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Abstract. Web services technologies are considered as the most promising technologies for the in-
tegration of applications and heterogeneous data sources. In spite of the progress achieved in this
area, the issue of users’ privacy protection remains a major concern for both academic and industrial
communities. This paper presents a model for preserving privacy in the context of web services and
demonstrates its feasibility in a web service selection scenario. In addition, we introduce three pri-
vacy based selection approaches. The first one is based on a best first search like procedure, while the
two others are based on two well-known declarative AI models, namely propositional satisfiability
(SAT) and answer set programming (ASP). Finally, an experimental evaluation on different types of
datasets, demonstrates the effectiveness of our proposed approaches.
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1 Introduction

Nowadays, Web Services play a central role in the functioning of the Internet. Thanks to
their flexibility and modularity, they are used as the main technology of communication
and data exchange in recent software models like cloud computing. One of the most im-
portant advantages behind using such a technology lies in its ability to compose existing
web services. By doing so, a new value-added functionality is created with less effort and
resources.
Due to the increasing number of services over the Internet, Web Service selection becomes a
crucial task. In a nutshell, the selection task consists in choosing amongst a set of candidate
services, those that best meet the users’ needs. Usually, Web Services selection is based on
non-functional criteria covering various categories such as Quality of Service (QoS), secu-
rity or privacy. Finding a service or composition of services that best fulfill non functional
requirements is known to be an NP-hard problem [1]. For this reason, the design of effec-
tive systems remains an essential research issue.
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Although the majority of Web Service selection approaches are based on QoS as the main
criterion of selection [1, 2, 3, 4, 5, 6], the growing concerns about data privacy has resulted
in numerous studies addressing privacy issues in the area of service selection [7, 8, 9, 10,
11, 12, 13, 14, 15, 16]. Despite these efforts, the concept of privacy remains a challenging
problem in this field. In fact, it entails many other questions such as : i) How to represent
privacy policies in order to allow users and service providers to specify their privacy needs,
ii) How to efficiently handle the specified policies to find a composition that satisfies all pri-
vacy constraints, iii) If such a composition does not exist, how to ensure an acceptable level
of privacy protection. Our work addresses the privacy issue in the context of Web Service
selection. Our objective is to protect both users and service providers from privacy viola-
tion. The infraction can be caused by any misuse or unauthorized disclosure of exchanged
data. To ensure this objective, we propose a privacy selection framework, which aims to
find a composite Web Service that preserves the privacy requirements of both users and
service providers. This framework takes as input a composition data exchange plan, a set
of user privacy requirements as well as the privacy policies of each candidate service. The
output is a concrete composition that best fulfills all input privacy constraints:
The contribution of this paper is three-fold.

• Firstly, we propose two privacy models: a privacy composition model and a privacy
policy model. The privacy composition model is used to represent the data exchange
between the component services. In this model, only data that is qualified as private
is taken into account. On the other hand, the privacy policy model is used to express
users’ and services’ privacy requirements and policies. In this model, privacy defini-
tion is based on four dimensions : purpose, visibility, granularity, and retention time.
These four dimensions are considered as the most complete predicates for defining
privacy needs [17]. Moreover, the utilization of these dimensions makes our model
compatible with the w3c privacy framework standard P3P [18, 19].

• The second contribution consists in defining a fuzzy integral based data disclosure
function. This function measures the amount of the risk of privacy threat caused by
service providers while using private data. In our privacy model, this function is
used to rank compositions that fulfill privacy requirements, from which we select the
composition with minimal privacy risk.

• Based on the proposed privacy models, our third contribution offers three selection
algorithms. The main objective is to demonstrate the feasibility and the compatibility
of our privacy models with different types of algorithms. The first algorithm is called
Constrained Best First Search (CBFS) algorithm. This approach adapts an existing
best first search algorithm (BFS) to manage privacy constraints. The other algorithms
are based on two of the most popular declarative models: Boolean satisfiability (SAT)
and Answer Set Programming (ASP). In these last models, the specification of the
problem is encoded as a propositional formula or ASP program, then a general search
program called solver is used to search for solutions. The effectiveness of these algo-
rithms is tested and compared on different types of datasets.

The remainder of this paper is structured in the following manner. Section 2 introduces
some preliminary concepts and necessary definitions after which Section 3 provides a de-
tailed description of our proposed selection privacy framework. This description includes
details about the Composition Model as well as the privacy policy model. The privacy
preserving Web Services selection problem formulation is presented in Section 4. Section 5
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is devoted to the proposed privacy risk function along with the algorithms’ details. Eval-
uation and experimental results are provided in Section 6 and some related work are pre-
sented in section 7. Finally, section 8 concludes and provides some perspectives.

2 Technical Background and Preliminary Definitions

This section introduces some preliminary concepts which are used throughout this paper.
It defines Web Services composition and selection, as well as some basic concepts related
to the Weighted Partial MaxSAT (WP-MaxSAT) and the Answer Set Programming (ASP).

2.1 Web Services Composition and Selection

A Web service is defined as a modular and self-described application invocable with stan-
dard web technologies (HTTP, SOAP, etc.)[20, 21]. In a typical web service architecture,
a service provider publishes service descriptions as WSDL (Web Service Description Lan-
guage) files on registries like UDDI (Universal Description Discovery and Integration) [20].
Consumers can discover services from the registry and finally invoke the discovered ser-
vices. For certain types of applications, it is necessary to combine a set of Web Services
(aggregate or composite Web services) to meet more complex requirements. This combi-
nation (composition or work-flow) leads to an abstract composite service that specifies a
set of atomic tasks as well as data flow and control between them. This work-flow can
be formalized through the use of specific languages like BPEL (Business Process Execu-
tion Language) [22]. Considering the abstract composition, the selection phase consists
in searching for a set of concrete services that best fulfill non-functional requirements. In
general, non-functional requirements are Quality of Service (QoS) (e.g. latency, availability,
cost, etc.), security or, like in our work: privacy constraints. Throughout the rest of this
paper, the two terms Web Service and service are used interchangeably.

2.2 SAT and Weighted Partial MaxSAT

A propositional (or Boolean) formula Φ is in conjunctive normal form (CNF) if it is a con-
junction (∧) of clauses, where a clause is a disjunction (∨) of literals. A literal can be a
propositional variable p or its negation ¬p. A CNF formula can be seen as a set of clauses
and each clause as a set of literals. We denote by V ar(Φ) the set of propositional variables
occurring in Φ. A truth assignment σ to a set V ⊆ V ar(Φ) of propositional variables is a
map σ : V → {0, 1}. An assignment σ satisfies a CNF formula Φ (σ(Φ) = 1) if it satisfies
all its clauses, in this case, σ is called a model of Φ. The propositional satisfiability problem
(SAT) [23] consists in deciding if a given CNF formula admits a model or not. Today, This
canonical NP-Complete problem has gained a considerable audience with the advent of
a new generation of solvers able to solve large CNF instances encoding real-world prob-
lems. In addition to the traditional applications of SAT to hardware and software formal
verification, this impressive progress led to increasing use of SAT technology to solve new
real-world applications such as planning, bioinformatics, data mining and cryptography.
In the majority of these applications, we are mainly interested in the decision problem
and some of its optimization variants such us Maximum satisfiability (MaxSAT), Partial
MaxSAT (P-MaxSAT) or Weighted Partial MaxSAT (WP-MaxSAT). MaxSAT is defined as
the problem of finding a truth assignment satisfying a maximum number of clauses. In
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P-MaxSAT, given a CNF formula Φh ∧ Φs, the problem is to find a truth assignment satis-
fying the hard part (Φh), while maximizing the number of satisfied soft clauses (Φs). In the
Weighted Partial MaxSAT problem [23], the CNF formula contains also two sets of clauses,
a set of hard clauses (Φh) that must be satisfied and a set of weighted soft clauses (Φws). A
solution to a weighted partial MaxSAT problem consists in finding an optimal assignment
that satisfies all the hard clauses (Φh) and maximizes the sum of the weights of the satisfied
soft clauses (Φws).

2.3 Answer Set Programming (ASP)

Answer Set Programming (ASP) [24, 25], has become one of the most popular declarative
approaches to solving difficult search problems (NP-hard). ASP can be seen as a branch
of knowledge representation, logic programming and (non-monotonic) reasoning. Syntac-
tically, ASP looks like logic programming (e.g Prolog) while the semantics are based on
stable models, also called answer sets (see [26]). An ASP program Π is represented as a
finite set of rules. A normal rule ri is of the form:

h1 ∨ · · · ∨ hk ← a1, ..., am,¬am+1, ...,¬an. (k > 0, n > m > 0)

where hi, aj are atoms (literals) in first order language and ¬ represents a negation-as-
failure symbol. In addition, the set H(ri) = {h1, . . . , hk} is called the head of the rule ri,
and B(ri) = {a1, a2, ..., am,¬am+1, ...,¬an} is the body of the rule ri. If B(ri) = ∅ the rule
represents a fact; while if H(ri) = ∅ the rule represents a constraint. A solution for an ASP
program corresponds to its underlying answer set. Intuitively, finding the answer set is
equivalent to finding the set of only the literals that are justified by a rule in the program Π.
The utilization of ASP entails the specification of the problem as an ASP program, thereafter
we leverage an ASP solver to handle the aforementioned specification.

3 A Privacy Based Selection Framework

3.1 Framework Architecture

In this work, we propose a privacy selection framework (Figure 1). The objective is to find a
composition that satisfies privacy constraints of both users and service providers. The main
component of this system is the privacy manager, which generates an executable compos-
ite Web Service (concrete composition) that best fulfills all privacy constraints of both users
and service providers. To generate the concrete composition, the privacy manager uses a
selection algorithm which takes as input: i) an abstract composition that specifies the Data-
flow and the Control-flow of the component services (abstract tasks); ii) a set of concrete
services that implement the previous abstract tasks, in addition to the specification of their
privacy constraints (stored in services registry); iii) a user’s request that specifies his/her
privacy requirements.
The selection algorithm implemented in the privacy manager is based on two models: the
composition model and the privacy model. The composition model mainly focuses on the
Data-flow that links the component services, while the privacy model describes how to
define the privacy rules used for expressing privacy requirements and constraints. Details
about these two models are given in the next two sections.
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Figure 1: Privacy selection Framework
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Figure 2: Example of a composition Dataflow graph

3.2 Composition Model

In our work, a composite Web Service (composition of services) C is represented by a cou-
pleC =< D,W >, whereD represents the Data-flow model of the composition andW rep-
resents the Work-flow model. In a privacy context we are more interested in the Data-flow
model which represents the data exchange plan between the elementary services of the
composition. The Data-flow model is represented by a valued directed graph D = (S,A).
In this graph, the set S of vertices represents elementary services, while the set A of arcs
represents data dependencies between services. Figure 2 represents a simple Data-flow
graph. The figure shows that each service in the composition needs a set of attributes to
provide the expected service. For example, the service s3 needs the data attributes a1,a4
and a5 as inputs to provide the service functionality. Note that the service s1, which is
without input attributes, represents a user agent. To ensure privacy protection, each ser-
vice of the composition must comply with the privacy constraints required by the services
that provide the needed attributes.
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We observe in this example (see Figure 2) that the attributes a1 and a4 (arc (s2,s3)) are pro-
vided by the service s2 whereas they are produced by the service s1. In other words, the
service s1 is the owner of the attributes a1 and a4. Therefore, for these two attributes, the
service s3 must comply with the privacy requirements of s1 and not those of s2.

According to the Data-flow graph (composition graph) and the concept of attributes owner,
we can construct a new graph called privacy graph which is defined as follows:

Definition 1 (Privacy graph). A privacy graph of a composition graph D = (S,A) is a
directed graph PG = (S,Ap), where the set of arcs Ap represents the privacy constraints
related to the data attributes exchanged between services.

Figure 3 represents the privacy graph issued from the composition graph of figure 2. For
example, in this figure, the arc between s1 and s2 means that the privacy policies of service
s2 related to the attributes a1, a2, a3 and a4 must comply with privacy requirements of
service s1.
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a1, a2, a3, a4

a1, a4

a4

a4

a5

a
6 a7

a
9 , a

8

Figure 3: Privacy graph corresponding to Dataflow graph of figure 2

A privacy graph is said to be valid if all privacy constraints between the nodes (services)
in this graph are satisfied.

Definition 2 (Service Precedence Set). Given a privacy graphPG = (S,Ap), the precedence
set PRDsx of a service sx ∈ V is defined as follows:

PRDsx = {sy ∈ S | ∃ (sy, sx) ∈ Ap}

Example: in the privacy graph of figure 3, the precedence set of the service s5 is: PRDs5 =
{s1, s3, s4}.

Definition 3 (Set of Dependencies). Given a privacy graph PG = (S,Ap), the set of depen-
dencies DEPsx,sy between two services sx, sy ∈ S is the value of the arc (sx, sy).

Example: in the privacy graph of figure 3, we have:
DEPs1,s2 = {a1,a2,a3,a4} , DEPs2,s5 = ∅.
The concepts of service precedence set and set of dependences are used in the privacy model
specification, which is introduced in Section ??.

3.2.1 Illustrative Example

Figure 4 represents a simplified scenario derived from an on-line shopping web service.
This service involves three elementary services and a user agent. The elementary services
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Figure 4: The scenario of on-line shopping successful order.

are: Seller, Payment and Shipper service. This scenario describes a successful on-line shop-
ping transaction. The user agent starts the transaction by sending to the seller service an
order message (OrderReq) along with the necessary data attributes (Name, Address, credit-
card-info). Then, the Seller sends to the payment service a payment message (Payment) as
well as the data attributes: seller-banking-info, the Name and the credit-card-info of the user.
In the case of a successful payment, the payment service informs the seller by a PaymentOk
message together with information details about the payment. After that, the seller invokes
the shipper service to deliver the ordered goods. In this example, the data attributes, Name,
Address, credit-card-info (of user) and seller-banking-info (of seller) are considered as private.
Figure 5 shows the Data-flow graph (Figure 5 (a)) and its corresponding privacy graph
(Figure 5 (b)). Note that in these graphs, only private data attributes are represented, and
all other data (e.g. Payment-details, Order-details) are omitted. The privacy graph specifies
the privacy constraints that the three services must verify to accomplish a successful trans-
action. For example, the privacy policies the seller service must be in accordance with the
privacy requirements of the user for the data attributes, name, address and credit-card-info.
From this privacy graph we can define the Services’ precedence set (PRDs) and the Sets of

dependencies (PREDs1,s2 ) as follows:

PRDUser = ∅, PRDSeller = {User}, PRDPayment = {User, Seller},
PRDShipper = {User}.
DEPUser,Seller = {name, address, credit-card-inf}, DEPSeller,Payment = {seller-bank-inf},
DEPUser,Payment = {address, credit-card-inf} , DEPUser,Shipper = {name, address}.

3.3 Privacy Policy Model
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Figure 5: Dataflow graph (a) and the corresponding privacy graph (b) of composition
senario of figure 4.

3.3.1 Privacy Predicates

To express privacy policies and requirements of users and service providers that corre-
spond to each data attribute (name, date of birth, SSN, etc.), we need a set of privacy predi-
cates (or privacy criteria) that represent as much as possible all privacy facets. In our work,
we have used the same set of predicates defined in [19, 27]. These predicates represent
privacy as a four-dimensional point, where each dimension represents a different privacy
facet. These predicates are : purpose, visibility, granularity and retention time. They are de-
fined as follows:

• Purpose (Pr): defines how data can be used once it has been collected;

• Visibility (V) :defines who is allowed to see the provided data;

• Granularity (G) : defines how much precision of data is provided ;

• Retention time (T) : defines how long data is kept by the data collector.

We note that, in general, these privacy predicates are represented as lattices or hierarchy
structures [19]. In our work we normalized the predicates: visibility, granularity and re-
tention time to be represented as real numbers in the interval [0..1]. The objective of this
normalization is to make privacy predicates’ comparisons and calculation more easier. To
explain the normalization process, we use the simple example of Figure 6. Figure 6 (a) rep-
resents the granularity hierarchy related to the marital status attribute, while Figure 6 (b)
represents a simple hierarchy of visibility domain. As Figure 6 shows, the normalization
consists in assigning a value between 0 and 1 to each level of the domain hierarchy. This
assignment is done in such a way that the most information revealing level takes the closest
value to 1. The normalized value is obtained by using the following formula:

Np =
Dmax − dp
Dmax

(1)

WhereDmax is the maximum depth of the predicate’s domain hierarchy and dp is the pred-
icate level.
In the example of Figure 6 (a), if a divorced user does not want to reveal the exact value
of his/her marital status but just that he/she is once married, the normalized value of the
marital status granularity will be 0.5 (Dmax = 2 and dp = 1). Similarly, and according to
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Figure 6: Example of (a)granularity and (b) visibility domain normalisation

the visibility hierarchy of Figure 6 (b), if a user wants to make a given attribute visible only
to the service provider, the visibility value related to that attribute will be 0.33(Dmax = 3
and dp = 2).
The normalization of the retention time predicate is easier as we just divide the value of the
attribute retention time by the maximum value. We note that, to prevent users from han-
dling numerical values, they can express how much information may be revealed through
a GUI. After that, the mapping to the interval [0,1] will be done by the selection framework.

3.3.2 Privacy Rules

A privacy rule is an assertion used by users or service providers to specify their privacy
policy and requirements. A privacy rule is defined by the aforementioned privacy predi-
cates: Purpose (Pr), Visibility (V), Granularity (G) and Retention time (T). More formally, a
privacy Rule Ri is a quintuplet: Ri = 〈ai, P ri, Vi, Gi, Ti〉, where:

• ai ∈ Att, is a private data attribute ex: Name , SSN , age, address , etc.

• Pri, Vi, Gi and Ti represent the values of the privacy dimensions: Purpose, Visibility,
Granularity and Retention time.

A privacy rule Ri = 〈ai, P ri, Vi, Gi, Ti〉means that the private data ai was collected for the
purpose Pri , with a visibility Vi , a precision Gi and retention time Ti. For a given privacy
rule Ri = 〈ai, P ri, Vi, Gi, Ti〉, we assume the following syntax: Ri[Att] = ai, Ri[Pr] =
Pri, Ri[V ] = Vi, Ri[G] = Gi, Ri[T ] = Ti.

Definition 4 (well defined rules). A set of privacy rules P is said to be well defined if for
all rules in P we can not find two rules with the same values of data attribute, purpose and
visibility but different values of granularity and/or retention time. Formally:

∀Ri, Rj ∈ P :


(Ri[Att] = Rj [Att])∧
(Ri[Pr] = Rj [Pr])∧
(Ri[V ] = Rj [V ])⇒
(Ri[G] = Rj [G]) ∧ (Ri[T ] = Rj [T ])

(2)

Intuitively, a privacy rule Ri is characterized by an identifier which consists of the struc-
ture (ai, P ri, Vi) (this is similar to the primary key in relational data bases). Thus, any rule
that contains a triplet (ai, P ri, Vi) must be unique. Otherwise, we will get an inconsistent
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set of privacy rules. For example, in the privacy graph of Figure 5(b), if a user defines a
set of rules that contains the two following privacy rules, then that set is not well defined
(inconsistent):
R1 = 〈name, shopping purpose, service provider, all released, 60〉 ;
R2 = 〈name, shopping purpose, service provider, all released, 50〉 .

3.3.3 Privacy Policies and Privacy Requirements

Privacy Policy (PP): (noted as PP ) is the set of well defined privacy rules, specifying the set
of privacy practices applicable on any collected data. Formally a privacy policy PPsx of a
service sx is defined as follows:

PPsx = {Ri ∈ P |Ri[Att] ∈ Isx}. Where, Isx ⊆ {Input of sx} .

For example, the seller service in the privacy graph of Figure 5 (b), has:
Iseller ⊆ {name, address, credit-card-inf}. Thus, the seller service must specify a set of privacy
rules PP seller, that defines the usage of the attributes belonging to Iseller. For example, if
the seller service wants that: i) all parts of the user address must be released (G), ii) the
address is assigned to the purposes of: shopping and statistics, iii) the address is shared
with third parties, iv), and the address is retained for 90 days, then, the set PP seller must
contain the following privacy rules:
R1 = 〈address, shopping purpose, third parties, all released, 90〉 ;
R2 = 〈name, statistics purpose, third parties, all released, 90〉 .

Privacy Requirement (PR): (noted as PR ) is the set of well defined privacy rules, specifying
the set of privacy conditions that a third-party service must meet to consume provided
data. Formally a Privacy requirement, PRsx , of a service sx is defined as follows:

PRsx = {Ri ∈ P |Ri[Att] ∈ Osx}. Where, Osx ⊆ {Output of sx} .

In the privacy graph of Figure 5(b), the seller service has: Oseller ⊆ {seller-bank-info}. If
the seller service is willing to reveal all parts of the attribute seller-bank-info, only to the
payment service and only for payment purposes, and requires that this attribute will not
be retained more than one day, then, the set PRseller must contain the privacy rule:
R = 〈seller-bank-info, payment purpose, service provider, all released, 1〉 ;

3.3.4 Comparable Rules

Two privacy rules are comparable, if they are associated with the same attribute and their purposes
belong to the same set. Formally, the two rules Ri and Rj are comparable if:

(Ri[Att] = Rj [Att]) ∧ (Ri[Pr], Rj [Pr]) ∈ Gl ×Gl.

where, Gl ⊆ Pr, represents the set of all goals of a given composition.
For example, in the on-line shopping web service of Figure 4, the set Gl can be :

Gl = {shopping purpose, payment purpose, shipping purpose}. If the user defines the privacy re-
quirement rule R1 = 〈name, Shopping purpose, 0.5, 0.33, 0.2〉, and the seller service, defines the
privacy policy rule R2 = 〈name, statistic purpose, 0.6, 0.2, 0.2〉. The two rules R1 and R2 are
incomparable, since, statistic purpose 6∈ Gl. Consequently, we can state that these two
rules are not compliant without comparing the values of the other predicates.
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We define the function comp(Ri, Rj) that returns 1 if the pair of rules (Ri, Rj) are compa-
rable.

comp(Ri, Rj) =

{
1 if (Ri[Att] = Rj [Att]) ∧ (Ri[Pr], Rj [Pr]) ∈ Gl ×Gl
0 else

(3)

3.3.5 Rules Compliance

A privacy rule Ri is compliant with the privacy rule Rj (Ri ∼ Rj) if:

1. These two rules are comparable;

2. The values: visibility, granularity and retention time of Ri are greater or equal than
of those of Rj .

Formally:

Ri ∼ Rj ⇔


comp(Ri, Rj) = 1 ∧
Ri[V ] > Rj [V ] ∧
Ri[G] > Rj [G] ∧
Ri[T ] > Rj [T ]

(4)

3.3.6 Services Compliance

A service sx that defines a privacy requirement PRsxy complies with a service sy that de-
fines a privacy policy PP sxy , if the function Nconf(sx, sy) returns zero. This function rep-
resents the number of non-compliant privacy rules between the two services sx and sy .
This function is defined as follows:

Nconf (sx, sy) =

{
0 if ∀Ri ∈ PRsxy ,∃Rj ∈ PP sxy : Ri ∼ Rj
k else , (k = |NC|)

(5)

Where, NC = {Ri ∈ PRsxy |@Rj ∈ PP sxy : Ri ∼ Rj} . PRsxy ⊆ PRsx , PP sxy ⊆ PP sy and
defined as : PRsxy = {Ri ∈ PRsx |Ri[Att] ∈ DEP sx,sy}, PP sxy = {Ri ∈ PP sy |Ri[Att] ∈
DEP sx,sy}, where, PRsx and PP sy represent respectively all privacy requirements and
privacy policies defined by the services sx and sy , while DEP sx,sy represents the set of
dependencies between the services sx and sy (see definition 3 ).

3.3.7 Valid Service

A service sx is said to be valid, if it is compliant with all services on which it depends.
Formally:

vld(sx) =

{
1 if ∀sy ∈ PRDsx : Nconf (sy, sx) = 0

0 else
(6)

where, PRDsx represents the precedences set of sx (see definition 2).
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3.3.8 Valid Composition

A composition C = {s1,s2,...,sn} is said to be valid if all its component services are valid.
We define the function vld(C), which returns 1 if the composition C is valid:

vld(C) =

{
1 If ∀sx ∈ C : vld(sx) = 1

0 else
(7)

3.3.9 Privacy Risk Function

As the objective of our selection framework is to find a composition that preserves all
privacy constraints and minimizes the risk of a privacy threat, we need to define a func-
tion that measures such a risk. This function will be used to rank compositions that fulfill
privacy requirements to select the composition with the minimal privacy risk.

We notice that our model imposes strong constraints on the purpose predicate, as men-
tioned earlier, a rule Ri is not compliant with a rule Rj if the two purposes defined in these
two rules don’t belong to the same composition purposes set Gl. Therefore, the privacy
risk function is expressed only by the three privacy predicates: visibility, granularity and
retention time. To define the privacy risk induced by the overall composition, we have first
to specify the privacy risk function for each service.

Service Privacy Risk To define the privacy risk function of a service sx, we have to define
a function that aggregates the values of the three privacy predicates V,G and T of each rule
of the PP sx set. With the existence of such a function, the risk of a privacy threat induced
by a web service sx in a composition is expressed by:

risk(sx) =
1

|PP |

Ri=|PP|∑
Ri=1

λi ×Agr(Ri[V ], Ri[G], Ri[T ]) (8)

where, Agr represents the aggregation function, and λi represents the sensitivity degree of
the data attribute Ri[Att] = ai of the rule Ri. Note that the sensitivity degree is defined by
the data attribute owner (users or service providers).
The aggregation function used in our work is defined in section ??.

Composition Privacy Risk Given a composition of n services C = {s1, s2, ..., sn}, the
overall privacy risk of this composition is obtained by aggregating the risks of its compo-
nent services. The aggregation depends on the Work-flow model (execution plan) of the
composition. Table 1 introduces some examples of such aggregations.

Table 1: Example of composition privacy risk aggregation function.

execution plan aggregation function

Sequential
∑n
i=1 risk(si)

Parallel
∑n
i=1 risk(si)

Loop 0
Conditional

∑n
i=1 pi × risk(si)
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As mentioned in Table 1, the execution plan structure of the composition (Sequential, par-
allel, loop, conditional) doesn’t have a large influence on the calculation of the overall pri-
vacy risk. In most cases, the aggregation function is the sum of the privacy risks introduced
by the component services. The exception is made for the conditional structure, where only
one service runs among a set (according to the value of a condition). In this case, one can
assess the privacy risk introduced by this structure as the weighted sum of services’ pri-
vacy risk, where the coefficients represent the participation probability of each service in
the execution. In a loop structure, the execution of the same service more than once will
not introduce an additional privacy risk. As previously mentioned, this function measures
the rate of potential privacy risk. Consequently, the higher the privacy risk function is, the
smaller privacy protection becomes.

4 Privacy Preserving Web Services Selection Problem (PP-
WSP)

4.1 Problem Formulation

Given an abstract composition CA = {S1, S2, ..., Sn} represented as a privacy graph, a list
of candidate services for each class Si in CA and a user privacy requirements Ureq (set
of privacy rules). The objective is to find a concrete composition Cc = {s1, s2, ..., sn}, by
binding each Si ∈ CA to a concrete service si ∈ Cc such that:

• The composition {Ureq} ∪ Cc is valid.

• The privacy risk function is minimized.

According to the aforementioned privacy model, we have to find a concrete composition
Cc, with:

Cc = {s1, s2, ..., sn} :

{
vld({Ureq} ∪ Cc) = 1.

minimise(risk(Cc)).
(9)

4.2 Complexity of Privacy Preserving Web Services Selection Problem

The general privacy preserving web services selection problem (PPWSP) with n service
classes and k candidate services per class, can be formally represented as follows:

minimize
∑n
i=1

∑k
j=1 sijrij

subject to
∑n
i=1

∑k
j=1 sijvij ≤ V∑k

i=1 sij = 1 , 1 ≤ i ≤ n
sij ∈ {0, 1} , 1 ≤ i ≤ n, 1 ≤ j ≤ k

(10)

where: sij is the service j of the class i; rij represents the privacy risk associated with sij ;
vij represents the number of non-compliant rules of the service sij and V represents the
number of non-compliant rules tolerated in the solution. Note that the problem statement
in equation 9 is a special case of PPWSP (represented in equation 10), where V = 0.
The PPWSP is an NP-hard problem. The proof is done by reducing the Multiple Choice
Knapsack Problem (MCKP) which is known to be NP-hard [28] to PPWSP.
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The MCKP is defined as follows: Given N item groups (G1, · · · , GN ), each of them con-
tains k items, ie: Gj = {I1j , · · · , Ikj} and a knapsack of capacity C. Each item has a weight
wij and profit pij . The MCKP consists of selecting one item from each group to be placed
in the knapsack so that the total profit is maximized while the total weight is less than the
capacity C of the knapsack.
We can reduce MCKP to our privacy preserving web services selection problem by pro-
ceeding as follows:

• each item group Gj is mapped to a service class Sj ;

• each item Iij is mapped to a candidate service sij ;

• the profit pij of each item Iij is mapped to (1− rij), where rij represents the privacy
risk of the service sij ;

• the weight wij of each item Iij will correspond to vij , the number of non-compliant
rules of the service sij ;

• the capacity C of the knapsack will correspond to V , the number of non-compliant
rules tolerated in the solution .

After the mapping, the MCKP is represented as follows:
maximize

∑n
i=1

∑k
j=1 sij(1− rij)

subject to
∑n
i=1

∑k
j=1 sijvij ≤ V∑k

i=1 sij = 1 , 1 ≤ i ≤ n
sij ∈ {0, 1} , 1 ≤ i ≤ n, 1 ≤ j ≤ k

(11)

The formula: maximize
∑n
i=1

∑k
j=1 sij(1 − rij) of equation 11 is equivalent to: minimize∑n

i=1

∑k
j=1 sijrij . If we rewrite the equation 11 using the new equivalent formula, this

equation will be similar to equation 10. Therefore, every solution to MCKP is also a solution
for PPWSP and vis versa . As MCKP is known to be an NP-hard problem, then PPWSP is
also NP-hard. �

4.3 Representation as a Multilevel Graph

To find a solution, we represent this problem as a multilevel graph that contains a source
and sink nodes. The source node represents user request, while the sink node is added
to be connected with all services of the last level. In this graph, the nodes of each level
represent candidates service of a given class, while the arcs represent the amount of privacy
risk induced by each service. Figure 7 gives an example of this representation. Part (a)
of this figure shows a simple privacy graph that represents the data interaction between
the abstract services, whereas part (b) depicts the relating multilevel graph. According to
this representation, the issue of retrieving a solution is equivalent to finding the shortest
path from the Request node to the Sink node, in such a way all services of this path are
valid. It is important to note that the multilevel graph representation is not a complete
representation. In fact, finding a solution using this representation refers always to the
corresponding privacy graph to verify the validity constraints.
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Figure 7: Multi level graph representation

5 Solution Implementation

This section presents an overview of the proposed solution for our privacy Web Service
selection problem. First, we discuss the motivation behind the choice of ”Choquet integral”
as a mean for calculating the services’ privacy risk. Then, we describe the details of the
proposed algorithms.

5.1 Choquet Integral as a Privacy Risk Function

To define the privacy risk function introduced in section 5.1, we have to use an aggregate
function that best represents the three privacy predicates (V ,G and T ). In our work we opt
for a fuzzy integral [29] aggregation function, more precisely a Choquet integral [29, 30]. This
choice is justified by several reasons: a Choquet integral is an aggregation operator that
generalizes the traditional operators such as arithmetic mean and its variants. It also takes
into account all interactions and dependencies that may exist between the different criteria
unlike other classical aggregation operators [30]. To use a Choquet integral operator we
have to define its associated capacity function (fuzzy measure). The following definitions
introduce the concepts of capacity and Choquet integral:

Definition 5.1. Capacity: given, N = {1, ..., n} a set of criteria. a capacity on N is a set
function µ : 2N → [0, 1] , satisfying :

• µ(N) = 1, µ(∅) = 0 ,

• ∀A,B ∈ 2N , [A ⊆ B ⇒ µ(A) ≤ µ(B)] (the monotony property).

Definition 5.2. The Choquet integral of a function a : N → R represented by the vector
(a1, a2, ..., an) w.r.t. a capacity µ on N is defined by:
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Cµ(a) = aσ(1)µ(a) +

n∑
i=2

(aσ(i) − aσ(i−1))µ({aσ(i), ..., aσ(n)})

where σ is a permutation on N such that : aσ(1) 6 aσ(2) 6 ... 6 aσ(n−1) 6 aσ(n). Also,
aσ(i) := {σ(i), ..., σ(n)}, for all i ∈ {1, ..., n}, and aσ(i) := ∅.

5.1.1 Fuzzy based Capacity Identification

A capacity can be seen as a measure that defines the importance of each subset of criteria
(in our case the privacy predicates) in an aggregation scenario. Its identification is more
complex than a simple attribution of weight to different criteria. The authors in [31] have
defined many methods to identify the capacity function. All these methods assume either
the existence of an order between groups of criteria values, which is defined by an expert,
or a small learning dataset that facilitates the identification of the weights. In our model,
establishing an order based on the privacy criteria values is not evident, since the privacy
criteria take continuous values in the interval [0,1]. Instead, we have used a set of fuzzy
rules supposed to be given by an expert. These rules provide a fuzzy estimation of the
privacy risk (high, medium, small) based on the fuzzy values of the privacy criteria. By
using these rules, we implement a fuzzy system, which takes as input a set of randomly
generated values of privacy criteria : V , G and T , and produces as output the associated
privacy risk value, which also represents the Choquet integral function. This step results
in a dataset of the form: (V,G, T,Risk), which is used to calculate the capacity function.
The identification of the capacity in this step is done by using the least squares approach
introduced in [31]. The use of a fuzzy approach to identify the capacity function has several
advantages such as being better interpretable than a simple order provided by an expert,
moreover, the set of rules can be provided and revised by several experts and it is easily
maintained and updated. The following rules sketch an example of the used fuzzy rules :

• IF V IS high AND G IS high AND T IS high THEN Risk IS high;

• IF V IS high AND G IS high AND T IS low THEN Risk IS medium;

• IF G IS low AND V IS low AND (T IS low OR T IS medium) THEN Risk
IS low;

To implement the fuzzy system we utilize the Java library jFuzzyLogic [32] and for the ca-
pacity identification we use the Kappalab toolbox [31], which is a package for the GNU R
statistical system [33]. The obtained capacity is described in table 2.
This table shows the weights of the privacy predicates subsets. From this fuzzy measure,

Table 2: Capacity values.

Privacy predicates {} {V } {G} {T} {V,G} {V, T} {G,T} {V,G, T}
Capacity value 0.0 0.1157 0.251 0.0066 0.5578 0.4356 0.6122 1.0

we can derive some indices (e.g. Shapley index, interaction index) that enable to interpret
various parameters like, the importance and the interactions between the privacy predi-
cates (for more details, see [30]).
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5.2 Proposed Algorithms

This section describes the proposed algorithms used to solve our selection problem. First
an adaptation of a Best first Search algorithm is discussed, than we detail two declarative
approaches : the MaxSAT approach and the ASP approach.

5.2.1 Constrained Best First Search Algorithm (CBFS)

Using the multilevel graph representation described in Section 6.2, a solution to our prob-
lem consists of finding the shortest path from the request node to the sink node, this path
must involve only valid services. The most trivial approach is to adapt an efficient path-
finding algorithm to deal with our validity constraints. As our objective is to get an optimal
solution, non-exhaustive algorithms (Best First Search algorithms like A* [34] and its vari-
ants [35] ) that strategically prune the search space through heuristics, are good candidates.
In general a BFS algorithm maintains two lists of nodes, an Open list and a Closed list. The
Closed list is used to stock the already explored nodes, whereas the Open list is a priority
queue that orders the unexplored nodes by a cost function f(s) = g(s) + h(s). The lower
the cost f(s) of a given node s the higher its priority. In this cost function, g(s) represents
the cost of getting from the initial node to the node s, and h(s) represents an estimation
heuristic of the cost to reach the goal node from node s. An admissible heuristic (i.e. never
overestimate the real cost) provides a guarantee of optimality for such algorithms. In this
work we used the same kind of BFS algorithm, with an adaptation for managing the va-
lidity constraints. To get an admissible heuristic we relax the validity constraints of our
problem, so that the heuristic value of a node sij (which represents service j of class i) is
equal to the shortest path from this node to the sink node without considering the validity
constraints. In other words, the composition represented by the path from the node sij
to the sink node can be invalid. Note that this heuristic is easy to calculate if the services
of each class are sorted in ascending order of their privacy risk values. In this case the
heuristic of the node sij is calculated as follows:

h(sij) = risk(sij) +

n∑
k=i+1

risk(s1k) (12)

Where n is the number of classes.

For example, in the representation of figure 7 (b), if we suppose that the services of all
classes are sorted, the heuristic of the service s22 is h(s22) = risk(s22)+risk(s13)+risk(s14).
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The listing 1 describes the main steps of our algorithm.

Algorithm 1: Constrained Best First Search Algorithm
Input : Base(S, PP, PR,Req),

S = {Si} , |S| = number of classes;
Si = {sij}: Set of candidate services of class Si;
PP = {PPsij} :Set of privacy policies of all services;
PR = {PRsij} :Set of privacy requirements of all services;
Req = (PRreq, PPreq): Policies and requirements of user request;

Output: Optimal composition: OptComp
/* calculate heuristic value for each services */

1 for i← 1 to |S| do
2 Si ← S[i]
3 for j ← 1 to |Si| do
4 sij ← Si[j]
5 h← calculateHeuristic(sij)
6 setHeuristic(h, sij)

7 end
8 end
/* Search for the solution */

9 OpenList.Add(Req) ; // a priority queue
10 while |OpenList| > 0 do
11 CurrentService← OpenLis.firstElement()
12 if isGoal(CurrentService) then
13 return OptComp← path(CurrentService)
14 end
15 OpenList.remove(CurrentService)
16 NextLevelList← generateNext(CurrentService)
17 foreach si in NextLevelList do
18 DistanceFromStart←

getRisk(CurrentService) + getDistanceFromStart(CurrentService)
19 setDistanceFromStart(DistanceFromStart, Si)
20 OpenList.Add(si)

21 end
22 end
23 return solution does not exist

This algorithm takes as input a multi level graph representation as a data structure(Base(S, PP,
PR,Req)) and returns an optimal private composition (OptComp) if it exists. In the algo-
rithm cited above, we presume that the privacy risk relative to each service is already com-
puted and that all services of each class are sorted in ascendant order of their privacy risk
value. The algorithm first calculates the heuristic value for each service (lines 1-8). Then,
it begins the search procedure by inserting the request node in the priority queue (line 9).
Lines from 10 to 22 show the steps of the main loop of the search procedure which aims to
get the node with the lowest f(s) (line 11). If this node (CurrentService) is a goal node,
then the algorithm returns the corresponding path (lines 12-14). If this is not the case, the
CurrentService will be removed from the queue (line 15), and the algorithm generates the
corresponding next level of services (neighbors of CurrentService) (line 16). This genera-
tion function is what makes the difference between the proposed algorithm and the other
BFS algorithms. This is because our algorithm generates only the services that are com-
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pliant with the services composing the path from the request node to the CurrentService
node. This means, that we have a smaller number of generated nodes, thus, the perfor-
mance is improved. Thereafter, for each generated service s′, the algorithm calculates the
distance that separate s′ and the request node, then it adds s′ to the priority queue (lines
17-21). The algorithm continues until it finds a solution or the queue is empty.

5.2.2 Max-SAT based Approach

This approach consists in encoding the PPWSP problem as a partial weighted Max-SAT
(PWMSAT) instance. Then, a Max-SAT solver will be called to find the optimal solution.
Partial weighted Max-SAT involves two weighted CNF formulas that represent the hard
and the soft clauses. The objective is to find a variable assignment that satisfies all hard
clauses while maximizing the total weight of satisfiable soft clauses. To encode the privacy
selection problem as a PWMSAT we proceeded as follows:

1. given an abstract composition S = {S0, S1, · · ·Sn}, each concrete service sij ∈ Si is
represented by a boolean variable xij .

2. the fact of selecting only one service sij from each class Si is represented by the special
type of cardinality constraints, often called exactly-one constraint and represented by∑|Si|
j=1 xij = 1. To encode this constraint we used the Commander-Variable Encoding

proposed by Klieber and Kwon [36]. This encoding consists in divide the variables
of each abstract class into m disjoint groups: G1 . . . Gm. In each group a commander
variable ci is introduced. The commander variable is to be true if (at least) one of the
variables in its group is true; otherwise it is to be false. Thus, for each class of services
Si (|Si| = n), we have the following CNF formulas (as described in [36]):

• At most one variable in a group Gk can be true:∧
xij∈Gk

∧
xij′∈Gk,j′<j

¬xij ∨ xij′ (13)

• If the commander variable of a groupGk is true, then at least one of the variables
in the group must be true:

¬ck ∨
∧

xij∈Gk

xij (14)

• If the commander variable of a group Gk is false, then none of the variables in
the group can be true: ∧

xij∈Gk

(ck ∨ ¬xij) (15)

• Exactly one of the commander variables is true, which is encoded by a recursive
application of the commander method.

3. the validity constraint which requires that all services of a given composition must be
valid (see equation 7) is encoded as:

∀Si, Si′ ∈ S, for all services sij ∈ Si and services si′j′ ∈ Si′, if:
(si′j′ ∈ PRDsij ∧Nconf (si′j′, sij) = 1) (see equations 6 and 7) we add the constraint
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specifying that the services sij and si′j′ can not be in the same composition. This con-
straint is expressed by (xij ⇒ ¬xi′j′ ∧ xi′j′ ⇒ ¬xij) which is equivalent to the clause:

¬xij ∨ ¬xi′j′ (16)

4. the hard clauses are represented by the clauses used to encode the cardinality con-
straint (

∑|Si|
j=1 xij = 1) along with the validity constraint (formula 16).

5. the soft clauses are represented by the atomic formulas xij weighted by the value of
(1− risk(sij)). The maximization of the total weights (1− risk(sij)) is equivalent to
minimize the total value of risk(sij), consequently, the corresponding solution will
have a minimum privacy risk.

To analyze the performance of our encoding in terms of the many variables and clauses
produced, let us consider that we have k abstract classes and n services in each class.

• Number of variables: The fact that each service is represented by a Boolean variables,
requires n ∗ k variables. In addition, the commander encoding of the cardinality con-
straint produces n

2 extra variables for each class (see [36]). Thus, a total of k ∗ n2 extra
variables. Consequently, the overall number of variables required to encode an in-
stance of the PPWSP problem is:

3

2
∗ n ∗ k

.

• Number of clauses: The total number of clauses produced by the proposed encoding
equals to the number of the hard clauses plus the number of the soft clauses. For the
hard clauses, the commander encoding of the cardinality constraint ( with a group
size set to 3) produces 7

2 ∗n clauses per class(see [36]). Thus, a total of 7
2 ∗n∗k clauses.

On the other hand, in the worst case, the encoding of the validity constraint produces
about n2 ∗ (k − 1) binary clauses for each class (if all services are not compliant). So,
a total number of n2 ∗ (k − 1) ∗ k clauses. The encoding of the soft clauses requires
n ∗ k unary clauses. Consequently, the overall number of clauses used to encode an
instance of the PPWSP problem is:

7

2
∗ n ∗ k + n2 ∗ (k − 1) ∗ k + n ∗ k

= n2 ∗ (k2 − k) +
9

2
∗ n ∗ k

5.2.3 ASP-based Approach

This approach consists in encoding the PPWSP as an ASP program, and then, we use an
answer set solver to find a solution. In general, an ASP encoding consists of two main
parts: a Generate part (or a guess part) and a Test part (or check part)[37]. The Generate part
defines rules or facts that generate potential stable model candidates, typically through
non-deterministic constructs, whereas, the Test part corresponds to the definition of the
problem’s constraints, and also eliminates invalid candidates. Other encoding parts can
also exist, like a Define part that defines auxiliary predicates, or an Optimization part in the
case of an optimization problem. To encode our problem, we follow this paradigm and we
proceed as follows:
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1. generate part : this part consists of a set of predicates that generate all possible ser-
vices of the problem instance. The used predicates are:

class(1..m).
serviceNb(0..n).
{serviceId(I,J)} :- class(J),serviceNb(I).

The predicates class/1 and servicenb/1 define respectively the number of classes
and the number of services per class of the problem instance. The rule with the
head {serviceId(I,J)} generates the set of all possible serviceId(I,J) (the
answers set). This predicate (ie. serviceId(I,J)) represents the service number J
of the class I.

2. define part : This part defines all auxiliary predicates used in the definition of the
problem instance. The used predicates are specified below:

risk(I,J,R).
pp(I,J,Att,Pr,V,G,T).
pr(I,J,Att,Pr,V,G,T).
depend(I,K).
conforme(S1,I,S2,K):-serviceId(S1,I),serviceId(S2,K),not depend(I,K).
conforme(S1,I,S2,K):-serviceId(S1,I),serviceId(S2,K),depend(I,K),

pr(S1,I,A,Pr1,V1,G1,T1),pp(S2,K,A,Pr2,V2,G2,T1),
Pr1=Pr2,V1 >= V2 , G1 >= G2,T >= T1.

The predicate risk/3 is used to define the privacy risk R relative to the service J
of class I. The two predicates pp/7 and pr/7 define respectively the privacy poli-
cies and the privacy requirements of the service J of class I. Thus, the predicate
pp(I,J,Att,Pr, V,G,T). (resp. pr(I,J,Att,Pr,V,G,T).) defines the values
of the privacy dimensions: Purpose (Pr),Visibility (V), Granularity (G) and Retention
time (T) relative to the private attribute Att. The predicate depend/3 specifies if a
relation exist between the tow classes I and K. This predicate is subsequently used in
the predicate conforme/4 to implement the compliance rule between two services.
So, tow services S1 (of the class I) and S2 (of the class K) are compliant (or conform)
if the predicate conforme/4 is true. This predicate is true if one of the two situations
holds: a) if no relation exist between the abstract services (or classes) in which the two
services belong, b) if the two relative services are compliant according to the equation
(4) of the privacy model.

3. test part : this part consists of rules that represent the constraints of our problem. In
our encoding we used the two following constraints:

:- I= 0..m, not 1 { serviceId(I,J)} 1.
:- serviceId(I,S1),serviceId(K,S2), not conforme(S1,I,S2,K).

The first constraint states that a stable model can not contain more than one fact of
type serviceId(I,_) for a given class I. In other words, this rule ensures that the
solution must contain only one service from each class. The second constraint says
that if two services are not compliant, then, they can note be in the same stable model.

4. optimization part : This part is a directive that instructs the ASP solver to compute
the optimal stable model. In our encoding we use the following statement:
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#minimize { R,I,J : serviceId(I,J),risk(I,J,R) }.

this statement minimizes the sum of the privacy risk values associated to each service
of the stable models.

6 Evaluation

From a privacy preserving point of view, all the proposed algorithms provide (by design)
the best composition that fulfill all users and service providers privacy constraints. Thus,
our evaluation mainly affects the effectiveness and the scalability of each algorithm. To
evaluate the proposed solutions we use a randomly generated dataset, this is principally
due to the lack of suitable benchmark 1. The generation process is based on several works
[38, 39, 40, 41, 42]. The latters argue that the majority of Web Services networks have the
characteristics of small-world [43] or/and scale-free networks[44]. Therefore, we generated
tow types of datasets: small-word dataset and scale-free dataset. The privacy graphs of
these datasets were generated using networkx tool [45], in which the small-word model is
based on Watts-Strogatz graphs [43], while the scale-free model is based on Bollobas et al.
algorithm [44]. Table 3 describes the generated datasets in terms of composition size, and
the total number of privacy rules ( privacy policies rules (PP), and privacy requirements
rules (PR)).

Table 3: Generated datasets description.

Small-world Dataset Scale-free Dataset

Compo size PP PR Total PP PR Total

3 48 36 84 24 24 48
4 72 48 120 48 36 84
5 48 41 89 72 36 108
6 72 49 121 120 48 168
7 96 64 160 144 72 216
8 72 64 136 120 100 220
9 144 107 251 117 93 210
10 144 98 242 144 91 235

All experiments are performed on Intel Core i7-4700HQ 2.40GHz CPU, in a machine with
6 Gb memory, running a 64-bit Ubuntu distribution. The constrained best first search
algorithm (CBFS) is implemented in Java 8 under NetBeans environment. We used the
QMaxSAT solver [46] to implement the Max-SAT approach, and the Clingo [47] solver to
implement the ASP approach. Note that for the Max-SAT approach, we tried a version of
MaxSatz [48] called Maxsatz2013f and CCLS to Akmaxsat 2 [49], the results were not so
good as the ones for QmaxSAT. All used datasets and algorithms implementation can be
found at the following link 3.

The first experiment evaluates the influence of the number of privacy rules(PP-PR) on the
efficiency of the proposed algorithms. For this, we fixed the composition size to 2 and the

1The available benchmarks like http://www.uoguelph.ca/˜qmahmoud/qws/, are only adapted for the
QoS composition problem

2http://maxsat.ia.udl.cat/solvers/5/CCLS_to_akmaxsat_binaries.zip-201604080802
3https://www.dropbox.com/s/ag8w12tvonulib2/PrivacyDatasets.tar.gz?dl=0.
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number of services in each class to 50, while we varied the number of privacy rules of each
service from 5 to 500. The results of this experiment are shown in Table 4 and figure 8.

Table 4: Influence of the number of privacy rules(PP-PR) on the efficiency of the proposed
algorithms

Algorithms (ms)

PP-PR number CBFS SAT ASP

5 0.94 59.9 34.72
10 0.55 57.08 41.64
20 0.6 52.08 54.98
30 0.82 57.6 67.7
40 1.25 63.86 82.72
50 1.47 62.62 101.56
100 1.14 61.8 174.26
150 2.46 56.98 264.58
200 1.32 56.44 320.26
300 3.78 75.98 580.34
400 10.25 68.6 775.08
500 8.64 58.48 908.48
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Figure 8: Influence of the number of privacy rules(PP-PR) on the efficiency of the
proposed algorithms: (a) CBFS ,(b) SAT, (c) ASP.

The results of this experiment show that for the CBFS and the ASP algorithms, the com-
plexity of the interactions between services (expressed by the number of privacy rules) has
an apparent influence on the execution time. Mostly, the execution time increases with the
increase of the number of privacy rules. Some exceptions exist for the CBFS algorithm (e.g.
150 with 200 and 400 with 500), where the execution time is smaller despite a larger number
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of rules. This can be explained by the fact that the execution time in the CBFS algorithm is
determined by two factors (see Algorithm1): the time required to check services’ compli-
ance (which is strongly influenced by the number of privacy rules) and the time required
for the manipulation of the priority queue (insertion, deletion and sorting). The execution
time of the second factor is influenced by the size of the priority queue, which can increase
or decrease according to the users’ request independently of the number of privacy rules.
In some situations there may be a larger queue with a smaller number of privacy rules,
resulting in the handling time of larger queues greatly increasing the execution time.

The results are quite different for the SAT approach; in which we can’t see a real depen-
dency between the execution time and the number of privacy rules. This is principally due
to our SAT encoding which is done at the services level. In this encoding, the only incom-
patible services are encoded as constraints (see equation 16), and not the interaction details.
This makes our encoding independent of the complexity of interaction, thus, the execution
time is independent too.

If we compare the effectiveness of each algorithm for this experiment (see Figure 9 ), we
can clearly see that the CBFS and SAT approaches provide much better results than the ASP
approach, with a small advantage for the CBFS algorithm over the SAT approach.
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Figure 9: Comparison of algorithms effectiveness for the influence of the number of
privacy rules(PP-PR) on the computation time.

The aim of our next experiment is to investigate how the complexity of dependencies
between abstract services affects the performance of the proposed algorithms. For this
purpose, we started with a sequential abstract composition of five services after which we
added one edge between services at a time. Consequently, we obtained 7 privacy graphs
with a gradually increasing number of interactions from 5 to 11 ( see Figure 4 10). The
use of a composition having only five services is based on the work of [39] who studied a
collection of 6092 compositions and showed that 95.45% of them contained no more than
5 services. Note that in this experiment, an edge of a privacy graph represents one private
data attribute and each abstract service has 50 candidate services.

The results of this experiment are shown in Table 5 and figure 11. The results didn’t show
any clear patterns between the complexity of interactions and the computation time. We
can see for all algorithms that there exist for some graphs, a smaller computation time for
bigger interactions and vis versa.

4Node 0 in all graphs represents a user request
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Figure 10: Privacy graphs used to test the influence of the complexity of services
interaction on the efficiency of the proposed approaches
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Figure 11: The influence of the complexity of service interactions on the efficiency of the
proposed algorithms: (a) CBFS ,(b) SAT, (c) ASP.
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Table 5: The influence of the complexity of service interactions on the efficiency of the
proposed algorithms

Algorithms

Number of interactions CBFS (ms) SAT (ms) ASP (ms)

5 2.41 663.89 279.71
6 3.93 605.82 292.12
7 25.08 464.57 283.47
8 36.34 331.8 284.07
9 28.65 478.01 269.77
10 10.87 340.59 290.07
11 7.67 263.14 257.63

If we compare the effectiveness of each algorithm for this experiment ( Figure 12), we
see clearly that the CBFS algorithm provides much better performance, while the SAT ap-
proach shows the worst one.
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Figure 12: Comparison of algorithms effectiveness for the influence of the complexity of
service interactions on computation time.

The next experiment evaluates the influence of the composition size on the efficiency of
the proposed approaches. For this aim, we varied the composition size from 3 to 10, while
we fixed the number of candidate services of each class to 50. The results of this experiment
are shown in Table 6 and figure 13.

Table 6: The influence of the composition size on the efficiency of the proposed algorithms.

Small-world Dataset Scale-free Dataset

Compo size CBFS SAT ASP CBFS SAT ASP

3 5.58 42,46 63,38 5,99 42,46 63,38
4 8.83 114,87 124,42 23,36 114,87 124,42
5 1 400.84 367,11 190,21 77,37 367,11 190,21
6 1 120.19 287,68 291,01 32,55 287,68 291,01
7 685.97 1161,54 498,01 334,5 1161,54 498,01
8 52 404 1948,77 642,58 170885 1948,77 642,58
9 1 571.62 1315,63 1013,18 timeout 1315,63 1013,18
10 timeout 2980,28 1560,82 timeout 2980,28 1560,82
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Figure 13: The influence of the composition size on the efficiency of the proposed
algorithms: (a) Small-world dataset, (b) Scale-free dataset.

The first observation drawn from these results, is that the computation time increases
with the composition size, and is valid for almost all datasets and algorithms with some
exceptions for the CBFS algorithm. The increase is more significant for the CBFS algorithm,
so that we got a timeout response for the composition 10 in the small-world data set and the
compositions 9 and 10 in the scale-free dataset (see table 6). For the CBFS algorithm, we can
justify this increase by the fact that an increase in the composition size involves an increase
in the depth of the final state (the sink node in our problem representation (see Figure 7))
of the search tree. Therefore, this induces a greater computation time. However, as regards
the declarative approaches (MAx-SAT,ASP), an increase in the composition size, implies an
increase in the number of variables and clauses of the generated Boolean formulas, thus,
more computation time.

Abnormally high peak is observed for the CBFS algorithm at the compositions size 8 of
the small-world dataset. That makes the computation time of the composition 9 much
smaller of that of the composition 8. This leads us to state that the fact in which an increase
in the composition size implies an increase in the computation time cannot be taken as a
general rule. In fact, the used heuristic and the specificity of each problem instance can
have a dramatic impact on the computation time. In our results, to find a solution, the
CBFS algorithm handles a priority queue of an average size of 400 in the composition 9,
while the average size of the priority queue in the composition 8 is about 4360 (10 times
bigger), which may explain the observed execution time peak.

We also notice that the effectiveness of the CBFS algorithm is better for small compositions
(compositions 3 and 4 in the small-world dataset, and compositions from 3 to 7 in the scale-
free dataset). However, as the size becomes larger, declarative approaches become better
and the difference becomes very important.

Our last experiment evaluates the influence of the number of candidate services per class
on the computation time of the proposed approaches. To this end, we fixed the composi-
tion size to 4, and varied the number of services per class from 50 to 1000. The results of
this experiment are shown in table 7 and figure 14.

The results of this experiment show clearly that the computation time increases as the
number of services per class increases. Some exceptions are made by the SAT approach
whereby we find a smaller computation time with bigger candidate services. This behav-
ior is explained by the fact that SAT approaches take advantage of many heuristics to speed
up the solution search. Thus, the size increase of generated Boolean formulas induced by
the increase in the number of candidate services is not the only factor that influences the
computation time. The effectiveness of the applied heuristics on a particular problem in-
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Table 7: The influence of the number of candidate services per class on the computation
time of the proposed algorithms.

Small-world Dataset Scale-free Dataset

Compo size CBFS SAT ASP CBFS SAT ASP

50 5,58 114,87 124,42 5,99 196,5 109,17
100 20,9 445,99 480,35 86,58 560,61 547,02
150 40,42 995,9 1100,95 243,33 1067,9 1297,69
200 52,79 1934,32 2064,22 542,03 2286,13 2257,48
250 134,05 4020,09 3486,84 757,59 3946,97 3590,85
300 190,07 6388,18 5091,78 1308,87 5067,82 5261,65

350 109,29 12889,07 7346,31 2809,9 6556,83 7293,55
400 143,5 9494,64 9187,11 2420,81 9412,54 9272,53
450 169,88 16936,5 12216,89 8242,6 12762,48 11840,33
500 247,34 19259,89 15346,48 6042,98 17155,77 14772,47
600 123,48 25139,14 22656,14 6669,8 27619,09 22382,34
700 182,4 38368,14 32421,25 7654,56 25054,57 30514,04
800 148,51 50235,33 42687,79 13854,46 36131,42 39473,17
900 318,75 97438,17 56722,6 15212,05 64424,25 52344,86
1000 298,75 87783,4 72578,13 18637,97 60564,86 65067,82
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Figure 14: The influence of the number of candidate services per class on the computation
time of the proposed algorithms: (a) Small-world dataset, (b) Scale-free dataset.

stance can have an apparent impact on the computation time. This experiment confirms
our previous conclusion that the CBFS algorithm gives better performance on small com-
positions. This result is more apparent in the small-world dataset and is justified by the
fact that in the small composition, the depth of the final state in the multi level graph also
become small, and therefore quickly reachable. It is also important to notice that the effec-
tiveness of the declarative approaches are very close for both datasets.

In summary, and according to the previous experiments, it is difficult to adopt a particu-
lar approach to be used in our selection framework. While the CBFS algorithm gives better
performance in smaller compositions, it is less scalable in larger compositions. In this case,
the declarative approaches show better performance. The results of the experiments de-
note that the effectivenesses of the declarative approaches are very close. This remains true
despite the little advantage of ASP over the SAT approach. We also notice that the ASP
solver has shown a very stable behavior which is a very interesting feature, especially if the
selection system have to provide some response time guarantee. Finally, it is important to
note that these results concern only QmaxSat and Clingo solver and can not be generalized
to all Max-SAT and ASP solvers. Our objective was to demonstrate the adequacy of such
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approaches on the proposed privacy model as well as in the privacy aware service selec-
tion area. Accordingly, we can benefit from all advantages of declarative approaches like
flexibility and extensibility. these properties allow us, for example, to easily add or remove
constraints without remodeling or rewriting all selection algorithms. Furthermore, these
approaches offer the possibility to benefit from the continuous progress of SAT and ASP
solvers to even improve the performances of the selection framework.

7 Related Work

A number of approaches have been devoted to Web Service privacy. The vast majority of
them are based on checking the compliance between privacy policies of service providers
and privacy requirements of users. In this section, we will briefly mention the most rele-
vant approaches to our work. A more complete state-of-the-art analysis is given in [7, 8].
In [9], the authors proposed an approach for enhancing DaaS Web Services (data as a ser-
vice) privacy. In this context, they proposed a formal model that enables users and service
providers to define a set of privacy rules to express their privacy policies and requirements.
They propose an algorithm called PCM (Privacy Compatibility Matching) to check the pri-
vacy compatibility between the policies and the requirements in a DaaS composition. Un-
like our work, this approach describes a negotiation mechanism that establishes a dynamic
reconciliation between the services in case of incompatibility. However, the authors did not
use any heuristics in their algorithms, which may pose problems in large dimensionality.
In [10], the authors proposed a goal based approach to protect users’ and service providers’
privacy in Web Service compositions. The principle is based on a model that permits pri-
vacy policies and preferences of users and service providers to be implemented across
multiple dimensions. Unlike our work, the granularity is not used as a privacy metric,
but rather, the authors have used the sensitivity of data attributes conjointly with the pur-
pose, visibility and retention time. A service composition algorithm is proposed to check
the conformity between users’ privacy requirements and the privacy policies of the service
providers, then, a privacy based selection is made to choose the most privacy preserving
composition. The selection is based on a ranking function which aggregates the used pri-
vacy dimensions. The proposed algorithm has the advantage of handling both functional
and non-functional(privacy) aspects in the same time, while most approaches process them
in separate steps. Nevertheless, the authors in this work did not provide a real implemen-
tation to prove their privacy model.
In [11] the authors proposed a privacy-aware replaceability protocol for Web Services. In
order to define this protocol, the authors proposed a rule based model which is an exten-
sion of the P3P standard. The model is used to express the privacy policies and preferences
of users and service providers. The integration of this model in the business protocols has
permitted a replaceability analysis in both functional and non-functional (privacy) aspects.
Contrary to our work, the proposed model does not support the privacy protection in ser-
vice compositions context.
In [12] the authors proposed a framework that provides a privacy-conscious composite
service to consumers. In this framework, the service provider, interacts with the users and
provides the principles (model) that guide the private data utilization. In the case of con-
flicts between the consumer privacy preferences and the received model, the consumer
may relax his/her privacy policies so that the service can be used or rather, generates obli-
gations that represent the privacy violation and forwards them to the composite service to
be enforced. The main difference between this approach and our work is that this proposal
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focuses only on users’ privacy, and does not deal with the service providers privacy like
we do in our work. Another difference is that the proposed model uses only the sensitivity
of data attribute as a privacy predicate. However, this work takes into account the level of
the trust of service providers, which is not done by our work.
In [13] the authors presented a negotiation approach for finding a compromise between
users’ privacy preferences and service providers requirements. The approach is based on
a Galois lattice structure. The lattice is generated using an evaluation matrix that links the
items (name, address, e-mail, etc.) and the different types of sub-services (log-in, registra-
tion, payment, etc.). The generated lattices are subsequently used to develop a set of rules
that define the preferences and the requirements of users and service providers. The nego-
tiation process is made by a variation of a parameter ”θ” over a range of 1 to 5 which has
the effect of changing the corresponding lattice and therefore the privacy rules. The major
drawback of this approach lies in the definition of the evaluation matrix which remains a
difficult task for a simple user. In addition, this approach does not support privacy protec-
tion of service compositions.
In [14], the authors deal with privacy concerns in Digital government Web Services. Here,
the authors proposed three privacy protection levels: user privacy, service privacy and data
privacy. More specifically, the entities that request access to the data or to the operations of
other entities, must provide credentials for performing this function. If the requesting ac-
cess is allowed, then, a data filter is used to control the access, after which, a mobile privacy
preserving agent is used to deliver the requested data, ensuring that the requester does not
violate the local entity’s privacy requirements. Note that, in this work, the authors focused
only on privacy of simple Web Services and did not consider service compositions privacy.
In [15] the authors proposed a Web Services selection framework whose objective is to pro-
tects users’ and service provider’s’ privacy needs. This work addresses privacy concerns
associated with the disclosure of user’s personal data during Web Services location at the
phase of the providers provisioning rules verification. The privacy of provisioning rules
of service providers is also covered. The main component of the proposed framework is
called the Private Negotiator. The latter is based on a Matching Protocol that allows two
parties to jointly calculate the intersection of their inputs, without leaking any additional
information. This work differs from our work in that the used privacy protection mecha-
nism is based on a cryptographic techniques and not on privacy rules matching.
In [16], the authors proposed a privacy-preserving approach for Web Service compositions.
In this approach the authors proposed a component called ElitePicker application (EPApp).
This component implements a security protocol based on encryption techniques. The en-
cryption mechanism allows the verification of the users’/ servicer’s’ requirements in a pri-
vate way. Contrary to our work that deals with the privacy of Web Service orchestration
model, this work deals with the privacy of service choreography model.

8 Conclusion

In this work we have proposed a privacy model for preserving privacy in Web Services.
The model allows a privacy preservation of both users and service providers. The proposed
model is implemented in a Web Service selection problem whose objective is to find a com-
position that best fulfills all the privacy requirements of both users and service providers.
Several selection algorithms are designed with respect to the proposed model. In addition,
all proposed algorithms return compositions that satisfy all privacy constraints and min-
imize the risk of a privacy threat. If any service violates one of the privacy constraints,
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that service will be discarded from the solution set. As future work, we plan to explore
other generic problem solving approaches like the Satisfiability modulo theories (SMT).
Another promising direction for future work, consists of handling the cases where the set
of solutions is empty (ie. the privacy constraints are violated). One solution to deal with
this situation is by modifying the way in which our algorithms search for solutions. For
instance, instead of searching a valid composition ( satisfies all privacy constraints) that
minimizes the privacy risk, we can opt for a multi-objective optimization approach. Thus,
we minimize at the same time the privacy risk driven by the compositions as well as the
number of violated constraints. Note that this modification can be done without any adap-
tation of the proposed privacy model. Another solution consists of extending the privacy
model to support a negotiation process. The negotiation can be initiated by the selection
framework if the solutions set is empty. In such a case, the selection framework interacts
with the providers of services in order to relax their privacy constraints. After that, the
search is restarted by giving the priority to the services that accepted the constraints relax-
ation. Obviously, the negotiation process provides more efficient privacy protection, but at
the same time introduces more time and resource consumption.
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