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Abstract. The publication of social network graphs enables researchers to understand and inves-
tigate human behaviour. However, when such analyses can target single individuals rather than
society as a whole, it is clear that privacy becomes a serious concern. This article addresses the
challenge of publishing social graphs with proven privacy guarantees. In our adversarial model we
consider an active attacker, who has the capability of altering the structure of the social graph before
publication by creating new user profiles and establishing relations between them and the targeted
network users. We aim to protect graphs satisfying (1, 1)-anonymity, the privacy property that char-
acterises the weakest graphs in terms of resistance to active attacks. To that end, we introduce a class
of perturbation methods based on edge additions that transform a (1, 1)-anonymous graph into a
graph satisfying (k, `)-anonymity for some k > 1 or some ` > 1. We prove the correctness of our
approach and give a tight upper bound on the number of necessary edge additions. Experimental re-
sults, obtained on real-life graphs and a large collection of randomly generated graphs, show that our
methods effectively prevent attacks from active adversaries with the capability of adding one node
to the network, and additionally provide some level of protection against more capable attackers. We
also conducted experiments on real-life social graphs which show that the outputs of state-of-the-
art community detection algorithms on the anonymised graphs is similar to those obtained on the
original graphs.
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1 Introduction

In recent decades, human interaction and socialisation has dramatically changed, propelled
by new developments on communication and information technologies. With the advent
of online social networks (OSN), emotions, feelings, thoughts, can all be shared instantly.
The feeling that online interactions are to some extent less consequential than face-to-face
communication eases the process of deciding what to share, how to share it, and to what
audience. Thus, OSNs make it easier to disclose personal information, as users typically
feel more protected from the public when interacting through a computer.

The success of OSNs has brought about the availability of an enormous amount of infor-
mation, among which social graphs are especially useful. Informally, a social graph is a
static representation of a social network at a given moment. Every vertex corresponds to
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a user and edges represent relations such as friendship, shared work experience, common
affiliations, etc. Using graph theory and methods from modern sociology, researchers are
able to obtain useful knowledge regarding the properties of the network and the behaviour
of the users. Typical social network analysis tasks are, among others, community detection,
which allows to detect groups of users that display a common behaviour or are somehow
strongly interrelated; link prediction, commonly used for suggesting new friends; and cen-
trality analysis, which helps to determine the role a user plays in the network.

The owners of OSN systems occasionally release samples of their social graphs, whether
as a tool to help advance research, as a self-advertising mechanism, etc. In general, the
possibility to discover new knowledge is positively viewed by the public, but it is not ac-
ceptable that the privacy of social network users is compromised in the process. For exam-
ple, a malicious agent or entity, usually referred to as adversary, may attempt to identify a
user in a published social graph, an action often called re-identification, and learn sensitive
information such as political and religious preferences. To prevent this risk, social graphs
must be properly anonymised before releasing them.

A straightforward anonymisation technique that may immediately come to mind consists
in removing identifying attributes from the graph, such as name, email address, and social
security number. However, even a simple graph without attributes attached to its vertices
can be subject to re-identification attacks [14]. For example, an adversary who knows the
number of social links of a target victim can use this information to re-identify the victim,
if there is a unique node with this number of links.

Re-identification attacks to social graphs are typically categorised as passive or active. In a
passive attack, the adversary’s actions aiming to re-identify the victims are performed only
after the social graph has been released, and usually by means of information collected
from publicly available sources, e.g., other OSNs sharing a part of the user base [14]. On the
other hand, in an active attack the adversary proactively inserts new nodes in the network,
which are referred to as sybil nodes, and tries to establish links with the targeted victims
before the graph is released. The links are made in such a way that every victim connects
to the set of sybil nodes in a unique and re-identifiable manner. Once the social graph is
released, the adversary first identifies her own set of sybil nodes, which are subsequently
used to re-identify the victims by using their unique connection patterns to the set of sybil
nodes [1, 23].

Active attackers are stronger than passive ones, in the sense that they can create the struc-
tural patterns needed for re-identification, instead of expecting the patterns to naturally
occur. However, this type of attacks has not received sufficient attention so far. The first
privacy property that accounts for active attackers was recently proposed in [20]. This
property, which is called (k, `)-anonymity, characterises social graphs where a user can-
not be re-identified with probability higher than 1/k by an active attacker who is able to
enrol up to ` sybil nodes. It was shown in [20] that real-life social graphs tend to be (1, 1)-
anonymous, which is the lowest privacy level possible, as it means that there exists at
least one vertex in the graph uniquely identifiable by its distance to some other vertex.
This leads to the question addressed in this paper, namely whether it is possible to define
privacy-preserving transformation techniques that counteract active attacks by transform-
ing a graph with low anonymity, in terms of (k, `)-anonymity, into a graph with higher
anonymity guarantees against re-identification by active attackers.

Contributions. This article introduces a class of perturbation methods to transform a
(1, 1)-anonymous graph G (the least private graph in terms of (k, `)-anonymity) into a
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graph G′ that satisfies (k, `)-anonymity for some k > 1 or some ` > 1. All methods in
the class are based on performing edge-additions until the desired anonymity property is
achieved. Additionally, we formally prove that all methods in this family have a common
theoretical upper bound on the number of added edges. Providing such a family of meth-
ods, all of which offer the same privacy guarantee, allows the data holder to choose the one
that least perturbs the original data, for some interpretation of perturbation. The results
presented in this article generalise and extend our previous work reported in [11], as the
proposed class contains the anonymisation method introduced in that paper.

We provide comprehensive empirical validation of our results on both real-life and ran-
domly generated graphs. Three real-life graphs, as well as a large collection of random
graphs, are used to show the resistance of the anonymised graphs to a paradigmatic ac-
tive attack: the walk-based attack described in [1]. Then, real-life social graphs are used to
show that, while the proposed methods provide equivalent resistance to active attacks, they
slightly differ in terms of perturbation. We define perturbation as the difference between
the original and the anonymised graph with respect to some utility measure. The results
of these experiments lead to two main conclusions. Firstly, our approach introduces small
perturbations in terms of the number of added edges, some global graph parameters, and
the variation of the outputs of state-of-the-art community detection algorithms. Secondly,
no individual method from our class universally outperforms the remaining class mem-
bers in terms of all considered utility measures. Thus, in practical settings, it is the task
of the practitioner to choose the appropriate instance according to the input graph and the
considered utility criterion.

Structure of the paper. The remainder of this paper is structured as follows. Section 2
provides the background on privacy-preserving publication of social graphs, explaining
in detail privacy properties geared towards passive and active adversaries. A thorough
discussion on (k, `)-anonymity, and its role in protecting social graphs from active at-
tacks is provided in Section 3. Then, Section 4 presents and proves properties of (1, 1)-
anonymous graphs, which form the theoretical foundation of our anonymisation strategy
(also described in this section). The correctness and convergence of our methods, as well
as computational complexity issues, are treated in Section 5, whereas Section 6 presents the
empirical evaluation of the proposed methods on randomly generated and real-life social
graphs. Finally, conclusions are drawn in Section 7.

2 Related work

Since 2002, a large body of work in data anonymisation has spun around the notion of k-
anonymity [17]. This idea, which appeared in the field of microdata anonymisation, has
been ported to the field of social graphs. Here, we will briefly cover this notion in its orig-
inal background, and then analyse the manner in which it has been ported to our domain
of interest. While covering the application of k-anonymity notions to social graphs, we will
distinguish those approaches focused on passive attacks from the ones relating to active
attacks.

k-anonymity in microdata. A pioneer study on re-identification attacks was published in
2002 by Sweeney [19]. Sweeney estimated that 87% of the population in the United States
can be uniquely identified by combining publicly available attributes such as gender, date
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of birth and zip code, even if every such attribute is not unique in the population if taken
independently.

The potential success of an adversary strongly depends on the amount and nature of the
background knowledge used to uniquely characterise the victims. Such knowledge may
come from public sources (e.g. census data), data brokers, or may be collected through
malicious actions. This background knowledge is used to search for unique matches in
released databases, which allows for re-identification of the victims. Thus, the publisher of
the data must be careful to assure that no entry can be uniquely identified, regardless of the
background knowledge used by the adversary. That was the setting in which k-anonymity
was proposed as a measure to quantify the adversary’s re-identification capability in the
worst case scenario [17].

A dataset is said to satisfy k-anonymity if every record is indistinguishable from k−1 other
records with respect to a given adversary’s background knowledge. That is, k-anonymity
ensures that the probability of the adversary re-identifying the user represented by an in-
dividual record is at most 1/k. Given that a large number of legitimate data analysis tasks
seek to describe general trends on large populations instead of characteristics of particular
individuals, datasets can be processed in order to attain k-anonymity while still remaining
useful for analysis.

Consider, for example, a table where each record contains date of birth, zip code, and
some health conditions suffered by a person. The combination of date of birth and zip code
may be unique for some users, thus allowing the information about their health conditions
to be disclosed, with all the negative implications this would entail. However, it is possible
to modify the table by replacing date of birth by a more general information, e.g. year of
birth, or month-year, and replacing the zip code by a higher level geographical entity such
as city or county. The modified table would still contain completely truthful information
and, at the same time, is likely to satisfy k-anonymity for some k > 1, while additionally
being useful for numerous analysis tasks, e.g. studying the evolution of a disease at state
level during several years.

k-anonymity in social graphs. Social network users provide a wealth of personal infor-
mation that can be stored and processed as traditional microdata, and as such it is suscepti-
ble to the same types of re-identification attacks and can be processed by similar anonymi-
sation techniques. However, the information on relations contained in social graphs al-
lows the adversaries to enrich their background knowledge in such a way that even simple
graphs which have been stripped of all user information can still be used to uniquely iden-
tify users, thereby disclosing potentially sensitive information about their relationships,
political or religious affiliations, etc. In 2009, Narayanan et al. collected simple, publicly
available information about relationships between Flickr users and were able to conduct
a passive attack and to re-identify one third of the users on a naively anonymised Twitter
graph with only a 12% error rate [14]. It is worth noting that not all Twitter users involved
in the experiment had Flickr accounts, and vice versa.

In order to tackle this problem, several graph-oriented notions of k-anonymity have been
proposed, considering the nature of the knowledge used by passive attackers. In social
graphs, adversary knowledge is normally modelled using structural properties on the
graph, e.g. the degree of a vertex, the topology of the subgraph induced by the neigh-
bourhood of a vertex, etc. Under the specified properties, two vertices are said to be indis-
tinguishable if they are equivalent with respect to the considered structural property. For
example, Liu et al. [10] introduced the notion of k-degree anonymity. A graph is said to be
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k-degree anonymous if for every vertex of the graph there exist k − 1 other vertices with
the same degree. In the same paper, Liu et al. devised a simple and efficient algorithm to
transform a graph into a k-degree anonymous graph. The authors also show that the utility
of the graph is at least partly kept, because the average path length and the exponent of the
power-law distribution of the original graph are preserved.

Examples of other structural privacy properties are k-neighbourhood anonymity [29] and
k-automorphism anonymity [6, 30]. In the first case, for every vertex v in the graph there
must exist at least k − 1 other vertices v1, . . . , vk−1 such that the subgraph induced by
v’s neighbours is isomorphic to the subgraph induced by vi’s neighbours, for every i ∈
{1, . . . , k − 1}. In the second case, two vertices u and v are considered to be equivalent if
there is an automorphism of the graph where u maps to v. As the authors discuss, it is very
unlikely for real-life social graphs to satisfy k-automorphism anonymity, whereas graphs
perturbed in order to satisfy the property tend to be useless for analysis [30].

Active attacks. The privacy notions described above assume that the adversary has the
capability of gathering information from public sources, but do not consider the scenario
where the adversary is also able to create user accounts and interact with the OSN users in
order to induce the creation of structural patterns that facilitates their re-identification.

Backstrom et al. were the first to show the feasibility of active attacks in social networks [1].
They proposed several attacks where the adversary inserts a number of nodes in the social
graph and establishes a connection pattern among them that ensures that, with high prob-
ability, the induced subgraph can be uniquely identified and efficiently retrieved once the
graph has been released. The relations between the nodes in the adversary’s subgraph and
the victim nodes are established in such a way that every victim ends up having a unique
fingerprint of links to the adversary’s subgraph. Once the social graph is published, the
adversary retrieves the planted subgraph and re-identifies those nodes that preserve the
expected fingerprints.

The main challenge the adversary has to face when conducting an active attack is the
existence of sybil detection techniques [26], which identify and counteract the anomalous
behaviours of the sybil nodes. Thus, the adversary has to pursue the ability to compromise
as many victims as possible while keeping the set of sybil nodes unnoticed. In order to
reduce the number of sybil nodes needed, some hybrid attacks have been proposed. Hy-
brid attacks rely on small sets of sybil nodes, called seeds, and a combination of active and
passive techniques. Wei et al. [23] introduced the so-called Seed-and-Grow attack, which
relies on a small set of sybil nodes to re-identify an initial set of victims, and then uses the
information from an auxiliary, non-anonymised graph, to re-identify some of the victims’
neighbours. This process is iteratively repeated, using at every step the set of vertices that
were re-identified in the previous step. Note that the success of the passive phase of the
attack depends on the success of the active part, so if the latter is effectively countered the
entire attack fails.

Privacy-preserving publication of social graphs in the presence of active attacks is a chal-
lenging task. In fact, none of the privacy properties described above [10, 29, 6, 30] ade-
quately captures the ability to effectively counteract active attacks. As pointed out in [7],
the defence strategy against sybil nodes has focused on the detection and removal of such
nodes, whereas the ability to successfully anonymise the potentially attacked graphs has
been overlooked. In fact, the methods referred to in the literature as near-optimal sybil de-
fences [7, 27, 28] do not actually attempt to remove all sybil nodes, but to lower-bound their
number to around O(log n), where n is the number of nodes in the network. However, as
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pointed out by Backstrom et al., for some active attacks (e.g. the walk-based attack that
we treat later on) this number of sybil nodes is sufficient for being able to re-identify most
legitimate users, with high probability [1]. Thus, a graph that has been compromised by
such an attack may still be considered as safe by sybil defences and have no action taken
on them. Finally, we must take into account that an active attack can be mounted by ini-
tially honest users who turn rogue and collude to compromise other users in the network.
This type of attack can hardly be prevented by sybil detection techniques, as the malicious
behaviour has been limited in time.

To the best of our knowledge, the first privacy measure to evaluate the resistance of so-
cial graphs to active attacks is (k, `)-anonymity, proposed in [20]. Trujillo-Rasua and Yero
model the adversary’s background knowledge about each vertex as a vector, called the met-
ric representation, which contains the distances from that vertex to each sybil node planted
by the adversary. This allows (k, `)-anonymity to measure users’ privacy against an active
adversary capable of retrieving its own attacker subgraph. The notion of (k, `)-anonymity
does not consider the use of sybil detection. Instead, it assumes that any vertex subset of
cardinality up to ` can potentially be a set of sybil nodes and models the protection of every
other vertex from them.

In (k, `)-anonymity, the parameter k represents a privacy threshold as in the standard k-
anonymity notion. That is, the considered adversary is unable to re-identify a targeted
victim with probability higher than 1/k in a graph satisfying (k, `)-anonymity. The param-
eter ` is an upper bound on the number of sybil nodes that the adversary is judged capable
of introducing into the network. Expressed differently, ` is a bound on the estimated ad-
versary capability to insert sybil nodes without being detected.

As we discussed previously, this paper focuses on several graph transformations aimed at
improving privacy in terms of (k, `)-anonymity. To facilitate readability, we provide in the
next section a formal definition for this privacy notion and introduce the most important
terminology and notation that we use throughout the article.

3 Preliminaries

We model a social graph G = (V,E) as a simple graph, i.e. a graph containing no loops
or multiple edges, where the vertex set V represents the set of users and the edge set E
their relationships. The notion of (k, `)-anonymity [20] assumes that the adversary can use
the distances between the sybil nodes and the victims for re-identification. The distance
between two vertices u and v of G, denoted by dG(u, v) (or simply as d(u, v) if there is no
ambiguity), is understood as the number of edges in a shortest path connecting u and v.

As discussed in [20], active attackers seek to introduce a set of sybil nodes in the social
network and make every victim identifiable by means of a unique structural fingerprint,
which is constructed using its distances from each sybil node. In order to encode this
knowledge, they propose to use the so-called metric representation [4, 18] as the structural
property that represents the adversary’s background knowledge in active attacks.

Definition 1 (Metric representation [4, 18]). Let G = (V,E) be a simple connected graph
and let R = (u1, ..., ut) be a vector whose components are vertices of G. The metric represen-
tation of a vertex v with respect to R is the vector

r(v|R) = (dG(v, u1), . . . , dG(v, ut)).

From the attacker’s perspective, every vertex having a unique metric representation with
respect to the sybil nodes (in some particular order) can be re-identified after the graph
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v1

v2 v3

v4v5

Figure 1: A star graph.

is published and the set of sybil nodes is retrieved. That imposes on the data holder the
necessity of making sure that, when the graph is published, every vertex is rendered in-
distinguishable from a sufficiently large number of other vertices. That is, given a set of
sybil nodes S and the vector RS obtained by imposing some ordering on S, the data holder
must ensure that the metric representation of every vertex with respect toRS is not unique.
This property is captured in [20] by the notion of k-antiresolving1 set, which is enunciated
as follows.

Definition 2 (k-antiresolving set [20]). Let G = (V,E) be a simple connected graph and
let S = {u1, . . . , ut} be a subset of V . Let RS = (ui1 , . . . , uit) be a vector composed of
the elements from S in some order. The set S is called a k-antiresolving set of G if k is the
greatest positive integer such that for every vertex v ∈ V \S there exist at least k−1 vertices
v1, . . . , vk−1 ∈ V \ S such that v, v1, . . . , vk−1 are pairwise different and satisfy

r(v|RS) = r(v1|RS) = . . . = r(vk−1|RS).

Note that while Definition 2 requires that some ordering can be imposed on V , the nature
of this ordering itself is not relevant: it can be arbitrary, as long as it is consistently used.
Thus, from now on we will simply assume that such an order exists (it always does) and
that it is always the one imposed.

It is simple to see that if the data holder manages to ensure that the set of sybil nodes
is k-antiresolving, then every possible victim has the same metric representation as at
least k − 1 other vertices, so the re-identification probability is at most 1/k. As an ex-
ample, consider the star graph in Figure 1. The distance from v1 to any other vertex in
the graph is 1, thus {v1} is a 4-antiresolving set. On the other hand, any set {vi} with
i ∈ {2, 3, 4, 5} is a 1-antiresolving set because r(v1|(vi)) = (1) while r(vj |(vi)) = (2) for
every j ∈ {2, 3, 4, 5} and j 6= i. Finally, we consider the subset {v1, v5}. We observe
that r(v2|(v1, v5)) = r(v3|(v1, v5)) = r(v4|(v1, v5)) = (1, 2), implying that {v1, v5} is a 3-
antiresolving set.

The notion of k-antiresolving set is sufficient for modelling the privacy of every vertex
with respect to one given set of sybil nodes, but it is still insufficient for protecting the
graph from an active attacker. Since the attacker will do her best to ensure that the set of
sybil nodes goes unnoticed to sybil detection mechanisms, one cannot assume that the set
of sybil nodes will be known. Acknowledging this problem, the notion of (k, `)-anonymity
takes into consideration the possibility that any subset of vertices of size up to ` is the set
of sybil nodes introduced by the attacker. Thus, a graph G satisfying (k, `)-anonymity en-
sures that every subset of vertices with cardinality at most ` is a k′-antiresolving set for

1The term antiresolving comes in opposition to the notion of resolving set introduced in 1976 by Harary and
Melter [4] (it had been independently introduced in 1975 by Slater [18] as locating set). Given a graph G = (V,E),
a set S ⊆ V is a resolving set of G if for every pair of different vertices x, y ∈ V \ S there exists z ∈ S such that
d(x, z) 6= d(y, z). From this definition it easily follows that a resolving set is a 1-antiresolving set. The implication
does not hold in the other direction, though.
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v1

v2 v3

v4v5

Figure 2: An anonymised version of the star graph in Figure 1. This graph satisfies (2, 1)-
anonymity.

some k′ ≥ k. In other words, every vertex in G is indistinguishable from at least k−1 other
vertices in terms of their metric representations with respect to any subset of vertices of car-
dinality at most `. That means that a (k, `)-anonymous graph bounds the re-identification
capacity of an attacker leveraging up to ` sybil nodes to at most 1/k for every possible
victim, regardless of the identity of the sybil nodes inserted in the graph.

In order to give the formal definition of (k, `)-anonymity, it is first necessary to introduce
the notion of k-metric antidimension [20], which characterises a graph in terms of the sizes
of its smallest k-antiresolving sets.

Definition 3 (k-metric antidimension [20] ). The k-metric antidimension of a simple con-
nected graph G = (V,E) is the minimum cardinality amongst the k-antiresolving sets of G.

Considering again the star graph depicted in Figure 1, we observe that the singleton set
{v2} is a 1-antiresolving set of this graph. Ergo, the 1-metric antidimension of this graph
is 1. In order to determine the 2-metric antidimension, first notice that v1 should be in-
cluded in any 2-antiresolving set, while {v1} itself is a 4-antiresolving set. Therefore, the
2-metric antidimension of the star graph is greater than or equal to 2. However, the subset
{v1, vi} for every i ∈ {2, 3, 4, 5} is a 3-antiresolving rather than a 2-antiresolving set. Con-
sequently, the 2-metric antidimension of the graph in Figure 1 is 3, given that {v5, v1, v3}
is a 2-antiresolving set. Finally, we enunciate the formal definition of (k, `)-anonymity, as
provided in [20].

Definition 4 ((k, `)-anonymity [20]). A graph G is said to satisfy (k, `)-anonymity if k is the
smallest positive integer such that the k-metric antidimension of G is lower than or equal
to `.

Re-taking our running example, note that the graph shown in Figure 1 is (1, 1)-anonymous,
as the singletons {v2}, {v3}, {v4} and {v5} are 1-antiresolving sets.

Summing up the previous discussion, the purpose of the data holder when publishing
a social graph in the presence of active attackers is to release a (k, `)-anonymous graph,
where ` is an upper bound on the number of sybil nodes that an adversary is judged capable
of inserting in the graph, and k is the minimum size of the vertex subsets within which the
identity of each particular vertex is hidden. In the case where the original graph is (1, 1)-
anonymous, as in our running example, the need of an anonymization method becomes
apparent. For example, instead of publishing the original graph in Figure 1, the data holder
may release a similar graph that satisfies (k, `)-anonymity for some k > 1 or some ` > 1,
such as the graph in Figure 2.
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4 Protecting (1, 1)-anonymous graphs

According to Definition 4, the weakest privacy property for a graph facing active attacks is
(1, 1)-anonymity. Indeed, in a (1, 1)-anonymous graph, there is at least one 1-antiresolving
set of cardinality 1, which means that at least one user can be successfully re-identified by
an active adversary leveraging a single sybil node. For this reason, in this paper we set
up the goal of protecting (1, 1)-anonymous graphs. To that end, we have devised a family
of methods that transform a (1, 1)-anonymous graph G into a graph G′ that satisfies (k, `)-
anonymity for some k > 1 or some ` > 1. As we will show later, the transformations
performed by our methods effectively protect any graph against active attackers with the
ability to insert one sybil node in the network, while additionally increasing to some extent
the level of protection against stronger active attackers.

Graph anonymity is typically achieved through successive graph transformation oper-
ations, such as adding and/or removing vertices/edges, until the resulting graph satis-
fies the desired privacy property. While these different types of operations can be used
in combination, most anonymisation techniques focus on a single type of operation. For
example, the pioneer work by Liu and Terzi [10] tackles the problem of achieving k-degree
anonymity by relying on edge addition operations only. Chester et al. [2], instead, address
the same problem by adding vertices to the original graph. In this article we focus on edge
addition operations, and the resulting anonymisation problem is defined as follows.

Problem statement (Graph anonymisation via edge-addition). Given a graph G = (V,E),
find a subset S ⊆ (V × V ) \ E of minimum cardinality such that G′ = (V,E ∪ S) is (k, `)-
anonymous with k > 1 or ` > 1.

To the best of our knowledge, there does not exist an efficient algorithm to solve the prob-
lem above. Indeed, as most anonymisation problems based on k-anonymity [5, 13], this
problem is likely to be NP-hard. Therefore, we will develop a generic algorithm to approx-
imate the solution to this problem. The remainder of this section is thus focused on proving
theoretical properties of (1, 1)-anonymous graphs, which we use to prove the correctness
and convergence of our class of anonymisation methods.

4.1 Properties of (1, 1)-anonymous graphs

If a graphG contains a 1-antiresolving set {v}, then there exists a vertex u such that d(v, u) 6=
d(v, w) for every w ∈ V \ {v, u}. Following terminology from [20], we call such a vertex u
a 1-resolvable vertex, in particular, we say that u is 1-resolvable by {v}. It follows that con-
taining a 1-resolvable vertex is a sufficient and necessary condition for a graph G to be
(1, 1)-anonymous.

Proposition 5. [11]2 A simple connected graph G = (V,E) satisfies (1, 1)-anonymity if and only
if it contains a 1-resolvable vertex.

Proof. If G contains a 1-resolvable vertex v, then there exists a vertex u in G such that {u} is
a 1-antiresolving set. In consequence, G is (1, 1)-anonymous. Now, let us assume that G is
(1, 1)-anonymous and that there does not exist a 1-resolvable vertex in G. This implies that
there does not exist a 1-antiresolving set of cardinality 1 inG. Therefore, if a 1-antiresolving
set in G exists then G is (1, `)-anonymous for some ` > 1, otherwise G is (k, `)-anonymous
for some k > 1. In either case G is not (1, 1)-anonymous, which is a contradiction.

2We cite the conference version [11] of this article whenever a result directly taken from that paper is shown.

TRANSACTIONS ON DATA PRIVACY 11 (2018)



178 Sjouke Mauw, Yunior Ramı́rez-Cruz, Rolando Trujillo-Rasua

Since the presence of 1-resolvable vertices implies (1, 1)-anonymity, we are interested in
finding those vertices in the graph which are 1-resolvable. A first simple result in this
direction is the following, which describes the case of graphs having end-vertices, that is,
vertices with degree one.

Lemma 6. [11] For every end-vertex v in a graph G = (V,E) it holds that v’s neighbour is 1-
resolvable by {v}.

Proof. We should first notice that if |V | = 2 then both v and v’s neighbour are 1-resolvable.
Thus, let us assume that |V | > 2 and let u be v’s neighbour. Because any path to v passes
through u, we obtain that d(w, v) = d(w, u) + d(u, v) > d(u, v) = 1 for every w ∈ V \ {v, u}.
Therefore, {v} is a 1-antiresolving set and u is a vertex 1-resolvable by {v}.

A consequence of Lemma 6 is that every graph with end-vertices is (1, 1)-anonymous.
Lemma 6 is in fact a consequence of the following result, which allows us to locate all
vertices that are 1-resolvable by some 1-antiresolving singleton set. In order to introduce
this result, we first give some necessary definitions. The eccentricity εG(v) of a vertex v in
a connected graph G is the greatest number of edges in a shortest path between v and any
other vertex in G. We call such a shortest path an eccentricity path of v. If the vertex v is
an end-vertex, then v’s neighbour lies in every eccentricity path of v. We prove next that,
indeed, every vertex that is 1-resolvable by {v} lies in an eccentricity path of v.

Lemma 7. [11] Let G be a simple connected graph, let {v} be a 1-antiresolving set in G, and let
v1 . . . vm be an eccentricity path of v, i.e., v1 = v. For every vertex u that is 1-resolvable by {v}
there exists i ∈ {1, . . . ,m} such that u = vi.

Proof. Let us assume that u 6= vi ∀i ∈ {1, . . . ,m}. By definition, the eccentricity of v satisfies
that ε(v) ≥ d(v, w) for every w ∈ V (G) and, in particular, ε(v) ≥ d(v, u). Given that
d(v, vm) = ε(v) ≥ d(v, u), there must exist i ∈ {1, . . . ,m} such that d(v, u) = d(v, vi) (see
Figure 3). Consequently, either u = vi or u is not 1-resolvable by {v}, which both lead to a
contradiction.

v1

vi

vm

u

Figure 3: An eccentricity path v1 . . . vi . . . vm of v1 and a vertex u located out of that path.

4.2 Our anonymisation strategy

Lemma 7 provides the grounds for our anonymisation strategy, which consists of iteratively
finding vertices v such that {v} is a 1-antiresolving set of G, determining the set of vertices
that are 1-resolvable by {v} (which all lie on an eccentricity path v1 . . . vm of v), and modi-
fying G in such a way that every vertex w ∈ {v1, . . . , vm} is not 1-resolvable by {v} in the
modified graph. As a preprocessing step, we add an edge from each end-vertex u of G to
a randomly chosen vertex v satisfying dG(u, v) = 2. Thus, in what follows we will provide
results on graphs which do not contain end-vertices. We set up the goal of anonymising all
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vertices 1-resolvable by {v} by means of adding a single edge to the graph, which leads to
the notion of anonymising edge.

Definition 8 (Anonymising edge). Given a graph G = (V,E), an edge (x, y) ∈ (V × V ) \E
is said to be an anonymising edge if there exists a 1-antiresolving set {v} of G such that for
every vertex u that is 1-resolvable by {v} in G, it holds that u is not 1-resolvable by {v} in
G′ = (V,E ∪ {(x, y)}).

The action of adding one anonymising edge satisfies the property that, for some 1-antire-
solving set {v}, the resulting graph does not contain any vertex that was 1-resolvable by
{v} in the original graph and continues to be 1-resolvable by {v} in the new graph. The
successive obfuscation of 1-resolvable vertices is the core of the generic definition of our
anonymisation strategy, which is depicted in Algorithm 1.

Algorithm 1 Generic framework for transforming a graph G = (V,E) into a graph G′ =
(V,E′) that is (k, `)-anonymous for some k > 1 or some ` > 1.

1: Let G′ be the result of adding the necessary edges to G to make it end-vertex free.
2: while G′ contains 1-resolvable vertices do
3: Find a set S of anonymising edges inG′ . by, for example, using Algorithm 2 below
4: Modify G′ by adding an edge from S . Sec. 6 gives various selection techniques
5: end while
6: return G′

Our strategy consists in adding, at each iteration, one edge to the graph until the resulting
graph becomes (k, `)-anonymous for some k > 1 or some ` > 1. Because the added edge
is an anonymising edge, the graph transformation satisfies that one or more 1-resolvable
vertices are obfuscated. Note that the iterative process presented in [11], where the edge ad-
dition performed at each step was called v-transformation, is an instantiation of this generic
strategy.

Every instantiation of Algorithm 1 must provide procedures for making the initial graph
end-vertex free and finding a set of anonymising edges, and a criterion to select an edge
from this set. The first issue is trivial. As we mentioned above, we make a graph end-vertex
free by adding an edge from each end-vertex to a randomly chosen vertex at distance 2 from
it. We address the third issue in Section 6, where we provide different criteria that can be
used to choose an edge from an anonymising edge set.

Regarding the second issue, it can be tackled by exhaustive search. That is, one can
test every edge in (V × V ) \ E to check whether it is an anonymising edge. The advan-
tage of an exhaustive search is that it finds all anonymising edges. A major drawback,
however, is its high computational complexity. Because every edge addition requires the
re-computation of all shortest paths in the resulting graph, and the process of verifying
whether an edge is an anonymising edge has O(|V |2) time complexity, the exhaustive
search approach has O(|(V × V ) \ E| × |V |3 × |V |2) computational complexity, which be-
comes O(|V |7) in low/medium density graphs. We show next how to determine a non-
trivial set of anonymising edges in O(|V |2)-time, assuming that all shortest paths in the
original graph have already been computed.

4.3 Determining a set of anonymising edges

The next result introduces a property of a particular family of unicyclic graphs, on which
we rely to find edges that can be added to an anonymising edge set. Such family is known
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as tadpole graphs. An (h, t)-tadpole is the result of taking a cycle graph Ch of order h, a
path graph Pt of order t, and joining both by adding an edge between an arbitrary vertex
of Ch and one of the ends of Pt. Note that, for the remainder of this paper, we will use
the notation δG(v) (or simply δ(v) if there is no ambiguity) for the degree of a vertex v in a
graph G.

Theorem 9. Let G be an (h, t)-tadpole. Let u be the sole degree-3 vertex of G and let v be one of the
neighbours of u in the cycle subgraph of G. The following results hold:

i. If h is odd, then {v} is a 2-antiresolving set of G if and only if t ≤ h−3
2 .

ii. If h is even, then {v} is a 2-antiresolving set of G if and only if t = h−2
2 .

Proof. Let G be the (h, t)-tadpole obtained from the cycle graph Ch and the path graph
Pt, and let w be the neighbour of v different from u. We will first assume that h is odd
(see Figure 4(a) for reference). Since h is odd, for every vertex x ∈ V (Ch) − {v} there
exists y ∈ V (Ch) − {v, x} such that d(v, x) = d(v, y), as v has two diametral vertices in Ch.
Note also that every x ∈ V (Ch) satisfies d(v, x) ≤ h−1

2 , as h is odd. Finally, we have that
every vertex z ∈ V (Pt) satisfies d(v, z) = d(v, u) + d(u, z) ≤ 1 + t. Thus, if t ≤ h−3

2 , the
vertex z satisfies d(v, z) ≤ 1 + h−3

2 = h−1
2 , so there exists x ∈ V (Ch) − {u, v, w} such that

d(v, z) = d(v, x). In consequence, we have that {v} is a 2-antiresolving set.

y1

w

v u

x1

x2

y2

z1 z2

(a)

v′y2

y1

w

v u

x1

x2

z1 z2 v′′

(b)

Figure 4: Two tadpole graphs. Equal grey levels indicate equidistance from the vertex v.
(a) A (7, 2)-tadpole. (b) A (8, 3)-tadpole.

Let us now assume that {v} is a 2-antiresolving set of G and t > h−3
2 . Consider the vertex

z′ ∈ Pt such that δG(z′) = 1, that is z′ is the sole end-vertex of G, and let x ∈ V (G) \ {z′}.
On the one hand, if x ∈ V (Pt) \ {z′}, clearly d(v, x) < d(v, z′). On the other hand, if
x ∈ V (Ch), then d(v, x) ≤ h−1

2 < d(v, z′). Consequently, z′ is 1-resolvable by {v}, which is a
contradiction, so we can conclude that {v} being a 2-antiresolving set of G implies t ≤ h−3

2 .
We now address the case where h is even (see Figure 4(b) for reference). Let v′ be the

vertex antipodal to v in Ch and let v′′ be the sole end-vertex of G. If t = h−2
2 , we have

that d(v, v′) = d(v, v′′). Moreover, for every x ∈ V (Ch) \ {v, v′} there exists a vertex y ∈
V (Ch) \ {v, v′, x} such that d(v, x) = d(v, y); whereas for every z ∈ V (Pt) \ {v′′} there exists
x ∈ V (Ch) \ {v, v′} such that d(v, x) = d(v, z). Thus, {v} is a 2-antiresolving set of G.

Now let {v} be a 2-antiresolving set of G and assume that t 6= h−2
2 . As before, let v′ be

the vertex antipodal to v in Ch and let v′′ be the sole end-vertex of G. If t < h−2
2 , then v′

is 1-resolvable by {v}, whereas if t > h−2
2 , then v′′ is 1-resolvable by {v}. In both cases we

reach a contradiction, so we can conclude that {v} being a 2-antiresolving set of G implies
t = h−2

2 .
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Note that a cycle Cn of order n can be seen as an (n, 0)-tadpole. If n is odd, every vertex
v in Cn has two diametral vertices (see Figure 5), ergo {v} is a 2-antiresolving set, which
leads to the following result.

Proposition 10. [11] A cycle graph Cn of odd order satisfies (2, 1)-anonymity.

v

x y

Figure 5: An odd-order cycle containing a vertex v that is equidistant from its two diametral
vertices x and y.

Based on Theorem 9 and Proposition 10 we provide in Theorems 11 and 12 two sufficient
conditions for an edge to be an anonymising edge.

Theorem 11. Let G = (V,E) be a simple and connected graph, {v} a 1-antiresolving set of G, and
v1 . . . vm an eccentricity path of v where v1 = v. Let i and j be the smallest and largest positive
integers, respectively, such that vi and vj are 1-resolvable by {v} in G. Let a, b ∈ {1, . . . ,m} and
let G′ = (V,E ∪ {(va, vb)}) be the graph resulting from the addition of the edge (va, vb). Every
vertex vi with i ∈ {1, . . . ,m} is not 1-resolvable by {v} in G′ if the following conditions hold:

i. 1 ≤ a ≤ i− 1.

ii. a+ 2 ≤ b ≤ m.

iii. b− a = 2r and j − b < r.

Proof. Due to its length, we develop this proof in Appendix A.

The following result is analogous to Theorem 11 for the cases where the edge addition
induces tadpoles with even-order cycles.

Theorem 12. Let G = (V,E) be a simple and connected graph, {v} a 1-antiresolving set of G,
and v1 . . . vm an eccentricity path of v where v1 = v. Let i and j be the lowest and largest positive
integers, respectively, such that vi and vj are 1-resolvable by {v} in G. Let a, b ∈ {1, . . . ,m} and
let G′ = (V,E ∪ {(va, vb)}) be the graph resulting from the addition of the edge (va, vb). Every
vertex vi with i ∈ {1, . . . ,m} is not 1-resolvable by {v} in G′ if the following conditions hold:

i. 1 ≤ a ≤ i− 1.

ii. a+ 2 ≤ b ≤ m.

iii. If b− a = 2r + 1, then j − b ≤ r ≤ m− b.

Proof. Due to its length, we develop this proof in Appendix B.

The two sufficient conditions provided by Theorems 11 and 12 are used to determine a
non-trivial set of anonymising edges, as depicted in Algorithm 2. For every 1-antiresolving
set {v}, Algorithm 2 looks for edges satisfying the sufficient condition stated in either The-
orem 11 or Theorem 12. Given an eccentricity path v1 . . . vm of the vertex v = v1, finding
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all such edges can be done in linear time in terms of the size of the eccentricity path, as
they can be computed based on m and the smallest and largest positive integers i and j,
respectively, such that vi and vj are 1-resolvable by v. In consequence, the time-complexity
of Algorithm 2 is O(|V |2).

Algorithm 2
INPUT: A (1, 1)-anonymous graph G = (V,E) without end-vertices.
OUTPUT: A set E′ of anonymising edges.

1: Let E′ be an empty set of edges
2: for every 1-antiresolving set {v} in G do
3: Let v1 . . . vm be an eccentricity path of v, where v1 = v
4: Let i and j be the smallest and largest positive integers, respectively, such that vi and

vj are 1-resolvable by v in G.
5: for a = 1 to i− 1 do
6: for b = a+ 2 to m do
7: if b− a ≡ 0 (mod 2) and j − b < b−a

2 then
8: Add the edge (va, vb) to E′

9: end if
10: if b− a ≡ 1 (mod 2) and j − b ≤ b−a

2 ≤ m− b then
11: Add the edge (va, vb) to E′

12: end if
13: end for
14: end for
15: end for
16: return E′

5 Correctness, convergence, and complexity results

In this section we analyse the correctness, convergence, and complexity of our approach.
The fact that Algorithm 2 outputs a set of anonymising edges follows directly from Theo-
rems 11 and 12. The following result, in addition to proving that the edge addition strategy
converges to a graph without 1-antiresolving singletons, provides an upper bound on the
number of steps in which this is achieved.

Theorem 13. Let G be a simple graph. We define a sequence of graphs Gi (for i ≥ 0) inductively
as follows:

• G0 = G.

• If there exists a 1-antiresolving set {v} in Gi, then Gi+1 is the result of adding an anonymis-
ing edge to Gi.

• Otherwise, Gi+1 = Gi.

Let Si be the set of vertices in Gi such that v ∈ Si implies that {v} is a 1-antiresolving set in Gi.
Then Si is empty for i ≥

∑
∀v∈V εG0

(v)− |V | − 1.

Proof. Consider Gi−1 = (V,Ei−1) and Gi = (V,Ei) where Gi−1 6= Gi. That is, Gi results
from adding an anonymising edge to Gi−1. Let v1 . . . vm be an eccentricity path, in Gi−1, of
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a vertex v such that v1 = v and Ei = Ei−1 ∪ {(va, vb)} for some a, b ∈ {1, . . . ,m}. We have
that

dGi(v1, vm) = dGi(v1, va) + dGi(va, vb) + dGi(vb, vm)
= dGi−1

(v1, va) + 1 + dGi−1
(vb, vm).

Since the edge (va, vb) satisfies dGi−1
(va, vb) ≥ 2, we have that dGi−1

(v1, vm) > dGi
(v1, vm),

so εGi
(v) < εGi−1

(v).
The result above states that every edge addition that transforms a graph Gi−1 into Gi

decreases the eccentricity of v. Since the length of an eccentricity path cannot be shorter
than 1, the maximum number of edge additions that can be applied to G0 for any vertex
v is bounded by εG0

(v) − 1. In the worst case, it is possible that every vertex forms a
1-antiresolving set and that the last transformation is the one adding the edge (u, v) that
transforms the graph Gi−1 into a complete graph. Taking into account that in this case
both u and v are 1-antiresolving sets of Gi−1, and they are not 1-antiresolving sets of Gi,
we obtain the upper bound

∑
∀u∈V εG0(v)− |V | − 1 for the total number of edge additions

that can be applied. Thus, the graph Gi with i =
∑
∀v∈V εG0(v) − |V | − 1 does not contain

1-antiresolving sets.

The upper bound provided in Theorem 13 is tight. That is, there exists a graph G =
(V,E) such that the number of edges added by our approach equals

∑
∀v∈V εG(v)−|V |−1.

Moreover, such an upper bound corresponds to the minimum number of edge additions
required to transform G into a graph G′ that is not (1, 1)-anonymous. Such a graph G can
be constructed as follows.

Consider the complete graph Kn = (V,E) such that V = {v1, . . . , vn}, n ≥ 3. Given a
vertex vn+1, we constructG = (V ′, E′), where V ′ = V ∪{vn+1} andE′ = E∪{(v1, vn+1), (v2,
vn+1)} (see Figure 6 for an example). We have that all the edges that can can be added to G
have the form (vi, vn+1), for some i ∈ {3, . . . , n}. Every such addition makes the distance
between vi and vn+1 become 1. Moreover, if any such edge (vi, vn+1) is not added toG, then
the distance between vi and vn+1 remains equal to 2, causing vn+1 to be 1-resolvable by
{vi}. Therefore, there exists only one way of transforming G into a graph that is not (1, 1)-
anonymous, that is, transforming it into the complete graphKn+1 on V ′. This requires n−2
additional edges, and we have that∑

∀v∈V ′
εG(v)− |V ′| − 1 =

= εG(v1) + εG(v2) +
∑

v∈{v3,...,vn}

εG(v) + εG(vn+1)− |V ′| − 1 =

= 1 + 1 + 2(n− 2) + 2− (n+ 1)− 1 = n− 2.

v5 v1

v3

v2

v4

Figure 6: A graph where the upper bound given in Theorem 13 is attained.

Provided with an upper-bound on the number of edges that should be added for the
resulting graph to become (k, `)-anonymous for some k > 1 or some ` > 1, we finalise
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the complexity analysis of our anonymisation approach. Recall that, in our approach, an
original graph G is transformed first into an end-vertex-free graph (if the initial graph is
not already end-vertex free). Then, we iteratively add anonymising edges until a graph
without 1-antiresolving sets is obtained. The number of edge additions depends on how
fast these transformations converge to a graph without 1-antiresolving sets. According to
Theorem 13, this number is upper-bounded by

∑
∀v∈V εG(v)−|V |−1, which is greater than

or equal to |V |(D(G)− 1), where D(G) represents the diameter of G, that is, the maximum
distance between a pair of vertices of G. Considering that the time complexities of finding
the shortest paths between every pair of vertices in a graph, and that of an execution of
Algorithm 2, are O(|V |3) and O(|V |2), respectively, we obtain that the time complexity of
our approach isO(|V |4(D(G)− 1)). Note that we are assuming that choosing an edge from
an anonymising edge set can be done in constant time. That is indeed the case for the three
criteria we introduce in the next section for empirical evaluation of our methods in terms
of attack resistance and utility preservation. Nevertheless, more elaborate (and thus more
time-consuming) selection criteria can also be integrated into the general formulation of
our strategy.

6 Experiments

In this section we study the proposed anonymisation strategy in terms of privacy and util-
ity preservation. Privacy is measured as the resistance of anonymised graphs to the walk-
based attack introduced in [1], which is a paradigmatic, purely active attack, in the sense that
it requires no externally obtained background information. Utility is measured in terms
of the variation of several graph parameters, as well as an application-oriented measure,
which assesses the effect of our anonymisation on the outputs of two state-of-the-art com-
munity detection algorithms. The experiments were performed on the HPC platform of the
University of Luxembourg [22].

6.1 Experimental setting

We set up the experiments with three real-life social graphs, 250, 000 synthetic graphs, and
three instantiations of the anonymization procedure described in Algorithm 1.

6.1.1 Three perturbation methods

As we mentioned previously, our anonymisation strategy can be instantiated into different
methods by varying the criteria used to select the edges to add at every step of the iterative
process. We will use these three anonymisation variants to illustrate the fact that, while of-
fering the same level of protection against active attacks, they display different behaviours
in terms of utility preservation. We will highlight a number of cases where different utility
measures are optimised by different anonymisation variants.

The three variants used for the experiments in this section differ in the criteria applied to
select the edge (va, vb) to add at every iteration among those satisfying the conditions of
Definition 8. The criteria are the following:

• (va, vb) is the v-transformation described in [11]. As this transformation always re-
sults in the creation of an odd-order cycle, we will refer to this variant as the Odd-order
cycles variant, or OOCV for short.
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• va and vb are as close as possible. We will refer to this variant as the Smallest-order
cycles variant, or SOCV for short. If this condition is satisfied by more than one pair
of vertices, we randomly pick one of them.

• va and vb are as distant as possible. We will refer to this variant as the Largest-order
cycles variant, or LOCV for short. As in the previous case, if this condition is satisfied
by more than one pair of vertices, we randomly pick one of them.

It is worth remarking that each of these criteria can be enforced directly in Algorithm 2 at
no additional computational cost, by keeping track of the globally best anonymising edge
found after each step.

6.1.2 Three real-life graphs and a large collection of synthetic graphs

Our analyses will be conducted on three real-life social graphs. The first one was obtained
from 10 so-called ego-networks in Facebook [12]. An ego-network is the subgraph induced
by the set of nodes representing all friends of a given user. The information used to con-
struct the Facebook graph was obtained in 2012 by setting up an app in this social network
to which real users could voluntarily sign in and share their friend lists. In addition to the
friendship relations, volunteers were instructed to manually classify their friends into cate-
gories, referred to as circles. A circle may represent, for instance, the set of classmates, work
colleagues, family members, etc. The obtained graph contains 4, 039 nodes and 88, 234 re-
lations, as well as membership annotations for 193 circles. It has diameter 8 and radius
4.

The second social graph, which is commonly referred to as the Panzarasa graph, after one
of its creators [15], was collected from an online community of students at the University
of California. The Panzarasa graph contains 59, 835 edges representing messages sent be-
tween 1, 899 students from March 23th to October 26th, 2004. A pair of users is considered
to be connected if they exchanged at least one message in either direction. The original
graph contains loops, as users were allowed to send messages to themselves, and six iso-
lated vertices. We pre-processed this original graph in order to obtain a simple, undirected
and connected graph of order 1, 893 with 20, 296 edges. The Panzarasa graph has diameter
8 and radius 4.

Finally, the third network was constructed in 2012 with data from e-mail communications
at Universitat Rovira i Virgili (URV), Spain [3]. The authors curated the original data by
eliminating group messages with more than 50 recipients, considering that a connection
existed between two users if at least one message had been sent in each direction, and
eliminating isolated vertices and connected components of order 2. The final graph con-
tains 1, 133 users and 5, 451 relations. It has diameter 8 and radius 5.

All three real-life graphs are characterised by very low densities. In order to enrich our
analysis on the effectiveness of our methods for counteracting the attack, in Section 6.2.2
we will additionally use a large collection of randomly generated graphs. This collection is
composed of 250, 000 graphs for each density value in the set3 {0.03, 0.04, . . . , 1}. We fixed
100 as the number of vertices in each graph, and each edge set is created by connecting
random pairs of vertices, until the number of edges corresponding to the desired density
value is reached.

3We start with the density value 0.03 because there exist no connected graphs of order 100 and density 0.01,
whereas for the density value 0.02 the only connected graph of order 100 is the path graph P100.
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6.2 Privacy analysis

We will first conduct an analysis on the resistance of our methods to the walk-based attack.
As discussed above, our focus will be on showing that the three variants used to showcase
our general strategy provide the same level of protection against this attack. We will first
describe the attack in detail. Then, we will describe the manner in which we compute the
adversary’s probability of success. Finally, we will discuss the obtained results.

6.2.1 Simulation of the walk-based attack

Given a social graph G = (V,E), the walk-based attack targets a set Y = {y1, . . . , ym} of
users inG. Before the publication of the graph, the attacker performs the following actions,
as described in [1]:

1. Insert a set of sybil vertices X = {x1, . . . , xn} into G.

2. Map each vertex yi ∈ Y to a subset Ni ⊆ X of sybil vertices, called the fingerprint of
yi, by connecting yi to all vertices in Ni. The mapping function is made injective to
guarantee that all fingerprints are pairwise different.

3. Create an internal connection pattern between vertices inX , which is crafted to allow
efficient recovery of the subgraph induced by X in the released graph. To that end,
all edges (xi, xi+1), 1 ≤ i ≤ n− 1, are added deterministically and every other pair is
added with probability 1/2.

We will denote the graph obtained after simulating this phase of the attack by G′ =
(V ′, E′), where V ′ = V ∪ X and E′ = E ∪ F , with F composed of all edges added in
steps 2 and 3 above. In addition, we use G′′ to denote the anonymisation of G′, and G′(X)
(resp. G′′(X)) to denote the subgraph of G′ (resp. G′′) induced by the vertices in X . Note
that, G′′ = G′ when no anonymisation is considered, as in the original article by Backstrom
et al. [1].

In the second phase of the attack, once G′′ is published, the adversary looks for the sub-
graph G′(X) within G′′, by performing a greedy search using the sequence of degrees of
the sybil nodes. According to Backstrom et al. [1], this phase of the attack may fail in several
ways, namely (i) there exist other subgraphs isomorphic toG′(X), (ii)G′(X) has non-trivial
automorphisms, or (iii) the anonymised version G′′ of G′ no longer contains the subgraph
G′(X). We account for these three cases in the computation of the success probability, and
proceed as follows:

1. Quantifying probability of success for the retrieval phase: We compute the setX containing
all isomorphisms from subgraphs of G′′ to G′(X). If |X | = 0 then the attack fails, as
the adversary is unable to retrieve the planted graph. On the contrary, if |X | = 1 then
this phase of the attack succeeds. Finally, in the case where |X | > 1, the adversary can
still guess the correct vector of sybil nodes with probability 1/|X |. For details on how
this probability grows as the cardinality of X increases, we refer the reader to [1].

2. Quantifying probability of success for the re-identification phase: Let X̂ = {x̂1, . . . , x̂n} ⊆
V ′ be the set of vertices that the adversary has mapped to X after the retrieval phase.
We now determine, for each fingerprintNi ⊆ X , i ∈ {1, . . . ,m}, the candidate set Vi =
{y′ ∈ V ′ | ∀xj ∈ Ni : (y′, x̂j) ∈ E′′} containing all vertices in V ′ whose fingerprint
according to X̂ is determined by Ni. Again, prior to anonymisation, each candidate
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set Vi, i ∈ {1, . . . ,m}, is highly likely to have cardinality 1, which would allow the
adversary to uniquely re-identify the targeted victim yi. This is not necessarily the
case after anonymisation, and we assume that yi can be mapped to any member of Vi
with equal probability, so yi is correctly identified with probability 1/|Vi|.

3. Computing the joint probability: We consider that the adversary succeeds if all vertices
in Y are correctly re-identified. Therefore, the probability of success of the walk-based
attack is 0 if |X | = 0, otherwise it is computed by the following formula:∑

G(X)∈X
∏

1≤i≤m pi

|X |
where pi =

{
1/|Vi| if yi ∈ Vi
0 otherwise. (1)

6.2.2 Evaluation of attack resistance

We first proceed to assess to what extent the theoretical privacy guarantee proven for our
method translates into resistance to active attackers with the ability to insert one sybil node
in the graph.

We will first focus on the three real-life graphs. We simulate an attack on each graph by
adding one sybil node and linking it to a randomly selected vertex of the graph. Then,
for every graph we obtain three anonymised versions, one corresponding to each variant
of our strategy, and compute the success probabilities of the attack on these anonymised
graphs. This process was repeated 50 times for each graph and anonymisation method.
The averaged results are shown in Table 1. In the table, we show the average success
probability of the attack on the original graph (identified as Orig). Additionally, for each
graph and anonymisation method, we show the following two average success probability
values:

• Ours: for each run, the success probability of each attack is computed on the anonymised
graph obtained as a result of applying the corresponding variant of our strategy.

• Rand: for each run, the success probability of each attack is computed on a perturbed
graph obtained by randomly inserting as many edges as those inserted by the corre-
sponding variant of our strategy.

Variant Facebook Panzarasa URV
Orig Ours Rand Orig Ours Rand Orig Ours Rand

Odd-ord. cyc.
0.1631

0.0 0.0123
0.1657

0.0 0.0009
0.1786

0.0 0.0017
Small.-ord. cyc. 0.0 0.0110 0.0 0.0011 0.0 0.0035
Larg.-ord. cyc. 0.0 0.0126 0.0 0.0016 0.0 0.0044

Table 1: Average success probabilities of the walk-based attack on the Facebook, Panzarasa
and URV graphs.

As can be observed in the table, the success probability of the attack on every graph after
anonymisation was zero for all three variants of our anonymisation approach. This value
is lower than the theoretical upper bound because of a side-effect of the anonymisation al-
gorithm, which makes several of the added edges be incident in sybil nodes. This not only
contributes to changing the fingerprints of the victims, but also hampers the attacker’s abil-
ity to retrieve the sybil nodes. That is to say, the cardinality of the set X becomes zero after
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anonymisation. This phenomenon also manifests itself when edges are randomly added,
causing the success probability of the attack to also be low in these cases. Note that the
success probabilities are considerably larger for the original graph in all three cases, which
shows that the original graphs were indeed more vulnerable to the attack. The reason
why these probabilities are not close to 1 is that several legitimate vertices in these graphs,
namely those having degree 1, are ambiguously retrievable along with the inserted sybil.

The three real-life graphs have in common the fact that their densities are considerably
small. However, it has been observed that social network graphs tend to become more
dense as they evolve [8]. Considering this, we will use the collection of randomly gener-
ated graphs described in Section 6.1.2 to analyse the behaviour of our methods in a more
diversified setting in terms of density. For every randomly generated graph, we applied
the same steps as for the three real-life networks for simulating the attack, obtaining the
anonymised versions and computing the success probability of the attack. Finally, these
probabilities were averaged over the 250, 000 graphs generated for each density value. The
results are depicted in Figure 7.
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Figure 7: Average success probabilities of the walk-based attack with one sybil node.

As depicted in the figure, the success probability of the attack on every graph after anonymi-
sation was zero for all three variants of our anonymisation approach and all density values.
This observation is important, because it shows that the behaviour previously observed in
Table 1 is not constrained to these three networks, and indeed it holds for all density values.
Additionally, the figure highlights the pertinence of applying our anonymisation methods
instead of simply introducing an equivalent amount of random perturbations in the graph
structure. As can be observed, for most density values, the attacker would perform much
better on the randomly perturbed graphs than on the ones anonymised by our methods.
Finally, the figure shows that the original graphs are in all cases more vulnerable to the at-
tacks than the anonymised versions, and the success probability is close to 1 in most cases.
As observed for the Facebook, Panzarasa and URV graphs, for the graphs with the lowest
density values this probability is not so close to 1 because of the ambiguity in retrieving the
inserted sybil.

To conclude our analysis, we now turn to assessing whether, and to what extent, our
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anonymisation strategy is able to provide some level of protection against the attack be-
yond the theoretical guarantee, in particular when facing attackers with the ability to lever-
age more than one sybil node. Figure 8 shows the averaged success probability of the
attack with two and four sybil nodes. For density values above 0.05, the three variants of
our strategy exhibit almost identical behaviour in terms of attack resistance, but for lower
density values the Largest-order cycles variant shows a higher resistance to the attacks that
introduce several sybil nodes. The reason for this greater resistance is that, when this vari-
ant is applied, the likelihood of the added edges to be incident on some of the sybil nodes is
higher. Thus, this variant is more likely to prevent the adversary from successfully retriev-
ing the attacker subgraph. For each density value, Figure 8 shows the success probability
of the attack after applying the Largest-order cycles variant, along with the success proba-
bility of the attack when randomly inserting as many edges as this variant. As the figure
shows, the success probabilities of the attack with two and four sybil nodes on the graph
anonymised by our method remain considerably low for most density values. Moreover,
in these settings our method still significantly outperforms random perturbation for most
density values.
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Figure 8: Average success probabilities of the walk-based attack with (a) two and (b) four
sybil nodes.

6.3 Utility analysis

As we mentioned previously, our utility analysis will focus on the variation of several
graph parameters, as well as an application-oriented measure, which assesses the effect of
our anonymisation on the outputs of two state-of-the-art community detection algorithms.

6.3.1 Analysis of graph parameters

Tables 2, 3, 4 and 5 show the extent to which some graph parameters changed after anonymi-
sation for each variant and graph. In the tables, G represents the original graph and
G′ an anonymised version. Table 2 shows the number of edges added by each variant,
whereas Table 3 focuses on the variations of diameter, effective diameter and radius. Recall
that, in a graph G, the diameter D(G) is the maximum distance between a pair of ver-
tices of G, or in other words the maximum eccentricity value of a vertex of G, whereas
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the radius R(G) is the minimum eccentricity value, i.e. D(G) = maxv∈V (G){εG(v)} and
R(G) = minv∈V (G){εG(v)}. The effective diameter is defined in [7] as the minimum num-
ber of hops in which 90% of all connected pairs of vertices can reach each other, having the
effect of mitigating the influence of exceptionally large distance values on the estimation of
distances within the social graph. Finally, Tables 4 and 5 depict the effect of the anonymi-
sation on other commonly used global statistics of the graphs. The tables show the cosine
similarities between the degree distributions and the variations in the clustering coefficient,
which is defined as the proportion of triangles among the vertex triples (vi, vj , vk) such that
vi ∼ vj ∼ vk.

Variant |E(G′)| − |E(G)|
Facebook Panzarasa URV

Odd-order cycles 74 (+0.08%) 405 (+2.00%) 244 (+4.48%)
Smallest-order cycles 73 (+0.08%) 417 (+2.05%) 204 (+3.74%)
Largest-order cycles 73 (+0.08%) 478 (+2.36%) 306 (+5.61%)

Table 2: Number of added edges after applying each anonymisation variant to the Face-
book, Panzarasa and URV graphs. The parenthesised percentages denote the relative
growth of the number of edges due to our anonymisation algorithm.

The most relevant conclusion that we extract from the results shown in Table 2 is that, even
if the (considerably large) theoretical upper bound for the number of added edges given
in Theorem 13 is sharp, considerably fewer edge additions are needed in real-life graphs.
An interesting observation obtained from the analysis of both tables is that the Facebook
graph, which is the largest in terms of order and number of edges, is the one that suffers the
smallest amount of modification. Arguably, this may be the result of obfuscating subgraphs
being more likely to naturally occur in this social graph. Moreover, we note that the three
variants of our anonymisation strategy display the same behaviour in terms of variation
in diameter, effective diameter and radius, as shown in Table 3. It is worth noting that,
while the variations in diameter observed for the Panzarasa and URV graphs may seem
considerably large in light of the small world notion, they are mostly due to the shortening
of exceptionally long paths, as suggested by the comparatively smaller variations in radius
and effective diameter.

Variant D(G′)−D(G) ED(G′)− ED(G) R(G′)−R(G)
FB Panz. URV FB Panz. URV FB Panz. URV

Odd-ord. cyc. 0 -3 -2 0 0 -1 0 -1 -1
Smallest-ord. cyc. 0 -3 -2 0 0 -1 0 -1 -1
Largest-ord. cyc. 0 -3 -2 0 0 -1 0 -1 -1

Table 3: Variations in diameter, effective diameter and radius after applying each anonymi-
sation variant to the Facebook, Panzarasa and URV graphs.

Finally, we note that global utility indicators, such as the degree distribution and the clus-
tering coefficient, suffer very small variations, as shown in Tables 4 and 5, which is a posi-
tive observation, as it implies that the changes introduced by the anonymisation methods
had a limited global impact on the network structure.
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Variant DD cosine similarity
FB Panz. URV

Odd-order cycles 0.9999 0.9998 0.9991
Smallest-order cycles 0.9999 0.9998 0.9992
Largest-order cycles 0.9999 0.9997 0.9988

Table 4: Cosine similarities between degree distributions after applying each anonymisa-
tion variant to the Facebook, Panzarasa and URV graphs.

Variant CC(G′)− CC(G)
FB Panz. URV

Odd-ord. cyc. -1.221× 10−4 (-0.02%) 1.305× 10−4 (+0.09%) -2.173× 10−3 (-0.58%)
Smallest-ord. cyc. -6, 672× 10−5 (-0.01%) 4.152× 10−4 (+0.27%) 1.951× 10−4 (+0.05%)
Largest-ord. cyc. -9.646× 10−5 (-0.01%) -1.177× 10−3 (-0.79%) -5.429× 10−3 (-1.45%)

Table 5: Variations in clustering coefficients after applying each anonymisation variant to
the Facebook, Panzarasa and URV graphs.

6.3.2 Community detection analysis

Now, we turn to assessing the impact of the perturbations introduced by our methods on
application-oriented utility, for which we focus on a popular network analysis task: com-
munity detection. As we mentioned previously, the purpose of community detection is
to find, and group together, sets of vertices that show some common behaviour. This be-
haviour may be given by the way in which they connect to each other and to other vertices
of the network. While, by definition, communities may be distinguishable as a whole, this
does not necessarily imply that the identity of the vertices in a community is deducible
from the community itself. From the perspective of anonymisation, it is thus desirable that
a method produces graphs where, even though individual vertices are no longer identifi-
able, the community structure changes as little as possible.

We used two state-of-the-art algorithms4: BigClam [24] and CoDA [25]. Both algorithms
were designed for efficiently detecting communities in large scale social graphs, relying
only on the graph structure. This aspect makes them suitable for our experiments, as we
handle graphs lacking vertex identifiers and attributes. According to the authors of [25],
experiments on the Facebook graph described above showed that the communities found
by CoDA are the ones that better match the sets of circles defined by the users. In these
experiments, BigClam ranked second, only outperformed by CoDA.

Let G = (V,E) be a social graph and let Q = {Q1, . . . , Qp}, Qi ∈ V for i ∈ {1, . . . , p}, be
the set of communities of G, manually annotated by a human expert. The set Q is usually
referred to as the gold standard. Now, let C = {C1, . . . , Cq}, Ci ∈ V for i ∈ {1, . . . , q}, be
the output of a community detection algorithm on G. In order to assess the quality of this
output, we follow the methodology applied in [7, 24, 25]. First, every pair of communities

4We used the implementations included in the library SNAP 3.0 [9], developed within the Stanford Network
Analysis Project. For additional information on SNAP visit http://snap.stanford.edu and for a survey on
community detection algorithms see [16].
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Qi ∈ Q, Cj ∈ C is compared using the F1-score [21], which is defined as follows:

F1(Qi, Cj) =
2 · precision(Qi, Cj) · recall(Qi, Cj)

precision(Qi, Cj) + recall(Qi, Cj)
(2)

where

precision(Qi, Cj) =
|Qi ∩ Cj |
|Cj |

(3)

and

recall(Qi, Cj) =
|Qi ∩ Cj |
|Qi|

(4)

The measures defined by Equations 2, 3 and 4 were introduced in the field of Information
Retrieval. The gold standard community Qi is assumed to be the set of objects relevant to
some query, that is the set of objects that an ideal algorithm should retrieve, whereas Cj is
viewed as the set of objects retrieved by the algorithm being evaluated. Ideally, Cj should
be equal to Qi. Thus, precision determines the ratio of retrieved objects that are relevant,
whereas recall determines the ratio of relevant objects that the algorithm is able to retrieve.
The F1-score coincides with the double of the harmonic mean of precision and recall, and
it ranges in the interval [0, 1]. Note that if Cj = Qi, then F1(Qi, Cj) = 1. In the community
detection scenario, pairwise F1 values between communities are combined into a global
score as follows:

score(Q, C) = 1

2|Q|

p∑
i=1

max
j∈{1,...,q}

{F1(Qi, Cj)}+
1

2|C|

q∑
j=1

max
i∈{1,...,p}

{F1(Qi, Cj)} (5)

That is, every gold standard community is matched to its most similar community in the
output of the algorithm, and vice versa, and the F1-scores for all pairs are averaged. We
will use this quality measure as the basis for utility evaluation as follows. Let G = (V,E)
be a social graph and Q = {Q1, . . . , Qp}, Qi ∈ V for i ∈ {1, . . . , p}, the gold standard
set of communities of G. Let G′ = (V,E′) be an anonymised version of G and let C =
{C1, . . . , Cq}, Ci ∈ V for i ∈ {1, . . . , q}, and C′ = {C ′1, . . . , C ′r}, C ′i ∈ V for i ∈ {1, . . . , r},
be the outputs of a community detection algorithm on G and G′, respectively. Our utility
measure seeks to assess to what extent the output of the community detection algorithm is
perturbed by the anonymisation, and is determined by the following loss function:

loss(G,G′) =
|score(Q, C)− score(Q, C′)|

score(Q, C)
(6)

Out of the three benchmark social graphs that we described above, we will now focus on
the Facebook graph, since this is the one for which gold standard community annotation
is available. In a manner analogous to the one described in [25], we will consider a com-
munity detection problem for each ego-network, consisting of finding a set of communities
that are as similar as possible to the set of circles labelled by the ego-network owner. We
applied the three variants of our anonymisation strategy to the subgraphs corresponding to
each ego-network, and compared the outputs of BigClam and CoDA on each anonymised
version to the outputs on the original subgraphs, to obtain the utility loss according to
Equation 6. Table 6 shows the obtained results, rounded up to four significant figures.

From the analysis of these results, the most notable observation is that, on average, all
three variants cause very small utility losses, which means that they do not consider-
ably perturb the performance of the community detection algorithms on the anonymised
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Ego-network id BigClam CoDA
OOCV SOCV LOCV OOCV SOCV LOCV

0 0.1646 0.1099 0.0281 0.0938 0.0013 0.0487
107 0.0318 0.0548 0.0195 0.0206 0.0238 0.0427
348 0.2148 0.0322 0.1161 0.0481 0.0289 0.0257
414 0.1136 0.0727 0.0538 0.0388 0.0073 0.0721
686 0.0294 0.0763 0.0760 0.0047 0.0436 0.0134
698 0.0303 0.1988 0.1595 0.0993 0.1950 0.0038

1684 0.0728 0.0318 0.0084 0.0334 0.0347 0.0260
1912 0.0363 0.0023 0.0134 0.0297 0.0284 0.0061
3437 0.0794 0.1730 0.0484 0.0050 0.0190 0.0196
3980 0.1719 0.0751 0.1329 0.0122 0.1102 0.0185

Average 0.0772 0.0827 0.0656 0.0386 0.0492 0.0277

Table 6: Utility loss on the ego-networks of the Facebook graph, applying BigClam and
CoDA community detection.

graphs. A more fine-grained analysis shows no clear trend of some variant of the anonymi-
sation strategy considerably outperforming the others in terms of utility. Instead, we see
that for each variant there is some ego-network and some community detection algorithm
for which it obtains the best utility score. On average, the Largest-order cycles variant
performs slightly better, followed by OOCV and SOCV. We conjecture that the reason for
this global trend may be that adding edges between originally distant vertices introduces
smaller amounts of noise in the models used by the community detection algorithms.

Summing up the results in this section, we corroborated in Section 6.2 that all three in-
stances of our anonymisation strategy effectively counteract active attacks when the ad-
versary has the ability to insert one sybil node in the graph. Now, we have seen how the
flexibility of our proposal, along with the invariant theoretical privacy guarantee, may al-
low the practitioner to focus on optimising the desired utility measure depending on the
input graph. This process needs to be conducted in a case-by-case basis, since different
utility measures may be optimised by different anonymisation variants.

7 Conclusions

In this article we have dealt with the anonymisation of social graphs facing active attacks.
We have presented a general edge addition approach which guarantees that the output
satisfies (k, `)-anonymity for some k > 1 or some ` > 1. We have proven the theoretical
soundness of the approach, its convergence, and given a sharp upper bound on the num-
ber of necessary edge additions. Experiments on a large collection of randomly generated
graphs for three variants of our strategy show that all three effectively counteract active at-
tacks when the adversary is able to insert one sybil node in the network and, additionally,
provide a certain degree of protection when more than one sybil node can be inserted. We
compared these three variants in terms of graph-specific and application-oriented utility
measures on real-life social graphs. These experiments showed that the number of edge ad-
ditions needed in real-life graphs is considerably smaller than the theoretical upper bound.
Moreover, we found that all three variants cause small variations in global utility measures,
as well as small degradations in the outputs of state-of-the-art community detection algo-

TRANSACTIONS ON DATA PRIVACY 11 (2018)



194 Sjouke Mauw, Yunior Ramı́rez-Cruz, Rolando Trujillo-Rasua

rithms. Finally, the results of these experiments also allowed us to to corroborate the fact
that our general strategy provides a high degree of flexibility that allows to target utility
criteria in a case-specific manner while keeping the privacy guarantees unchanged.

One interesting side-effect of our anonymisation strategy that we observed is the fact that,
while it aims to make pairs of vertices undistinguishable by forcing their fingerprints to
be identical, it also thwarts the attacks by preventing the adversary from unambiguously
retrieving the sybil nodes. This observation suggests two attractive directions for future
work. First, it would be interesting to enunciate privacy measures that go beyond (k, `)-
anonymity by additionally accounting for the ambiguity in retrieving the sybil nodes. Sec-
ondly, based on these privacy measures, it will be useful to devise anonymisation methods
that purposely seek to thwart the sybil retrieval phase and determine which strategy is
less expensive in terms of utility loss: (i) preventing unambiguous sybil node retrieval, (ii)
preventing fingerprint-based re-identification, or (iii) a combination of both.
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A Proof of Theorem 11

Theorem 11. Let G = (V,E) be a simple and connected graph, {v} a 1-antiresolving set of G, and
v1 . . . vm an eccentricity path of v where v1 = v. Let i and j be the smallest and largest positive
integers, respectively, such that vi and vj are 1-resolvable by {v} in G. Let a, b ∈ {1, . . . ,m} and
let G′ = (V,E ∪ {(va, vb)}) be the graph resulting from the addition of the edge (va, vb). Every
vertex vi with i ∈ {1, . . . ,m} is not 1-resolvable by {v} in G′ if the following conditions hold:

i. 1 ≤ a ≤ i− 1.

ii. a+ 2 ≤ b ≤ m.

iii. b− a = 2r and j − b < r.

Proof. We already have that b − a = 2r and j − b < r. We thus further differentiate two
subcases (see Figure 9): Case 1, where j − r < b < j, and Case 2, where j ≤ b ≤ m. Note
that, in Case 1, the subgraph of G′ induced by the set {va, va+1, . . . , vj} is a (2r + 1, j − b)-
tadpole, whereas in Case 2 the subgraph of G′ induced by the set {va, va+1, . . . , vb} is a
cycle of order 2r + 1. We will rely on those facts to prove that a vertex w ∈ {v1, . . . , vm} is
not 1-resolvable by {v} in G′.

Case 1
v1 va vi vb vj vm

Case 1(a) Case 1(b) Case 1(c)

Case 2
v1 va vi vj vb vm

Case 2(a) Case 2(b) Case 2(c)

Figure 9: An eccentricity path v1 . . . vm within the graph G. In both cases, the dashed line
represents the edge added to obtain the graph G′.

Case 1. (j−r < b < j). In this case, we will analyse the following three scenarios regarding
the position of the vertex w in the eccentricity path v1 . . . vm (see Figure 9, Case 1):

(a) w ∈ {v1, . . . , va}. In this casew is not 1-resolvable by {v1} inG. Therefore, there
exists w′ ∈ V \ {v1, . . . , vm} such that dG(v1, w) = dG(v1, w

′). We choose k ∈
{1, . . . ,m} to be the largest positive integer such that dG(v1, w′) = dG(v1, vk) +
dG(vk, w

′). On the one hand, it holds that dG(vk, w′) = dG′(vk, w
′). On the other

hand, it is easy to note that k < a, as otherwise dG(v1, w′) ≥ a > dG(v1, w).
This implies that dG(v1, vk) = dG′(v1, vk) and thus, dG(v1, w) = dG′(v1, w) =
dG(v1, w

′) = dG′(v1, w
′). In consequence, w is not 1-resolvable by {v} in G′.

(b) w ∈ {va+1, . . . , vj}. Let H be the subgraph of G′ induced by {va, va+1, . . . , vj}.
As we pointed out above, H is a (2r+1, j− b)-tadpole. We have that the vertex
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vb is the sole degree-3 vertex of H . Moreover, j − b ≤ r − 1 = (2r+1)−3
2 , so

{va} is a 2-antiresolving set of H by Theorem 9. In consequence, there exists
a vertex w′ ∈ {va+1, . . . , vj} − {w} such that dH(va, w) = dH(va, w

′). Since
dG′(v, x) = dG′(v, va) + dG′(va, x) = a − 1 + dH(va, x) for every x ∈ V (H), we
can conclude that dG′(v, w) = a−1+dH(va, w) = a−1+dH(va, w

′) = dG′(v, w
′),

so w is not 1-resolvable by {v} in G′.

(c) w ∈ {vj+1, . . . , vm} (this case occurs only if j < m). Here, as in Case 1(a),
since w is not 1-resolvable by {v} in G, there exists w′ ∈ V \ {v1, . . . , vm} such
that dG(v, w) = dG(v, w

′). Again, let k be the largest positive integer such that
dG(v, w

′) = dG(v, vk) + dG(vk, w
′). We have that k ≥ j, as k < j contradicts the

fact that vj is 1-resolvable by {v} in G, so dG′(v, w) = dG′(v, vk) + dG′(vk, w) =
dG(v, vk) − (b − a) + 1 + dG(vk, w) = dG(v, w) − (b − a) + 1 and, analogously,
dG′(v, w

′) = dG(v, w
′)− (b− a) + 1. In consequence, dG′(v, w) = dG′(v, w

′), so
w is not 1-resolvable by {v} in G′.

Case 2. (j ≤ b ≤ m). In this case, we will analyse the following three scenarios regarding
the position of the vertex w in the eccentricity path v1 . . . vm (see Figure 9, Case 2):

(a) w ∈ {v1, . . . , va}. This case is equivalent to Case 1(a). Thus, by analogy, we
have that w is not 1-resolvable by {v} in G′.

(b) w ∈ {va+1, . . . , vb}. Let H be the subgraph of G′ induced by {va, va+1, . . . , vb}.
As we pointed out above,H is a cycle of order 2r+1, so {va} is a 2-antiresolving
set of H by Proposition 10. In a manner analogous to Case 1(b), there exists a
vertex w′ ∈ {va+1, . . . , vb} \ {w} such that dG′(v, w) = a − 1 + dH(va, w) =
a− 1 + dH(va, w

′) = dG′(v, w
′), so w is not 1-resolvable by {v} in G′.

(c) w ∈ {vb+1, . . . , vm} (this case occurs only if b < m). Here, as in Case 1(c),
since w is not 1-resolvable by {v} in G, there exists w′ ∈ V − {v1, . . . , vm}
such that dG(v, w) = dG(v, w

′). Again, let k be the largest positive integer
such that dG(v, w′) = dG(v, vk) + dG(vk, w

′). If k ≥ b then, as in Case 1(c),
dG′(v, w) = dG(v, w) + (b − a) + 1 = dG(v, w

′) + (b − a) + 1 = dG′(v, w
′), so w

is not 1-resolvable by {v} in G′.
Now, if b− r < k < b, then dG′(v, w) = dG(v, va) + 1 + dG(vb, w), whereas

dG′(v, w
′) = dG(v, va) + 1 + dG(vb, vk) + dG(vk, w

′) =

= dG(v, va) + 1 + 2× dG(vb, vk) + dG(vb, w).

As dG′(v, w) < dG′(v, w
′), we can conclude that there exists a vertex w′′ in a

shortest vk − w′ path such that dG′(v, w) = dG′(v, w
′′), so w is not 1-resolvable

by {v} in G′.
Finally, if j ≤ k ≤ b − r, we have that dG′(v, w′) = dG′(v, va) + dG′(va, vk) +
dG′(vk, w

′) = dG(v, va)+dG(va, vk)+dG(vk, w
′) = dG(v, w

′), whereas dG′(v, w) =
dG(v, w)− (b−a)+1 < dG′(v, w

′). In consequence, there exists a vertex w′′ in a
shortest vk − w′ path such that dG′(v, w) = dG′(v, w

′′), so w is not 1- resolvable
by {v} in G′.

Summing up the cases above, we have that every w ∈ {v1, . . . , vn} is not 1-resolvable by
{v} in G′.

TRANSACTIONS ON DATA PRIVACY 11 (2018)



198 Sjouke Mauw, Yunior Ramı́rez-Cruz, Rolando Trujillo-Rasua

B Proof of Theorem 12

Theorem 12. Let G = (V,E) be a simple and connected graph, {v} a 1-antiresolving set of G,
and v1 . . . vm an eccentricity path of v where v1 = v. Let i and j be the lowest and largest positive
integers, respectively, such that vi and vj are 1-resolvable by {v} in G. Let a, b ∈ {1, . . . ,m} and
let G′ = (V,E ∪ {(va, vb)}) be the graph resulting from the addition of the edge (va, vb). Every
vertex vi with i ∈ {1, . . . ,m} is not 1-resolvable by {v} in G′ if the following conditions hold:

i. 1 ≤ a ≤ i− 1.

ii. a+ 2 ≤ b ≤ m.

iii. If b− a = 2r + 1, then j − b ≤ r ≤ m− b.

Proof. We have that b − a = 2r + 1 and j − b ≤ r ≤ m − b. We will rely on the fact that
the subgraph of G′ induced by the set {va, . . . , vb+r} is a (2r + 2, r)-tadpole, to prove that
a vertex w ∈ {v1, . . . , vm} is not 1-resolvable by {v} in G′. To that end, we will analyse
the following three scenarios regarding the position of the vertex w in the eccentricity path
v1 . . . vm (see Figure 10):

v1 va vi vj vb vj vb+r vm

Case (a) Case (b) Case (c)

Figure 10: An eccentricity path v1 . . . vm within the graph G. The dashed line represents
the edge added to obtain the graph G′. Note that two possible positions for the vertex vj
are depicted.

(a) w ∈ {v1, . . . , va}. This case is equivalent to Cases 1(a) and 2(a) in the proof of Theo-
rem 11. Thus, by analogy, we have that w is not 1-resolvable by {v} in G′.

(b) w ∈ {va+1, . . . , vb+r}. First, note that all vertices in the eccentricity path v1 . . . , vm
that are 1-resolvable by {v} in G fall into this case, as a + 1 ≤ i and j ≤ b + r ≤
m. Let H be the subgraph of G′ induced by {va, va+1, . . . , vb+r}. As we pointed out
above, H is a (2r + 2, r)-tadpole. Since vb is the sole degree-3 vertex of H , we have
that {va} is a 2-antiresolving set of H by Theorem 9. In consequence, there exists a
vertex w′ ∈ {va+1, . . . , vb+r} \ {w} such that dH(va, w) = dH(va, w

′). Since dG′(v, x) =
dG′(v, va) + dG′(va, x) = a − 1 + dH(va, x) for every x ∈ V (H), we can conclude that
dG′(v, w) = a− 1+ dH(va, w) = a− 1+ dH(va, w

′) = dG′(v, w
′), so w is not 1-resolvable

by {v} in G′.

(c) w ∈ {vb+r+1, . . . , vm} (this case occurs only if b+r < m). If b ≤ j, this case is equivalent
to Case 1(c) in the proof of Theorem 11, otherwise it is equivalent to Case 2(c). In either
situation, we have that, by analogy, w is not 1-resolvable by {v} in G′.

Summing up the cases above, we have that every w ∈ {v1, . . . , vm} is not 1-resolvable by
{v} in G′.
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