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Abstract. Corporations are retaining ever-larger corpuses of personal data; the frequency or breaches
and corresponding privacy impact have been rising accordingly. One way to mitigate this risk is
through use of anonymized data, limiting the exposure of individual data to only where it is abso-
lutely needed. This would seem particularly appropriate for data mining, where the goal is general-
izable knowledge rather than data on specific individuals. In practice, corporate data miners often
insist on original data, for fear that they might ”miss something” with anonymized or differentially
private approaches. This paper provides a theoretical justification for the use of anonymized data.
Specifically, we show that a k-nearest neighbor classifier trained on anatomized data satisfying `-
diversity should be expected to do as well as on the original data. Anatomized data preserves all
attribute values, but introduces uncertainty in the mapping between identifying and sensitive val-
ues, thus satisfying `-diversity. The theoretical effectiveness of the proposed approach is validated
using several publicly available datasets, showing that we outperform the state of the art for nearest
neighbor classification using training data protected by k-anonymity, and are comparable to learning
on the original data.
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1 Introduction

Many privacy definitions have been proposed based on generalizing/suppressing data (`-
diversity[1], k-anonymity [2, 3], t-closeness [4], δ-presence [5], (α,k)-anonymity [6]). Other
alternatives include value swapping [7], distortion [8], randomization [9], and noise ad-
dition (e.g., differential privacy [10]). Generalization consists of replacing identifying at-
tribute values with a less specific version [3]. Suppression can be viewed as the ultimate
generalization, replacing the identifying value with an “any” value [3]. Generalization has
the advantage of preserving truth, but a less specific truth that reduces utility of the pub-
lished data.

Xiao and Tao proposed anatomization as a method to enforce `-diversity while preserving
specific data values [11]. Anatomization splits instances across two tables, one containing
identifying information and the other containing private information. The more general ap-
proach of fragmentation [12] divides a given dataset’s attributes into two sets of attributes
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(2 partitions) such that an encryption mechanism avoids associations between two differ-
ent small partitions. Vimercati et al. extend fragmentation to multiple partitions [13], and
Tamas et al. propose an extension that deals with multiple sensitive attributes [14]. The
main advantage of anatomization/fragmentation is that it preserves the original values of
data; the uncertainty is only in the mapping between individuals and sensitive values.

We show that this additional information has real value. First, we demonstrate that in
theory, learning from anatomized data can be as good as learning from the raw data.
We then demonstrate empirically that learning from anatomized data beats learning from
generalization-based anonymization.

This paper looks only at instance-based learning, specifically k-nearest neighbor classifier (k-NN).
This focus was chosen because we have solid theoretical results on the limits of learning
using k-NN, allowing us to compare theoretical bounds on learning from anatomized data
with learning from the underlying unprotected data. We demonstrate this for a simple
approach of anatomizing the data; we simply consider all possible mappings of individuals
to sensitive values as equally likely.

There is concern that anatomization is vulnerable to several attacks [15, 16, 17]. While
this can be an issue, any method that provides meaningful utility fails to provide perfect
privacy against a sufficiently strong adversary [18, 10]. Introducing uncertainty into the
anonymization process reduces the risk of many attacks, e.g., minimality [19, 20]. Our
theoretical analysis holds for any assignment of items to anatomy groups, including a
random assignment, which provides a high degree of robustness against minimality and
correlation-based attacks. While this does not eliminate privacy risk, if the alternative is to
use the original data, we show that anatomy provides comparable utility while reducing
the privacy risk. This paper has the following key contributions:

1. We define a classification task on anatomized data without violating the random
worlds assumption. A violating classification task would be the prediction of sen-
sitive attribute, a task that was found to be #P-complete by Kifer [15].

2. To our best knowledge, this is the first paper in the privacy community that studies
the theoretical effect of running k-NN using anatomized training data. We show the
anatomization effect for the error rate bounds and the convergence rate when the
test data is neither anonymized nor anatomized. Inan et al. already give a practical
applications of such a learning scenario [21].

3. We show the generalization error for any non-parametric classifier using the anato-
mized training data.

4. We compare the k-NN classifier trained on the anatomized data with the k-NN classi-
fier trained on the unprotected data. In case of nearest neighbor classifier (1-NN), we
also make an additional comparison to a generalization based learning scheme [21].

5. We last give an analytical comparison of the convergence rate of 1-NN classifier be-
tween `-diversity and original data.

We next summarize related work and define the problem statement. We then give neces-
sary definitions and notations. Section 4 proposes the heuristic algorithm and gives theo-
retical results. Experimental results are presented in section 5. Section 6 summarizes the
work and gives future directions.

TRANSACTIONS ON DATA PRIVACY 10 (2017)



Instance-Based Learning with `-diversity 205

2 Related Work and Problem Statement

There have been studies on how to train classifiers on anonymized data. The existing work
can be grouped into three categories: generalization based classification, distribution re-
construction based classification, and differential privacy based classification.

In generalization based classification, nearest neighbor classification using generalized
data was investigated by Martin [22]. Nested generalization and non-nested hyperrect-
angles were used to generalize the data from which the nearest neighbor classifiers were
trained. Iyengar suggested using a classification metric so as to find the optimum gener-
alization. Then, a C4.5 decision tree classifier was trained from the optimally generalized
training data [23]. Zhang et al. studied Naı̈ve Bayes using partially specified training
data [24], proposing a conditional likehoods computation algorithm exploring the instance
space of attribute-value generalization taxonomies. Inan et al. proposed nearest neigh-
bor and support vector machine classifiers using anonymized training data that satisfy k-
anonymity. Taylor approximation was used to estimate the dot product, Euclidean distance
and kernel function from generalized data [21].

In distribution reconstruction based classification, Agrawal et al. proposed an iterative
distribution reconstruction algorithm for distorted training data from which a C4.5 deci-
sion tree classifier was trained [25]. Fung et al. gave a top-down specialization method
(TDS) for anonymization so that the anonymized data allows accurate decision trees. A
new scoring function was proposed for the calculation of decision tree splits from the com-
pressed training data [26]. Dowd et al. studied C4.5 decision tree learning from training
data perturbed by random substitutions. A matrix based distribution reconstruction algo-
rithm was applied on the perturbed training data from which an accurate C4.5 decision
tree classifier was learned [27].

In differential privacy based classification, Rubinstein et al. studied the kernels of support
vector machine in the differential privacy and showed the trade-off between privacy level
and the data utility. They analyzed finite and infinite dimensional kernels in function of
the approximation error under differential privacy [28]. Lin at al. studied training sup-
port vector classification for outsourced data. Random transformation was applied on the
training set so that the cloud server could compute the accurate model without knowing
what the actual values were [29]. Jain et al. studied the support vector machine kernels in
the differential privacy setting. They proposed differentially private mechanisms to train
support vector machines for interactive, semi-interactive and non-interactive learning sce-
narios, providing theoretical analysis of the proposed approaches [30].

None of the earlier work has provided a classifier directly applicable to anatomized train-
ing data. Such a classifier requires specific theoretical and experimental analysis, because
anatomized training data provides additional detail that has the potential to improve learn-
ing; but also additional uncertainty that must be dealt with. Furthermore, most of the pre-
vious work didn’t justify theoretically why the proposed heuristics let classifiers generalize
well. Therefore, this paper studies Problem 1:

Problem 1. Define a heuristic to train a k-nearest neighbor classifier on anatomized data
without violating `-diversity while using the sensitive information, with a theoretical guar-
antee of good generalization under reasonable assumptions.
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3 Definitions and Notations

The first four definitions restate standard definitions of unprotected data and attribute
types.

Definition 2. A dataset D is called a person specific dataset for population P if each instance
xi ∈ D belongs to a unique individual p ∈ P . The person specific dataset has the schema in
(1)

(C,A1, ..., Ad, As) (1)

where C is the class attribute, Ai, ..., Ad are identifying attributes, and As is the sensitive
attribute. Quasi-identifying and sensitive attributes are defined below.

The person specific dataset will be called the original training data in this paper. Next, we
define the types of attributes.

Definition 3. A set of attributes are called direct identifying attributes if they let an adver-
sary associate an instance xi ∈ D to a unique individual p ∈ P without any background
knowledge.

Definition 4. A set of attributes are called quasi-identifying attributes if there is background
knowledge available to the adversary that associates the quasi-identifying attributes with
a unique individual p ∈ P .

We include both direct and quasi-identifying attributes under the name identifying at-
tributes. First name, last name and social security number (SSN) are common examples of
direct identifying attributes. Direct identifying attributes are generally not useful in ma-
chine learning as unique identifiers would not generalize. Hence, the schema in (1) does
not include any direct identifying attribute. They can be suppressed but other informa-
tion can be both useful and assist in identifying individuals. Some common examples of
quasi-identifying attributes are age, postal code, and occupation. These are assumed to be
public knowledge and thus need not be protected. Thus, the quasi-identifying attributes
are included in schema (1) as A1, ..., Ad. Next, we will give the second type of attribute.

Definition 5. An attribute As of D is called a sensitive attribute if we should protect against
adversaries correctly inferring the value for any individual xi ∈ D.

Patient disease and individual income are common examples of sensitive attributes. Unique
individuals p ∈ P typically don’t want these sensitive information to be revealed to indi-
viduals without a direct need to know that information. Provided an instance xi ∈ D, the
class label is denoted by xi.c. We don’t consider the case where c is sensitive, as this would
make the purpose of classification to violate privacy. c is neither sensitive nor identifying
in this paper, although our analysis holds for c being an identifying attribute.

Given the former definitions, we will next define the anonymized training data following
the definition of k-anonymity [3].

Definition 6. A training dataset D that satisfies the following conditions is said to be
anonymized training data Dk [3]:

1. The training data Dk does not contain any unique identifying attributes.

2. Every instance xi ∈ Dk is indistinguishable from at least (k− 1) other instances in Dk

with respect to its quasi-identifying attributes.
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Anatomy satisfies a slightly weaker definition; the indistinguishability applies only to
sensitive data. This will be captured in Definitions 9-11.

In this paper, we assume that the anonymized training data Dk is created according to a
generalization based data publishing method. We next define the comparison classifiers.

Definition 7. A k-nearest neighbor classifier (k-NN) that is trained on the anonymized
training data Dk is called the anonymized k-NN.

Definition 8. A k-nearest neighbor classifier (k-NN) that is trained on the original training
data D is called the original k-NN.

The theoretical aspects of comparison classifiers are out of the scope of this paper. We will
remind the theoretical analysis of the original k-NN in the end of this section [31].

We go further from Definition 6, requiring that there must be multiple possible sensitive
values that could be linked to an individual. The proposed algorithms will be centered
around the following definitions. This new requirement uses the definition of groups [11].

Definition 9. A group Gj is a subset of instances in original training data D such that
D = ∪mj=1Gj , and for any pair (Gj1 , Gj2) where 1 ≤ j1 6= j2 ≤ m, Gj1 ∩Gj2 = ∅.

Next, we define the concept of `-diversity or `-diverse (multiple possible sensitive values)
for all the groups in the original training data D regarding to Xiao et al. [11].

Definition 10. A set of groups is `-diverse if and only if ∀ Gj , v ∈ ΠAs
(Gj);

freq(v,Gj)
|Gj | ≤ 1

`

where As is the sensitive attribute in D, ΠAs
(∗) is the database As projection operation on

original training data ∗ (or on data table in the database community), freq(v,Gj) is the
frequency of v in Gj and |Gj | is the number of instances in Gj .

We extend the data publishing method anatomization that is originally based on `-diverse
groups by Xiao et al. [11]. We should note that Machanavajjhala et al. proposes the `-
diversity standard before Xiao et al. using the term blocks instead of groups [1, 11]. As we
are following Xiao et al., we will be using groups.

Definition 11. Given an original training data D partitioned in m `-diverse groups accord-
ing to Definition 10, anatomization produces an identifying table IT and a sensitive table ST
as follows. IT has schema

(C,A1, ..., Ad, GID)

including the class attribute, the quasi-identifying attributes Ai ∈ IT for 1 ≤ i ≤ d, and the
group id GID of the group Gj . For each group Gj ∈ D and each instance xi ∈ Gj , IT has
an instance xi of the form:

(xi.c, xi.a1, ..., xi.ad, j)

ST has schema
(GID,As)

where As is the sensitive attribute in D and GID is the group id of the group Gj . For each
group Gj ∈ D and each instance xi ∈ Gj , ST has an instance of the form:

(j, xi.as)
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Unlike Machanavajjhala et al., the data publishing scheme here doesn’t require the in-
stances in a group to generalize to the same value. This comes from Xiao et al.’s definition
of anatomization. Unlike Xiao et al., our definition of anatomization doesn’t include the
count of sensitive attributes within a group as this statistic wouldn’t form an interesting
feature from the machine learning perspective.

The IT table includes only the quasi-identifying and class attributes. We assume that
direct identifying attributes are removed before creating the IT and ST tables. We have
the following observation from Definition 11 to train a classifier: every instance Xi ∈ IT can
be matched to the instances Xj ∈ ST within the same group using the common attribute GID in
both data table. This observation yields the anatomized training data.

Definition 12. Given two data tables IT and ST resulting from the anatomization on orig-
inal training data D, the anatomized training data DA is

DA = ΠIT.C,IT.A1,···IT.Ad,ST.As
( IT on ST )

where on is the database inner join operation with respect to the condition IT.GID =
ST.GID and Π(∗) is the database projection operation on training data *.

Anatomized training data shows one of the most naı̈ve data preprocessing approaches.
Another one is ignoring the sensitive attribute in ST table.

Definition 13. Given two data tables IT and ST resulting from the anatomization on orig-
inal training data D, the identifying training data Did is

Did = ΠIT.C,IT.A1,···IT.Ad
( IT )

where Π(∗) is the database projection operation on training data *.

Identifying training data doesn’t use all the information available in the published data
(and would likely lead to users insisting on having the original data.) The naı̈ve training
method of Definition 12, on the other hand, is both computationally costly (a factor of `
increase in size) and noisy: for every true instance, there are ` − 1 incorrect instances that
might cause incorrect classification. However, if the test instance comes from the original
data’s distribution and the original training data is sufficiently large; then the naı̈ve training
method of Definition 12 is expected to work well. In this paper, we propose the following
classifier based on this naı̈ve training method.

Definition 14. A k-nearest neighbor (k-NN) classifier that is trained on the anatomized
training data DA is called the anatomized k-NN classifier.

We will later show that such a naı̈ve classifier will have very interesting theoretical prop-
erties. Having ` − 1 incorrect instances for every true instance does not always result in a
bad classifier if the test instance to classify does not have uncertainty between the identify-
ing and the sensitive information. In fact, it is theoretically possible that anatomized k-NN
classifier outperforms the original k-NN despite the uniform noise of `-diversity! Next will
be the final definition in this section.

Definition 15. A k-nearest neighbor (k-NN) classifier that is trained on only the identifying
training data Did is called the identifying k-NN classifier.

Now we are giving the notations that will be used in the rest of this paper. D will denote
the original training data whereas DA will denote the anatomized training data. D has
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N instances and DA has N` instances from definition 12. All instances are i.i.d whether
they are in training or test data. The total number of attributes are assumed to be d + 1 (d
identifying attributes and 1 sensitive attribute.) For the sake of simplicity, Aid will denote
the identifying attributes A1 · · ·Ad ∈ IT . T stands for a test data which is not processed
by any anatomization and generalization method. x will be an instance of the test data
T . d(U, V ) is the quadratic distance metric for a pair of instances U and V in metric space
M ⊂ Rd+1. X ′N (k) denotes the set of k number of nearest neighbors of x in D that the
original k-NN classifier uses whileX ′N`(k) denotes the set of k number of nearest neighbors
of x in DA that the anatomized k-NN classifier uses. xi will interchangeably be an instance
of D or DA and xj will interchangeably be an instance of X ′N (k) or X ′N`(k). In case of
k = 1, we will use X ′N and X ′N` for the nearest neighbors in D and DA. X is the random
variable with probability distribution P (x) from which x and xi are drawn. Training and
test instances will be column vectors in format of (a1, ..., ad, as)

T . C is the class attribute in
D and DA with binary labels 1 and 2.

We are also recalling the notations from the statistical pattern recognition that will be
used in the theoretical analysis [32]. In the probability notations and proofs, we will abuse
x to represent X = x. Given the training data D and the class label i; qi(x), Pi(x) and
Pi stand for the posterior probability, the likelihood probability and the prior probability
respectively. If the anatomized training data DA is used, qAi

(x), PAi
(x) and PAi

are the
symmetric definitions for the class label i. When ∀ x ∈ T hold, the probability of classifying
x incorrectly will be referred by error rate. R(X ′N (k), x) is the error rate when x ∈ T is
classified using X ′N (k). If X ′N`(k) is used to classify x, RA(X ′N`(k), x) will be the error rate.
When ∀ xj ∈ X ′N (k);xj ∼= x hold, we denote the error rate by Rk(x) in (2).

Rk(x) =

k+1/2∑
i=1

1

i

(
2i− 2

i− 1

)
[q1(x)q2(x)]i

+
1

2

(
k + 1

k + 1/2

)
[q1(x)q2(x)]k+1/2

(2)

RkA(x) is the error rate when ∀ xj ∈ X ′N`(k);xj ∼= x holds. RkA(x) can trivially be derived
from (2) by substituting qi(x) with qAi

(x). For all x ∈ T , the smallest error rate that could
be obtained from the best possible classifier will be referred by Bayesian error [32]. The
Bayesian errors given x are denoted by R∗(x) and R∗A(x) when ∀ xj ∈ X ′N (k);xj ∼= x and
∀ xj ∈ X ′N`(k);xj ∼= x hold respectively. (3) computes R∗(x).

R∗(x) = min{q1(x), q2(x)}

∼=
∞∑
i=1

1

i

(
2i− 2

i− 1

)
[q1(x)q2(x)]i

(3)

R∗A(x) can trivially be derived again from (3) by substituting qi(x) with qAi
(x). Rk and RkA,

which are the respective expectations of Rk(x) (E{Rk(x)}) and RkA(x) (E{RkA(x)}) regard-
ing to X , will stand for the error rate of original k-NN and anatomized k-NN classifiers
respectively. R∗ and R∗A, which are the respective expectations of R∗(x) (E{R∗(x)}) and
R∗A(x) (E{R∗A(x)} ) regarding to X , will stand for the Bayesian errors of original training
data and anatomized training data respectively. We will denote R1(x) and R1

A(x) by R(x)
and RA(x) for convenience. Similarly, R and RA will denote R1 and R1

A.
We finish this section with the assumptions in the theoretical analysis. We assume that all

the training data has a smooth probability distribution. Although anatomization requires
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a discrete probability distribution for the sensitive attribute As, such smoothness violation
is negligible since the original k-NN classifier is known to fit well on discrete training data
[33]. The sensitive attribute As is assumed to be non-binary. The binary case would be
meaningless for `-diversity since ` can only be 2, implying a coin flip privacy guarantee on
the sensitive attribute. The anatomized k-NN is assumed to have odd k values, because
even k values encompass the tie cases among X ′N (k) and X ′N`(k) that make the bounds
ambiguous and complicated [32]. All instances are assumed to be in a separable metric
space M ⊂ Rd+1 following Cover et al., Devroye et al. and Fukunaga et al. [32, 34, 35].
Last, we will assume that the original training data D satisfies `-diversity condition and
that every group has ` instances in the creation of anatomized training data DA from the
original training data D.

4 Anatomized k-NN Classifier

4.1 Illustration

We will illustrate the anatomized k-NN classifier through the example in Figure 1. Al-
though the example is for an anatomized 3-NN classifier, the procedure is general for any
“k” value (cf. Definition 14.)
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(b) Anatomized Training Data

Figure 1: Toy Example of Training Data with Two Attributes A1 and A2

.

Figure 1a shows the original training data with six instances: two instances of a blue class
(on the left side) and four of a red class (on the right side), with two attributes A1 and A2.
Here, every instance has a different shape color since it belongs to a unique individual with
unique A1 value. Figure 1b shows the anatomized training data created from IT (A1, GID)
and ST (GID,A2) when ` = 2 (cf. Definitions 11 and 12.) It has 12 instances in total.

Figure 2 shows the anatomized 3-NN classifier in the toy example. To classify an unla-
beled test instance (black + in Figure 2a), the anatomized 3-NN classifier finds 3 instances
from the anatomized training data that are closest to the test instance. In Figure 2b, the 3
points that are located in the green circle are the 3 closest points to the test instance. Since
the test instance’s true class label is red, we obtain the true classification despite using 2
noisy instances (incorrect matches) and 1 true instance (correct match.) Since the training
data is separable in the toy example and the test instance comes from the subspace where
the red instances are clustered, the correct classification is obtained despite the distortion
of `-diversity.
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(b) Labeled Test Instance

Figure 2: Anatomized 3-NN Classifier in Toy Example

Note that the `-diversity’s distortion might be much more critical in practice than our toy
example’s. For example, such distortion could transform the linearly separable original
training data to non-linearly separable anatomized training data. This could hence result
in incorrect classifications as the distortion changes the likelihood probabilities that define
the generalization error of any non-parametric classifier. As long as the `-diversity’s distor-
tion on the likelihood probabilities is minimized, the generalization ability of anatomized k-NN is
more likely to be same as original k-NN’s. Before elaborating on the theoretical aspects of `-
diversity’s perturbation, we will discuss the implementation details and complexity, and
the preservation of `-diversity.

4.2 Implementation

The anatomized k-NN classifier has two phases of implementation. First is the creation of
the anatomized training data whereas the second phase is the implementation of original
k-NN classifier to train on the anatomized training data. The first phase is the inner join op-
eration between the IT and ST tables and the projection operation on the former inner join
result (cf. Definition 12.) The inner join operation can be implemented in O(N logN) time
whereas the projection operation can be implemented in O(N). Hence, the anatomized
training data creation can be implemented in O(N logN) time [36]. The second phase is
the k-NN classifier implementation. The naı̈ve approach of finding the exact k neighbors
requires going through the entire anatomized training data which takes O(N` (d + 1))
time. LSH based algorithms, on the other hand, can compute the c-approximate k nearest
neighbors in k 1

c2 +O(k log[ log N`
log

1
3N`

]) time [37].

4.3 Privacy Preservation

Correct or incorrect classification from the anatomized k-NN classifier doesn’t help an ad-
versary learn additional information about the sensitive attribute’s distribution within a
group. It is theoretically possible to have a correct classification from the k closest training
instances even if this are all incorrect matches. In addition, the original training data might
be linearly inseparable whereas the anatomized training data could be linearly separable.
Anatomized k-NN classifier just uses k “plausible” instances in the anatomized training
data which is more biased according to `-diversity’s distortion (cf. Section 4.4). Thus, the
anatomized k-NN classifier preserves `-diversity.

TRANSACTIONS ON DATA PRIVACY 10 (2017)



212 Koray Mancuhan, Chris Clifton

4.4 Theoretical Analysis

We will analyze the anatomized k-NN classifier in terms of the asymptotic error rate bounds
(infinite size training data), error rate convergence on the finite size training data, and the
generalization error. The analysis will follow Cover et al. and Fukunaga [32, 34].

The convergence analysis will be limited to anatomized 1-NN classifier since the original
k-NN classifier is analyzed only for 1 and 2 neighbors. The analysis of 2 neighbors is
omitted here since it directly follows the 1 neighbor case.

The generalization error will follow the non-parametric density estimation classifier to
keep the discussion easy to follow. The analysis result is general for k-NN classifiers with
any k value as well [32].

4.4.1 Asymptotic Error Rate Bounds

We will first show the error bounds for the anatomized 1-NN classifier. We will then discuss
the extension to the anatomized k-NN classifier for all odd k > 1. Corollary 16 expresses
formally the convergence of the nearest neighbor which is critical for the error bounds of
the anatomized 1-NN classifier.

Corollary 16. Let x ∈ T and x1, · · · , xN ∈ D be i.i.d instances taking values separable in any
metric space M ⊂ Rd+1. Let X ′N be the nearest neighbor of x in D. Then, lim

N→∞
X ′N = x with

probability one [34].

Proof. Let Sx(r) = {x̄ ∈ M : d(x, x̄) ≤ r} be the sphere with radius r > 0 centered at x.
Let’s consider that x has a sphere Sx(r) with non-zero probability. Therefore, for any radius
δ > 0;

lim
N→∞

P{ min
i=1,··· ,N

d(xi, x) ≥ δ} = lim
N→∞

[1− P (Sx(δ))]N = 0 (4)

Basically, Corollary 16 says that if the original training data has an infinite number of
instances, it is guaranteed to find the nearest neighbor of a test instance that is drawn from
the same probability distribution.

Obviously, the nearest neighbor could have either a correct or an incorrect sensitive at-
tribute if we use the anatomized training data instead of the original training data. Al-
though the sensitive attribute value could change the specific instance which becomes the
nearest neighbor in terms of the distance, there would still be a nearest neighbor if the orig-
inal has an infinite number of instances. Finding the nearest neighbor from the anatomized
training data is equivalent to finding the nearest neighbor fromDwhere one attribute value
is swapped in the multivariate distribution. Next, Theorem 17 shows the error bounds of
the anatomized 1-NN classifier under this assumption from Corollary 16.

Theorem 17. Let M ⊂ Rd+1 be a metric space. Let PA1
(x) and PA2

(x) be the likelihood probabil-
ities of x such that PA(x) = PA1PA1(x) + PA2PA2(x) with class priors PA1 and PA2 . Last, let’s
assume that x is either a point of non-zero probability measure or a continuity point of PA1(x) or
PA2

(x). Then, the nearest neighbor has the probability of error RA with the bounds

R∗A ≤ RA ≤ 2R∗A (5)

where R∗A denotes the Bayesian error when the anatomized training data DA is used.
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We now give a sketch of proof for Theorem 17. Let RA(X ′N`, x) denote the probability
of error for a pair of instances x ∈ T and X ′N` ∈ DA. Since Corollary 16 shows that
lim
N→∞

X ′N` = x always hold, (6) is derived from (2) by substituting k with 1 and qi(x) with

qAi
(x).

lim
N→∞

RA(X ′N`, x) ∼= RA(x) = 2qA1(x)qA2(x) (6)

The rest of the derivation follows Cover et al. using (2), (3) [34].
Extending (5) from the anatomized 1-NN classifier to the anatomized k-NN classifier for

all odd k > 1 follows the steps in Corollary 16 and Theorem 17. The key is to show that
lim
N→∞

xj = x holds for all xj ∈ X ′N`(k). The rest is to derive an expression of RkA(x) as

in (6) for all odd k > 1 and show that RkA(x) is always less than 2R∗A and Rk−2
A (x). This

can be derived following the analysis of original k-NN classifier in Fukunaga [32]. The
anatomized k-NN classifier has the bound (7)

R∗A ≤ · · · ≤ R5
A ≤ R3

A ≤ RA ≤ 2R∗A (7)

for all odd k > 1.
Note that the Bayesian errors R∗A and R∗ are not always same due to the `-diverse groups

of the anatomization. The `-diverse groups cause new likelihood PAi
(x) and eventually

posterior probabilities qAi
(x). R∗A thus differs from (3), because (3) uses qi(x) instead of

qAi(x). We will return back to this in the generalization error discussion.

4.4.2 Error Rate Convergence on Finite Size Training Data

We now discuss the error rate of the anatomized 1-NN classifier when the size of anato-
mized training data is finite. This error rate will let us derive the convergence rate to the
Bayesian error for the anatomized 1-NN classifier. The discussion here won’t be general-
ized to the anatomized k-NN classifier since the finite size training data performance of
k-NN classifiers are not generalized to 3 or more neighbors in the pattern recognition liter-
ature [35, 32]. Theorem 18 extends the analysis of Fukunaga and Fukunaga et al. [32, 38].

Theorem 18. Let M ⊂ Rd+1 be a metric space. Let’s assume that the original training data D
satisfies `-diversity condition and that every group has ` instances in the creation of anatomized
training data DA from the original training data D. Let PA(x) and P (x) be the smooth density
functions of x. Let PA1

(x) and PA2
(x) be the class likelihood density functions of x. Let PA1

and
PA2

be the class priors such that PA(x) = PA1
PA1

(x) +PA2
PA2

(x). Let qA1
(x) and qA2

(x) be the
smooth posterior probability densities such that qA1(x) + qA2(x) = 1 and N`→∞. Let qA1(X ′N`)
and qA2(X ′N`) be the smooth posterior probability densities such that qA1(X ′N`) + qA2(X ′N`) = 1
and N`9∞. Let δ > 0 be the difference between qAi

(x) and qAi
(X ′N`) for class labels i = {1, 2}.

Let d(X ′N`, x) be the quadratic distance with matrix A and ρ be the calculated value of d(X ′N`, x).
Let RA be the error rate of the anatomized 1-NN classifier when N` → ∞. Last, let RAN

be the
error rate of the anatomized 1-NN classifier when N`9∞. Then,

RAN
∼= RA + β

1

(N`)
2

d+1

EX{|A|−
1

d+1 tr{AB(x)}} (8)

where β is

β =
Γ

2
d+1 (d+3

2 )Γ( 2
d+1 + 1)

π(d+ 1)
(9)
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and B(x) is

B(x) = P
− 2

d+1

A (x)[qA2(x)− qA1(x)]

× [
1

2
∇2qA1

(x) + P−1
A (x)∇PA(x)∇T qA1

(x)]
(10)

Proof. We first define qAi
(X ′N`) in function of qAi

(x) and δ.

qA1
(X ′N`) = qA1

(x) + δ (11)
qA2

(X ′N`) = qA2
(x)− δ (12)

RAN
is written in function of RA and δ using (11) and (12) in (13)

RAN
= E{qA1(x)(qA2(x)− δ) + qA2(x)(qA1(x) + δ)}
= RA + E[[qA2(x)− qA1(x)]δ]

(13)

where E[[qA2
(x)− qA1

(x)]δ] is (14)

E{(qA2
(x)− qA1

(x))δ)} = Ex{Eρ{EX′N`
{[qA2

(x)− qA1
(x)]δ|ρ, x}|x}}

= Ex{[qA2
(x)− qA1

(x)]Eρ{EX′N`
{δ|ρ, x}|x}}.

(14)

Following Fukunaga, last line of (14) requires 3-step expectation calculation. Step 1 gives

EX′N`
{δ|ρ, x} u ρ2

d+ 1
× tr{A [

1

2
∇2qA1

(x) + P−1
A (x)∇PA(x)∇T qA1

(x)]} (15)

Step 2 uses (15) to calculate Eρ{EX′N`
{δ|ρ, x}|x}. This eventually requires the computation

of E{ρ2}. Although the probability distribution of ρ is unknown, the probability distri-
bution of local region u around test instance X ∈ T including the nearest neighbor X ′N`
is known. We therefore need to formulate ρ2 in function of u2. The derivation of u as a
function of ρ is given in (16).

u u p(x)
π

d+1
2

Γ(d+3
2 )

ρd+1|A| 12 (16)

Rewriting (16) and taking the expectation of both sides result in (17).

E{ρ2} =
Γ

2
d+1 (d+3

2 )

p
2

d+1 (x)π|A|
1

d+1

E{u
2

d+1 } (17)

(18) computes E{u 2
n }.∫ 1

0

u
2

d+1Pu(u)du = N`

∫ 1

0

u
2

d+1 (1− u)N`−1du =
Γ( 2

d+1 + 1)Γ(N`+ 1)

Γ(N`+ 2
d+1 + 1)

(18)

Replacing the result of (18) in (17) gives (19).

E{ρ2} =
Γ

2
d+1 (d+3

2 )Γ( 2
d+1 + 1)

p
2

d+1 (x)π|A|
1

d+1

Γ(N`+ 1)

Γ(N`+ 2
d+1 + 1)

(19)
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Assuming N and n have values large enough, Γ(N`+1)

Γ(N`+ 2
n +1)

is approximated in (20).

Γ(N`+ 1)

Γ(N`+ 2
n + 1)

=
N`

N`+ 2
n

× Γ(N`)

Γ(N`+ 2
n )

u
1

(N`)
2
n

(20)

Replacing the result of (20) in (19) results in (21).

E{ρ2} u
Γ

2
d+1 (d+3

2 )Γ( 2
d+1 + 1)

p
2

d+1 (x)π|A|
1

d+1

1

(N`)
2

d+1

(21)

Using (21) in Eρ{EX′N`
{δ|ρ, x}|x} results in

Eρ{EX′N`
{δ|ρ, x}| x} u β

1

(N`)
2

d+1

|A|−
1

d+1 × tr{AP−
2

d+1

A (x)

× [
1

2
∇2qA1(x) + P−1

A (x)∇PA(x)∇T qA1(x)]}
(22)

where β is (23).

β =
Γ

2
d+1 (d+3

2 )Γ( 2
d+1 + 1)

π(d+ 1)
(23)

Step 3 uses (22) to calculate the last line of (14). Rewriting results in (24)

Ex{[qA2
(x)−qA1

(x)]Eρ{EX′N`
{δ|ρ, x}|x}} u β

1

(N`)
2

d+1

Ex{|A|−
1

d+1 tr{AB(x)}} (24)

where B(x) is (25)

B(x) = P
− 2

d+1

A (x)[qA2
(x)− qA1

(x)]× [
1

2
∇2qA1

(x) + P−1
A (x)∇PA(x)∇T qA1

(x)]. (25)

Replacing (24) in (13) and rewriting (13) yields (8).

From Theorem 23, we see that the anatomized 1-NN classifier has a faster convergence
rate than the original 1-NN classifier’s (O( 1

N` ) vs O( 1
N ).) This is a surprising result despite

the `-diversity condition. However, we still don’t know what kind of error rate (RA) the
anatomized 1-NN classifier is converging to. Formally, we need to compare the bounds of
error rate RA to the bounds of error rate R. The generalization error analysis will elaborate
this comparison through non-parametric density estimation classifier.

4.4.3 Generalization Error Analysis

In pattern recognition literature, the generalization ability of any classifier is defined through
the classifier’s Bayesian error estimation ability [32, 35, 39]. This is reasonable for k-NN
classifiers as well since the error rate of original or anatomized k-NN classifier is bounded
by the Bayesian errors (See (7) for anatomized k-NN.)

In this section, the Bayesian error will be estimated for binary classification using non-
parametric density estimation classifier. Parzen density estimation will be used with mixed
kernel function [32]. This approach is chosen because its derivation is easier and more
readable than the k-NN density estimation’s one. The analysis, which follows Fukunaga
[32] and Fukunaga et al. [40], is general enough for any non-parametric density estimation
classifier including k-NN [32]. The multi-label classification is ignored since its theoretical
work is limited for the original training data [39]. We first give three Axioms and a Lemma.
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Axiom 19. Given the anatomized training data DA and the training data D; let PAi
and Pi be

the class priors for class labels i = {1, 2}. Assume that D satisfies the `-diversity condition and
that every group has ` instances in the creation of anatomized training data DA from the original
training data D. Then, Pi = PAi

.

Axiom 20. Given the anatomized training data DA and the training data D; let PA(X.Aid) and
P (X.Aid) be the smooth joint densities of identifying attributes Aid. Assume that D satisfies `-
diversity condition and that every group has ` instances in the creation of anatomized training data
DA from the original training data D. Then, P (X.Aid) = PA(X.Aid).

Axiom 21. Given the anatomized training data DA and the training data D; let PA(X.As) and
P (X.As) be the smooth densities of sensitive attribute As. Assume that D satisfies `-diversity
condition and that every group has ` instances in the creation of anatomized training data DA from
the original training data D. Then, P (X.As) = PA(X.As).

Axioms 19, 20 and 21 are obvious due to the following: provided a sample of size N drawn
from a probability distribution P , repeating every instance for fixed ` > 0 times and obtaining a
sample of size N` does not change the probability distribution P . The estimated parameters µ̂ and
σ̂2 of distribution P remain same as long as there is no suppression.

Lemma 22. Given the anatomized training data DA and the training data D, let identifying at-
tributes Aid and the sensitive attribute As be independent. Let’s assume that D satisfies `-diversity
condition and that every group has ` instances in the creation of anatomized training data DA from
the original training data D. Then, PA(x) = P (x) is always true under the axioms 20 and 21.

Using Axioms 20 and 21, the proof of Lemma 22 is straightforward. Lemma 22 and Ax-
ioms 1-to-3 yield the Theorem 23. Using Lemma 22, we will assume that R∗A = R∗ holds
asymptotically for Bayesian errors.

Theorem 23. LetM ⊂ Rd+1 be a metric space. Provided anatomized training dataDA, let PA1
(x)

and PA2
(x) be the class likelihood probability density functions of X . Let PA1

and PA2
be the class

priors. Let PA(x) be the smooth density function ofX such thatPA(x) = PA1
PA1

(x)+PA2
PA2

(x).
Provided original training data D, let P1(x) and P2(x) be the class likelihood probability density
functions of X . Let P1 and P2 be the class priors. Let P (x) be the smooth density function of X
such that P (x) = P1P1(x) + P2P2(x). Let hA(x) = −ln(

PA1
(x)

PA2
(x) ) and h(x) = −ln(P1(x)

P2(x) ) be the

density classifiers with biases ∆hA(x) and ∆h(x) respectively. Let t = ln(
PA1

PA2
) = ln(P1

P2
) be the

decision threshold with threshold bias ∆t. Let εA > 0 be the small changes on P1(x) and P2(x)

resulting in PA1(x) and PA2(x); and R̂∗A, R̂∗ be the Bayesian error estimations with respective
biases ∆R∗A, ∆R∗. Let P̂Ai

(x) and P̂i(x) be the Parzen density estimations of likelihood densities;
and K(∗) be the kernel function for original training data D with shape matrix A and size/volume
parameter r [32]. Last, let’s assume the following:

1. Aid and As are independent in the original training data D and the anatomized training data
DA (independence in joint distributions, not for the distributions with respect to class labels
{1, 2}.

2. R∗A = R∗ hold.

3. ∆t < 1.

4. The original training data D satisfies `-diversity condition and every group has ` instances
in the creation of anatomized training data DA from the original training data D.

TRANSACTIONS ON DATA PRIVACY 10 (2017)



Instance-Based Learning with `-diversity 217

Therefore,

R̂∗A
∼= R∗ + a1r

2 + a2r
4 + a3

r−(d+1)

N

+ εAa4r
2 + εAa5r

4 − εAa6
r−(d+1)

N

(26)

where ai is an integration term. a1r
2, a2r

4, εAa4r
2 and εAa5r

4 are the bias terms while a3
r−(d+1)

N

and εAa6
r−(d+1)

N are the variance terms.

In the proof, we will use Taylor approximations up to the second order and the negligible
terms will be ignored for convenience throughout the derivation. We will abuse x to denote
random variable X .

Proof. Let’s rewrite PA1
(x) and PA2

(x) by P1(x) + ε1 and P2(x) − ε2 where εi is a small
change for any class label i = {1, 2} and ε1 6= ε2. We first write PA(x).

PA(x) = P1PA1(x) + P2PA2(x)

= P1[P1(x) + ε1] + P2[P2(x)− ε2]

= P1P1(x) + P2P2(x) + P1ε1 − P2ε2

= P (x) + P1ε1 − P2ε2

(27)

In the last line of (27), lemma 22 tells that PA(x) = P (x) always holds under the theorem’s
independence assumptions. Thus, (28) is valid

ε2 =
P1

P2
ε1 = etε1 (28)

when t = ln(P1/P2) [32]. Let εA stand for ε1 in the remainder of the text. We then write
PA1

(x) = P1(x) + εA and PA2
(x) = P2(x)− etεA for the class likelihoods of the anatomized

training data DA. We will derive in detail the approximations for the class 1 and omit the
details for class 2 since both derivations are symmetric.

Next is the approximation of E{P̂Ai(x)} in function of Pi(x) and εA. (29) approximates
E{P̂Ai

(x)} using convolution and
∫
K(x)dx = 1.

E{P̂A1(x)} =

∫
PA1(x)K1(x− y)dy =

∫
[P1(y) + εA]K1(x− y)dy

=

∫
P1(y)K1(x− y)dy + εA

∫
K1(x− y)dy

= P1(x) ∗K1(x) + εA

u P1(x) + P1(x)
1

2
α1(x)r2 + εA

(29)

In (29), αi(x) is tr{∇
2Pi(x)
Pi(x) A}. Through a similar approach, we have

E{P̂A2(x)} u P2(x) + P2(x)
1

2
α2(x)r2 − etεA (30)

According to Fukunaga, variance is

V ar{P̂A1
(x)} =

1

N
[PA1

(x) ∗K2
1 (x)− E2{P̂A1

(x)}]. (31)
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We will only use the first order terms to keep the calculation tractable. E2{P̂A1
(x)} is (32)

[E{P̂1(x) + εA]2 u [P1(x) + εA]2 u P1(x)[P1(x) + 2εA] (32)

and PA1
(x) ∗K2

1 (x) is (33) using w1 =
∫
K2(x)dx.∫

PA1
(y)K2

1 (x− y)dy =

∫
[P1(y) + εA]K2

1 (x− y)dy

=

∫
P1(y)K2

1 (x− y)dy + εA

∫
K2

1 (x− y)dy

= P1(x) ∗K2
1 (x) + ε1w1

u w1P1(x) + εAw1

(33)

Replacing (32) and the last line of (33) in (31) results in (34).

V ar{P̂A1
(x)} u 1

N
[[w1P1(x) + εAw1]− [P1(x)[P1(x) + 2εA]]]

=
1

N
[w1P1(x)− P 2

1 (x) + εA[w1 − 2P1(x)]]

=
1

N
[w1P1(x)− P 2

1 (x)] +
εA
N

[w1 − 2P1(x)]

(34)

The approximation of PA2
(x) ∗K2

2 (x) and E2{P̂A2
(x)}yields (35).

V ar{P̂A2
(x)} u 1

N
[w2P2(x)− P 2

2 (x)]− εAe
t

N
[w2 − 2P2(x)] (35)

According to Fukunaga, the bias ∆R∗A of the Bayesian error estimation is (36)

E[∆R∗A] u
1

2π

∫ ∫
E[∆hA(x) +

(jω)

2
∆h2

A(x)]ejωhA(x)

× [PA1
PA1

(x)− PA2
PA2

(x)]dωdx.

(36)

(36) requires the approximations of the expected decision function biases E{∆hA(x)} and
E{∆h2

A(x)}. As the approximations are a function of E{∆PAi
(x)

PAi
(x) } and E{(∆PAi

(x)

PAi
(x) )2}, we

will next derive them using terms up to second order. E{∆PA1
(x)

PA1
(x) } is approximately the

last line of (37) using εA
P1(x) < 1 and the first order Taylor series.

E{∆PA1(x)

PA1
(x)
} =

1

PA1
(x)

E{P̂A1
} − 1

u
1

P1(x) + εA
[P1(x) + P1(x)

1

2
α1(x)r2 + εA]− 1

=
1

1 + εA
P1(x)

+
1

1 + εA
P1(x)

1

2
α1(x)r2 +

1

1 + P1(x)
εA

− 1

u
1

2
α1(x)r2 − εA

P1(x)
[
1

2
α1(x)r2 + 1− 1

1 + εA
P1(x)

]

u
1

2
α1(x)r2 − εA

P1(x)
[
1

2
α1(x)r2 + 1− (1− εA

P1(x)
)]

=
1

2
α1(x)r2 − εA

1

2

α1(x)

P1(x)
r2

(37)
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Similarly E{∆PA2
(x)

PA2
(x) } is (38).

E{∆PA2
(x)

PA2(x)
} u 1

2
α2(x)r2 + etεA

1

2

α2(x)

P2(x)
r2 (38)

E{(∆PA1
(x)

PA1
(x) )2} is (39)

E{(∆PA1(x)

PA1
(x)

)2} =
1

P 2
A1

(x)
V ar{P̂A1(x)}+

1

P 2
A1

(x)
E2{∆PA1(x)} (39)

that requires the approximation of 1
P 2

A1
(x)
V ar{P̂A1

(x)} and 1
P 2

A1
(x)
E2{∆PA1

(x)}.
1

P 2
A1

(x)
V ar{P̂A1(x)} is approximated in (40) using ( P1(x)

P1(x)+εA
)2 u 1− 2εA

P1(x) and w1 = s1r
d+1

1

P 2
A1

(x)
V ar{P̂A1

(x)} u 1

N(P1(x) + εA)2
[w1P1(x)− P 2

1 (x)]+

εA
1

N(P1(x) + εA)2
[w1 − 2P1(x)]

=
P 2

1 (x)

(P1(x) + εA)2
[

w1

NP1(x)
+

εAw1

NP 2
1 (x)

− 2εA
NP1(x)

]

u [1− 2εA
P1(x)

][
w1

NP1(x)
+

εAw1

NP 2
1 (x)

− 2εA
NP1(x)

]

u
s1

NP1(x)rd+1
− εA[

s1

NP 2
1 (x)rd+1

+
2

NP1(x)
]

u
s1

NP1(x)rd+1
− εA

s1

NP 2
1 (x)rd+1

(40)

whereas 1
P 2

A1
(x)
E2{∆PA1

(x)} is approximated in (41).

1

P 2
A1

(x)
E2{∆PA1

(x)} u (
1

2
α1(x)r2 − εA

1

2

α1(x)

P1(x)
r2)2

u
1

4
α2

1(x)r4 − α1(x)r2εA
1

2

α1(x)

P1(x)
r2

=
1

4
α2

1(x)r4 − εA
1

2

α2
1(x)

P1(x)
r4

(41)

Replacing the last lines of (40) and (41) in (39) results in (42).

E{(∆PA1
(x)

PA1(x)
)2} u s1

NP1(x)rd+1
− εA

s1

NP 2
1 (x)rd+1

+
1

4
α2

1(x)r4 − εA
1

2

α2
1(x)

P1(x)
r4

(42)

The same derivation for E{(∆PA2
(x)

PA2
(x) )2} results in (43).

E{(∆PA2(x)

PA2
(x)

)2} u s2

NP2(x)rd+1
+ etεA

s2

NP 2
2 (x)rd+1

+
1

4
α2

2(x)r4 + etεA
1

2

α2
2(x)

P2(x)
r4

(43)
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According to Fukunaga, E{∆hA(x)} is approximately (44)

E{∆PA2
(x)

PA2
(x)
} − 1

2
E{(∆PA2

(x)

PA2
(x)

)2} − E{∆PA1
(x)

PA1
(x)
}+

1

2
E{(∆PA1

(x)

PA1
(x)

)2} −∆t (44)

and E{∆h2
A(x)} is approximately (45) using the second order Taylor approximation.

E{(∆PA2
(x)

PA2(x)
)2}+ E{(∆PA1

(x)

PA1(x)
)2} − 2E{(∆PA1

(x)

PA1(x)
)(

∆PA2
(x)

PA2(x)
)}+ ∆t2

− 2∆t[E{∆PA2
(x)

PA2
(x)
} − 1

2
E{(∆PA2

(x)

PA2
(x)

)2} − E{∆PA1
(x)

PA1
(x)
}+

1

2
E{(∆PA1

(x)

PA1
(x)

)2}]
(45)

Replacing the result of (37), (38), (42) and (43) in (44) and rewriting yield (46).
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(46)

Note that the first three terms of approximation are E{∆h(x)} according to Fukunaga [32]
and the remaining terms with εA are the effect of `-diversity. Replacing the result of (37),
(38), (42) and (43) in (45) and rewriting yield (47).
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(47)
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The first three terms of the approximation are E{∆h2(x)} according to Fukunaga [32] and
the remaining terms with εA are again the effect of `-diversity. Plugging the results of
(46) and (47) in (36) and rewriting (36) give (26) where each ai stands for an integration
term.

(26) shows that the anatomized training data DA reduces the variance term of the non-
parametric density classifier that estimates the Bayesian error. This explains the faster con-
vergence of the anatomized k-NN classifier that was derived in the previous section. Given
the original training data of finite size N , using the anatomized training data of finite size
N` reduces the search space of possible models. This means that the anatomized k-NN
classifier considers less options of probabilistic models than the original k-NN classifier.

However, the bias term is increased which makes the non-parametric density classifier
more susceptible to underfitting. In overall, the non-parametric density classifier on the
anatomized training data has a shifted bias-variance trade-off relative to the non-parametric
models on the original training data. The distortion of `-diversity in the anatomization
yields the following conclusion about the generalization ability of k-NN:

1. If the original k-NN classifier overfits, the anatomized k-NN classifier suffers less
from overfitting provided that both classifiers have the same k hyper-parameter. In
this case, the anatomized k-NN always generalizes better than the original k-NN.

2. If the original k-NN classifier fits well (optimum bias-variance tradeoff), the anato-
mized k-NN classifier always underfits provided that both classifiers have the same
k hyper-parameter. In this case, the original k-NN generalizes better than the anato-
mized k-NN.

3. If the original k-NN classifier underfits, the anatomized k-NN classifier suffers more
from underfitting provided that both classifiers have the same k hyper-parameter. In
this case, the original k-NN generalizes better than the anatomized k-NN as well.

The key result to keep in mind is this: `-diversity regularizes the original k-NN classifier while
it provides privacy.

5 Experiments and Results

5.1 Prerequisites

5.1.1 Datasets

We tested our algorithm on the adult, IPUMS and marketing datasets of the UCI data repos-
itory [41] and the fatality dataset of the Keel data repository [42]:

1. Adult: The adult dataset is drawn from 1994 census data of the United States [41].
It is composed of 45222 instances after the removal of instances with missing values.
The binary classification task is to predict whether a person’s adjusted gross income
is ≤ 50K or > 50K. The attribute final weight is ignored. Education is treated as
the sensitive attribute in the experiments. The quasi-identifying attributes are age,
workclass, maritalstatus, occupation, race, sex, capitalgain, capitalloss, hoursperweek and
nativecountry. The class attribute is income.
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2. IPUMS: This data is drawn from the 1970, 1980 and 1990 census data of the Los An-
geles and Long Beach areas [41]. It has 233584 instances in total. We pick the 10
attributes that are included in the adult data. The binary classification task is to pre-
dict whether a person’s total income is ≤ 50K or > 50K. The classifiers are expected
to show a different behavior from the former adult data since the population (and
to some extent, classification task, as it is total income rather than adjusted gross in-
come) are different. Educrec is treated as the sensitive attribute in the experiments.
The quasi-identifying attributes are age, sex, raceg, marst, occ1950, classwkg, hrswork2,
migplac5 and vetstat. The class attribute is bintotinc, a binary attribute that we cre-
ated from the totinc (total income) of the original dataset based on the former binary
classification task.

3. Marketing Data: This data is drawn from a phone based marketing campaign of a
Portuguese banking institution for long term deposits [41]. We created the follow-
ing binary classification task which is linearly separable: “among all the people who
didn’t submit a long term deposit, predict whether a person has a housing loan or
not”. We performed the following preprocessing using Weka filters [43]: 1) pick
39922 instances who didn’t make a long term deposit 2) choose four attributes job,
day, month and age using the correlation with the class attribute housing. Discretized
age is treated as the sensitive attribute whereas the quasi-identifying attributes are job,
day and month.

4. Fatality Data: This data is a U.S. National Center for Statistics and Analysis com-
pilation of 2001 car accidents. The original class attribute injury severity has eight
labels indicating the level of injury suffered [42]. We create the binary attribute
is injured with values “Injured” and “No Injury” in the following way: 1) remove the
instances with labels “Injured Severity Unknown”, “Died Prior to Accident”, “Un-
known” and “Possible Injury’ from the original data. This results in 91085 instances
2) label “Injured” the instances with labels “Nonincapaciting Evident Injury”, “Inca-
paciting Injury” and “Fatal Injury”. No feature selection is applied on this dataset.
police reported alcohol involvement is treated as the sensitive attribute. The remaining
attributes in the data catalog are the quasi-identifying attributes [42]

5.1.2 Privacy Setup

The anatomization was done according to Xiao et al.’s bucketization algorithm [11]. When
the `-diversity condition is not satisfied, the instances were divided into groups of size `
according to the original bucketization algorithm. Leftover instances were suppressed (not
used in training models.) Although this violates the assumption in the theoretical analysis,
we believe such experiments will still be useful to show whether the theoretical analysis
under the existing assumption is verifiable or not.

Anonymized training data was created for the adult dataset. The anonymized k-NN is
not included for other datasets since Inan et al. provided generalization hierarchies only
in the adult dataset [21]. Hence, we used Inan et al.’s value generalization hierarchies in
the experiments. The privacy parameters were k = ` for k-anonymity and `-diversity to
compare the classifiers using same group sizes in training data.

Anonymized and anatomized training data had the same identifying and sensitive at-
tributes. The sensitive attributes were chosen such that the `-diversity is satisfied for at
least ` = 2.
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5.1.3 Model Evaluation Setup

Weka’s IBk class was used to train k-NN classifiers on the original, identifying and anat-
omized training data [43]. The anatomized training data is created from the IT and ST
tables using the merging and dropping functions of Pandas [44].

10-fold cross validation was used for evaluation of the error rate bounds and generaliza-
tion ability (we use boxplots to show variance across the different folds), and the error rate
was used as the evaluation metric. The comparison includes anatomized k-NN, original
k-NN and identifying k-NN. The comparison on adult dataset also includes anonymized
k-NN due to the privacy setup in the previous section. The error rates of anatomized and
original k-NN are compared using the Student t-test. Other models are not included in
Student t-test, because Theorem 23 covers only anatomized and original k-NN.

10-fold cross validation was also used for evaluation of the 1-NN classifier’s convergence
rate. The error rate was again used for the evaluation metric. However, we trained the
anatomized and original 1-NN classifiers incrementally at each iteration of the cross vali-
dation. In a given iteration, the training set was divided into 9 partitions and the models
are trained 9 times. The training started from the first partition and continued further by
adding a partition at a time. The average error rates are computed over 10 different error
rate values for a given training set size in the analysis (cf. Section 5.2.6.)

5.2 Analysis of Results

While Figures 3 through 8 show the boxplots of error rates for k-NN classifiers, Figure 9
shows the lines of convergence rate for the error rates of original and anatomized 1-NN
classifiers. In Figures 3 to 8, “Org.” and “Id.” labels will stand for original k-NN and iden-
tifying k-NN respectively. The anatomized and anonymized k-NN will be represented by
their respective privacy parameters (L for ` and k for k.) Our analysis have four observation
aspects:

1. Comparison between the anatomized and the original k-NN: From Theorem 23,
there are two possibilities for the error rates. In first possibility, the anatomized k-NN
classifier is effected from overfitting less than the original k-NN classifier. In this case,
we expect that the anatomized k-NN has smaller error rate than the original k-NN on
average. In second possibility, the anatomized k-NN suffers from underfitting while
the original k-NN classifier either fits well or suffers less from underfitting. In this
case, the anatomized k-NN’s error rate is expected to be greater than the original k-
NN’s. Increasing the ` parameter would result in the increase of distortion (εA in (26)).
From Theorem 23, the error rate expectation in the former two possibilities would still
be valid in function of the increase in ` unless there is suppression. If some instances
are suppressed to create the anatomized training data, then the theoretical analysis of
the anatomized k-NN classifier would be invalid because the assumption of Theorem
23 is violated.

2. Comparison between anatomized and identifying k-NN: In the first case, the identi-
fying k-NN is likely to outperform the anatomized k-NN if the sensitive attribute is a
bad predictor of the class attribute in the original training data. The sensitive attribute
changes the likelihood probability in density based decision function and the model
either overfits by the increase in variance or underfits by the increase in the bias. The
anatomized k-NN therefore estimates a model of the original training data that is
not likely to generalize well. In the second case, the anatomized k-NN are likely to
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outperform the identifying k-NN if the sensitive attribute is a good predictor of the
class attribute in the original training data. The sensitive attribute changes again the
likelihood probability in density based decision function and the anatomized k-NN
classifier catches a better tradeoff between the bias and the variance terms. The anat-
omized k-NN classifier would avoid the potential overfitting or underfitting that the
identifying k-NN could have.

3. Comparison between the anatomized and the anonymized k-NN: The anatomized
k-NN are expected to outperform the anonymized k-NN because anatomization pre-
serves the original values for all the attributes. The generalization based k-anonymity,
on the other hand, distorts most of the original attribute values [21].

4. Comparison of the anatomized and original 1-NN in the convergence rates: From
Theorem 18, we expect that the anatomized 1-NN will converge faster than the orig-
inal 1-NN classifier to the lowest possible error rate if there is no suppression in the
creation of the anatomized training data. Suppression would again violate the as-
sumption of Theorem 18.

We should note that it we are comparing an anatomy method satisfying `-diversity against
a weaker k-anonymity requirement for the generalization-based approach. While we don’t
specifically use an `-diversity based generalization [1], such a method would be expected to
generalize more and give worse results. The generalization-based k-anonymization we use
already produces 2-diverse datasets. More than 44000 instances in the adult dataset are 11-
diverse for k-values 2 to 5. As 97% of the generalization based k-anonymized adult dataset
satisfy `-diversity, the results should be similar with generalization based `-diversity.

We are now presenting the analysis of error rates in first three aspects for all the datasets.
We will then present the analysis of convergence rate for anatomized 1-NN in the fourth
aspect.

5.2.1 Analysis of Error Rates for 1-NN

Figure 3 shows the error rates for the original, anatomized and identifying 1-NN classifiers
that are tested on the four datasets.

In Figure 3a, the original 1-NN classifier outperforms the anatomized 1-NN classifier
when ` is 2 and 3. The anatomized 1-NN classifier hence underfits more than the origi-
nal 1-NN due to the distortion of `-diversity. In the second aspect, the sensitive attribute is
a bad predictor of the class attribute because the average error rate of the identifying 1-NN
classifier is less than the original 1-NN’s. The anatomized 1-NN classifier’s error rates are
greater than both the original and identifying 1-NN classifier’s because the anatomized 1-
NN classifiers are estimating an original 1-NN classifier that doesn’t fit well. The former
claims hold when ` is 4 and 5 despite suppression.

In Figure 3b, the original 1-NN outperforms the anatomized 1-NN when ` is 2-to-4. The-
orem 23 concludes that the anatomized 1-NN classifier underfits more than the original
1-NN classifier. In the second aspect, the sensitive attribute is a bad predictor of the class
attribute because the average error rate of the identifying and original 1-NN classifiers are
almost same. The anatomized 1-NN classifier’s error rates thus are greater than both the
original and identifying 1-NN classifier’s because the anatomized 1-NN classifiers are esti-
mating an original 1-NN classifier that doesn’t fit well. When ` is 5, the former claims hold
although the assumptions of our theoretical analysis is violated due to suppression.
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Figure 3: 10 Cross Validation Errors Rates for 1-NN Classifiers

In Figure 3c, the original 1-NN classifier has higher error rates than the anatomized 1-
NN classifiers when ` is 2-to-5. From Theorem 23, the original 1-NN classifier suffers from
overfitting whereas the anatomized 1-NN classifier catches a better bias variance tradeoff.
Note that when ` is increased from 4 to 5, the error rates start increasing. Increase in ` causes
here the increase in the bias such that the anatomized 1-NN classifier starts underfitting.
In the second aspect, the identifying 1-NN classifier has a much lower error rate than the
original 1-NN classifier has. This means that the sensitive attribute is a bad predictor of the
class attribute. Since sensitive attribute is a bad predictor, the anatomized 1-NN classifier
approximates a bad classifier of the original training data which increases its generalization
error relative to the identifying 1-NN classifier.

In Figure 3d, the original 1-NN classifier has higher error rates than the anatomized 1-NN
classifiers when ` is 2. From Theorem 23, the original 1-NN classifier suffers from overfit-
ting whereas the anatomized 1-NN classifier captures a better bias variance tradeoff. When
` is 3 or 4, the assumptions of the theoretical analysis is violated due to suppression. The
general conclusion here would be the significant distortion of the likelihood probabilities
which increases the bias term (underfitting). In the second aspect, the identifying 1-NN
classifier’s error rates are less than the original 1-NN classifier’s. The sensitive attribute
hence is a bad predictor of the class attribute and the anatomized 1-NN classifier approxi-
mates a bad classifier which increases its generalization error relative to identifying 1-NN.

Figure 4 gives the boxplots of error rates for anonymized k-NN classifiers in addition to
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Figure 4: 1-NN Error Rates on Adult (k for k and L for `)

original, identifying and anatomized 1-NN. In the third aspect, we have the expected result
for the anonymized 1-NN classifiers. Their error rates are greater than the anatomized 1-
NN classifiers. Due to generalization of the identifying attribute values, the utility loss of
the anonymized training data is more than the anatomized training data’s. In the context of
anonymized 1-NN, note that the error rates are decreased when k is increased. Increasing
k for the anonymized 1-NN classifier is same as increasing the number of neighbors for the
k-NN classifier.

5.2.2 Analysis of Error Rates for k-NN on Adult Data

Figure 5 shows the results of multiple types of k-NN classifiers on the adult data for 3, 5,
7 and 9 neighbors (k). In the first aspect, we start discussion with ` = 2 and ` = 3 (no
suppression cases.) The anatomized k-NN classifiers have higher error rates than the orig-
inal k-NN classifiers. Since Theorem 23 tells that the anatomized training data increases
the bias terms of the k-NN classifiers’ generalization error while reducing the variance, the
anatomized k-NN classifiers suffer from underfitting. Although the former Theorem’s as-
sumptions are violated in cases of ` = 4 and ` = 5, we see that the error rates of anatomized
k-NN classifiers are still higher than the original k-NN classifiers’. We thus can assume that
the same underfitting behavior continues. In the second aspect, the sensitive attribute is a
good predictor of the class attribute because the original 3-NN, 5-NN, 7-NN and 9-NN
classifiers outperform the identifying 3-NN, 5-NN, 7-NN and 9-NN classifiers in terms of
the error rates. When ` = 2 and ` = 3, the anatomized k-NN classifier captures the bias
variance tradeoff between the identifying and original k-NN classifiers for multiple values
of k. The anatomized k-NN classifiers outperforms the identifying k-NN classifiers while
it is outperformed by the original k-NN classifiers. Due to suppression, the former bias
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Figure 5: 10 Cross Validation Errors Rates of Adult Data

variance tradeoff conditions don’t hold in cases of ` = 4 and ` = 5. The anatomized k-NN
classifiers thus don’t have the former tradeoff.

5.2.3 Analysis of Error Rates for k-NN on IPUMS Data

Figure 6 shows the results for multiple types of k-NN classifiers on the IPUMS data. The
IPUMS data satisfy the `-diversity condition when ` = 2, ` = 3 and ` = 4, so the Theorem
23 and the bound 6 are expected to hold in here. In the first aspect, the anatomized 3-NN,
5-NN, 7-NN and 9-NN classifiers are outperformed by the original 3-NN, 5-NN, 7-NN and
9-NN classifiers. From Theorem 23, the increase in the bias terms yields the underfitting
classifiers. In the second aspect, the sensitive attribute is good predictor of the class at-
tribute because the original k-NN classifiers outperform the identifying k-NN classifier for
multiple values of hyperparameter k. When ` = 3 and ` = 4, the anatomized k-NN clas-
sifiers surprisingly fail to capture the bias variance tradeoff between the original and the
identifying k-NN classifiers. From Theorem 23, the increase in bias is way greater to cap-
ture bias variance tradeoff for the anatomized k-NN classifiers (cf. Figure 6.) The case of
` = 2 is special. Note that the anatomized 5-NN, 7-NN and 9-NN classifiers capture the
bias variance trade-off between the original and identifying ones, as expected (cf. Figures
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Figure 6: 10 Cross Validation Errors Rates of Ipums Data

6b, 6c and 6d.) For anatomized 3-NN classifier, the increase in bias is way greater than the
decrease in variance. It thus fails to capture again the bias variance tradeoff between the
original 3-NN and the identifying 3-NN classifiers (cf. Figure 6a.) Last, the anatomized
3-NN, 5-NN, 7-NN and 9-NN classifiers under ` = 5 (suppression) show a similar trend to
the anatomized 3-NN, 5-NN, 7-NN and 9-NN classifiers under ` = 3 and ` = 4 in terms of
the first and second aspects.

5.2.4 Analysis of Error Rates for k-NN on Marketing Data

Figure 7 shows the result for multiple types of k-NN classifiers on the marketing data. The
marketing data satisfy the `-diversity condition when ` is 2-to-5. Theorem 23 and the bound
6 thus are expected to hold in all ` values. In the first aspect, the anatomized k-NN classi-
fiers outperform the original k-NN classifiers for all combinations of ` and hyperparameter
k. This shows that the distortion of `-diversity reduces the generalization error by increas-
ing the bias and reducing the variance of the original k-NN classifier (fixing the overfitting
issue.) Note that when ` is increased from 4 to 5, the overfitting issue is fixed less because
the increase in bias exceeded the good bias variance tradeoff and the model is directed to
the underfitting case. In the second aspect, the sensitive attribute is a good predictor of
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Figure 7: 10 Cross Validation Errors Rates of Marketing Data

7-NN and 9-NN classifiers since the original 7-NN and 9-NN’s error rates are less than the
identifying 7-NN and 9-NN’s (cf. Figures 7c and 7d.) Surprisingly, the anatomized 7-NN
and 9-NN’s error rate are lower than both the original and the identifying 7-NN and 9-NN
classifiers. The sensitive attribute, on the other hand, is a bad predictor of 3-NN and 5-NN
classifiers since the original 3-NN and 5-NN’s error rates are greater than the identifying
3-NN and 5-NN’s (cf. Figures 7a and 7b.) Surprisingly, the anatomized 3-NN and 5-NN
classifier have again lower error rates than both original and identifying 3-NN and 5-NN
classifiers. The most plausible reason is the regularization effect of `-diversity that results
in the lowest generalization error of the anatomized k-NN classifiers for all `-values. The
distortion of `-diversity increases the bias such that it fixes the overfitting issue of both the
original and identifying k-NN classifiers.

5.2.5 Analysis of Error Rates for k-NN on Fatality Data

Figure 8 shows the result for multiple types of k-NN classifiers on the fatality data. As the
fatality data satisfy the `-diversity condition for ` = 2, Theorem 23 thus is expected to hold
in the first aspect. Anatomized k-NN classifiers outperform the original k-NN classifiers
when ` = 2. From Theorem 23, the increase in bias reduces the generalization error of
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(d) 9-NN Error Rates

Figure 8: 10 Cross Validation Errors Rates of Fatality Data

the original k-NN classifiers which is overfitting to the original training data. In the second
aspect, the sensitive attribute is a bad predictor of k-NN classifiers since the original k-NN’s
error rates are greater than the identifying k-NN’s. Although the error rates of anatomized
k-NN is less than the original k-NN’s, its error rates are greater than the identifying k-NN’s.
This is expected since the anatomized k-NN is trying to capture the bias variance tradeoff
between the original and the identifying k-NN classifiers. The anatomized k-NN classifier
is estimating the original k-NN classifier’s distribution which is not the best classifier in
the existing data. Last, increasing ` to 3 and 4 increases the error rates of the anatomized
k-NN classifiers. Due to suppression, the theoretical analysis do not hold here. The most
plausible reason is that the reduction of the training data size results in the overfitting of
the models. This would increase the generalization error.

5.2.6 Analysis of Convergence Rates

Figure 9 shows the error rates of original and anatomized 1-NN classifiers as a function of
the increasing training set sizes.

In Figure 9a, we see that the anatomized 1-NN classifier converges faster than the original
1-NN classifier on the adult data when ` = 2 and ` = 3, as expected from Theorem 18.
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Figure 9: Convergence of 1-NN Using Multiple Size Training Sets

The former ` values satisfy the `-diversity condition, so there is no suppression and the
assumptions of the Theorem 18 are not violated. Note that the anatomized 1-NN classifier
converges slower than the original 1-NN classifier when the assumption of Theorem 18 is
violated under ` = 4 and ` = 5 (due to suppression.)

In Figure 9b, we see that the anatomized 1-NN classifier converges faster than the original
1-NN classifier on the IPUMS data when ` = 2, ` = 3 and ` = 4, as expected from Theorem
18. The former ` values satisfy the `-diversity condition, so there is no suppression and the
assumptions of the Theorem 18 are not violated. Note that the anatomized 1-NN classifier
still converges faster than the original 1-NN classifier when the assumption of Theorem 18
is violated under ` = 5. The most likely reason behind is that the number of instances in
the IPUMS data is too large and the number of suppressed instances are negligible relative
to its size.

In Figure 9c, we see that the anatomized 1-NN classifier converges faster than the original
1-NN classifier on the marketing data for all values of `, as expected from Theorem 18. The
marketing data satisfy the `-diversity condition for ` values 2-to-5. Hence, the assumptions
of the Theorem 18 are never violated in the experiments.

Last, Figure 9d shows that the anatomized 1-NN classifier converges faster than the orig-
inal 1-NN classifier on the fatality data under ` = 2. This is again expected from Theorem
18 since the fatality data satisfy the `-diversity condition for ` = 2. It is easy to notice that
the convergence of anatomized 1-NN classifier is slower than the original 1-NN classifier
under ` = 3 and ` = 4 due to suppression, as expected.
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Classifier Org. vs Org. vs Org. vs Org. vs
`=2 `=3 `=4 `=5

1-NN F F F F
3-NN F P P P
5-NN P F F P
7-NN F P P P
9-NN P P P P

Table 1: Anatomized k-NN vs Original k-NN on Adult

Classifier Org. vs Org. vs Org. vs Org. vs
`=2 `=3 `=4 `=5

1-NN P P P P
3-NN P P P P
5-NN P P P P
7-NN P P P P
9-NN P P P P

Table 2: Anatomized k-NN vs Original k-NN on IPUMS

Classifier Org. vs Org. vs Org. vs Org. vs
`=2 `=3 `=4 `=5

1-NN P P P P
3-NN P P P P
5-NN P P P P
7-NN F F F F
9-NN P F F F

Table 3: Anatomized k-NN vs Original k-NN on Marketing

Classifier Org. vs Org. vs Org. vs
`=2 `=3 `=4

1-NN F P P
3-NN F F P
5-NN F F P
7-NN P F P
9-NN P F F

Table 4: Anatomized k-NN vs Original k-NN on Fatality

5.3 Student t-test for Anatomized k-NN versus Original k-NN

Tables 1, 2, 3 and 4 give the statistical test results for confidence interval 0.95. In all Tables,
“P” stands for pass while “F” stands for fail. “N/A” stands for not applicable in cases
where the domain size of sensitive attribute is less than the ` value. “Org.” stand for the
original k-NN whereas “`” stand for the anatomized k-NN. Note that we do the test for
original k-NN vs anatomized k-NN, because the Theorem 23’s scope covers this analysis.

From the Tables, the combinations of ` and hyperparameter k give at least 1 statistically
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significant comparison when there is no suppression in the creation of the anatomized
training data. There is at least one statistically significant comparison when the theoret-
ical analysis is supposed to hold under the `-diversity condition.

6 Conclusion and Future Directions

This work demonstrates the feasibility of k-NN classification using training data protected
by anatomization under `-diversity. We show that the asymptotic error bounds are the
same for anatomized data as for the original data. Perhaps surprisingly, the proposed 1-
NN classifier has a faster convergence to the asymptotic error rate than the convergence
of 1-NN classifier using the training data without anatomization. In addition, the analy-
sis suggests that any non-parametric classifier using the anatomized training data has the
variance term of generalization error that is less than the non-parametric classifiers’ using
the original training data. In contradiction, any non-parametric classifier using the anat-
omized training data has the bias terms of generalization error that are greater than the
non-parametric classifiers’ using the original training data. The anatomized training data
thus pushes the optimum point of bias variance tradeoff towards the bias terms.

Experiments on multiple datasets confirm the theoretical convergence rates. These ex-
periments also demonstrate that proposed k-NN on anatomized data approaches or even
outperforms k-NN on original data. In particular, the experiments on well known Adult
data show that 1-NN on anatomized data outperforms learning on data anonymized to the
same anonymity levels using generalization.
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[39] András Antos, Luc Devroye, and László Györfi. Lower bounds for bayes error estimation.
Journal of IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(7):643–645, 1999.

[40] Keinosuke Fukunaga and Donald M Hummels. Bayes error estimation using parzen and k-nn
procedures. Journal of IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(5):634–643,
1987.

[41] M. Lichman. UCI machine learning repository, 2013.
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