPC-C workload with varying num-
ber of groups under App-AC and DB-AC mechanism’s

 0

 5

 10

 15

 20

 25

 30

 100 150 200 250 300 350 400 450 500

Ti
m

e
(m

s)

Group Size

Encryption Decryption

(b) Average encryption/decryption time with varying
number of groups

Figure 6: Effect on throughput and encryption/decryption with varying number of groups.

TRANSACTIONS ON DATA PRIVACY 9 (2016)

DBMask: Fine-Grained Access Control on Encrypted Relational Databases 211

7.2.1 Policy Simulator

Figure 6a shows the effect on throughput under both the App-AC and DB-AC mechanism’s. With
increasing number of groups, the overall throughput is lower with App-AC by 40%-49% and by
37%-52% with DB-AC. The DB-AC mechanism performs better for smaller number of groups in
comparison to App-AC as the DB-AC mechanism requires less disk space, performs fewer com-
parisons and uses the native mechanism of the DBMS for enforcement. However, App-AC scales
better as the performance of DB-AC deteriorates with increasing number of groups. Fig 6b shows
the average time to encrypt a query for an INSERT query operation and the average time to de-
crypt a row returned from a SELECT query operation with varying group sizes. The encryption
mechanism is efficient and remains constant with increasing number of groups as the data is always
initially inserted using the data owner’s group key. In the case of decryption, the time to decrypt
increases linearly with increasing number of groups as the key derivation process using AB-GKM
scheme becomes more time consuming.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 100 150 200 250 300 350 400 450 500

Ti
m

e
(s

)

Group Size

User Add ACP Delete ACP Update

(a) Overhead imposed by change in user and ACP dy-
namics with varying number of groups

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 200 300 400 500 600 700 800 900 1000

Ti
m

e
(s

)

Database Size (MB)

User Add ACP Delete ACP Update

(b) Overhead imposed by change in user and ACP dy-
namics with varying database size under DB-AC mech-
anism

Figure 7: Overhead imposed by change in user and ACP dynamics

Figure 7a shows the overhead for change in user and ACP dynamics with increasing group size.
For the case of adding/revoking users, the overhead is an aggregate of the time required to run the
ReKey algorithm of AB-GKM and updating the rows of Public Info table on the cloud server. The
overhead increases with increasing group size due increase in computational complexity of ReKey
algorithm of AB-GKM. For the case of ACP dynamics, deleting a ACP incurs a lower overhead
than an update since an update to a ACP requires deleting a ACP and then creating a new ACP. The
overhead for change in ACP dynamics is an aggregate of the time required to update the data affected
by the change in ACP revoking access to the affected group(s), deleting the view corresponding to
the ACP and removing the trigger attached to this view. There is additional overhead for an update
to ACP where a new view corresponding to the updated policy is created and a trigger is attached
to this view. Increase in group size does not have an impact on the overhead imposed by change in
ACP dynamics. Figure 7b shows the overhead for change in user and ACP dynamics with increasing
database size with fixed group size. It can be noted that there is no impact on change in user dynamics
with increase in table size. However, the overhead imposed by updating/deleting an ACP increases
linearly with increase in table size. The reason being that the data affected by change to an ACP
requires updating of large number of rows (for delete and update to ACP) and table scans for creating
a new view (only for an update to ACP).

TRANSACTIONS ON DATA PRIVACY 9 (2016)

212 Muhammad I Sarfraz, Mohamed Nabeel, Jianneng Cao, Elisa Bertino

Figure 8: Throughput comparison of Sylvie’s Workspace at row level access control
7.2.2 CRIS

Figure 8 shows the effect on throughput by running CRIS on Postgres in comparison to DBMask with
the underlying scenario DBMask-PER. Each HTTP request by a logged-in user consists of multiple
queries in order to allow a user to create, read, update and/or delete a project(s), experiment(s) or
job(s). The results show that there is a loss of throughput by 64% for column level, 36% for row level
and 79% for cell level access control with DBMask and a logged-in user is only able to access objects
it is permitted. We consider this to be a reasonable overhead considering the gains in confidentiality
and privacy. The finer granularity of row level over column level results in better performance as
row level consumes less disk space and is able to take advantage of indexing to speed table scans.
Our scheme is best suited for row level access control.

8 Conclusion

In this paper, we proposed DBMask, a novel solution that supports cryptographically enforced fine-
grained access control, including row level and cell level access control, with support for enforcing
CRUD operations when evaluating SQL queries on encrypted relational data. Additionally, DB-
Mask provides support for enforcement of access control both through an application and internally
through a database using a single access control model and attribute based group key management
scheme demonstrating the expressiveness and the flexibility of DBMask. DBMask introduces the
idea of splitting fine-grained access control and predicate matching per each cell. The choice of
predicate matching technique used is configurable so that different techniques can be plugged in de-
pending on the security requirements. Our experimental results show that DBMask is efficient and
overhead due to encryption and access control is low.

As future work, we plan to extend DBMask to study query workload patterns and relational oper-
ations to further optimize the support for encrypted query processing. We also plan to investigate
the feasibility of implementing the current architecture into the hybrid cloud model where certain
resources are managed in a private cloud and others externally on public cloud.

Acknowledgment

The work reported in this paper has been partially supported by the Purdue Cyber Center and by the
National Science Foundation under grant CNS-1111512.

TRANSACTIONS ON DATA PRIVACY 9 (2016)

DBMask: Fine-Grained Access Control on Encrypted Relational Databases 213

References

[1] A. Arasu, S. Blanas, K. Eguro, M. Joglekar, R. Kaushik, D. Kossmann, R. Ramamurthy, P. Upadhyaya,
and R. Venkatesan. Secure database-as-a-service with cipherbase. In SIGMOD 2013, pages 1033–1036,
New York, NY, USA. ACM.

[2] M. R. Asghar, G. Russello, B. Crispo, and M. Ion. Supporting complex queries and access policies for
multi-user encrypted databases. In CCSW 2013, pages 77–88.

[3] S. Bajaj and R. Sion. Trusteddb: A trusted hardware based database with privacy and data confidentiality.
In SIGMOD 2011, pages 205–216, New York, NY, USA. ACM.

[4] S. Berkovits. How to broadcast a secret. In EUROCRYPT 1991, pages 535–541.

[5] E. Bertino. Data protection from insider threats. Synthesis Lectures on Data Management, 4(4):1–91,
2012.

[6] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based encryption. In SP 2007, pages
321–334, Washington, DC, USA. IEEE Computer Society.

[7] A. Boldyreva, N. Chenette, and A. O’Neill. Order-preserving encryption revisited: Improved security
analysis and alternative solutions. In CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science,
pages 578–595. Springer Berlin Heidelberg, 2011.

[8] J. Camenisch, M. Dubovitskaya, and G. Neven. Oblivious transfer with access control. In CCS 2009,
pages 131–140, New York, NY, USA. ACM.

[9] G. Chiou and W. Chen. Secure broadcasting using the secure lock. IEEE TSE, 15(8):929–934, Aug 1989.

[10] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption: Improved defi-
nitions and efficient constructions. In CCS 2006, pages 79–88, New York, NY, USA. ACM.

[11] E. Damiani, S. D. C. di Vimercati, S. Jajodia, S. Paraboschi, and P. Samarati. Balancing confidentiality
and efficiency in untrusted relational dbmss. In CCS, pages 93–102, 2003.

[12] M. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption over the integers.
In H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages
24–43. Springer Berlin Heidelberg.

[13] E. Dragut, P. Baker, J. Xu, M. Sarfraz, E. Bertino, A. Madhkour, R. Agarwal, A. Mahmood, and S. Han.
Cris: Computational research infrastructure for science. In IRI 2013, pages 301–308.

[14] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC 2009, pages 169–178, New York,
NY, USA. ACM.

[15] H. Hacigümüs, B. R. Iyer, C. Li, and S. Mehrotra. Executing sql over encrypted data in the database-
service-provider model. In SIGMOD 2002, pages 216–227.

[16] B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for range queries. In VLDB 2004, pages
720–731.

[17] M. Nabeel and E. Bertino. Poster. towards attribute based group key management. In CCS 2011, pages
821–824.

[18] M. Nabeel and E. Bertino. Attribute based group key management. Transactions on Data Privacy,
7(3):309–336, 2014.

[19] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT
1999, pages 223–238.

[20] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan. CryptDB: protecting confidentiality
with encrypted query processing. In SOSP 2011, pages 85–100.

[21] M. I. Sarfraz, M. Nabeel, J. Cao, and E. Bertino. Dbmask: Fine-grained access control on encrypted
relational databases. In CODASPY 2015, pages 1–11.

[22] A. Shamir. How to share a secret. The Communication of ACM, 22:612–613, November 1979.

[23] N. Shang, M. Nabeel, F. Paci, and E. Bertino. A privacy-preserving approach to policy-based content

TRANSACTIONS ON DATA PRIVACY 9 (2016)

214 Muhammad I Sarfraz, Mohamed Nabeel, Jianneng Cao, Elisa Bertino

dissemination. In ICDE 2010, pages 944–955.

[24] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted data. In SP 2000,
pages 44–55.

[25] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich. Processing analytical queries over encrypted data.
In PVLDB 2013, pages 289–300. VLDB Endowment.

[26] S. Wang, D. Agrawal, and A. El Abbadi. A comprehensive framework for secure query processing on
relational data in the cloud. In SDM 2011, pages 52–69.

[27] W. K. Wong, B. Kao, D. W. L. Cheung, R. Li, and S. M. Yiu. Secure query processing with data
interoperability in a cloud database environment. In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pages 1395–1406. ACM, 2014.

[28] S. Yu, C. Wang, K. Ren, and W. Lou. Attribute based data sharing with attribute revocation. In ASIACCS
2010, pages 261–270, New York, NY, USA. ACM.

TRANSACTIONS ON DATA PRIVACY 9 (2016)

