
TRANSACTIONS ON DATA PRIVACY 9 (2016) 101–130

pCLSC-TKEM: a Pairing-free Certificateless
Signcryption-tag Key Encapsulation Mech-
anism for a Privacy-Preserving IoT
Seung-Hyun Seo∗, Jongho Won∗∗, Elisa Bertino∗∗

∗Department of Mathematics, Korea University Sejong Campus 2511 Sejong-ro, Sejong City 30019, KOREA.
∗∗Computer Science Department, Purdue University, West Lafayette, IN, 47907, USA.

E-mail: crypto77@korea.ac.kr, won12@purdue.edu, bertino@purdue.edu

Received 1 October 2015; received in revised form 15 March 2016; accepted 1 May 2016

Abstract. Certificateless Signcryption Tag Key Encapsulation Mechanism (CLSC-TKEM) is an effec-
tive method for simultaneously providing key encapsulation and a digital signature on the tag. It
has applications in several security services such as communication confidentiality, integrity, authen-
tication, and non-repudiation. Moreover, because CLSC-TKEM is based on certificateless public key
cryptography (CL-PKC), it has the advantage of not requiring public key certificates. In addition it
does not suffer from the key escrow problem which is instead a major drawback of identity-based
public key cryptography (ID-PKC). Unfortunately, current constructions of CLSC-TKEM rely on the
use of bilinear pairing-based operations that are computationally very expensive for small IoT de-
vices. In this paper, we present a new construction of CLSC-TKEM that does not require bilinear
pairing operations. We refer to our new construction on pairing-free Certificateless Signcryption Tag
Key Encapsulation Mechanism (pCLSC-TKEM). We also provide a simple construction for pairing-
free certificateless hybrid signcryption by combining pCLSC-TKEM with a data encapsulation mech-
anism (DEM). We provide a security model for pCLSC-TKEM. Then, we prove that our pCLSC-TKEM
is secure against both an adaptively chosen ciphertext attack and existential forgery in the random
oracle model. We have implemented our pCLSC-TKEM construction and previous pairing-based
CLSC-TKEM constructions in order to compare their performance. Our experimental results demon-
strate that pCLSC-TKEM is much more efficient that previous pairing-based CLCS-TKEM construc-
tions.

Keywords. Certificateless Public Key Cryptography, Key Encapsulation Mechanism, Signcryption,
Elliptic Curve Cryptography

∗This work was supported by Purdue Cyber Center, by the US National Science Foundation under grant CNS-
1111512, and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP)
(No.2015R1C1A1A01052491).

101

102 Seung-Hyun Seo, Jongho Won, Elisa Bertino

1 Introduction

The development of powerful sensor technology and embedded systems is making possi-
ble a tight integration between the physical world and the cyber world, resulting in what
is called the Internet-of-Things (IoT). IoT will enable ground-breaking applications, includ-
ing personalized and preventive healthcare, smart grid and smart manufacturing, smart
cities, environment protection, precision agriculture, and emergency management. How-
ever as in many such applications, sensors and embedded devices are deployed to collect
and transmit data from the environments, privacy is a critical issue. Recent projects and
analyses, such as Open Web Application Security Project (OWASP) IoT Top 10 Vulnera-
bilities Project [17], have shown that IoT systems have insufficient authentication, lack of
encryption, and also raise major privacy concerns. Addressing privacy in IoT is challeng-
ing and requires developing and combining different security techniques to assure data
confidentiality. However, even though many applicable such techniques exist, they need
to be tailored to small heterogeneous devices, such as sensors and embedded devices.

One critical fundamental data protection technique is represented by signcryption. Sign-
cryption [25] is considered an efficient approach for supporting both message encryption
and authentication compared to methods involving independently manage encryption and
signing. However, when signcryption is directly applied to messages transmitting large
amounts of data, its performance decreases. Inspired by the concept of hybrid encryption,
Dent [8] proposed the signcryption key encapsulation mechanism (SC-KEM) in order to
improve the practical use of signcryption. By using the SC-KEM construction, a random
session key is first encapsulated by a signcryption key encapsulation algorithm, then the
data is encrypted by this session key using a symmetric encryption algorithm, and finally
both the encapsulated session key and ciphertext are transmitted over the insecure channel.

Then, based on the SC-KEM construction, Bjørstad et al. [4] proposed the concept of sign-
cryption tag-KEM (SC-TKEM), where a tag can be a random string used to refresh a key or
a ciphertext. The most notable feature of SC-TKEM is that it combines key encapsulation
and digital signatures into one efficient algorithm. In comparison to SC-KEM, SC-TKEM
has the added functionality of guaranteeing the authenticity and integrity of the tag. By
combining SC-TKEM with a data encapsulation mechanism (DEM), one can easily con-
struct a hybrid signcryption scheme. However, initial approaches [4, 7, 8] to constructing
SC-KEM and SC-TKEM rely on traditional public key cryptography (PKC). Therefore those
approaches require a certificate management infrastructure for issuing, distributing, stor-
ing and revoking certificates.

In order to eliminate the need for certificate management infrastructures, recent schemes
have been proposed that apply Certificateless Public Key Cryptography (CL-PKC) [1] to
the hybrid encryption techniques [13, 12, 20]. Lippold et al. [13] proposed a direct con-
struction for certificateless key encapsulation (CL-KEM) that uses a certificateless public
key encryption scheme as a KEM. Li et al. [12] proposed a certificateless signcryption tag-
KEM (CLSC-TKEM) scheme that combines the ideas of SC-TKEM and CL-PKC. The main
advantage of CLSC-TKEM is to eliminate the overhead resulting from the certificate man-
agement and the key escrow problem, while maintaining the benefits of SC-TKEM. In CL-
PKC, each user’s complete private key is a combination of a partial private key generated
by a Key Generation Center (KGC) and an additional secret value generated by the user.
Compared to identity-based PKC (ID-PKC) [22], the advantage of CL-PKC is that the KGC
is no longer susceptible to the key escrow problem, because the KGC is not responsible for
the complete user private key. In CLSC-TKEM, the cryptographic operations, such as key
encapsulation based on CL-PKC, can only be performed when a valid user holds both the

TRANSACTIONS ON DATA PRIVACY 9 (2016)

pCLSC-TKEM 103

partial private key and the secret value. Moreover, the special structure of CL-PKC allows
a user to perform the key decapsulation operation of CLSC-TKEM without having to verify
the public key of the sender via a public key certificate. CLSC-TKEM is thus an efficient
scheme, since the key encapsulation and the digital signature functionality are supported
without the need of a certificate management infrastructure.

Several CL-KEM [13] and CLSC-TKEMs [12, 20] have been proposed. However a major
common drawback of all these schemes is that they are constructed based on bilinear pair-
ing operations. CL-KEM [13] requires 3 pairing operations for the decapsulation algorithm.
CLSC-TKEMs [12, 20] require 1 and 5 pairing operations for the encapsulation algorithm
and decapsulation algorithm, respectively. Despite recent advances in implementation
techniques, the computational costs required for pairing operations are still considerably
higher in comparison to standard operations such as point multiplication in elliptic curves
(EC) or modular exponentiation in the finite field. For example, a currently available imple-
mentation of NanoECC [24] libraries, that uses the MIRACL library, takes around 17.93s to
compute one pairing operation and around 1.27s to compute one ECC point multiplication
on a MICA2 (8MHz) mote. Therefore, schemes based on pairing operations are imprac-
tical for application in emerging IoT environments where devices have inherent resource
constraints. Therefore, in order to improve the efficiency of current CLSC-TKEMs so to be
suitable for resource-constrained IoT devices, it is necessary to investigate how the CLSC-
TKEM can be constructed without the use of bilinear paring operations.

1.1 Our Contributions

Privacy is a critical issue in IoT. In order to address privacy, data confidentiality is critical
which in turn requires suitable data encryption mechanisms [11]. Such mechanisms must
be highly efficient in order to run on a large variety of devices with limited computing
capacity. In this paper, to address such requirement, we propose a novel pairings-free Cer-
tificateless Signcryption Tag-Key Encapsulation Mechanism (pCLSC-TKEM) that does not
use bilinear pairing operations. We also present a simple construction for a pairing-free
certificateless hybrid signcryption (pCL-HSC) scheme by combining pCLSC-TKEM with a
data encapsulation mechanism (DEM). Then, we provide the formal security proof of our
pCLSC-TKEM against both an adaptively chosen ciphertext attack and existential forgery.
Since our pCLSC-TKEM is designed based on the elliptic curve cryptography (ECC), it
inherits all the advantages of using ECC keys defined on an additive group with 160-bit
length, which provides the same security of RSA keys with 1024-bit length. In order to
show the efficiency of our scheme, we implemented both our scheme and current pairing-
based certificateless hybrid encryption techniques such as CL-KEM [13] and CLSC-TKEMs
[12, 20] on a PC, a Raspberry Pi 2 model B [21], and an Android smartphone platform and
performed an experimental comparison among all the implemented schemes. Compared
to previous schemes, pCLSC-TKEM dramatically reduces the computational overhead by
eliminating the pairing operations. On the PC platform, the measured running time of
our pCLSC-TKEM is at least 5.6 times faster than the running times of other schemes for
RSA 1024-bit security. Our scheme is also at least 3.3 times faster than other schemes for
RSA 3072-bit security. In the Raspberry Pi 2 platform, our scheme is at least 5.9 and 3.5
times faster than other schemes for RSA 1024-bit and 3072-bit security, respectively. More-
over, on the Android smartphone platform, our pCLSC-TKEM is at least 2.6 times faster
for RSA 1024-bit security and at least 15.3 times faster for RSA 2048-bit security than the
other schemes, respectively. pCLSC-TKEM is significantly more efficient when sharing
symmetric encryption keys for secure end-to-end communications, and in supporting non-

TRANSACTIONS ON DATA PRIVACY 9 (2016)

104 Seung-Hyun Seo, Jongho Won, Elisa Bertino

repudiation services.

1.2 Organization

The remainder of this paper is organized as follows: In Section 2, we review previous work
related to pCLSC-TKEM. In Section 3, we briefly present an overview of ECC and then in-
troduce the definition of pCLSC-TKEM and DEM, and a security model for pCLSC-TKEM.
In Section 4, we introduce our pairing-free Certificateless Signcryption Tag-KEM and show
a construction of pairing-free Certificateless Hybrid Signcryption. In Section 5, we provide
a formal security proof of pCLSC-TKEM. In Section 6, we report the experimental results
and performance measurements of pCLSC-TKEM, including the comparison with other
schemes. In Section 7, we outline our conclusions.

2 Related Work

In this section, we thoroughly review previous work related to our pCLSC-TKEM. Begin-
ning from its introduction by Zheng [25], the signcryption scheme has been considered
as a very efficient method for supporting both message encryption and digital signatures
compared to conventional approaches based on the independent encryption and signature
of the message. In order to enhance the efficiency and practical use of signcryption, Dent
[7, 8] introduced the concept of the hybrid signcryption scheme. The hybrid signcryption
scheme consists of a signcryption KEM and a signcryption DEM like a usual KEM-DEM
construction of the hybrid technique. However, the unsigncryption algorithm by Dent is
complex due to the need to verify the link between the message and the encapsulated key.
He also proposed the use of a signcryption KEM as a key agreement mechanism for two
parties. However, the general signcryption KEM does not provide any form of authentica-
tion and does not guarantee key freshness. So, it is susceptible to known key attacks. Later
on, Bjørstad et al. [4] proposed a signcryption tag-KEM, where a tag (e.g., a random string
used to refresh a key) is taken as input. Signcryption tag-KEMs may be combined with a
regular DEM (e.g. standard symmetric encryption algorithm such as AES) to build a hybrid
signcryption scheme. Signcryption tag-KEMs also automatically support the transmission
of the associated data along with messages through the tag. Since the encapsulation acts as
a signature on the input tag, the authenticity and integrity of both the ciphertext and the
associated data is guaranteed. Due to the nature of the components that provide authen-
tication and freshness, the signcryption tag-KEM can be utilized as a practical and simple
key agreement protocol. So far, several hybrid signcryption schemes and signcryption tag-
KEMs have been proposed [7, 8, 4, 2, 9, 18]. A formal security model for tag-KEM was
given by Dent [7]. However, since these approaches rely on a traditional PKI they require
the management of certificates. Identity-based Public Key Cryptography (ID-PKC) [22]
eliminates the dependency on explicit certificates. However, it suffers from the key escrow
problem because the Key Generation Center (KGC) stores the private keys of all the users.
In order to address these drawbacks, Al-Riyami et al. [1] introduced Certificateless Public
Key Cryptography (CL-PKC), that separates the user’s private key into two parts: one is a
partial private key generated by the KGC, and the other one is a secret value selected by
the user. CL-PKC is able to address the key escrow problem because the KGC is unable to
access the user’s secret value. Only when a valid user holds both the partial private key
and the secret value, the cryptographic operations, such as decryption or digital signature,
can be performed.

TRANSACTIONS ON DATA PRIVACY 9 (2016)

pCLSC-TKEM 105

More recently, researchers have investigated the application of CL-PKC to hybrid tech-
niques [13, 12, 20]. Lippold et al. [13] first presented a direct construction for certificateless
key encapsulation (CL-KEM). They use a certificateless public key encryption scheme as
a KEM and claimed that their CL-KEM is secure against chosen ciphertext attacks (CCA).
However, Selvi et al. identified several security weaknesses of the Lippold et al.’s scheme
in [20]. Li et al. [12] were the first to construct a hybrid signcryption scheme which is truly
certificateless by using a certificateless signcryption tag-KEM and a DEM. The concept of
certificateless hybrid signcryption evolved by combining the ideas of signcryption based
on tag-KEM and certificateless cryptography. Li et al. [12] claimed that their scheme is
secure against adaptive chosen ciphertext attacks and that it is existentially unforgeable.
However, such schemes were proven to be existentially forgeable and therefore the defini-
tion of the generic scheme is insufficient. Selvi et al. [20] showed the security weaknesses
of Li et al.’s scheme [12] and presented an improved certificateless hybrid signcryption
scheme. However, existing certificateless based hybrid techniques such as CL-KEM [13]
and CLSC-TKEM [12, 20] employ bilinear pairing operations. Despite recent advances in
implementation techniques, the computational costs required for pairing operations are
still considerably higher in comparison to standard operations such as ECC point multi-
plication. In this paper, we present the first concrete construction of CLSC-TKEM without
bilinear pairing operations. In Section 6, we show a performance comparison between our
construction and existing pairing-based certificateless hybrid techniques. By removing the
pairing based operations, we dramatically reduce the computational overheads of CLSC-
TKEM in comparison to [13, 12, 20].

3 Preliminaries

3.1 Elliptic Curve Cryptography

The security of Elliptic Curve Cryptography (ECC) [14] is based on the hardness of solving
the Discrete Logarithm Problem (DLP) called Elliptic Curve Discrete Logarithm Problem
(ECDLP). The primary benefit of ECC is a smaller key size, reducing storage and trans-
mission requirements. For example, a 160-bit ECC is considered to be as secure as 1024-bit
RSA key. Let Fq be the field of integers of modulo a large prime number q. A non-singular
elliptic curve Eq(a, b) over Fq is defined by the following equation:

y2 = (x3 + ax+ b) mod q, (1)

where a, b, x, y ∈ Fq and 4a3 + 27b2 mod q 6= 0. A point P (x, y) is an elliptic curve point
if it satisfies equation 1. The point Q(x,−y) is called the negative of P , i.e. Q = −P . Let
P (x1, y1) and Q(x2, y2)(P 6= Q) be two points in Equation (1), the line l (tangent line to
equation (1) if P = Q) joining the points P and Q intersects the curve defined by equation
(1) at −R(x3,−y3) and the reflection of −R with respect to x-axis is the point R(x3, y3),
i.e. P + Q = R. The points Eq(a, b) together with a point O (called point at infinity) form
an additive cyclic group Gq , that is, Gq = (x, y) : a, b, x, y ∈ Fq and (x, y) ∈ Eq(a, b) ∪ O of
prime order q. The scalar point multiplication on the groupGq can be computed as follows:
kP = P + P + . . .+ P (k times). A point P has order n if n is the smallest positive integer
such that nP = O.

TRANSACTIONS ON DATA PRIVACY 9 (2016)

106 Seung-Hyun Seo, Jongho Won, Elisa Bertino

3.2 Definitions

[Definition 1] The Pairing-free Certificateless Signcryption Tag-KEM (pCLSC-TKEM)
is a 8-tuple pCLSC-TKEM=(SetUp, SetUserKey, PartialPrivateKeyExtract, SetPrivateKey,
SetPublicKey, SymmetricKeyGen, Encapsulation, Decapsulation). The description of each
probabilistic polynomial time algorithm is as follows.

1. SetUp: The Key Generation Center (KGC) runs this algorithm, which takes a security
parameter k as input and returns the system parameters params and a master secret
key msk for the KGC. We assume that params are publicly available to all users
whereas msk is kept secret by the KGC.

2. SetUserKey: This algorithm is run by each user A to generate a secret value and the
corresponding public value for oneself. It takes params and an identity IDA of the
user A as inputs, and returns the user’s secret value xA and a corresponding public
value PA.

3. PartialPrivateKeyExtract: The KGC runs this algorithm to generate the partial private
key of the users. This algorithm takes params, msk, an identity IDA and a public
value PA of A as inputs. It returns the partial private key dA and the partial public
keyRA of userA. The KGC runs this algorithm for each user, and we assume that the
partial private key is securely transmitted to the user.

4. SetPrivateKey: This algorithm is run by each user A to generate the full private key.
It takes params, the partial private key dA and the secret value xA of IDA as inputs.
It returns the full private key skA for A.

5. SetPublicKey: This algorithm is run by each user A to generate the full public key. It
takes params and a user’s secret value xA, a user’s public value PA, a partial private
key RA as the inputs. It returns the full public key pkA to A as the output.

6. SymmetricKeyGen: This algorithm is run by the senderA to obtain the symmetric key
K and an internal state information ω, which is not known to the receiver B. It takes
the sender’s identity IDA, a full public key pkA, a full private key skA, the receiver’s
identity IDB and a full public key pkB as inputs. It returns to A the symmetric key K
and ω.

7. Encapsulation: This algorithm is executed by the senderA to obtain the encapsulation
ϕ. It takes a state information ω corresponding to K and an arbitrary tag τ as inputs.
It returns the encapsulation of K, ϕ.

8. Decapsulation: This algorithm is executed by the receiver B to obtain the key K en-
capsulated in ϕ. It takes the encapsulation ϕ, a tag τ , the sender’s identity IDA, a full
public key pkA, the receiver’s identity IDB , a full public key pkB and a full private
key skB as inputs. It returns the symmetric keyK or a symbol⊥ indicating an invalid
encapsulation with respect to the validity of ϕ as the output.

The following consistency constraint is defined. Let (K,ω) = SymmetricKeyGen(params,
IDA, pkA, skA, IDB , pkB) andϕ = Encapsulation(ω, τ). ThenK = Decapsulation(params,
IDA, pkA, IDB , pkB , skB , ϕ, τ).

TRANSACTIONS ON DATA PRIVACY 9 (2016)

pCLSC-TKEM 107

[Definition 2] Data Encapsulation Mechanism (DEM) is a symmetric encryption scheme,
DEM = (ENC, DEC), which consists of the following algorithms [4].

1. ENC: A symmetric encryption algorithm that takes a symmetric key K ∈ K and a
message m ∈ {0, 1}∗ as inputs, and returns a ciphertext c ∈ {0, 1}∗, where K is the
given key space of DEM.

2. DEC: A symmetric decryption algorithm which takes a symmetric key K ∈ K and a
ciphertext c ∈ {0, 1}∗ as inputs, and returns a message m = DECK(c).

For soundness, the symmetric encryption algorithm and decryption algorithm should be
each other’s inverse under a fixed keyK. That is,m = DECK(ENCK(m)). For the purposes
of this paper, it is only required that a DEM is secure with respect to indistinguishability
against passive attackers [4].

[Definition 3] The One-sided Gap Diffie-Hellman Problem (OGDH) [10] for a group Gq
with a generator P and a fixed point Q is defined as follows: for x, y ∈ Z∗q , given Q,R,
compute xyP by accessing an One-sided Decision Diffie-Hellman (ODDH) Oracle, where
Q = xP and R = yP .

[Definition 4] The One-sided Decision Diffie-Hellman Oracle (ODDH) [10] for a group
Gq with a generator P and a fixed point Q is an oracle that for any R′, S′ ∈ Gq correctly
answers the question: Is z′ ≡ xy′ (mod p), where x, y′, z′ ∈ Z∗q are integers such that
Q = xP,R′ = y′P, S′ = z′P ?

[Definition 5] The Elliptic Curve Discrete Logarithm Problem (ECDLP) is defined as fol-
lows: given a random instance P,Q, find a number x ∈ Z∗q such that Q = xP .

The security of ECC depends on the hardness of solving ECDLP.

3.3 Security Model for Certificateless Signcryption Tag-KEM

Barbosa et al. [3] were the first to formalize the security model for certificateless signcryp-
tion scheme. Then, Selvi et al. [20] defined the security model for the certificateless sign-
cryption tag-KEM (CLSC-TKEM). We adopted the security model of CLSC-TKEM as that
of pCLSC-TKEM. A pCLSC-TKEM must satisfy confidentiality, that is, indistinguishability
against adaptive chosen ciphertext and identity attacks (IND-CCA2), and unforgeability,
that is, existential unforgeability against adaptive chosen messages and identity attacks
(EUF-CMA). In order to prove the confidentiality and the unforgeability of pCLSC-TKEM,
we must consider two types of adversaries: Type I and Type II. A Type I adversary is a
model of an attacker which is a user of the system but does not possess the KGC’s master
secret key. However, the attacker is able to adaptively replace a users’ public keys with a
valid public keys of its choosing. A Type II adversary models an honest-but-curious KGC
which has knowledge of the KGC’s master secret key. However, it is unable to replace the
users’ public keys. For the confidentiality, we consider two games “IND-pCLSC-TKEM-
CCA2-I” and “IND-pCLSC-TKEM-CCA2-II” where a Type I adversary AI and a Type II
adversary AII interact with their “Challenger C” in these two games, respectively. For
the unforgeability, we consider the two games “EUF-pCLSC-TKEM-CMA-I” and “EUF-
pCLSC-TKEM-CMA-II” where a Type I forger FI and a Type II forger FII interact with

TRANSACTIONS ON DATA PRIVACY 9 (2016)

108 Seung-Hyun Seo, Jongho Won, Elisa Bertino

their “Challenger C” in these two games, respectively. Note that the “Challenger C” keeps
a history of the “query-answers” while interacting with adversaries or forgers. Now we
describe these games below.

3.3.1 Confidentiality

A pCLSC-TKEM satisfies indistinguishability against chosen ciphertext and identity at-
tacks (IND-pCLSC-TKEM-CCA2), if there are no polynomially bounded adversaries AI
andAII that have non-negligible advantages in both IND-pCLSC-TKEM-CCA2-I and IND-
pCLSC-TKEM-CCA2-II games between C and AI , AII , respectively.

1. IND-pCLSC-TKEM-CCA2-I Game: This is the game in which a Type I adversaryAI
interacts with a challenger C. The challenger C runs the SetUp() algorithm to generate
the public parameters params and the master private key msk respectively. C gives
params to AI while keeping msk secret.

Phase I: In Phase I, AI may perform a polynomially bounded number of the follow-
ing queries in an adaptive fashion.

• Extract-Partial-Private-Key queries: AI chooses an identity IDU for an user
U . C first computes (xU , PU) ← SetUserKey(params, IDU) and then computes
DU ← PartialPrivateKeyExtract(params,msk, IDU , PU). Then C sends DU to
AI .

• Extract-Secret-Value queries: AI chooses an identity IDU and requests the se-
cret value of IDU . C computes (xU , PU) ← SetUserKey(params, IDU) and
sends xU to AI . The adversary cannot query any identity for which the cor-
responding public key has been replaced. That is, IfAI has already replaced the
public key of U , then C does not provide the corresponding secret value to AI .

• Request-Public-Key queries: AI presents an identity IDU to C and requests
IDU ’s full public key. C returns the full public key pkU for user IDU by comput-
ing pkU ← SetPublicKey(params, IDU , PU , RU).

• Public-Key-Replacement queries: AI may replace the public key pkU corre-
sponding to the user identity IDU with any value pk′U of AI ’s choice.

• Symmetric Key Generation queries: AI chooses a sender’s identity IDA and a
receiver’s identity IDB . C obtains the private key of the sender, skA from the cor-
responding “query-answer” list. Then, C computes the symmetric keyK and an
internal state information ω by running (K,ω)← SymmetricKeyGen(params, IDA,
pkA, skA, IDB , pkB) and stores ω while keeping the ω secret from the view ofAI .
Finally, C sends the symmetric key K to AI . It is to be noted that C may not ob-
tain the sender’s secret value if the associated public value of the sender A is
replaced. In this case,AI is required to provide the secret value of A to C. We do
not allow queries where IDA = IDB .

• Key Encapsulation queries: AI produces an arbitrary tag τ for sender A. C
checks whether there exists a corresponding ω value. If ω had been previously
stored, then C computes (ϕ) ← Encapsulation(ω, τ), deletes ω and returns ϕ to
AI . Otherwise, C returns ⊥ and terminates.

TRANSACTIONS ON DATA PRIVACY 9 (2016)

pCLSC-TKEM 109

• Key Decapsulation queries: AI produces an encapsulationϕ, a tag τ , the sender’s
identity IDA, the public key pkA, the receiver’s identity IDB and the public key
pkB . C obtains the receiver’s private key skB from the corresponding “query-
answer” list. C returns the keyK by computingK ← Decapsulation(params, IDA,
pkA, IDB , pkB , skB , ϕ, τ). It is to be noted that C may not be aware of the cor-
responding secret value if the associated public value of IDB is replaced. In
this case AI requires to provide the secret value of B to C. We do not allow the
queries where IDA = IDB .

Challenge: At the end of Phase I decided byAI ,AI generates a sender identity IDA∗

and a receiver identity IDB∗ on which AI wishes to be challenged. Here, it is to be
noted that IDB∗ must not be queried to extract a full private key skB∗ in Phase 1.
It is also to be noted that IDB∗ may not be equal to an identity for which both the
public key has been replaced and the partial private key has been extracted. Now,
C computes (K1, ω

∗) ← SymmetricKeyGen(params, IDA∗ , pkA∗ , skA∗ , IDB∗ , pkB∗)
and chooses K0 ∈R K, where K is the key space of the pCLSC-TKEM scheme. Now
C chooses a bit δ ∈R {0, 1} and sends Kδ to AI . AI generates an arbitrary tag τ∗

and sends it to C. C computes (ϕ∗) ← Encapsulation(ω∗, τ∗) and sends ϕ∗ to AI as a
challenge encapsulation.

Phase II: AI can perform a polynomially bounded number of queries adaptively as
in Phase I. However, AI may not extract the full private key for IDB∗ . If the public
key of IDB∗ has been replaced before the challenge phase, AI may not extract the
partial private key for IDB∗ . Moreover, AI may not make a key decapsulation query
on (Kδ, ϕ

∗) under IDA∗ and IDB∗ , unless the public key pkIDA∗ or pkIDB∗ has been
replaced after the challenge phase.

Guess: AI outputs a bit δ′ and wins the game if δ′ = δ.

The advantage of AI is defined as Adv(AI) = |2Pr[δ′ = δ] − 1|, where Pr[δ′ = δ]
denotes the probability that δ′ = δ.

2. IND-pCLSC-TKEM-CCA2-II Game: This is the game in which a Type II adversary
AII interacts with a challenger C. The challenger C runs the SetUp() algorithm to
generate the public parameters params and the master private key msk, respectively.
C gives both params and msk to AII .

Phase I: In Phase I, AII performs a series of queries in an adaptive fashion. The
queries allowed are similar to the queries in the IND-pCLSC-TKEM-CCA2-I game
except that Extract-Partial-Private-Key queries are not included here, because AII
can generate a partial private key by itself because it knows msk.

Challenge: At the end of Phase I decided by AII , AII generates a sender identity
IDA∗ and a receiver identity IDB∗ on which AII wishes to be challenged. Here, it is
to be noted that IDB∗ must not be queried to extract a full private key skB∗ in Phase I.
Now, C computes (K1, ω

∗)←SymmetricKeyGen(params, IDA∗ , pkA∗ , skA∗ , IDB∗ , pkB∗)
and chooses K0 ∈R K, where K is the key space of the pCLSC-TKEM scheme. Now
C chooses a bit δ ∈R {0, 1} and sends Kδ to AII . AII generates an arbitrary tag τ∗

and sends it to C. C computes (ϕ∗) ← Encapsulation(ω∗, τ∗) and sends ϕ∗ to AII as
a challenge encapsulation.

TRANSACTIONS ON DATA PRIVACY 9 (2016)

110 Seung-Hyun Seo, Jongho Won, Elisa Bertino

Phase II: AII can perform a polynomially bounded number of queries adaptively,
again as in Phase I. However, AII may not make Extract-full-Private-Key queries on
IDB∗ . Moreover, AI may not make a key decapsulation query on (Kδ, ϕ

∗) under
IDA∗ and IDB∗ , unless the public key pkIDA∗ or pkIDB∗ has been replaced after the
challenge phase.

Guess: AII outputs a bit δ′ and wins the game if δ′ = δ.

The advantage of AII is defined as Adv(AII) = |2Pr[δ′ = δ] − 1|, where Pr[δ′ = δ]
denotes the probability that δ′ = δ.

3.3.2 Existential Unforgeability

A pCLSC-TKEM scheme satisfies existential unforgeability against an adaptively chosen
message attack (EUF-pCLSC-TKEM-CMA), if no polynomially bounded forgers FI and
FII have a non-negligible advantage in both “EUF-pCLSC-TKEM-CMA-I” and “EUF-pCLSC-
TKEM-CMA-II” games between C and FI , FII respectively:

1. EUF-pCLSC-TKEM-CMA-I Game: This is the game in which a Type I Forger FI in-
teracts with a challenger C. The challenger C runs the SetUp() algorithm to generate
the public parameters params and the master private key msk respectively. C gives
params to FI while keeping the msk secret.

Training Phase: FI may make a polynomially bounded number of queries to random
oracles Hi(0 ≤ i ≤ 3) at any time and C responds as follows:
All the oracles and queries needed in the training phase are identical to the queries
allowed in Phase I of the IND-pCLSC-TKEM-CCA2-I game.

Forgery: A the end of the Training Phase,FI produces an encapsulation 〈τ∗, ϕ∗, IDA∗ ,
IDB∗〉 on a arbitrary tag τ∗, where IDA∗ is the sender identity and IDB∗ is the re-
ceiver identity. Then, FI sends 〈τ∗, ϕ∗, IDA∗ , IDB∗〉 to C. During the Training Phase,
the partial private key for IDA∗ must not be queried and the public key for IDA∗

must not be replaced simultaneously. Moreover ϕ∗ must not be returned by the key
encapsulation oracle on the input (τ∗, ω∗, IDA∗ , IDB∗) during the Training Phase. If
the output of Decapsulation(params, IDA∗ , pkA∗ , IDB∗ , pkB∗ , skB∗ , ϕ

∗, τ∗) is valid,
FI wins the game. The advantage of FI is defined as the probability with which it
wins the EUF-pCLSC-TKEM-CMA-I game.

2. EUF-pCLSC-TKEM-CMA-II Game: This is the game in which a Type II Forger FII
interacts with a challenger C. The challenger C runs the SetUp() algorithm to generate
the public parameters params and the master private key msk, respectively. C gives
params and the master private key msk to FII .

Training Phase: FII may make a polynomially bounded number of queries to ran-
dom oracles Hi(0 ≤ i ≤ 3) at any time and C responds as follows:
All the oracles and queries needed in the training phase are identical to the queries
allowed in Phase I of the IND-pCLSC-TKEM-CCA2-II game.

TRANSACTIONS ON DATA PRIVACY 9 (2016)

pCLSC-TKEM 111

Forgery: A the end of the Training Phase,FII produces an encapsulation 〈τ∗, ϕ∗, IDA∗ ,
IDB∗〉 on a arbitrary tag τ∗, where IDA∗ is the sender identity and IDB∗ is the re-
ceiver identity. Then, FI sends 〈τ∗, ϕ∗, IDA∗ , IDB∗〉 to C. During the Training Phase,
the secret value xA∗ for IDA∗ must not be queried and the public key for IDA∗ must
not be replaced, simultaneously. Moreover, ϕ∗ must not be returned by the key en-
capsulation oracle on the input (τ∗, ω∗, IDA∗ , IDB∗) during the Training Phase. If the
output of Decapsulation(params, IDA∗ , pkA∗ , IDB∗ , pkB∗ , skB∗ , ϕ

∗, τ∗) is valid, FII
wins the game. The advantage of FII is defined as the probability with which it wins
the EUF-pCLSC-TKEM-CMA-II game.

4 Pairing-free Certificateless Signcryption Tag KEM

In this section, we present a novel pairing-free Certificateless Signcryption Tag KEM (pCLSC-
TKEM). Then, we provide an example of how to construct a certificateless hybrid signcryp-
tion by combining pCLSC-TKEM with a DEM.

4.1 A Concrete pCLSC-TKEM

The pCLSC-TKEM scheme consists of the following seven algorithms.

1. Setup

This algorithm takes a security parameter k ∈ Z+ as input, and returns a list of system
parameter Ω and the KGC’s master private key msk. Given k, KGC performs the
following steps:

(a) Choose a k-bit prime q and determine the tuple {Fq, E/Fq, Gq, P}, where the
point P is the generator of Gq .

(b) Choose the master key x ∈ Z∗q uniformly at random and compute the system
public key Ppub = xP .

(c) Choose cryptographic hash functions H0 : {0, 1}∗ × G2
q → {0, 1}∗, H1 : G3

q ×
{0, 1}∗×Gq → {0, 1}n, H2 : Gq×{0, 1}∗×Gq×{0, 1}∗×Gq×{0, 1}∗×Gq → Z∗q ,
and H3 : Gq ×{0, 1}∗×Gq ×{0, 1}∗×Gq ×{0, 1}∗×Gq → Z∗q . Here, n is the key
length of a DEM.

(d) Publish Ω = {Fq, E/Fq, Gq, P, Ppub, H0, H1, H2, H3} as the system’s parameter
and keep the master key x secret.

2. SetUserKey

The entity A with an identity IDA chooses xA ∈ Z∗q uniformly at random as its secret
value and generates the corresponding public key as PA = xAP .

3. PartialPrivateKeyExtract

This algorithm takes the KGC’s master secret key, the identity of an entity and the
system parameter as inputs. It returns the partial private key of the entity. In order to
obtain the partial private key, the entity A sends (IDA, PA) to KGC. KGC the execute
the following steps:

(a) Choose rA ∈ Z∗q uniformly at random and compute RA = rAP .

TRANSACTIONS ON DATA PRIVACY 9 (2016)

112 Seung-Hyun Seo, Jongho Won, Elisa Bertino

(b) Compute dA = rA + xH0(IDA, RA, PA) mod q.

The partial private key of the entity A is dA. The entity can validate its private key by
checking whether dAP = RA +H0(IDA, RA, PA)Ppub holds.

4. SetPrivateKey
The entity A takes the pair skA = (dA, xA) as its full private key.

5. SetPublicKey
The entity A takes the pair pkA = (PA, RA) as its full public key.

6. SymmetricKeyGen
Given the sender (entity A)’s identity IDA, the full public key pkA, the full private
key skA, the receiver (entity B)’s identity IDB , and the full public key pkB as inputs,
the sender executes this symmetric key generation algorithm to obtain the symmetric
key K as follows:

(a) Choose lA, sA ∈ Z∗q uniformly at random and compute U = lAP , V = sAP .
(b) Compute T = sA ·H0(IDB , RB , PB)Ppub + sA ·RB mod q and K = H1(V, T, sA ·

PB , IDB , PB).
(c) OutputK and the intermediate information ω = (lA, U, V, T, IDA, pkA, skA, IDB ,

pkB).

7. Encapsulation
Given a state information ω and an arbitrary tag τ , the sender A obtains the encapsu-
lation ϕ by performing the following steps:

(a) ComputeH = H2(U, τ, T, IDA, PA, IDB , PB),H ′ = H3(U, τ, T, IDA, PA, IDB , PB)
and W = dA + lA ·H + xA ·H ′

(b) Output ϕ = (U, V,W).

8. Decapsulation
Given the encapsulation ϕ, a tag τ , the sender’s identity IDA, full public key pkA,
the receiver’s identity IDB , full public key pkB and full private key skB , the key K is
computed as follows:

(a) Compute T = dB ·V (= (rB+xH0(IDB , RB , PB))·sAP mod q = sA·H0(IDB , RB ,
PB) · Ppub + sA ·RB mod q).

(b) ComputeH = H2(U, τ, T, IDA, PA, IDB , PB) andH ′ = H3(U, τ, T, IDA, PA, IDB ,
PB).

(c) If W · P = RA + H0(IDA, RA, PA) · Ppub + H · U + H ′ · PA, output K =
H1(U, T, xB · V, IDB , PB). Otherwise, output invalid.
The correctness of the above equation is as follows:

W · P = (dA + lA ·H + xA ·H ′) · P
= dA · P + lA · P ·H + xA · P ·H ′
= (rA + xH0(IDA, RA, PA)) · P + U ·H +H ′ · PA
= RA +H0(IDA, RA, PA) · Ppub +H · U +H ′ · PA

TRANSACTIONS ON DATA PRIVACY 9 (2016)

pCLSC-TKEM 113

4.2 A Construction of Pairing-Free Certificateless Hybrid Signcryption

If we combine the pCLSC-TKEM scheme with a DEM, we can construct a pairing-free cer-
tificateless hybrid signcryption (pCL-HSC) scheme. Such pCL-HSC scheme consists of the
following eight algorithms: Setup, SetUser-Key, PartialPrivateKeyExtract, SetPrivateKey,
SetPublic-Key, SymmetricKeyGen, Signcryption and Unsigncryption. Except for the Sign-
cryption and Unsigncryption algorithms, all the algorithms are the same as the algorithms
of pCLSC-TKEM (see Section 4.1). Thus, in this section we only describe the Signcryption
and Unsigncryption algorithms. The Signcryption algorithm consists of the SymmetricKey-
Gen and the Encapsulation algorithms of pCLSC-TKEM, and the ENC algorithm of DEM.
The Unsigncryption algorithm consists of the Decapsulation algorithm of pCLSC-TKEM,
and the DEC algorithm of DEM.

• Signcryption Given the parameter Ω, a message m ∈ {0, 1}∗, the sender A’s identity
IDA, the full public key pkA, the full private key skA, the receiver B’s identity IDB

and the full public key pkB as inputs, the following steps are executed:

1. Compute (K,ω)← SymmetricKeyGen(params, IDA, pkA, skA, IDB , pkB).

2. Compute c← ENCK(m).

3. Compute ϕ← Encapsulation(ω, c).

4. Output the ciphertext (ϕ, c).

• Unsigncryption Given the parameter Ω, a ciphertext (ϕ, c), the sender A’s identity
IDA, full public key pkA, the receiver B’s identity IDB , full public key pkB and full
private key skB as inputs, the following steps are executed:

1. Compute K ← Decapsulation(params, IDA, pkA, IDB , pkB , skB , ϕ, c).

2. If K is invalid, then output ⊥ and stop. Otherwise, compute m← DECK(c).

3. Output the message m.

5 Security Analysis

In this section, we provide the formal security proof for the confidentiality and the existen-
tial unforgeability of our pCLSC-TKEM.

5.1 Confidentiality

Theorem 1. In the random oracle model, the pCLSC-TKEM is IND-CCA2 secure under the as-
sumption that the One-sided Gap Diffie-Hellman (OGDH) problem is intractable.
The Theorem 1 is proved based on Lemmas 1 and 2.

Lemma 1. Suppose that the hash functions Hi(i = 0, 1, 2, 3) are random oracles. If there
exists an adversary AI against the IND-pCLSC-TKEM-CCA2-I security of the pCLSC-
TKEM with advantage a non-negligible ε, asking qppri extract-partial-private-key queries,
qsv extract-secret-value queries and qHi random oracle queries to Hi (0 ≤ i ≤ 3), then an
algorithm C exists that solves the OGDH problem with the following advantage ε′

TRANSACTIONS ON DATA PRIVACY 9 (2016)

114 Seung-Hyun Seo, Jongho Won, Elisa Bertino

ε′ ≥ ε · (1− qppri
qH0

) · (1− qsv
qH0

) · (1

qH0 − qppri − qsv
) · (1

qH1

)

Proof. A challenger C is challenged with an instance of the OGDH (One-sided Gap Diffie-
Hellman) problem. The OGDH for a group Gq with a generator P and a fixed second point
Q(= aP) has as input R(= bP) ∈ Gq and computes for the point S(= cP) ∈ G such that
c = ab (mod q), by accessing a ODDH (One-sided Decision Diffie-Hellman) oracle. Here,
the ODDH oracle solves the OGDH problem for a group Gq with a generator P and a fixed
second pointQ as inputR′, S′ ∈ Gq and decides whether c′ = ab′mod q, where a, b′, c′ ∈ Z∗q
such that Q = aP,R′ = b′P, S′ = c′P . LetAI be an adversary who is able to break the IND-
pCLSC-TKEM-CCA2-I security of the pCLSC-TKEM. C can utilizeAI to compute the solu-
tion abP of the OGDH instance by playing the following interactive game withAI . To solve
the OGDH problem, C sets the master private/public key pair as (x, Ppub = xP), where P
is the generator of the groupGq and the hash functionsHi(0 ≤ i ≤ 3) are treated as random
oracles. C sends the system parameters Ω = {Fq, E/Fq, Gq, P, Ppub, H0, H1, H2, H3} to AI .
In order to avoid the inconsistency between the responses to the hash queries, C maintains
lists Li(0 ≤ i ≤ 3). It also maintains a list of issued private keys and public keys in Lk.
C can simulate the challenger’s execution of each phase of the formal Game. Let C select
a random index t, where 1 ≤ t ≤ qH0 and fix IDt as the target identity for the challenge
phase.
Phase 1: AI may make a series of polynomially bounded numbers of queries to random
oracles Hi(0 ≤ i ≤ 3) at any time and C responds as follows:
Create(IDi: When AI submits a Create(IDi) query to C, C responds as follows:

• If IDi = IDt, C chooses et, xt ∈R Z∗q and setsH0(IDt, Rt, Pt) = −et,Rt = etPpub+aP
and Pt = xtP . Here, C does not know a. C uses the aP given in the instance of the
OGDH problem. C inserts 〈IDt, Rt, Pt,−et〉 into the list L0 and 〈IDt,⊥, xt, Rt, Pt〉
into the list Lk.

• If IDi 6= IDt, C picks ei, bi, xi ∈R Z∗q , then sets H0(IDi, Ri, Pi) = −ei, Ri = eiPpub +
biP and computes the public key as Pi = xiP . di = bi and it satisfies the equation
diP = Ri +H0(IDi, Ri, Pi)Ppub. C inserts 〈IDi, Ri, Pi,−ei〉 into the list L0 and 〈IDi,
di, xi, Ri, Pi〉 into the list Lk.

H0 queries: WhenAI submits aH0 query with IDi, C searches the list L0. If there is a tuple
〈IDi, Ri, Pi,−ei〉, C responds with the previous value −ei. Otherwise, C chooses ei ∈R Z∗q
and returns −ei as the answer. Then, C inserts 〈IDi, Ri, Pi,−ei〉 into the list L0.
H1 queries: When AI submits a H1 query with (Vi, Ti,
Yi, IDi, Pi), C checks whether the ODDH oracle returns 1 when queried with the tuple
(aP, Vi, Ti). If the ODDH oracle returns 1, C outputs Ti and stop. Then C goes through
the list L1 with entries 〈Vi, ∗, Yi, IDi, Pi, li〉, for different values of li, such that the ODDH
oracle returns 1 when queried on the tuple (aP, Vi, Ti). Note that in this case IDi = IDt.
If such a tuple exists, it returns li and replaces the symbol ∗ with Ti. Otherwise, C chooses
l ∈R {0, 1}n and updates the list L1, which is initially empty, with a tuple containing the
input and return values. C then returns l to AI .
H2 queries: C checks whether a tuple of the form 〈U, τ, T, IDA, PA, IDB , PB , hi〉 exists in
the list L2. If it exists, C returns H = hi to AI . Otherwise, C chooses hi ∈R Z∗q , adds the
tuple 〈U, τ, T, IDA, PA, IDB , PB , hi〉 to the list L3 and returns H = hi to AI .
H3 queries: C checks whether a tuple of the form 〈U, τ, T, IDA, PA, IDB , PB , h

′
i〉 exists in

the list L3. If it exists, C returns H ′ = h′i to AI . Otherwise, C chooses h′i ∈R Z∗q , adds the
tuple 〈U, τ, T, IDA, PA, IDB , PB , h

′
i〉 to the list L3 and returns H ′ = h′i to AI .

TRANSACTIONS ON DATA PRIVACY 9 (2016)

pCLSC-TKEM 115

Extract-Partial-Private-Key queries: In order to respond to the query for the partial private
key of a user with IDi, C performs the following steps:

• If IDi = IDt, C aborts the execution.

• If IDi 6= IDt, C retrieves the tuple 〈IDi, di, xi, Ri, Pi〉 from Lk, returns (di, Ri) which
satisfies the equation diP = Ri +H0(IDi, Ri, Pi)Ppub.

Extract-Secret-Value queries: AI produces IDi to C and requests a secret value of the user
with IDi. If the public key of IDi has not been replaced and IDi 6= IDt, then C responds
with xi by retrieving from the list Lk. If AI has already replaced the public key, C does not
provide the corresponding secret value to AI . If IDi = IDt, C aborts.
Request-Public-Key queries: AI produces IDi to C and requests a public key of the user
with IDi. C checks in the list Lk for a tuple of the form 〈IDi, di, xi, Ri, Pi〉. If it exists, C
returns the corresponding public key (Ri, Pi). Otherwise, C recalls Create(IDi) query to
obtain (Ri, Pi) and returns (Ri, Pi) as the answer.
Public-Key-Replacement queries: AI chooses values (R′i, P

′
i) to replace the public key

(Ri, Pi) of a user IDi. C updates the corresponding tuple in the list Lk as 〈IDi,−,−, R′i, P ′i 〉.
The current value of the user’s public key is used by C for computations or responses to
any queries made by AI .
Symmetric Key Generation queries: AI produces a sender’s identity IDA, public key
(RA, PA), the receiver’s identity IDB and public key (RB , PB) to C. For each query (IDA, IDB),
C proceeds as follows:

• If IDA 6= IDt, C computes the full private key skA corresponding to IDA by execut-
ing the Extract-Partial-Private-Key query and Extract-Secret-Value query algorithm.
Then, C gets the symmetric key K and an internal state information ω by running the
actual SymmetricKeyGen algorithm. C stores ω and overwrite any previous value. C
sends the symmetric key K to AI .

• If IDA = IDt (and hence IDB 6= IDt), C chooses r1, r2, ht, h′t ∈R Z∗q and computes
U = r1P −ht−1 ·aP , V = r2P , T = r2 ·H0(IDB , RB , PB)Ppub+r2 ·RB mod q andK =
H1(U, T, r2 · PB , IDB , PB). Note that ω = (r1, r2, ht, h

′
t, U, V, T, IDA, pkA, IDB , pkB).

• C goes through the list L1 looking for an entry (V, T, Y, IDB , PB , k) for some k such
that ODDH(PB , V, Y)=1, where PB is obtained by calling the Request-Public-Key
query oracle on IDB . If such an entry exists, it computes K ← l. Otherwise it uses a
random l and updates the list L1 with (V, T, ∗, IDB , PB , l). C stores ω and sends the
symmetric key K to AI .

Key Encapsulation queries: AI produces an arbitrary tag τ , the sender’s identity IDA,
public key (RA, PA), the receiver’s identity IDB and public key (RB , PB) and sends them
to C. The full private key of the sender skA = (dA, xA) is obtained from the list Lk. C checks
whether a corresponding ω value has been stored previously.

• If ω does not exist, C returns an invalid reply.

• If a corresponding ω exists and IDA 6= IDt, then C computes ϕ with ω and τ by using
the actual Encapsulation algorithm, and deletes ω.

• If a corresponding ω exists and IDA = IDt, then C computes ϕ by performing the fol-
lowing steps. Note that ω is (r1, r2, ht, h

′
t, U, V, T, IDA, pkA, IDB , pkB) and C does not

know the private key corresponding to IDt. So C should perform the encapsulation
in a different way.:

TRANSACTIONS ON DATA PRIVACY 9 (2016)

116 Seung-Hyun Seo, Jongho Won, Elisa Bertino

1. Set H = ht and add the tuple 〈U, τ, T, IDA, PA, IDB , PB , ht〉 to the list L2.

2. Set H ′ = h′t and add the tuple 〈U, τ, T, IDA, PA, IDB , PB , h
′
t〉 to the list L3.

3. Compute W = ht · r1 + h′t · xA.

4. Output ϕ = (U, V,W) as the encapsulation.

We show that AI can pass the verification of ϕ = (U, V,W) to validate the encapsu-
lation, because the equality W · P = RA +H0(IDA, RA, PA) · Ppub +H · U +H ′ · PA
holds as follows:

RA +H0(IDA, RA, PA) · Ppub +H · U +H ′ · PA
= aP + etPpub + (−et) · Ppub + ht · (r1P − ht−1 · aP) + h′t · PA
= ht · r1P + h′t · PA
= W · P

Key Decapsulation queries: AI produces an encapsulation ϕ = (U, V,W), a tag τ , the
sender’s identity IDA, the public key (RA, PA), the receiver’s identity IDB and the public
key (RB , PB) to C. The full private key of the receiver skB = (dB , xB) is obtained from the
list Lk.

• If IDB 6= IDt, then C computes the decapsulation of ϕ by using the actual Decapsu-
lation algorithm.

• If IDB = IDt, then C computes K from ϕ as follows:

1. Searches in the listL2 andL3 for entries of the type 〈U, τ, T, IDA, PA, IDB , PB , ht〉
and 〈U, τ, T, IDA, PA, IDB , PB , h

′
t〉 respectively.

2. If entries H = ht and H ′ = h′t exist then C checks whether the equality W · P =
RA +H0(IDA, RA, PA) · Ppub +H · U +H ′ · PA holds.

3. If the above equality holds, the corresponding value of T is retrieved from the
lists L2 and L3. Both the T values should be equal.

4. C goes through L1 and looks for a tuple of the form 〈V, T, Y, IDB , PB , l〉 such that
the ODDH oracle returns 1 when queried on the (aP, V, T). If such entry exists,
the corresponding K ← l value is returned as the decapsulation of ϕ.

5. If C reaches this point of execution, it put the entry 〈V, ∗, Y, IDB , PB , l〉 for a
random l on the list L1 and returns K ← l. The symbol ∗ denotes an unknown
value of Point. Note that the identity component of all entries with a ∗ is a
receiver identity IDB .

Challenge: At the end of Phase I, AI sends a sender identity IDA∗ and a receiver identity
IDB∗ on whichAI wishes to be challenged to C. Here, the partial private key of the receiver
IDB∗ was not queried in Phase I. C aborts the game if IDB∗ 6= IDt. Otherwise, C performs
the following steps to compute the challenge encapsulation ϕ∗.

1. Choose r ∈R Z∗q and compute U∗ = rP .

2. Set V ∗ = bP and choose T ∗ ∈R Gq . Here, C does not know b. C uses the bP given in
the instance of the OGDH problem.

3. Choose K0 ∈R K, where K is the key space of the pCLSC-TKEM.

4. Compute K1 by executing Symmetric Key Generation queries.

TRANSACTIONS ON DATA PRIVACY 9 (2016)

pCLSC-TKEM 117

5. Set ω∗ = 〈−, U∗, V ∗, T ∗, IDA∗ , PA∗ , RA∗ , skA∗ , IDB∗ , PB∗ , RB∗〉.

6. C chooses a bit δ ∈R {0, 1} and sends Kδ to AI .

7. AI generates an arbitrary tag τ∗ and sends it to C.

8. Choose hi, h′i ∈R Z∗q , store the tuple 〈U, τ∗, T, IDA, PA, IDB , PB , hi〉 to the list L2 and
〈U, τ∗, T, IDA, PA, IDB , PB , h

′
i〉 to the list L3.

9. Since C knows the private key of the sender, C computes W ∗ = dA∗ + r · hi + xA∗ · h′i.

10. C sends ϕ∗ = 〈U∗, V ∗,W ∗〉 to AI .

Phase II:AI adaptively queries the oracles as in Phase I, consistent with the constraints for
Type I adversary. Besides it cannot query decapsulation on ϕ∗.
Guess: SinceAI is able to break the IND-pCLSC-TKEM-CCA2-I security of pCLSC-TKEM
(which is assumed at the beginning of the proof), AI should have asked a H1 query with
(V ∗, T ∗, xB∗ · V ∗, IDB∗ , PB∗) as inputs. It is to be noted that T ∗ = b · H0(IDB , RB , PB) ·
Ppub + b · RB∗ = b · (−et) · Ppub + b · (et · Ppub + aP) = ab · P . Therefore, if the list L1 has
qH1 queries corresponding to the sender IDA∗ and receiver IDB∗ , one of the T ’s among
qH1

values stored in the list L1 is the solution for the OGDH problem instance. C chooses
one T value uniformly at random from the qH1

values from the list L1 and outputs it as the
solution for the OGDH instance.
Analysis: In order to assess the probability of success of the challenger, C lets E1, E2 and
E3 be the events in which C aborts the IND-pCLSC-TKEM-CCA2-I game.

• E1 is an event in which AI queries the partial private key of the target identity IDt.
The probability of E1 is Pr[E1] =

qppri
qH0

.

• E2 is an event in which AI asks to query the set secret value of the target identity
IDt. The probability of E2 is Pr[E2] = qsv

qH0
.

• E3 is an event in which AI does not choose the target identity IDt as the receiver
during the challenge. The probability of E3 is Pr[E3] = 1− 1

qH0
−qppri−qsv .

Thus, the probability that C does not abort the IND-pCLSC-TKEM-CCA2-I game isPr[¬E1∧
¬E2 ∧ ¬E3] = (1− qppri

qH0
) · (1− qsv

qH0
) · (1

qH0
−qppri−qsv)

The probability that C randomly chooses the T from L1 and T is the solution of OGDH
problem is 1

qH1
. So, the probability that C finds the OGDH instance is as follows: Pr[C(P, aP,

bP) = abP] = ε·(1− qppri
qH0

)·(1− qsv
qH0

)·(1
qH0
−qppri−qsv)·(1

qH1
) Therefore, the Pr[C(P, aP, bP) =

abP] is non-negligible, because ε is non-negligible.

Lemma 2. Suppose that the hash functions Hi(i = 0, 1, 2, 3) are random oracles. If there
exists an adversary AII against the IND-pCLSC-TKEM-CCA2-II security of the pCLSC-
TKEM with advantage a non-negligible ε, asking qsv extract-secret-value queries, qpkR pub-
lic key replacement queries and qHi

random oracle queries to Hi (0 ≤ i ≤ 3), then there
exist an algorithm C that solves the OGDH problem with the following advantage ε′.
ε′ ≥ ε · (1− qsv

qH0
) · (1− qpkR

qH0
) · (1

qH0
−qsv−qpkR

) · (1
qH1

)

Proof. A challenger C is challenged with an instance of the OGDH problem. Let AII be
an adversary who is able to break the IND-pCLSC-TKEM-CCA2-II security of the pCLSC-
TKEM. C can utilize AII to compute the solution abP of the OGDH instance by playing

TRANSACTIONS ON DATA PRIVACY 9 (2016)

118 Seung-Hyun Seo, Jongho Won, Elisa Bertino

the following interactive game with AII . To solve the OGDH, C chooses s ∈R Z∗q , sets
the master public key Ppub = sP , where P is the generator of the group Gq and the hash
functions Hi(0 ≤ i ≤ 3) are treated as random oracles. C sends the system parameter
Ω = {Fq, E/Fq, Gq, P, Ppub = sP,H0, H1, H2, H3} and the master private key s to AII . In
order to avoid the inconsistency between the responses to the hash queries, C maintains
lists Li(0 ≤ i ≤ 3). It also maintains a list Lk of the issued private keys and public keys.
C can simulate the challenger’s execution of each phase of the formal Game. Let C select a
random index t, where 1 ≤ t ≤ qH0 and fixes IDt as the target identity for the challenge
phase.
Phase 1: AII may make a series of polynomially bounded number of queries to random
oracles Hi(0 ≤ i ≤ 3) at any time and C responds as follows:
Create(IDi) queries: When AII submits a Create(IDi) query, C responds as follows:

• If IDi = IDt, C chooses at, lt ∈R Z∗q and sets H0(IDt, Rt, Pt) = lt, computes Rt =
atP , dt = at + lt · s and the public key as Pt = aP . Here, C does not know a. C uses
the aP given in the instance of the OGDH problem. C inserts 〈IDt, Rt, Pt, lt〉 into the
list L0 and 〈IDt, dt,⊥, Rt, Pt〉 into the list Lk.

• If IDi 6= IDt, C picks ai, xi, li ∈R Z∗q , then sets H0(IDi, Ri, Pi) = li, computes Ri =
aiP , di = ai + li · s and the public key as Pi = xiP . C inserts 〈IDi, Ri, Pi, li〉 into the
list L0 and 〈IDi, di, xi, Ri, Pi〉 into the list Lk.

H0 queries: When AII submits a H0 query with IDi, C searches the list L0. If there is a
tuple 〈IDi, Ri, Pi, li〉, C responds with the previous value li. Otherwise, C chooses li ∈R Z∗q
and returns li as the answer. Then, C inserts 〈IDi, Ri, Pi, li〉 into the list L0.
H1 queries: When AII submits a H1 query with (Vi, Ti, Yi, IDi, Pi), C checks whether the
ODDH (One-sided Decision Diffie-Hellman) oracle returns 1 when queried with the tuple
(aP, Vi, Yi). If the ODDH oracle returns 1, C outputs Yi and stop. Then C goes through
the list L1 with entries 〈Vi, Ti, ∗, IDi, Pi, li〉, for different values of li, such that the ODDH
oracle returns 1 when queried on the tuple (aP, Vi, Yi). Note that in this case IDi = IDt.
If such a tuple exists, it returns li and replaces the symbol ∗ with Yi. Otherwise, C chooses
l ∈R {0, 1}n and updates the list L1, which is initially empty, with a tuple containing the
input and return values. C then returns l to AII .
H2 queries: When AII submits a H2 query with IDi, C checks whether a tuple of the form
〈U, τ, T, IDA, PA, IDB , PB , hi〉 exists in the list L2. If it exists, C returns H = hi to AII .
Otherwise, C chooses hi ∈R Z∗q , adds the tuple 〈U, τ, T, IDA, PA, IDB , PB , hi〉 to L2 and
returns H = hi to AII .
H3 queries: When AII submits a H3 query with IDi, C checks whether a tuple of the form
〈U, τ, T, IDA, PA, IDB , PB , h

′
i〉 exists in the list L3. If it exists, C returns H ′ = h′i to AII .

Otherwise, C chooses h′i ∈R Z∗q , adds the tuple 〈U, τ, T, IDA, PA, IDB , PB , h
′
i〉 to L3 and

returns H ′ = h′i to AII .
Extract-Partial-Private-Key queries: When AII asks a Extract-Partial-Private-Key query
for IDi, C checks whether the corresponding partial private key for IDi, di exists in the list
Lk. If it exists, C returns di to AII . Otherwise, C recalls Create(IDi) query to obtain di and
returns di as the answer.
Extract-Secret-Value queries: If AII asks a Extract-Secret-Value query for IDi, C answers
as follows:

• If IDi = IDt, C aborts.

TRANSACTIONS ON DATA PRIVACY 9 (2016)

pCLSC-TKEM 119

• If IDi 6= IDt, C looks for the tuple 〈IDi, di, xi, Ri, Pi〉 in the list Lk. If such tuple exists
in Lk, C returns xi. Otherwise, C recalls Create(IDi) query to obtain xi and returns xi
as the answer.

Set-Public-Key queries: When AII asks Set-Public-Key query for IDi, C searches the list
Lk. If the public key for IDi, (Ri, Pi) is found in Lk, C returns (Ri, Pi) as the answer.
Otherwise, C executes a Create(IDi) query to obtain (Ri, Pi) and then returns (Ri, Pi) as
the answer.
Public-Key-Replacement queries: WhenAII asks Public-Key-Replacement query for IDi,
C checks whether IDi = IDt. If IDi = IDt, C aborts. Otherwise, C updates the correspond-
ing tuple in the list Lk as 〈IDi,−,−, R′i, P ′i 〉, where (R′i, P

′
i) is chosen by AII . The current

public key (i.e. replaced public key) is used by C for computations or responses to any
queries made by AII .
Symmetric Key Generation queries: AII produces a sender’s identity IDA, public key
(RA, PA), the receiver’s identity IDB and public key (RB , PB) to C. For each query (IDA, IDB),
C proceeds as follows:

• If IDA 6= IDt, C computes the full private key skA corresponding to IDA by execut-
ing the Extract-Partial-Private-Key query and Extract-Secret-Value query algorithm.
Then, C gets the symmetric key K and an internal state information ω by running the
actual SymmetricKeyGen algorithm. C stores ω and overwrite any previous value. C
sends the symmetric key K to AII .

• If IDA = IDt (and hence IDB 6= IDt), C chooses r1, r2, ht, h′t ∈R Z∗q and computes
U = r1P − ht

−1 · h′t · PA, where PA is obtained from the list Lk, V = r2P , T =
r2 ·H0(IDB , RB , PB)Ppub + r2 ·RB mod q and K = H1(U, T, r2 · PB , IDB , PB). Note
that ω is ω = (r1, r2, ht, h

′
t, U, V, T, IDA, dA, pkA, IDB , pkB).

• C goes through the list L1 looking for an entry (V, T, Y, IDB , PB , k) for some k such
that ODDH(PB , V, Y)=1, where PB is obtained by calling the Request-Public-Key
query oracle on IDB . If such an entry exists, it computes K ← l. Otherwise it uses a
random l and updates the list L1 with (V, T, ∗, IDB , PB , l). C stores ω and sends the
symmetric key K to AII .

Key Encapsulation queries: AII produces an arbitrary tag τ , the sender’s identity IDA,
public key (RA, PA), the receiver’s identity IDB and public key (RB , PB) then sends to C.
C checks whether a corresponding ω value is stored previously.

• If ω does not exist, C returns invalid.

• If a corresponding ω exists and IDA 6= IDt, then C computes ϕ with ω and τ by using
the actual Encapsulation algorithm, and deletes ω. Here, C gets the full private key of
the sender skA = (dA, xA) from the list Lk.

• If a corresponding ω exists and IDA = IDt, then C computes ϕ by performing the
following steps. Note that ω is (r1, r2, ht, h

′
t, U, V, T, IDA, dA, pkA, IDB , pkB) and C

does not know the secret value xA corresponding to IDA. So C should perform the
encapsulation in a different way:

1. Set H = ht and add the tuple 〈U, τ, T, IDA, PA, IDB , PB , ht〉 to the list L2.

2. Set H ′ = h′t and add the tuple 〈U, τ, T, IDA, PA, IDB , PB , h
′
t〉 to the list L3.

TRANSACTIONS ON DATA PRIVACY 9 (2016)

120 Seung-Hyun Seo, Jongho Won, Elisa Bertino

3. Compute W = dA + r1H , where dA is obtained from the list Lk.

4. Output ϕ = (U, V,W) as the encapsulation.

We show that AII can pass the verification of ϕ = (U, V,W) to validate the encapsu-
lation, because the equality W · P = RA +H0(IDA, RA, PA) · Ppub +H · U +H ′ · PA
holds as follows:
RA +H0(IDA, RA, PA) · Ppub +H · U +H ′ · PA
= atP + lt · sP + ht · (r1P − ht−1 · h′t · PA) + h′t · PA
= (at + lt · s) · P + ht · r1P − h′t · PA + h′t · PA
= dA · P + ht · r1P
= (dA + r1H) · P
= W · P

Key Decapsulation queries: AII produces an encapsulation ϕ, a tag τ , the sender’s IDA,
public key (RA, PA), the receiver’s IDB and public key (RB , PB) to C.

• If IDB 6= IDt, then C computes the decapsulation of ϕ by using the actual Decapsu-
lation algorithm. Here, the full private key of the receiver (dB , xB) is obtained from
the list Lk.

• If IDB = IDt, then C computes K from ϕ as follows:

1. Searches lists L2 and L3 for entries of the type 〈U, τ, T, IDA, PA, IDB , PB , ht〉
and 〈U, τ, T, IDA, PA, IDB , PB , h

′
t〉, respectively.

2. If entries H = ht and H ′ = h′t exist, then C checks whether the equality W · P =
RA +H0(IDA, RA, PA) · Ppub +H · U +H ′ · PA holds.

3. If the above equality holds, then retrieves the corresponding value of T from
lists L2 and L3. Both the T values should be equal.

4. C goes throughL1 and looks for a tuple 〈V, T, Y, IDB , PB , l〉 such that ODDH(PB ,
V, Y) = 1. If such an entry exists, then C found the correct value of Y and outputs
K ← l.

5. If C reaches this point of execution, it places the entry 〈U, T, ∗, IDB , PB , l〉 for a
random l on list L1 and returns the corresponding K ← l value as the decapsu-
lation of ϕ. The symbol ∗ denotes an unknown value of Y .

Challenge: At the end of Phase I,AII sends a sender identity IDA∗ and a receiver identity
IDB∗ on which AII wishes to be challenged to C. Here, the secret value of the receiver
IDB∗ was not queried in Phase 1. C aborts the game if IDB∗ 6= IDt. Otherwise, C performs
the following to compute the challenge encapsulation ϕ∗.

1. Choose r ∈R Z∗q and compute U∗ = rP .

2. Set V ∗ = bP and compute T ∗ = dB∗ · V , where C knows the partial private key for
IDB∗, dB∗. Here, C uses the bP given in the instance of the OGDH problem.

3. Choose K0 ∈R K, where K is the key space of the pCLSC-TKEM.

4. Choose Y ∗ ∈R Gq and compute K1 = H1(V ∗, T ∗, Y ∗, IDB∗, PB∗).

5. Set ω∗ = 〈−, V ∗, Y ∗, T ∗, IDA∗, PA∗, RA∗, xA∗, dA∗, IDB∗, PB∗, RB∗〉.

6. C chooses a bit δ ∈R {0, 1} and sends Kδ to AII .

TRANSACTIONS ON DATA PRIVACY 9 (2016)

pCLSC-TKEM 121

7. AII generates an arbitrary tag τ∗ and sends it to C.

8. Choose hi, h′i ∈R Z∗q , store the tuple 〈U∗, τ∗, T ∗, IDA∗, PA∗, IDB∗, PB∗, hi〉 to the list
L2 and 〈U, τ∗, T, IDA∗, PA∗, IDB∗, PB∗, h

′
i〉 to the list L3.

9. Since C knows the private key of the sender IDA∗, C computes W = dA∗ + r · hi +
xA∗ · h′i.

10. C sends ϕ∗ = 〈U∗, V ∗,W ∗〉 to AII .

Phase II: AII adaptively queries the oracles as in Phase I, consistent with the constraints
for a Type-II adversary. Other than this, it cannot query decapsulation on ϕ∗.
Guess: Since AII is able to break the IND-pCLSC-TKEM-CCA2-II security of pCLSC-
TKEM (which is assumed at the beginning of the proof),AII should have asked aH1 query
with (V ∗, T ∗, Y ∗, IDB∗, PB∗) as inputs. Since IDB∗ is a target identity IDt, PB∗ = aP .
Here, aP was given as the instance of the OGDH problem and C does not know a. Thus,
computing Y ∗ = xB∗V

∗ = abP is to find abP when 〈P, aP (= PB∗), bP (= V)〉 ∈ Gq are
given. Therefore, if the list L1 has qH1

queries corresponding to the sender IDA∗ and re-
ceiver IDB∗, one of the qH1

values of Y ∗ stored in the list L1 is the solution for the OGDH
problem instance. C chooses one Y ∗ value uniformly at random from the qH1

values from
the list L1 and outputs it as the solution for the OGDH instance.
Analysis: In order to assess the probability of success of the challenger C, let E1, E2, and
E3 be the events in which C aborts the IND-pCLSC-TKEM-CCA2-II game.

• E1 is an event in which AII queries the secret value of the target identity IDt. The
probability of E1 is Pr[E1] = qsv

qH0
.

• E2 is an event in which AII asks to replace the public key of the target identity IDt.
The probability of E2 is Pr[E2] =

qpkR

qH0
.

• E3 is an event in which AII does not choose the target identity IDt as the receiver
during the challenge. The probability of E3 is Pr[E3] = 1− 1

qH0
−qsv−qpkR

.

Thus, the probability that C does not abort the IND-pCLSC-TKEM-CCA2-II game isPr[¬E1∧
¬E2 ∧ ¬E3] = (1− qsv

qH0
) · (1− qpkR

qH0
) · (1

qH0
−qsv−qpkR

)

The probability that C randomly chooses the Y ∗ from L1 and Y ∗ is the solution of OGDH
problem is 1

qH1
. So, the probability that C finds the OGDH instance is as follows: Pr[C(P, aP,

bP) = abP] = ε ·(1− qsv
qH0

) ·(1− qpkR

qH0
) ·(1

qH0
−qsv−qpkR

) ·(1
qH1

) Therefore, the Pr[C(P, aP, bP) =

abP] is non-negligible, because ε is non-negligible.

5.2 Existential Unforgeability

Theorem 2. In the random oracle model, the pCLSC-TKEM is EUF-pCLSC-TKEM-CMA secure
under the assumption that the Elliptic Curve Discrete Logarithm Problem (ECDLP) problem is in-
tractable.
The Theorem 2 is proved based on Lemma 3 and 4.

Lemma 3. Suppose that the hash functions Hi(i = 0, 1, 2, 3) are random oracles. If there
exists a forgerFI against the EUF-pCLSC-TKEM-CMA-I security of the pCLSC-TKEM with
advantage a non-negligible ε, asking qC create (IDi) queries, qE key encapsulation queries,

TRANSACTIONS ON DATA PRIVACY 9 (2016)

122 Seung-Hyun Seo, Jongho Won, Elisa Bertino

qHi
random oracle queries to Hi (0 ≤ i ≤ 3), qppri extract-partial-private-key queries and

qsv extract-secret-value queries, then there exists an algorithm C that solves the ECDLP
(Elliptic Curve Discrete Logarithm Problem) with the following advantage ε′.

ε′ ≥ qE · (1−
qH0
·qC
q) · (1− q2H2

q) · (1− q2H3

q) · (1 + 1
q) · (1

qC
) · (1− qppri

qH0
) · (1− qsv

qH0
) · ε

Proof. A challenger C is challenged with an instance of the ECDLP. To solve the ECDLP,
given 〈P, bP 〉 ∈ Gq , C must find b. Let FI be a forger who is able to break the EUF-pCLSC-
TKEM-CMA-I security of the pCLSC-TKEM. C can utilize FI to compute the solution b
of the ECDLP instance by playing the following interactive game with FI . To solve the
ECDLP, C sets the master private/public key pair as (x, Ppub = xP), where P is the gener-
ator of the group Gq and the hash functions Hi(0 ≤ i ≤ 3) are treated as random oracles.
Then C sends the system parameter Ω = {Fq, E/Fq, Gq, P, Ppub, H0, H1, H2, H3} to FI . In
order to avoid the inconsistency between the responses to the hash queries, C maintains
lists Li(0 ≤ i ≤ 3). It also maintains a list Lk of issued private keys and public keys. C can
simulate the Challenger’s execution of each phase of the formal game.
Training Phase: FI may make a series of polynomially bounded number of queries to ran-
dom oracles Hi(0 ≤ i ≤ 3) at any time and C responds as follows:
All the oracles and queries needed in the training phase are identical to those of the Create(IDi)
queries,H0 queries,H1 queries,H2 queries,H3 queries, Extract-Partial-Private-Key queries,
Extract-Secret-Value queries, Public-Key-Replacement queries, Symmetric Key Generation
queries, Key Encapsulation queries and Key Decapsulation queries in IND-pCLSC-TKEM-
CCA2-I game.
Forgery: Eventually, FI returns a valid encapsulation 〈τ, ϕ = (U, V,W), IDA, IDB〉 on
a arbitrary tag τ , where IDA is the sender identity and IDB is the receiver identity, to
C. If IDA = IDt, C aborts the execution of this game. Otherwise, C searches the list L2

and outputs another valid encapsulation 〈τ, ϕ∗ = (U, V,W ∗), IDA, IDB〉 with different h∗i
such that h∗i 6= hi on the same τ as done in the forking lemma [19]. Thus, we can get
W · P = RA − et · Ppub + hi ·U + h′i · PA and W ∗ · P = RA − et · Ppub + h∗i ·U + h′i · PA. Let
U = bP . Then if we subtract these two equations, we obtain following value.
W ∗ · P −W · P = h∗i · U − hi · U
⇒ (W ∗ −W)P = (h∗i − hi) · U
⇒ (W ∗ −W)P = (h∗i − hi) · bP
⇒ (W ∗ −W) = b · (h∗i − hi)
⇒ (W ∗ −W) · (h∗i − hi)−1 = b
Therefore, FI solves the ECDLP as b = W∗−W

h∗
i
−hi

using the algorithm C for a given random
instance 〈P, bP 〉 ∈ Gq .
Analysis: In order to assess the probability of success of the challenger C. We assume that
FI can ask qC create (IDi) queries, qE key-encapsulation queries and qHi

random oracle
queries to Hi (0 ≤ i ≤ 3). We also assume that FI never repeats Hi (0 ≤ i ≤ 3) a query
with the same input.

• The success probability of the Create(IDi) query execution is (1− qH0

q)qC ≥ 1− qH0
·qC
q .

• The success probability of the H2 query execution is (1− qH2

q)qH2 ≥ 1− q2H2

q .

• The success probability of the H3 query execution is (1− qH3

q)qH3 ≥ 1− q2H3

q .

• The success probability of the key encapsulation query execution is qE
(1− 1

q)
≥ qE · (1 +

1
q).

TRANSACTIONS ON DATA PRIVACY 9 (2016)

pCLSC-TKEM 123

• The probability that IDi = IDt is 1
qC

.

• The probability that FI queries the partial private key of the target identity IDt is
qppri
qH0

.

• The probability that FI asks to query the set secret value of the IDt is qsv
qH0

.

So, the success probability that C can win the EUF-pCLSC-TKEM-CMA-I game is ε′ ≥
qE · (1 −

qH0
·qC
q) · (1 − q2H2

q) · (1 − q2H3

q) · (1 + 1
q) · (1

qC
) · (1 − qppri

qH0
) · (1 − qsv

qH0
) · ε Therefore,

the probability that C computes the solution of ECDLP is non-negligible, because ε is non-
negligible.

Lemma 4. Suppose that the hash functions Hi(i = 0, 1, 2, 3) are random oracles. If there
exists a forger FII against the EUF-pCLSC-TKEM-CMA-II security of the pCLSC-TKEM
with advantage a non-negligible ε, asking qC create (IDi) queries, qE key-encapsulation
queries, qHi

random oracle queries to Hi (0 ≤ i ≤ 3), qsv extract-secret-value queries and
qpkR public key replacement queries, then there exist an algorithm C that solves the ECDLP
with the following advantage ε′.

ε′ ≥ qE · (1−
qH0
·qC
q) · (1− q2H2

q) · (1− q2H3

q) · (1 + 1
q) · (1

qC
) · (1− qsv

qH0
) · (1− qpkR

qH0
) · ε

Proof. A challenger C is challenged with an instance of the ECDLP. Given 〈P, aP 〉 ∈ Gq ,
C must find a. Let FII be a forger who is able to break the EUF-pCLSC-TKEM-CMA-II
security of the pCLSC-TKEM. C can utilize FII to compute the solution a of the ECDLP in-
stance by playing the following interactive game with FII . To solve the ECDLP, C chooses
s ∈R Z∗q , sets the master public key Ppub = sP , where P is the generator of the group Gq
and the hash functions Hi(0 ≤ i ≤ 3) are treated as random oracles. Then C sends the
system parameter Ω = {Fq, E/Fq, Gq, P, Ppub = sP,H0, H1, H2, H3} and the master private
key s to FII . In order to avoid the inconsistency between the responses to the hash queries,
C maintains lists Li(0 ≤ i ≤ 3). It also maintains a list Lk of issued private keys and public
keys. C can simulate the challenger’s execution of each phase of the formal Game.
Training Phase: FII may make a series of polynomially bounded number of queries to
random oracles Hi(0 ≤ i ≤ 3) at any time and C responds as follows:
All the oracles and queries needed in the training phase are identical to those of the Create(IDi)
queries,H0 queries,H1 queries,H2 queries,H3 queries, Extract-Partial-Private-Key queries,
Extract-Secret-Value queries, Public-Key-Replacement queries, Symmetric Key Generation
queries, Key Encapsulation queries and Key Decapsulation queries in IND-pCLSC-TKEM-
CCA2-II game.
Forgery: Eventually, FII returns a valid encapsulation 〈τ, ϕ = (U, V,W), IDA, IDB〉 on an
arbitrary tag τ to C, where the target identity IDt is the sender identity IDA and IDB is
the receiver identity. The public key of the sender IDt should not be replaced during the
training phase. The secret value of the target identity IDt should not be queried during
the training phase. C searches the list L3 and outputs another valid encapsulation 〈τ, ϕ∗ =

(U, V,W ∗), IDt, IDB〉 with different h
′∗
i such that h

′∗
i 6= h′i on the same τ as done in the

forking lemma [19]. Thus, we can get W · P = Rt − lt · Ppub + ht · U + h′t · Pt and W ∗ · P =

Rt− lt ·Ppub + ht ·U + h
′∗
t ·Pt. Note that Pt = aP . Then if we subtract these two equations,

we obtain following value.
W ∗ · P −W · P = h

′∗
i · Pt − h′i · Pt

⇒ (W ∗ −W)P = (h
′∗
i − h′i) · aP

TRANSACTIONS ON DATA PRIVACY 9 (2016)

124 Seung-Hyun Seo, Jongho Won, Elisa Bertino

⇒ (W ∗ −W)P = (h∗i − h′i)] · aP
⇒ (W ∗ −W) = (h∗i − h′i) · a
⇒ (W ∗ −W) · (h∗i − h′i)−1 = a
Therefore, FII solves the ECDLP as a = W∗−W

h∗
i
−h′

i
using the algorithm C for a given random

instance 〈P, aP 〉 ∈ Gq .
Analysis: In order to assess the probability of success of the challenger C. We assume
that FII can ask qC , create (IDi) queries, qE key encapsulation queries, qHi random oracle
queries to Hi (0 ≤ i ≤ 3), qsv set-secret-value queries, and qpkR public key replacement
queries. We also assume that FII never repeats Hi (0 ≤ i ≤ 3) query with the same input.

• The success probability of the Create(IDi) query execution is (1− qH0

q)qC ≥ 1− qH0
·qC
q .

• The success probability of the H2 query execution is (1− qH2

q)qH2 ≥ 1− q2H2

q .

• The success probability of the H3 query execution is (1− qH3

q)qH3 ≥ 1− q2H3

q .

• The success probability of the key encapsulation query execution is qE
(1− 1

q)
≥ qE · (1 +

1
q).

• The probability that IDi = IDt is 1
qC

.

• The probability that FII queries the secret value of the target identity IDt is qsv
qH0

.

• The probability that FII asks to replace the public key of the IDt is qpkR

qH0
.

So, the success probability that C can win the EUF-pCLSC-TKEM-CMA-II game is ε′ ≥
qE · (1 −

qH0
·qC
q) · (1 − q2H2

q) · (1 − q2H3

q) · (1 + 1
q) · (1

qC
) · (1 − qsv

qH0
) · (1 − qpkR

qH0
) · ε Therefore,

the probability that C computes the solution of ECDLP is non-negligible, because ε is non-
negligible.

6 Performance Evaluation

In this section, we evaluate the performance of our pCLSC-TKEM. We focus on the com-
putational overhead of pCLSC-TKEM and compare it with the overhead of other three
schemes: Lippold et al.’s pairing-based CL-KEM [13], Li et al.’s pairing-based CLSC-TKEM [12],
and Selvi et al.’s CLSC-TKEM [20]. We thus implemented all these three schemes in addi-
tion to implementing pCLSC-TKEM. As in most real-world applications of the client-server
model, the server possesses powerful computational resources, and the client has relatively
limited computing power, we implemented the four schemes on three different platforms:
a Raspberry Pi 2 model B, an Android smartphone (acting as clients) and a PC (acting as a
server). Then, we compared pCLSC-TKEM with the previous pairing based CL-KEM [13]
and CLSC-TKEMs [12, 20] with respect to each of the following steps: Setup; the Encap
step including symmetric key generation and key encapsulation; and the Decap step in-
cluding key decapsulation. The computational overhead of Selvi et al.’s CLSC-TKEM is
similar to that of Li et al.’s CLSC-TKEM, because the scheme by Selvi et al. is a modified
version of Li et al.’s scheme with improvements to resolve the security weaknesses of the
latter. The difference between the two is in the input parameters of the hash functions.

TRANSACTIONS ON DATA PRIVACY 9 (2016)

pCLSC-TKEM 125

10.52	

3.88	

19.71	

8.88	
 10.06	

22.19	

9.12	

10.51	

23.27	

1.23	
 2.04	
 2.79	

0	

5	

10	

15	

20	

25	

30	

35	

Setup	
 Encap	
 Decap	

m
s	

Lippold	
 et	
 al.	

Li	
 et	
 al.	

Selvi	
 et	
 al.	

Our	
 scheme	

(a) Computation time comparison

0.13	

0.42	

0.67	

4.62	

0.40	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

5	

Hash	
 to	
 EC	

point	

EC	
 point	

mul.	

Power	
 Pairing	
 EC	
 point	

mul.	

MNT	
 SECP160r1	

m
s	

(b) Computation times of expensive operations

Figure 1: PC (1024-bit RSA security level)

13.09	

5.60	

28.04	

4.84	

13.36	

34.88	

4.87	

13.42	

35.08	

2.84	

4.71	

6.68	

0	

5	

10	

15	

20	

25	

30	

35	

Setup	
 Encap	
 Decap	

m
s	

Lippold	
 et	
 al.	

Li	
 et	
 al.	

Selvi	
 et	
 al.	

Our	
 scheme	

(a) Computation time comparison

0.13	

0.53	

2.81	

7.01	

0.96	

0	

1	

2	

3	

4	

5	

6	

7	

8	

Hash	
 to	
 EC	

point	

EC	
 point	

mul.	

Power	
 Pairing	
 EC	
 point	

mul.	

BN	
 SECP256r1	

m
s	

(b) Computation times of expensive operations

Figure 2: PC (3072-bit RSA security level)

For the PC and Raspberry Pi 2 platform, predetermined parameters and elliptic curves
are used to achieve security levels at 1024/3072-bit RSA. For the Android smartphone plat-
form, the parameters for 1024/2048-bit RSA security levels were chosen. Such security
levels were chosen since each library for the three platforms supports 1024/3072-bit RSA
security level or 1024/2048-bit RSA security level for both PBC and ECC. Then, we eval-
uated the computational overhead of each scheme according to these differing security
levels.

6.1 Experimental Results in the PC platform and Raspberry Pi 2

We implemented three pairing-based schemes and our scheme using MIRACL library (ver.
7.1.0) [5]. MIRACL is an up-to-date cryptographic library supporting pairing-based cryp-
tography (PBC) as well as elliptic curve cryptography (ECC). For the setting of 1024-bit
RSA security level, we utilized a MNT curve with embedding degree k=6 for the pairing
parameter and SECP160R1 for the elliptic curve parameter. SECP160R1 defines EC pa-
rameters on a 160-bit prime field.

For the experiments on the PC platform, we utilized a Linux machine running 64-bit GNU
Linux kernel version 3.5.0-23 with 1.8 GHz Intel Core i5 and 4GB memory. Fig. 1(a) com-
pares the computation times of the four schemes at each step. Our scheme is 5.6, 6.8 and
7.1 times faster than the Lippold et al.’s scheme, the Li et al.’s scheme and the Selvi et al.’s

TRANSACTIONS ON DATA PRIVACY 9 (2016)

126 Seung-Hyun Seo, Jongho Won, Elisa Bertino

116.05	

43.41	

221.20	

98.07	
 113.97	

252.35	

99.91	

115.63	

255.76	

13.06	
 21.45	
 30.11	

0	

50	

100	

150	

200	

250	

300	

Setup	
 Encap	
 Decap	

m
s	

Lippold	
 et	
 al.	

Li	
 et	
 al.	

Selvi	
 et	
 al.	

Our	
 scheme	

(a) Computation time comparison

1.10	

4.27	

8.28	

51.65	

4.32	

0	

10	

20	

30	

40	

50	

60	

Hash	
 to	
 EC	

point	

EC	
 point	

mul.	

Power	
 Pairing	
 EC	
 point	

mul.	

MNT	
 SECP160r1	

m
s	

(b) Computation times of expensive operations

Figure 3: Raspberry Pi 2 (1024-bit RSA security level)

155.10	

67.92	

336.48	

57.14	

158.55	

419.94	

57.32	

158.75	

420.57	

32.85	

53.76	

75.44	

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

Setup	
 Encap	
 Decap	

m
s	

Lippold	
 et	
 al.	

Li	
 et	
 al.	

Selvi	
 et	
 al.	

Our	
 scheme	

(a) Computation time comparison

1.38	

6.41	

34.69	

84.44	

10.88	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

Hash	
 to	
 EC	

point	

EC	
 point	

mul.	

Power	
 Pairing	
 EC	
 point	

mul.	

BN	
 SECP256r1	

m
s	

(b) Computation times of expensive operations

Figure 4: Raspberry Pi 2 (3072-bit RSA security level)

scheme in the total computation time.
In addition, the same experiments were performed on the Raspberry Pi 2 running Rasp-

bian Linux (version 4.1) with 900 MHz quad-core ARM Cortex-A7 (32-bit) and 1GB RAM.
Raspberry Pi [21] is a popular platform for IoT applications because it offers a complete
Linux in a tiny platform for a very low cost. Fig. 3(a) shows the computation times of the
four schemes at each step. Our scheme is 5.9, 7.2 and 7.3 times faster in the total computa-
tion time than the Lippold et al.’s scheme, the Li et al.’s scheme and the Selvi et al.’s scheme
in the total computation time. Notice that our scheme takes only 30.11ms for the decapsu-
lation, whereas three other schemes take more than 200ms (see Fig. 3(a)). Considering that
100ms is the limit for having the user feel that the system is reacting instantaneously [15],
our pairing-free scheme has a big advantage over other pairing-based schemes for the real
IoT applications.

The computation times of Li et al.’s scheme and the Selvi et al.’s scheme are similar be-
cause Selvi et al.’s scheme simply inserts more parameters into the hash functions. Fig. 1(b)
and Fig. 3(b) show the computation times of each expensive operations on the PC and the
Raspberry Pi 2, respectively. They provide an explanation of the improved performance
of our pairing-free scheme. In the pairing-based schemes, the computational overhead is
mainly due to the pairing operation. This is in contrast to our pCLSC-TKEM scheme which
mainly relies on EC point scalar multiplication. For example, in the PC platform, EC point
scalar multiplication under the SECP160R1 is 11.6 times faster than the pairing operation

TRANSACTIONS ON DATA PRIVACY 9 (2016)

pCLSC-TKEM 127

1,278	

1,061	

2,338	

603	

1,893	

2,938	

592	

1,965	

3,042	

352	

624	

853	

0	

500	

1000	

1500	

2000	

2500	

3000	

Setup	
 Encap	
 Decap	

m
s	

Lippold	
 et	
 al.	

Li	
 et	
 al.	

Selvi	
 et	
 al.	

Our	
 scheme	

(a) 1024-bit RSA security level

11,280	

9,728	

24,702	

8,376	

13,340	

22,772	

8,716	

14,079	

23,524	

564	
 992	
 1,349	

0	

5000	

10000	

15000	

20000	

25000	

30000	

Setup	
 Encap	
 Decap	

m
s	

Lippold	
 et	
 al.	

Li	
 et	
 al.	

Selvi	
 et	
 al.	

Our	
 scheme	

(b) 2048-bit RSA security level

Figure 5: Computation time comparison on an Android smart phone

under the MNT curve.
For 3072-bit security, we adopt a BN curve with embedding degree k=12 for the pairing

parameter and SECP256R1 for the elliptic curve parameter. SECP256R1 defines EC pa-
rameters on a 256-bit prime field. In the PC platform, our scheme is 3.3, 3.7 and 3.7 times
faster (see Fig. 2(a)) than Lippold et al.’s, Li et al.’s and Selvi et al.’s schemes with respect to
total computation time, respectively. In the Raspberry Pi 2 platform, our scheme is 3.5, 3.9
and 3.9 times faster (see Fig. 4(a)) than Lippold et al.’s, Li et al.’s and Selvi et al.’s schemes
with respect to total computation time, respectively.

As shown in Fig. 2(b) and Fig. 4(b), the EC point multiplication under SECP256R1 is
much faster than exponentiation (power) and pairing operations under the BN curve. One
interesting point is that EC point multiplication under SECP256R1 is 1.8 times slower
than EC point scalar multiplication under the BN curve in the PC platform, which means
the computation time of our scheme can be reduced if the BN curve is used instead of
SECP256R1.

6.2 Experimental Results in the Android SmartPhone Platform

The four schemes were also implemented on a Samsung Galaxy S4 Zoom that runs on
Android 4.2 with ARM cortex A9 processor (32-bit, 1.5GHz) and 512 MB memory. We
utilized the JPBC library [6] 2.0.0 for PBC and the JECC library [23] 1.1 for ECC. For the
setting of 1024-bit RSA security level, we utilized type a for the pairing parameter and
SECP160R1 for the elliptic curve parameter. Type a has the base field size of 512 bits and
the embedding degree of the curve is 2. For the setting of 2048-bit RSA security level, we
utilized type a1 for the pairing parameter and SECP224R1 for the elliptic curve parameter.
Type a1 has the base field size of 1024 bits and the embedding degree of the curve is 2.

Under the 1024-bit RSA security level, our scheme only takes 0.62 and 0.85 seconds for En-
cap and Decap, respectively (see Fig. 5(a)), and is more than twice faster than pairing-based
schemes. Considering that even the most state-of-the-art consumer mobile devices are
equipped with ARM cortex series, these results provide strong evidence that our pairing-
free scheme is practical in real-world applications.

In 2048-bit RSA security level, the advantage of our pairing-free scheme over the pairing-
based schemes becomes more apparent. Our pCLSC-TKEM requires significantly less CPU
time (see Fig. 5(b)), which also implies that our scheme consumes less battery power in
smartphones. In addition, considering that NIST recommends that cryptographic functions
adopt 2048-bit RSA security from 2011 to 2030 [16], our pairing-free CLSC-TKEM will be

TRANSACTIONS ON DATA PRIVACY 9 (2016)

128 Seung-Hyun Seo, Jongho Won, Elisa Bertino

advantageous over pairing-based schemes in current and in future applications.

7 Conclusions

Confidentiality and authentication are prerequisite to protect privacy-sensitive data gen-
erated by IoT devices from unauthorized accesses. To address this requirement, in this
paper, we developed a new construction for the certificateless signcryption tag key en-
capsulation (CLSC-TKEM) without utilizing bilinear pairing operations. We refer to this
novel scheme as pairing-free CLSC-TKEM (pCLSC-TKEM). Then, we propose a simple
construction for pairing-free CL-HSC by combining the pCLSC-TKEM with the DEM. The
proposed pCLSC-TKEM efficiently executes both key encapsulation and digital signature,
while providing security against both an adaptively chosen ciphertext attack and an ex-
istential forgery of Type I and II adversaries. In order to measure the performance and
applicability of the proposed scheme, we implemented the pCLSC-TKEM and previously
defined pairing-based schemes on various platforms such as a PC, Android smartphones
and Raspberry Pi - a platform widely used for IoT applications. Our performance com-
parison with the previous approaches shows that our pCLSC-TKEM is an ideal building
block for securing the privacy of data being transmitted in emerging distributed systems
and applications enabled by IoT technology.

References

[1] Al-Riyami S, Paterson K (2003) Certificateless public key cryptography. In: Advances
in Cryptology - ASIACRYPT 2003, Lecture Notes in Computer Science, vol 2894,
Springer, pp 452–473

[2] An JH, Dodis Y, Rabin T (2002) On the security of joint signature and encryption. In:
EUROCRYPT 2002, Springer, Lecture Notes in Computer Science, vol 2332, pp 83–107

[3] Barbosa M, Farshim P (2008) Certificateless signcryption. In: Proceedings of the 2008
ACM Symposium on Information, Computer and Communications Security, ASI-
ACCS ’08, pp 369–372

[4] Bjørstad TE, Dent AW (2006) Building better signcryption schemes with tag-kems. In:
Proceedings of 9th International Conference of Public-Key Cryptography, PKC 2006,
Springer-Verlag, Lecture Notes in Computer Science, pp 491–507

[5] Certivox (2014) Miracl cryptographic sdk. URL http://www.certivox.com/miracl/

[6] De Caro A, Iovino V (2011) JPBC: Java pairing based cryptography. In: Pro-
ceedings of the 16th IEEE Symposium on Computers and Communications,
ISCC 2011, IEEE, Kerkyra, Corfu, Greece, June 28 - July 1, pp 850–855, URL
http://gas.dia.unisa.it/projects/jpbc/

[7] Dent AW (2005) Hybrid signcryption schemes with insider security. In: Proceedings
of the 10th Australasian Conference, ACISP 2005, Springer-Verlag, Lecture Notes in
Computer Science, pp 253–266

TRANSACTIONS ON DATA PRIVACY 9 (2016)

pCLSC-TKEM 129

[8] Dent AW (2005) Hybrid signcryption schemes with outsider security. In: Proceedings
of the 8th International Security Consernce, ISC 2005, Springer-Verlag, Lecture Notes
in Computer Science, pp 203–217

[9] Dodis Y, Freedman MJ, Jarecki S, Walfish S (2004) Versatile padding schemes for joint
signature and encryption. In: Proceedings of the 11th ACM Conference on Computer
and Communications Security, CCS ’04, pp 344–353

[10] Koblitz N, Menezes A (2009) Intractable problem in cryptography. In: Proceedings of
the 9th International Conference on Finite Field and Their Applications, Contempo-
rary Mathematics, pp 279–300

[11] Kolias C, Stavrou A, Voas J, Bojanova I and Kuhn R (2016) Learning Internet-of-Things
Security Hands-On, in IEEE Security & Privacy, vol. 14, no. 1, pp. 37-46, Jan.-Feb

[12] Li F, Shirase M, Takagi T (2009) Certificateless hybrid signcryption. In: Information Se-
curity Practice and Experience, Lecture Notes in Computer Science, vol 5451, Springer
Berlin Heidelberg, pp 112–123

[13] Lippold G, Boyd C, Nieto JMG (2010) Efficient certificateless kem in the standard
model. In: Proceedings of the 12th International Conference on Information Secu-
rity and Cryptology, Springer-Verlag, Berlin, Heidelberg, ICISC’09, pp 34–46, URL
http://dl.acm.org/citation.cfm?id=1883749.1883753

[14] Miller VS (1985) Use of elliptic curves in cryptography. In: Proceedings of Crypto 85,
Springer-Verlag, pp 417–426

[15] Nielsen Norman Group URL http://www.nngroup.com/articles/response-times-3-
important-limits/

[16] NIST (2007) URL http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-
Part1-revised2 Mar08-2007.pdf

[17] The Open Web Application Security Project URL
https://www.owasp.org/index.php/OWASP Internet of Things Project

[18] Paterson KG, Schuldt JCN, Stam M, Thomson S (2011) On the joint security of en-
cryption and signature, revisited. In: Proceedings of the 17th ASIACRYPT’11, ASI-
ACRYPT’11, pp 161–178

[19] Pointcheval D, Stern J (2000) Security arguments for digital signatures and blind sig-
natures. JOURNAL OF CRYPTOLOGY 13:361–396

[20] Selvi S, Vivek S, Rangan C (2010) Certificateless kem and hybrid signcryption schemes
revisited. In: Information Security, Practice and Experience, Lecture Notes in Com-
puter Science, vol 6047, Springer, pp 294–307

[21] Raspberry Pi URL https://www.raspberrypi.org

[22] Shamir A (1985) Identity-based cryptosystems and signature schemes. In: Proceedings
of CRYPTO 84 on Advances in cryptology, pp 47–53

[23] Sorensen TB, Kragh T, Erlandsen MK (2013) URL http://jecc.sourceforge.net

TRANSACTIONS ON DATA PRIVACY 9 (2016)

130 Seung-Hyun Seo, Jongho Won, Elisa Bertino

[24] Szczechowiak P, Oliveira LB, Scott M, Collier M, Dahab R (2008) Nanoecc: Testing the
limits of elliptic curve cryptography in sensor networks. In: Proceedings of the 5th
European Conference on Wireless Sensor Networks, EWSN’08, pp 305–320

[25] Zheng Y (1997) Digital signcryption or how to achieve cost(signature & encryption)
cost(signature) + cost(encryption). In: Proceedings of the 17th Annual International
Cryptology Conference on Advances in Cryptology, Springer-Verlag, CRYPTO ’97, pp
165–179

TRANSACTIONS ON DATA PRIVACY 9 (2016)

