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Abstract. When sensitive data is outsourced to an untrustworthy cloud storage provider, encryption
techniques can be used to enforce data confidentiality. Ideally, such encryption techniques should not
only enforce the confidentiality of data at rest but also the confidentiality of data accesses, as database
access patterns can leak information about the database’s contents. Oblivious RAM (ORAM) ap-
proaches were proposed to hide access patterns, but they currently support a very limited set of
database query operations. In this paper1, we propose PATCONFDB that supports database query
functionalities and hides query access patterns. PATCONFDB represents a construction based on
ORAM schemes: when an index (B-tree) is outsourced, multiple ORAM instances are used to main-
tain access pattern confidentiality. PATCONFDB can make use of up-to-date ORAM schemes, for
example an implementation of Burst ORAM is used to significantly boost the performance of ac-
cesses. We compare PATCONFDB with a shuffled B-tree protocol, provide a discussion on security
properties, and give recommendations of which protocol to use in which usage scenario. We provide
a rigorous efficiency evaluation to determine the storage and network overhead as well as query la-
tency. In particular, we show that PATCONFDB with ORAM-based schemes like Burst ORAM only
causes a marginal latency overhead when evaluating equality conditions on databases of up to 10
million records. However, the network overhead still remains a challenge.

Keywords. Confidential Database-as-a-Service, Access Pattern Confidentiality

1 Introduction

Many potential cloud customers are reluctant to make use of Database-as-a-Service (DaaS)
offerings and to outsource confidential data to cloud storage providers (SPs) due to the
possibility that the SPs might be “curious” or do not apply sufficient protective measures
to protect the data against third party attackers. With the advent of the Internet of Things,
it is expected that users might not even be aware of who will store their data anymore
[3]. Enforcing the confidentiality of data before it is outsourced to an SP2 mitigates the risk

1Extended version of paper “Access Pattern Confidentiality-Preserving Relational Databases: Deployment
Concept and Efficiency Evaluation” [8] at EDBT/ICDT 2016

2For the sake of readability and without loss of generality, we abstract from the specific nature of the attacker
and assume that the SP aims to breach data confidentiality in the following.
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of a data confidentiality breach. Thus, techniques that enforce data confidentiality before
the data is outsourced will gain even more importance. However, outsourced data needs
also protection from attackers who are able to monitor and analyze access operations on
outsourced data.

Outsourcing confidential databases is a special case of confidential data outsourcing as the
outsourced data does not only have to be protected but also has to be queried efficiently.
To achieve that, a variety of confidentiality preserving indexing approaches (CPIs) were
proposed that allow to efficiently evaluate database queries on outsourced encrypted data
[14]. Most existing CPIs only protect the confidentiality of data at rest, i.e., data that is
persisted by the SP. However, in reality, the SP is also able to monitor database queries
and the encrypted query results, as well as database record inserts, updates, and deletions.
Such observations can be used to reveal confidential data. For instance, if the SP observes
that two encrypted records 1 and 2 are the result of a query for all records which contain an
attribute value X, most CPIs guarantee that the plain text attribute value X is hidden from
the SP. However, the SP can deduce that the two returned records contain the same attribute
value. The SP might then be able to apply background knowledge like “record 1 contains
attribute value X” to learn that “record 2 contains attribute value X”.

The property of access pattern confidentiality (APC) can, of course, be trivially achieved
by retrieving the entire database for each query to make the queries indistinguishable. This
naive approach, however, induces significant efficiency costs in terms of latency, transmis-
sion, and computation. Oblivious RAM (ORAM) schemes [5, 9, 11, 15, 16, 20] allow to store
and retrieve records based on fixed identifiers and enforce APC by selectively retrieving,
re-encrypting, and re-submitting specific parts of the outsourced data in an interactive way.
However, ORAM schemes do natively not support the query capabilities that are required
by relational databases and, so far, it has been unclear whether their efficiency would be
acceptable for relational database scenarios3.

In this paper (which is based on our workshop paper [8]) we present the design of a CPI
with APC property, named PATtern CONFidentiality in DataBases, based on ORAM prim-
itives. PATCONFDB provides confidentiality guarantees against honest-but-curious at-
tackers who can view the persisted data and monitor the executed database queries, includ-
ing record insert, update, as well as delete operations. We evaluate security and efficiency
properties of PATCONFDB and compare them to shuffled B-tree approaches [1, 6, 7, 21, 19],
a ‘competing technology’. The main contributions of this paper are:

• PATCONFDB, a concept to efficiently apply ORAM schemes in DaaS settings that sup-
ports querying a database for records which match specified equality, range, and prefix
query conditions and guarantees access pattern confidentiality.

• A new variant of shuffled B-tree approaches to increase the efficiency in DaaS settings.
The shuffled B-tree variant is used to analyze the performance gain when prefix and
range queries are allowed to be distinguishable from equality selections.

• An efficiency evaluation that shows that significant performance increases are possi-
ble by considerately applying ORAM schemes. In particular, we show that when Burst
ORAM [5] is used in PATCONFDB, there is only a small overhead for equality selections
compared to an unencrypted database access. However, for range or prefix selections a
large overhead in query times remains when using ORAM schemes. Furthermore, we
compare the PATCONFDB approach to the shuffled B-tree variant and provide guide-
lines for choosing a suitable indexing approach for a given outsourcing scenario.

3http://outsourcedbits.org/2013/12/20/how-to-search-on-encrypted-data-part-4-oblivious-rams/
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In Section 2 related work on Oblivious RAM and shuffled B-tree approach is discussed.
In Section 3, the specific requirements of (relational) databases for deployment concepts of
access pattern confidentiality-preserving schemes are summarized. In Section 4, we intro-
duce PATCONFDB: on the one hand we show how a B-tree index can be outsourced using
multiple ORAM instances (Section 4.2), on the other hand we give a bitmap index-based
example that does not outsource the index and only needs a single ORAM instance (Section
4.3). In Section 5 we introduce the shuffled B-tree variant that allows efficient range/prefix
queries that are distinguishable from equality selections. We provide an efficiency evalu-
ation of the proposed schemes (outsourced B-tree with multiple ORAM instances, bitmap
index not oursourced with single ORAM instance, our variant of shuffled B-trees) in Section
6. The evaluation, thus, compares the ORAM-based approaches with strict APC property
with the shuffled B-tree approach that provides less strict APC guarantees. We discuss
possible functionality extensions in Section 7 and conclude the paper in Section 8.

2 Related Work

Many protocols have been proposed to efficiently perform keyword searches over en-
crypted data, i.e. [2, 13, 14]. While these approaches ensure content confidentiality, they
leak the access patterns of queries. Based on an exemplary database, Islam et al. [12]
showed that, with a small amount of background knowledge about the data, up to 80%
of the encrypted data can be revealed by an attacker who watches the query and the cor-
responding results through a frequency analysis. This brought forward the need for CPIs
that also ensure access pattern confidentiality.

Oblivious RAM (ORAM) was first proposed by Goldreich and Ostrovsky as a way to
ensure software protection [10]. ORAM prevents that an attacker who observes the RAM
learns any information about the RAM access patterns of executed programs. Improved
schemes were proposed over the last few years which have put a focus on ORAM to be
a considerable alternative when it comes to secure data outsourcing [5, 9, 11, 15, 16, 20],
i.e., storing and retrieving data records based on fixed identifiers. Outsourced relational
databases, on the other hand, are more complex and require efficient index structures for
database records that contain a specific attribute value or contain attribute values that fall
in a specific range. ORAM schemes do not support such queries and, to the best of our
knowledge, it is unclear whether applying ORAM to encrypt relational databases is feasible
with regard to functionality and efficiency. In this paper, we do not propose a new ORAM
scheme, but PATCONFDB, a concept on how to use existing ORAM schemes to enable the
execution of queries on relational databases.

Encrypted B-trees [4] were proposed to enforce the confidentiality of data at rest. To in-
crease the computational cost of inference attacks based on access patterns, shuffling the
B-tree after each database query was proposed [1, 6, 7, 19]. Note that, despite making ac-
cess pattern based inference attacks harder, the Shuffle Index does not provide strict APC
guarantees like ORAM does. In the extended version [21] of the Shuffle Index paper [6] the
authors added the functionality to perform update operations as well as range and prefix
selections, which are executed as a series of equality selections. In this paper we propose
a different approach to execute prefix and range selections for shuffled B-tree schemes,
which allows these queries to retrieve multiple matching data sets in each query and are,
thus, distinguishable from equality selections. The proposed variant can be applied to all
schemes that make use of a shuffled B-tree.
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3 Deployment Requirements

3.1 Database Functionality Requirements

Databases need to support inserts, updates, and deletions of data records. Furthermore it
is required to query databases for specific records. The structured query language (SQL)
specifies a variety of different query types. The CPIs at least need to be able to execute the
following basic types of queries to be usable in a DaaS scenario:

1. Equality selection: Query for records that contain a specific attribute value A.
Example: SELECT * WHERE Name = ’Andy’;

2. Prefix selection: Query for records containing an attribute value that starts with pre-
fix A.
Example: SELECT * WHERE Name LIKE ’An%’;

3. Range selection: Query for records that contain an attribute value that is smaller than
value A and bigger than value B.
Example: SELECT * WHERE Name Between ’An’ AND ’Ce’;

We discuss the challenges of providing access pattern confidentiality for additional query
types in Section 7.

3.2 Confidentiality Requirements

An approach to securely outsource confidential databases has to enforce both content and
access pattern confidentiality to protect against attackers that are able to monitor queries on
outsourced data.

Content confidentiality (CC): A database outsourcing approach provides content confi-
dentiality if an attacker that is able to view the outsourced data is not able to learn the
content of the database’s records.

Access pattern confidentiality (APC): We adopt the definition of access pattern confiden-
tiality from [18]. An approach provides access pattern confidentiality if an attacker that
monitors database queries and query results as well as database insert, update, and dele-
tions is not able to tell 1) which parts of the database were accessed by a database operation,
2) when a part of a database was last updated, 3) whether specific data was repeatedly ac-
cessed, and 4) whether the database was queried or updated. This particularly means that
even a series of accesses to the same record is unrecognizable for attackers and therefore
does not leak any information. The probability for an attacker to guess the plain text of any
encrypted data record remains the same before and after any observed access.

To fulfill the strict requirements of APC, an attacker, who has live access to the outsourced
database and the network traffic from and to the database server, must not be able to tell
if a certain data block has been read before. For this to be ensured, the data blocks have to
be encrypted with a probabilistic encryption scheme and a new random seed after every
query. If this is the case, Content Confidentiality is ensured as well. For the remainder of
this paper, we will only mention APC as a requirement, since CC is included in APC.

4 Design of APC Indexes

To satisfy the deployment requirements, we propose PATCONFDB, a CPI that combines
existing ORAM schemes with a B-tree index structure in Section 4.2 and an underlying
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Figure 1: Architecture of a PATCONFDB deployment concept. The circle I represents a
possible location for storing the index structure, depending on the index used.

bitmap in Section 4.3. Before the details of PATCONFDB are explained, the general archi-
tecture and database structure are introduced in the following subsection.

4.1 General Architecture

The architecture of a secure data outsourcing scenario in which the CPI hides access pat-
terns is shown in Figure 1. Clients query data records by sending their request to a mediator
or broker on which the CPI is running. The mediator is located inside of a trusted network,
so traffic from clients to the mediator can be in plain text. The mediator is the only entity
querying the database on the external storage provider.

Note that ORAM itself requires one or more index structures (typically called position
maps). In combination with the index structure for the required attribute(s), a CPI with
APC property is formed. Such a CPIs can store all of its index structures locally on the
mediator, or can outsource parts of the index structure to the SP. For PATCONFDB, we will
evaluate both options: parts of the index structures are outsourced in the case of an under-
lying B-tree (Section 4.2) and are stored on the mediator in the case of a bitmap (Section
4.3). The outsourced data, thus, stores encrypted data block containers (DCs) that con-
tain outsourced data blocks, which can either contain data records or index information.
A functional comparison of outsourced and non-outsourced index structures is given in
Section 4.4.

On the right side of Figure 1 it can be seen that an outsourced data block container (DC)
can contain many data blocks. DCs are always padded to the same length and proba-
bilistically encrypted to make them indistinguishable for the SP. The size of DCs, which
determines how many data blocks can be stored inside, is one of the most important pa-
rameters on the efficiency of an ORAM instance. We will further elaborate the influence of
the DC size in Section 6.

When a client queries a data record, the mediator uses an index structure to identify and
retrieve the data block container, which contains the queried data block. After decrypting
the data block, the mediator can reconstruct the data record and return it to the client.

PATCONFDB is agnostic to the underlying ORAM scheme and initializes multiple in-
stances of the used ORAM scheme. These ORAM instances are independent from each
other. Each ORAM instance hides the content and the access pattern of the database from
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Figure 2: Process of a client query which retrieves matching data records.

the SP. The interface of all existing ORAM schemes is ORAM.get(ID) and ORAM.put(ID,
block), i.e., data blocks can be stored and retrieved based on a fixed ID. PATCONFDB makes
use of this interface as illustrated in Figure 2. First a client queries for an attribute value
like ’Name = Scott’ or the ID of a record to retrieve. In a second step, the mediator looks up
the ID and position of the DC that contains the matching record. In a third step the actual
ORAM.get(ID) method is called to retrieve the data block that contains the matching data
record, which is returned to the client.

New ORAM schemes are proposed every year. For now, they can be categorized into two
main categories, depending on how they retrieve stored data block containers (DCs):

1) Approaches like Oblivistore and Path ORAM first retrieve and decrypt a set of en-
crypted data block containers, of which one contains the queried data block. The decrypted
data blocks then have to be re-encrypted and the resulting encrypted DCs have to be re-
uploaded to the SP. This keeps computation and data block management simple, but causes
a large overhead in network bandwidth.

2) Approaches like Burst ORAM and Onion ORAM only retrieve one DC, which is com-
puted by the SP through an XOR-operation or a homomorphic addition of several DCs.
The mediator or client then has to recompute the queried data block by inverting the com-
putation of the SP. With these approaches, the SP still does not know which data block was
retrieved. Afterwards there are also DCs written back to the server to make read and write
operations indistinguishable. Approaches of this category have a very low overhead in
network bandwidth, but a potentially high overhead in computation.

In most database scenarios, data records are queried based on attributes. This creates the
need for indexes to efficiently perform relational database operations like prefix or range
selections. We have implemented PATCONFDB with both a B-tree index structure and a
bitmap index structure.

4.2 PATCONFDB with a B-Tree Index Structure

Since an encrypted B-tree index structure for databases can have a similar size to the size of
the actual data, the index structure needs to be outsourced as well. When outsourcing the
index structure, we have to be very careful to still maintain Access Pattern Confidential-
ity (APC). This section will explain the use of a B-tree index structure for PATCONFBDB
and will explain how APC is preserved when outsourcing the index structure. To query
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Figure 3: Hierarchy of the ORAM instances in PATCONFDB (Example with two index
layers).

for records that contain a specific attribute value, the highest level node of the B-tree is re-
trieved. The retrieved node can be used to determine which node of the next lower B-tree
layer is closest to the queried value. This process is repeated until the leaf of the B-tree
is reached, which contains the record identifiers of the records that contain a matching
attribute value.

Each node of a B-tree can be encrypted to protect the confidentiality of the data at rest.
However, the attacker would still learn access patterns and distinguish different types of
queries by monitoring which nodes were retrieved to evaluate a given query. To hide which
nodes were retrieved, PATCONFDB stores every layer of the B-tree in a separate ORAM
instance as shown in Figure 3. For the remainder of this paper we call the ORAM instances
that contain the index structure index layers and the ORAM instance that contains the actual
data records record store. Note that the used ORAM instances (one for each layer) keep their
local index structure or position map as it is. The B-tree index structure, however, spans
over all used ORAM instances.

4.2.1 Performance Optimization of B-tree Index

As ORAM schemes allow to store and retrieve data blocks based on a fixed ID but shuffle
the stored encrypted data blocks within the DCs with every access, each ORAM instance
has to map the fixed block IDs to the current location within the ORAM instance to deter-
mine which encrypted data blocks have to be returned. This is illustrated in Figure 4. It
can be seen that the potentially large Position Maps are stored on the mediator. The locks
symbolize an entity (ORAM instance and also the single root DC) of which the contents
can be retrieved without access patterns being leaked. The retrieval of the root DC does
not leak any information since every query starts with the retrieval of the root DC, except
for re-encrypting the root DC with a random seed, no further security mechanisms as seen
in ORAM are necessary.

For instance, to retrieve node 1 (containing “D” and “I”) of index layer 1, the encrypted
data block 2 has to be retrieved from the ORAM instance. Thus, data block ID 1 has to be
mapped on the encrypted data block ID 2 first. To perform this mapping without harming
access pattern confidentiality, more data has to be transmitted and further round trips are
necessary between client and SP (see [17]).

The overhead for mapping fixed data block IDs on ORAM instance locations can be avoided
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in the PATCONFDB case. As shown in Figure 5, the DC ID can be directly stored in the cor-
responding B-tree node of the next upper layer. Thus, when executing a query, the IDs of
DCs that have to be retrieved from the next layer are already known to the client without
any further mapping. For instance, after retrieving and decrypting the root node (con-
taining “J”), the client already knows that the left B-tree node of the next lower layer is
contained in the encrypted data block 2. The process of a query, which is performed in this
optimized way, compared to the naive way, can be seen in Figure 6 and Figure 7. Since,
in the optimized approach, the position map of a lower layer ORAM instance has already
been stored in the ORAM layer above, there is no need to retrieve the position map of each
layer separately, reducing the number of retrievals by (n− 1)/2 for n = number of ORAM
instances in PATCONFDB. When the root DC is retrieved, the mediator can encrypt it and
directly learn the position and the ID of the DC, that needs to be retrieved in the next lower
layer ORAM instance.

As ORAM requires to shuffle data blocks and to store them in different DCs after each
retrieval, data blocks of the lower layers have to be re-encrypted and re-uploaded prior
to data blocks of the upper layers. When a query is executed, first data blocks have to be
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retrieved from index layer 1 to get the B-tree node that contains the ID of the DC that has to
be retrieved from index layer 2. But the data blocks in index layer 1 cannot be written back
right away, as – due to shuffling – the data blocks of index layer 2 are likely to be stored in
different DCs than before. Only after new DCs have been assigned to the data blocks of the
record store ORAM instance, the data blocks in the upper index layers can be updated and
written back recursively.

In the following, we describe how PATCONFDB in a setting with the improved B-tree
index structure supports the database functionality that is described in Section 3. Equality
selections. To retrieve all records that contain a specific attribute value, first the root node
of the B-tree has to be retrieved and decrypted. Based on the decrypted node it can be
determined which node X has to be retrieved from the next lower layer in the B-tree. To
retrieve X, the ORAM instance that corresponds to X’s layer has to be queried. If the B-
tree is stored in n ORAM instances, n ORAM instances have to be accessed to retrieve the
B-tree’s leaf node that contains the identifier of the records that match the database query.
Based on the record identifiers, the matching records can be retrieved from the record store
ORAM instance. If more than one record matches the query, the equality selection has to
be evaluated again for each matching record before retrieving it from the record store, even
if all identifiers of matching records are already known. This mechanism is needed to keep
queries indistinguishable, as explained in Section 4.2.2.

Prefix / range selections. To keep the type of queries indistinguishable, a prefix selection
is executed as a sequential series of equality selections through the same mechanism as
described for equality selections. That is, for each attribute value that lies in the queried
range, an equality selection query is evaluated and the results of these queries are aggre-
gated to the result of the range/prefix selection. A prefix selection can be considered as a
special kind of range selection, that spans over every attribute value of records inside the
queried prefix.

Insert / delete / update. To insert a new record, an equality selection for the attribute value
of the new record is performed, the set of identifiers of records that contain the attribute
value is retrieved and the identifier of the inserted record is added before re-encrypting
and re-uploading the data to the corresponding index layers. Furthermore, the records
that matched the equality selection are retrieved from the record store ORAM instance and
the new record is inserted in the record store when re-encrypting and re-uploading the
retrieved records. Deleting a record works analogously, by removing the record before re-
encrypting and re-uploading the retrieved records and the record identifiers. Updating a
record is considered a concatenation of a delete and an insert operation.

4.2.2 Security Analysis of Outsourced B-tree Index

The PATCONFDB concept consists of multiple ORAM instances. We assume that the uti-
lized ORAM scheme to create each ORAM instance satisfies the ORAM security notion,
i.e., any read or write operations on the data within the instance are indistinguishable. We
now examine the security implications of executing queries across multiple index layers,
i.e., multiple ORAM instances.

Selection queries. As shown in Section 4.2, sequential equality selections are used to
evaluate range and prefix selections. Thus, it suffices to show that equality selections are
indistinguishable from the perspective of the SP. Every ORAM instance has to be queried
exactly once to evaluate an equality selection, so honest-but-curious attackers see a constant
number of indistinguishable ORAM accesses. From this, they learn the number of index
layers, but they neither learn the parent-child-relationship of nodes in the B-tree nor the
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total size of data stored in the database. If an equality selection matches multiple records,
the query is executed over all index layers for each matching record. Otherwise, it would
be possible for an attacker to observe the number of matching records by counting the
sequential accesses to the record store ORAM instance. Attackers could still monitor bursts
in queries, but this could as likely be caused by an equality selection that has matched many
records as by a prefix or range selection. So the type of selection query remains hidden from
attackers. The frequency of queries can still be observed by the attacker. Access frequency is
an information leak that can be found in all current ORAM schemes. One solution would
be to query the database periodically so that bursts in queries could not be detected. Of
course, this also generates a large overhead in network traffic and query latency.

Insert / delete / update. Since insert, update, and delete operations are achieved by equal-
ity selection queries, attackers are not able to distinguish them from equality selection
queries and, thus, prefix/range selection queries.

Since every query or write operation on PATCONFDB leads to the same pattern of succes-
sive indistinguishable operations on ORAM instances, the SP is not able to monitor access
patterns. Thus, PATCONFDB enforces access pattern confidentiality (APC). We therefore
have shown that a composition of ORAM instances, which within themselves enforce APC,
also enforces APC.

4.3 PATCONFDB with Bitmap Index Structure

We also implemented a bitmap index structure into PATCONFDB to compare its perfor-
mance to a B-tree index structure. Since bitmap index structures are most efficient in scenar-
ios with low-cardinality attributes, it is not useful to outsource the bitmap index structure
because it comes with low enough storage requirements for the mediator to just always be
stored locally. Therefore there is also no need for encryption of the bitmap index structure,
because the mediator, which it is stored on, is considered a trusted instance. On the SP
only one ORAM instance is stored, the record store. The Position Map is again integrated
into the index structure, as it was the case in Section 4.2.1 for the improved B-tree index
structure.

In Figure 8 an exemplary bitmap index structure for 8 data records in a database table of
the health insurance status of people is shown for the attribute values uninsured, insured,
private, federal. Additionally to the Record-ID, also the DC-ID of the DC that contains the
data record has to be stored, because the DC will be retrieved by a query. For every data
record there is a row in a bitmap index structure. For every attribute that this data record
fulfills, there is a ’1’ in the bitmap index structure, and a ’0’ otherwise. For any selection
a bit-vector is created based on the queried attributes. In our example the bit-vector for a
query returning all people with a federal health insurance is [0, 1, 0, 1]. A query can also
skip attribute values. The bit-vector [0, 1, -, -] returns all people who have any kind of
insurance.

4.3.1 Performance Optimization of Bitmap Index

The previous solution has one big drawback: It is neither necessary nor feasible to store the
attributes of every single data record, because it is not single data records that are retrieved,
but DCs, which usually contain many data records. Our test results have shown in 6, the
best performance can be achieved when a DC contains between 10 and 100 data records.
The improved bitmap index structure is set up in a way that the number of rows equals the
number of DCs in the record store and the columns are DC-ID, attribute value 1...attribute
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Record-ID DC-ID Uninsured Insured Private Federal

1 1 1 0 0 0

2 1 0 1 0 1

3 3 1 0 0 0

4 1 0 1 0 1

5 4 1 0 0 0

6 4 0 1 1 0

7 2 0 1 1 0

8 3 1 0 0 0

Figure 8: Naive bitmap index struc-
ture for attributes of people based
on single data records.

DC-ID Uninsured Insured Private Federal

1 1 1 0 1

2 0 1 1 0

3 1 0 0 0

4 1 1 1 0

Figure 9: Improved bitmap index
structure for attributes of people
based on all data records within a
data block container.

value n. The bitmap therefore indicates for every DC, if it contains a data record with a
certain attribute value. The current number of data blocks stored in each DC is stored in a
file on the mediator, so that the mediator can always find non-full DCs to store new data
blocks in. In Figure 9 the improved bitmap index structure for the same example is shown.
Note that the right bitmap index structure is directly derived from the one on the left by
using an OR-operator for all data records that have the same DC-ID. In real world scenarios
with DCs that contain 10 to 100 data records this reduction of bitmap index structure size
also has a factor of 10 to 100. Since the position of the DCs inside the ORAM record store
needs to be updated on every access, occasional updates in the bitmap index structure
when data records are updated or shuffled do not induce a significant overhead query
latency.

In the following, we describe how PATCONFDB in a setting with the improved bitmap
index structure supports the database functionality that is described in Section 3. Equality
selections. To retrieve all records that contain a specific attribute value, a bit-vector is cre-
ated based on the queried attributes. Based on the matching DC-IDs, it can be determined
which DCs have to be retrieved to retrieve all data records that match the queried attribute
value.

If more than one DC-ID matches the query, the DCs are retrieved in consecutive ’get’-
operations to the record store ORAM instance. The equality selection has to be evaluated
again for each matching DC-ID before retrieving it from the record store, even if all DC-IDs
are already known. Similarly to PATCONFDB with a B-tree index structure, this mecha-
nism is needed to keep queries indistinguishable.

Prefix / range selections. For bitmap index structures, prefix and range selections are ex-
ecuted in the exact same way as equality selections. Yet both prefix and range selections
are very rare for bitmap index structures, because they work directly against the principle
of few distinct attribute values, which a bitmap index structure is optimized for. For an
attribute value like ’Age’, columns in the bitmap structure from ’0’ to ’120’ would be nec-
essary. To perform a range selection for people aged ’20’ to ’25’, a bit-vector as shown in
Figure 10 would be created and then executed like an equality selection.

Insert / delete / update. To insert a new data record, an equality selection for a random
DC-ID is performed, which is not yet completely filled with data blocks. The data record
is stored in the DC and the bitmap index structure row for this DC is updated accord-
ingly. Deleting or updating a record works analogously, with the small change that at this
time the DC which contains the data record that is updated or deleted is queried and the
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Figure 10: Example: Bit-vector for a range selection of the attribute values ’20’ to ’25’ of the
attribute ’age’.

bitmap index structure is updated accordingly. If many DC-IDs match the characteristics
of the data record, that needs to be updated, the DCs are again queried consecutively as
described above for equality elections until the data record that is updated or deleted has
been retrieved.

4.3.2 Security Analysis of Bitmap Index

An additional security analysis is not necessary since the bitmap index structure remains
on the trusted mediator, so the security guarantees of PATCONFDB with a bitmap index
structure are the same as the ones of the underlying ORAM scheme.

4.4 Functional Comparison of PATCONFB and a Single ORAM Scheme

The PATCONFDB concept utilizes several single ORAM instances so that they can be used
in a DaaS scenario. For databases with several attributes that require indexes, the necessary
client side storage to store index tables for all of these indexes can become very large. In
some scenarios the necessary client storage can even exceed the size of the database. PAT-
CONFDB outsources index tables to reduce necessary client storage to a small constant
value. PATCONFDB also provies a framework to deploy hierarchical ORAM instances and
efficiently look up index tables, especially for prefix and range selections. It is agnostic to
the underlying ORAM scheme and can even be used with different ORAM schemes in the
same deployment. PATCONFDB is well suited for scenarios in which multiple indexes are
present that are optimized for different ORAM schemes. If the amount of necessary client
side storage due to index tables does not pose a problem because of scarce indexes in a
certain scenario, the PATCONFDB concept should not be used, as it increases the network
traffic overhead and query latency in comparison to a single ORAM scheme.

5 Shuffled B-Tree Approaches

In this section we look at shuffled B-tree approaches (see Section 2) as an alternative and for
comparison to PATCONFDB. The extended Shuffle Index implementation [21] fulfills the
functionality requirements of Section 3 and, thus, represents a good candidate for compar-
ison. This implementation hides the type of any database operation by serializing prefix or
range queries to equality selections. We are, however, also interested in the performance
gain when prefix or range queries are not serialized and, thus, are distinguishable from
equality selections. Therefore, in this section we propose a variant of the Shuffle Index ap-
proach with increased performance for range and prefix selections. We argue that it might
be reasonable to give up the indistinguishability of prefix/range and equality selections as
follows.

Based on our functionality requirements, we have to consider five types of database oper-
ations: (1) Add a data record (2) Update a data record (3) Delete a data record (4) Query a
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single data record (5) Query multiple data records. Operations (2) and (4) are indistinguish-
able for most shuffled B-tree approaches already. The authors of [21] use random splitting
of nodes during some queries to also make operations (1) and (3) indistinguishable from
each other and from (2) and (4). To ensure that the operation (5) is also indistinguishable
from all others, the authors process range or prefix selections as a series of equality selec-
tions. While this strategy makes it harder for attackers to determine if one or multiple data
records were queried, is does not make it impossible.

Example: Consider a database that is queried infrequently, e.g. once every hour. If a
single data record is queried, an attacker observes one ’Shuffle Index operation’ performed
on the database. This will be the only query the attacker observes within one hour. If
a range query is executed, an attacker observes a multitude of ’Shuffle Index operations’
performed consecutively, and then no other query for the rest of the hour. While these
multiple operations all look like the retrieval of single data records, the probability of those
queries being unrelated in an otherwise sparsely queried database is close to 0. The attacker
was able to determine which operations retrieved a single data record and which operation
was a range selection.

As this example shows, an attacker has the ability to distinguish operations (4) and (5). If
databases are queried more frequently, all an attacker needs to do is to collect more data
about usage patterns to be able to distinguish operations (4) and (5). One approach to
make them indistinguishable is an intervall-based database that solely retrieves a single
data record at the start of its intervall time. If there is no data record to query, a random data
record will be retrieved. However, intervall-based databases greatly increase the network
traffic overhead and are only useful in very specific scenarios.

Based on this conclusion, we can increase the performance of prefix and range queries
by accepting that they will not be indistinguishable. We outline our proposed variant for
a shuffled B-tree approach in Section 5.1. We like to emphasize that our variant is not
better or worse than [21], but conceptually represents a different point on the ‘performance
versus security trade-off curve’. We actually also give up the indistinguishability of insert
and delete operations.

Please note that shuffled B-tree approaches do not (yet) provide similarly strict APC guar-
antees than ORAM does. Please also note that shuffled B-tree approaches are fundamen-
tally different to PATCONFDB. Even though both concepts work with a B-tree index struc-
ture, PATCONFDB uses provably secure ORAM instances to store the layers of a B-tree on
th SP, whereas shuffled B-tree approaches store the nodes of the B-tree directly on the SP. To
hide the relationship between nodes, shuffled B-tree approaches rely on shuffle operations
and the retrieval of dummy nodes, which makes it more difficult, but not impossible, for
an attacker to link any information. We discuss the security of our proposed solution in
Section 5.2.

5.1 Shuffled B-tree Variant

Shuffled B-Tree approaches use a B-tree with a dynamical fan out. There are two cate-
gories of nodes. Navigation nodes, which contain a list of all their child nodes and current
positions, and data nodes, which are the leaf nodes of the B-tree that contain the actual
records. All data in the nodes is alphabetically sorted. All navigation nodes are padded to
the navigation node size. All data nodes are padded to the data node size. The root node
does not need to be padded, because any attacker can openly identify the root node as the
first node retrieved with any operation on the database. To enhance access pattern confi-
dentiality for the retrieval of a single record, three methods are used by existing shuffled
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Figure 12: Shuffled B-tree after node shuf-
fling

B-tree approaches [6, 7, 19]: 1) Cover searches, as seen in Figure 11, are randomly chosen
nodes that are retrieved in parallel to the nodes that are actually relevant for the executed
query in each layer. For example, if two cover searches are executed, attackers see three
retrieved nodes for every layer of the Shuffle Tree. Attackers cannot distinguish between
cover searches and nodes that are relevant for the executed query. 2) Node caching at the
trusted client is used to increase access pattern obfuscation. After a node is being accessed,
it will replace the least recently used node in the client-side cache. All nodes on the path
from the root node to the leaf node are stored inside the cache. If a node that is in the cache
is retrieved, an additional cover search is executed so an attacker cannot infer that the node
was inside the cache. 3) Node shuffling is used to increase the difficulty for attackers to
learn the parent-child relationship of the nodes. After each query execution, the content
of all nodes stored on the client is shuffled using a random permutation before they are
written back to the encrypted B-tree. Node shuffling is outlined in Figure 12.

In the remainder of this paper we denote the leaf nodes of the Shuffle Tree as data nodes
and the non-leaf nodes as navigation nodes. In the following, we present our variant of
shuffled B-trees.

Insert / delete. We propose a modified shuffled B-tree scheme with a dynamically ex-
panding and shrinking B-tree that is initialized with only a small amount of navigation
nodes.

The concept to insert records is outlined in Figure 13. Whenever a record is inserted, an
equality selection query for the attribute value of the new record is performed to find the
node X to store the record in. If this node X is full, a new node N is created to store the
record in. The reference to N is stored in the parent node of node X. If the parent node is
full as well, another new node is inserted on the next higher layer of the B-tree. This works
recursively to the root of the tree, which does not have any size limitations, because it does
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Figure 13: An excerpt of a Shuffle Tree before and after the insertion of the record ’Amy’.
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not need to be of a certain size to be indistinguishable from any other node. Up to half of
the records in the full node X are copied to the new node N while inserting the new record.
After the insertion, the nodes are re-encrypted, shuffled and re-uploaded in the same way
they would have been in case of a regular equality selection query. The deletion of a record
works similar. When the last record in a data node is deleted, the data node itself and
its reference in the parent node is deleted. When records in neighboring nodes get sparse
through deletion, there is no direct way to merge nodes within an equality selection, since
only one child node for each parent is retrieved, but we would need at least two child nodes
to do a merge. To prevent having many nodes with only one or a few records inside, we
have implemented a node merging algorithm that is triggered when neighboring nodes are
retrieved within a prefix or range query. If two neighboring nodes are retrieved and both
contain less records than the square root of the nodes’ maximum capacity, the two nodes
get merged into one and the references to the parent node are updated accordingly.

Update. To ensure the alphabetical sorting of all records, an update that changes the
attribute value of the record works as a deletion of the old record followed by an insertion
of a new one.

Prefix / range selections. Instead of retrieving only one data node, every data node inside
one navigation node that matches the query can be downloaded. Even though multiple
cover nodes have to be retrieved to obfuscate each data node that was actually retrieved,
this method significantly reduces the network traffic and the number of sequential data
node retrievals, as discussed in Section 6.1.2.

5.2 Security of Shuffled B-Tree Approaches

The security guarantees of the Shuffle Index are based on the assumption that attackers
are not able to determine the parent-child relationship of nodes in different layers of the
Shuffle Tree. To achieve this, the content of all queried nodes is shuffled, padded, and en-
crypted with a new nonce in every access. Yang et al. [19] published a proof that, by using
the shuffle mechanism, the probability that a node is the child of a parent node X is equal to
the probability of it being the child of any other parent node Y once a large enough number
of accesses were performed after the last retrieval of X. Since this number of accesses is not
further specified, it remains unclear when shuffled B-trees enforce access pattern confiden-
tiality sufficiently. It therefore remains unclear if an attacker has a higher probability of
guessing the plain text of any encrypted data record after any observed access or series of
accesses.

Therefore, shuffled B-tree approaches do not provide strict security guarantees like ORAM
schemes do. It is known that there is a considerable degeneration of information in terms
of query link-ability due to mechanisms like node shuffling. However, it is not proven yet
if the degeneration of information happens fast enough to prevent inference attacks from
being possible before n is large enough to make the location of records indistinguishable.
To further investigate this question, we ran an attack simulation on our shuffled B-tree
implementation. Although we can not claim that we have implemented the best possible
attacker, our impression is that the information degeneration is much faster than the pos-
sible information gain. This would make shuffled B-tree approaches secure enough for the
use in real-world scenarios.

The type of attacker shuffled B-tree approaches protect against is somewhat unclear. The
cache as a security mechanism as proposed in [6] only protects from an attacker that man-
ages to actively query the database either as an authenticated user or as a delegator of
a query which an authenticated user then executes. When this is the case, the cache in-
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creases the number of shuffles between two queries an attacker can link together, therefore
better hiding the parent-child relationship of the tree nodes. If however an attacker can
actively query the database, he is not only far more powerful than the assumed ”honest-
but-curious” attacker, he also has more and easier ways to retrieve plain text data through
queries instead of inference attacks.

To use the Shuffle Index in relational databases, methods to insert, update and delete
data had to be implemented. While the authors of [21] implemented an algorithm that
splits nodes randomly on some operations, we propose a solution that does not try to hide
the type of operation and therefore does not cause any additional overhead in query time
or network traffic. The insertion or deletion of a data record could cause the Shuffle Tree
to expand or shrink over time. Therefore, information on the size of the database is leaked
and the insert, update, as well as delete operations are distinguishable. Thus, the fourth
access pattern confidentiality requirement defined in Section 3.2 is not satisfied. However,
this does not lead to the breach of the other three confidentiality requirements. Besides the
total size of the database, attackers can also infer how many records can be stored in one
node by monitoring a series of inserts and track how often a new node is being created.
Users have to decide if these information leaks are acceptable for their specific scenarios.

Prefix / range selections. The performance optimization for prefix/range selection queries
as proposed in Section 5.1 introduces two information leaks. Attackers can distinguish
range and prefix selection queries from other database queries and they can estimate the
amount of records that matched a prefix/range query to a certain degree. Attackers can
observe the total number of data nodes that were retrieved, but they do not know how
many of those nodes are cover nodes.

6 Efficiency Evaluation

To evaluate the feasibility of access pattern confidentiality preserving databases in practice,
we evaluate the performance of queries and the efficiency with regard to server storage and
network traffic of PATCONFDB and the shuffled B-tree variant. As the results were gen-
erated for specific implementations, they cannot be considered as a final answer to the
question whether preserving access pattern confidentiality is feasible. However, they do
provide insights in the form of lower bounds, i.e., while more efficient schemes will be
proposed in the future most likely, we are able to show that enforcing access pattern con-
fidentiality is feasible in specific application scenarios. We evaluated the query latency
overhead induced by the use of PATCONFDB and the modified shuffled B-tree by mea-
suring the query latency of equality, prefix, and range selections. For this evaluation of
PATCONFDB, we used the state-of-the-art ORAM schemes Path ORAM [18] and Burst
ORAM [5]. For the remainder of this section, we refer to our PATCONFDB implementa-
tion that uses Path ORAM as PathCONFDB and to our PATCONFDB implementation that
uses Burst ORAM BurstCONFDB.

Path ORAM organizes the ORAM DCs in a binary tree. Each leaf of this binary tree is
assigned a unique position and each data block is assigned to a position. The mapping of
data blocks and their positions is stored in the position map. The invariant of Path ORAM
states that every data block with an assigned position p is stored on the path from the root
DC to the leaf DC with position p. So for every read or write operation on a Path ORAM
instance with n DCs, log(n) DCs are retrieved from the SP and temporarily stored on the
client stash. The necessary client storage is the size of the position map added to the size
of the stash. After the operation a new random path number is assigned to the queried
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data record. This new path number is updated in the position map. All other retrieved data
records are pushed further towards the leaf nodes of the binary tree if possible. This is the
case whenever a node could be stored in a deeper node without breaking the invariant of
Path ORAM. After the data records are put inside their new DCs and the index structure
is updated, the DCs are padded to the same size, re-encrypted with a nonce and then re-
uploaded to the SP. If a DC could not be placed on the path to its position because all of
the DC (including the root DC) are full, the node remains in the client stash and another
attempt to place it in the tree will be done during the next query.

Burst ORAM organizes the ORAM DCs in log(n) levels and
√
n partitions. It also uses

an index table on the client to keep track of which data record is stored in which level and
partition. When a data record is retrieved, the DC containing the data record plus one ad-
ditional dummy DC of every other level are chosen. Then a block-level XOR operation is
executed on the server over all chosen DCs to create one new DC, which is transferred to
the mediator. The mediator can reconstruct the chosen dummy DCs to invert the XOR op-
eration and retrieve the data record inside the retrieved DC. To make queries indistinguish-
able from updates and to clean up the tree, Burst ORAM also has a mandatory write-back
operation. Opposed to other ORAM schemes, Burst ORAM does not need to execute the
write-back operation right away. Insted it can keep querying data records until one level
runs out of dummy DCs. Only then new Dummy DCs have to be created and all retrieved
data record are put inside new DCs to prepare the write-back operation. Then the index
structure is updated, the DCs (including dummy DCs) are padded to the same size and
re-uploaded to the SP. This way, Burst ORAM can quickly perform a burst of equality se-
lections, while taking idle times to do necessary write-back operations, which the authors
call clean-up’s. The performance of Burst ORAM worsens when there has been a large burst
of queries, as explained in 6.1.1. After a burst the protocol performs a clean-up of writing
new dummy DCs to the server. Before the start of every measurement, Burst ORAM was
in a clean state with the full number of available dummy DCs. The performance of Burst
ORAM during large bursts has been measured by performing prefix and range queries.

In PATCONFDB, there are global and local parameters to be set during the initialization of
an outsourced database. Global parameters are set for the entire PATCONFDB setup, while
local parameters are chosen for each ORAM instance. Local parameters can differ within
the same PATCONFDB instance. For example: The parameter ’size of DC’ will be smaller
for ORAM index layers than for the ORAM record store, since index information is usually
smaller than data records. The following parameters can be chosen for a PATCONFDB
setup:

• Number of ORAM index layers (global): This parameter is directly dependent on
the amount of storage available on the mediator. For best performance, the index
structure is completely stored on the mediator, which would result in zero ORAM
index layers. Since this is often not feasible in practice, we need to build hierarchical
levels of ORAM index layers until the amount of storage needed for the location
information of every DC in the uppermost ORAM index layer is smaller than the
available storage on a mediator. In most scenarios one or two ORAM index layers are
required.

• Size of DC (local): The size of a data block container (DC) determines how many
data blocks fit into one DC. Depending on the ORAM instance it resides in, a data
block can either contain a data record or index information about data records. Fig-
ure 14 shows the time it takes to insert a data block into a PathCONFDB record store
depending on the size of the DCs. It can be seen that the best access times can be
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Figure 14: Measured time to insert a data record into a PathCONFDB record store depend-
ing on the size of DCs (node size).

achieved when the size of the DCs are set so that 1 to 100 data blocks fit into a DC.
In combination with the measurements for the next parameter, we will argue that the
optimal DC size for a PATCONFDB setup is reached when it can contain between 10
and 100 data blocks.

• Number of levels / tree height (local): Every ORAM scheme has some kind of data
structure to store its DCs. In the case of schemes like Burst ORAM, DCs are stored
within different levels, whereas schemes like Path ORAM store DCs in a binary tree.
The total number of DCs that can be stored within an ORAM scheme is therefore
dependent on the number of levels or the tree height accordingly. Figure 15 shows
time it takes to insert the same data block into a PathCONFDB record store depending
on the parameter ’tree height’. It can be seen that the time for an insert operation rises
linear to the tree height. As a result of both measurements it can be seen that for an
optimal result the size of DC should be set so that it fits close to 100 data blocks. Only
when more storage space is needed, the number of levels or the tree height should be
increased.

We instantiated both PathCONFDB and BurstCONFDB with two index layers and one
record store. Our shuffled B-tree variant is implemented with a Shuffle Index [6] as de-
scribed in Section 5.1 with two cover searches, a cache size of five and a Shuffle Tree height
of three. In each tested scenario, all parameters are chosen to achieve the best performance
while fulfilling all requirements for available database storage and maximum client stor-
age. To better compare the query latency, the naive approach of enforcing access pattern
confidentiality by downloading the whole encrypted database on every access is evalu-
ated, hereafter referred to as DBCopy. To specify the overhead compared to an approach
that does not provide any security mechanisms, an unencrypted database retrieval protocol
was also evaluated, hereafter referred to as Baseline.
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Figure 15: Measured time to insert a data block into a PathCONFDB record store depending
on the tree height.

6.1 PATCONFDB with B-Tree Index Structure

We investigate the overheads that our proposed deployment concepts with a B-tree Index
structure induce with regard to query latency (Section 6.1.1), network (Section 6.1.2) and
storage overhead (Section 6.1.3).

6.1.1 Query Latency Overhead

The query latency has been measured on a client computer with an Intel Core i7 CPU with
2,4GHz and 8GB RAM. As a database server a Microsoft SQL Server Express was used
on a virtual machine in Hyper-V with 2 virtual CPUs and 16GB RAM. The data records
that were used for evaluating the CPIs contain a string attribute and a number attribute.
The number attribute ’age’ is generated at random in an uniform distribution between
the values 0 to 120. The string values have also been generated at random and equally
distributed over the characters A to Z. That string was created until the data record size
seen in Table 1 had been reached. Before every test run, each database is initialized so
that the generated database records fill 10% of it. In Table 1 the parametrization of our
2k-factorial experimental design scenarios is shown.

Burst ORAM is an ORAM scheme which is designed to postpone the execution of its
security mechanisms, which ensure APC, until an idle phase, in which no one is accessing
the database. This is why for the remainder of this paper we categorize network traffic
in online I/O and offline I/O. Online I/O is defined as the amount of network traffic that
is needed until a client request can be answered. Offline I/O is defined as the amount
of network traffic that is needed after a client access to execute security algorithms and
to ensure APC. In a standard ORAM scheme like Path ORAM, the amount of Online I/O
and the amount of Offline I/O are similar and they are both necessary for every single
query. With the XOR-operation of Burst ORAM, its online I/O is usually only the size
of one DC, whereas the Offline I/O needed to reinitialize all used dummy DCs is a lot
higher. This makes it worthwhile to evaluate the performance of BurstCONFDB not only
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DB size Records Record size Bandwidth and latency
Scenario 1 1 GB 1 mio 100 Byte 1 Gbit/s and 5 ms
Scenario 2 1 GB 1 mio 100 Byte 10 Mbit/s and 50 ms
Scenario 3 1 GB 10.000 10 KByte 1 Gbit/s and 5 ms
Scenario 4 1 GB 10.000 10 KByte 10 Mbit/s and 50 ms
Scenario 5 10 GB 10 mio 100 Byte 1 Gbit/s and 5 ms
Scenario 6 10 GB 10 mio 100 Byte 10 Mbit/s and 50 ms
Scenario 7 10 GB 100.000 10 KByte 1 Gbit/s and 5 ms
Scenario 8 10 GB 100.000 10 KByte 10 Mbit/s and 50 ms

Table 1: Summary of the scenario parameters chosen for each scenario.
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Figure 16: Measured query times of BurstCONFDB in scenarios 3 and 4 with different
pauses between bursts.

with a steady stream of queries, but with bursts of queries of differing lengths and pauses in
between queries. Figure 16 shows the average query latencies of 1000 queries after differing
lengths of pauses between bursts. In both scenarios a local client storage of 500MB is used.
Scenario 3 and 4 only differ in their network link. Whereas the network in scenario 3 has
a throughput of 1GBit/s, the network link in scenario 4 only has 10Mbit/s. It can be seen
that even after 40 seconds of pauses between bursts, the performance of Burst ORAM is
still increasing due to a re-filling of the database with dummy DCs.

The query latency of equality selections measured over all scenarios is shown in Figure 17.
It can be seen, that an increase of the size of the database results in an increased query la-
tency for all tested protocols (scen. 1-4 vs. 5-8). The bandwidth of the network link is
only a critical factor for the DBCopy protocol, because an equality selection only retrieves
a small number of records, so the total network traffic is low for all other protocols (scen.
1,3,5,7 vs. 2,4,6,8). The Baseline and both PATCONFDB protocols are significantly influ-
enced by the number of records (scen. 1,2 vs. 3,4). For the Baseline protocol this is the case,
because it does not have an index tree to efficiently query attribute values. For both PAT-
CONFDB protocols it takes a long time to sequentially query index layers which contain a
large number of identifiers.
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Figure 17: Measured query latency of equality selections over all scenarios on a logarithmic
y scale.

The query latency of range selections measured over all scenarios is shown in Figure 18.
Since more data is retrieved, the bandwidth of the network link influences the query la-
tency significantly (scen. 1,3,5,7 vs. 2,4,6,8). Note that the confidence intervals for the
queries executed with PathCONFDB are significantly larger than the ones of the other pro-
tocols. This is caused by different sized network overheads as explained in Section 6.1.2.
For scenarios 6 and 8, PathCONFDB exceeded our time limit of 7h for one range query,
while BurstCONFDB came close to this limit in scenarios 5 and 6. This indicates that Burst-
CONFDB has slower access times for range queries when there are a higher number of
records, whereas PathCONFDB performs worse when there is a low network bandwidth
available. Our Shuffle Index variant is much less influenced by the bandwidth of the net-
work link, but its query latency is already by a factor of 10 higher than the latency of the
Baseline protocol.

Our measurements show that DBCopy can outperform both PATCONFDB protocols for
range selections if more than about 0,1% off all records are queried in range selections. The
results indicate that by performing an estimation of the number of queried records, it can be
feasible to just download the whole database, rather than to execute Path or Burst ORAM.
It can be seen that our Shuffle Index variant performs better in scenarios with databases
that contain a large number of small records. For scenarios in which many records are
queried in range selections a network link with a high bandwidth to the SP is needed to
keep query latency low. This is the scenario in which our variant has a significantly lower
query latency than the extension proposed by the authors of [21]. Since prefix and range
selections are treated as a series of equality selections, the data throughput of their imple-
mentation remains the same when a range selection is performed. The data throughput of
our solution is increased significantly, as shown in Section 6.1.2, specifically in Table 2.
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scenario no.
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DBCopy

ShuffleIndex
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Figure 18: Measured query latency of range selections over all scenarios on a logarithmic y
scale.

6.1.2 Network Overhead

In the following, we investigate the network overhead of PathCONFDB, BurstCONFDB
and shuffled B-trees, i.e., the amount of data that has to be transmitted between the client
and the SP. First, we provide analytical models to highlight the factors that influence the
network overhead for PathCONFDB, BurstCONFDB and shuffled B-trees. Then we present
and interpret the network overheads we measured for the scenarios that we introduced in
Section 6.1.1.

The total network traffic (in Byte) Ns
P to retrieve a record from any PATCONFDB instance

s can be calculated as follows:

Ns
P = Ns

r +N t +
∑HI

i=1
Ns

i

for HI denotes the number of index layers, Ns
r denotes the network traffic induced by the

retrieval of a record from the record store depending on the ORAM scheme s, N t denotes
the size of the root node of the PATCONFDB B-tree in Byte, Ns

i denotes the network traffic
in Byte induced by the retrieval of a record from an index layer depending on the ORAM
scheme s.

For an implementation of PathCONFDB, the retrieval of a record requires every Path
ORAM instance to be accessed two times (Retrieval and Upload of DCs). Since the DCs
are stored in a binary tree and all DC on the path from the root to the leaf of the tree are
retrieved, the network traffic for every ORAM instance equals the tree height h multiplied
with the size of the DC d.

For an implementation of BurstCONFDB, the retrieval of a single record causes a lot less
network overhead. Through the XOR-technique only one DC from every Burst ORAM
layer has to be retrieved. When we consider all necessary cleanup operations known as
off-line I/O, the network overhead increases significantly, up to a factor of 25 for a single
Burst ORAM layer [5].
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Scenario SI(EQ) SI(PR) PC(EQ) PC(PR) BC(EQ) BC(PR)
1 + 2 562,0 6,56 7080 6557 147,9 9151
3 + 4 110,4 6,31 683,1 669,8 30,4 439,7
5 + 6 1460 6,57 5901 5761 132,1 7843
7 + 8 111,3 6,26 1025 971,3 28,1 647,2

Table 2: Ratio of Shuffle Index (SI), PathCONFDB (PC) and BurstCONFDB (BC) network
overhead to the size of the queried records for equality (EQ) and prefix (PR) selections.

The total network traffic NS (in Byte) to retrieve a record from a Shuffle Index can be
calculated as follows:

NS = 2 · r + n · (h− 2) · (1 + a+ 2 · c) + d · (1 + a+ 2 · c)

for h denotes the height of Shuffle Tree, r denotes the root node size in Byte, n denotes the
navigation node size in Byte, d denotes the data node size in Byte, c denotes the number of
executed cover searches, a denotes the cache size. The network traffic is induced by three
factors: I) Retrieval and upload of the root node (2 ·r), II) retrieval and upload of navigation
nodes including cover nodes (n · (h−2) · (1+a+2 · c)), III) read and write of the data nodes
(d · (1+ a+2 · c)). Note that actually needed nodes are retrieved and then uploaded as part
of the whole cache, inducing a total overhead of n · (1 + a) per B-tree layer.

The measured network overheads for the scenarios that we introduced in Section 6.1.1
are shown in Table 2 for the Shuffle Index, PathCONFDB and BurstCONFDB. The table
shows the ratio of the induced network traffic of each approach to the size of the queried
records. For instance, if the queried record has a size of 100B and a network traffic of 5,62KB
is measured for the evaluation of the query, the relative overhead amounts to 562. The
scenarios that only differ in network bandwidth are paired in this table, since the network
bandwidth does not affect the amount of network traffic. For BurstCONFDB the equality
selection is done so that there is no cleanup operation necessary, whereas the prefix query
reflects the network overhead including the clean up process.

For equality selections, the measurements indicate that the total number of records stored
in the database has a large impact on the relative network overhead for all schemes (scen.
1+2,5+6 vs. 3+4,7+8). Since the total network traffic for equality selections in all schemes
remains low (smaller than 1,5MB), the large network overhead does not have a similarly
large impact on the query latency measured in Section 6.1.1. In the case of prefix selections,
the performance optimization proposed in Section 5.1 for our Shuffle Index variant reduces
the relative network overhead significantly. Since the extended Shuffle Index as proposed
in [21] executes prefix and range selections as a series of sequential equality selections,
there is no significant reduction of the relative network overhead for this approach. This is
also true for the PATCONFDB concept. The relative overhead is only reduced, if by chance
multiple records that match the query are retrieved within the same DC.

Since the relative network overhead of PATCONFDB remains at a high level, it is not
feasible to use PATCONFDB in scenarios in which a large number of records is queried at
the same time or in a short time frame. The Shuffle Index, however, can also be used in
scenarios which include large range or prefix selections.
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6.1.3 Storage Overhead

In the following we investigate the storage overhead on the external SP. This storage over-
head consists of the storage that is needed for the index as well as of the additionally re-
quired storage to store records, i.e., the padding of nodes or the initialization of a database
to its maximum size.

The storage overhead of the PATCONFDB approach is predominantly influenced by the
ratio u of the actual database records’ size to the chosen maximum database size. If the
maximum database size is 100GB but only 10GB of data is stored inside, the relative stor-
age overhead to the actual data size is 10. The size of the index depends on the maximum
number of records that can be stored in a PATCONFDB instance. Each different attribute
value of any record is stored inside of the lowest index layer to provide references to every
record that is stored in the database. Since index layers are not allowed to grow in size, they
have to be initialized to their maximum size as well. So, in the worst case of records that
contain only the indexed attribute, the lowest index layer has the same size as the record
store. However, the number of DCs that have to be referenced decreases fast for the upper
index layers, so that the additional storage overhead for them is very low. In our evalua-
tions the storage overhead for a PATCONFDB instance with Path ORAM that is filled to its
maximum capacity never exceeded a factor of 2,2 in comparison to the plain text database
size with an average factor of 2,08, which we argue is feasible for relational databases. A
PATCONFDB instance with Burst ORAM that is filled to its maximum capacity has a higher
storage overhead because the Burst ORAM scheme requires at least half of the DCs to be
dummy elements. So the overhead for record store and index layers increases up to a fac-
tor of 4,4 for a database filled to its maximum capacity. If the PATCONFDB instance is not
filled to its maximum capacity, that factor has to be divided by the ratio of used space u to
calculate the overall storage overhead.

In contrast to PATCONFDB, the Shuffle Index does not need to be initialized to its max-
imum database size. The storage overhead of the Shuffle Index is induced by the storage
needed for navigation nodes and by the ratio of the average number to the maximum num-
ber of records stored in data nodes. This used space of data nodes u influences the storage
overhead similarly as seen with PATCONFDB. Since the database records are stored, so
that they are sorted lexicographically in the leaf nodes of the Shuffle Tree, an index layer
that contains every attribute value as seen with the PATCONFDB approach is not necessary.
This combined with the dynamic fan out of navigation nodes significantly reduces the stor-
age overhead induced by navigation nodes. In our evaluations the storage overhead for a
Shuffle Index instance that only contains data nodes which are filled to their maximum ca-
pacity, never exceeded a factor of 1,02 in comparison to the plain text database size. That
factor has to be divided by the ratio u of used space of data nodes to calculate the overall
storage overhead.

It can be seen, that the storage overhead induced by indexing techniques is a low and
constant factor for all approaches and therefore does not restrict the feasibility of access
pattern preserving relational databases. However, the constraint of PATCONFDB that the
database has to be initialized to its maximum size, could be problematic in scenarios where
the size of the database fluctuates frequently.

6.2 Comparison of B-Tree and Bitmap Index Structures

To ensure Access Pattern Confidentiality (APC), a large amount of overhead in computa-
tion or network traffic is induced, which significantly decreases the performance in certain
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scenarios. To achieve a more thorough understanding of which methods can be used to
achieve a better performance by leveraging the structure of data (tunable security), we an-
alyze the impact of different index structures depending on the outsourced data.

Since the bitmap index works fundamentally different than a B-tree index structure, we
had to make some adjustments so that the two index structures are comparable while still
using them like they would be used in real world scenarios. This leads to some require-
ments for our evaluation in Section 6.2:

1. Both index structures are only used for scenarios that contain low-cardinality attributes.

2. Both index structures are not outsourced nor encrypted; they always remain on the me-
diator, therefore there are no outsourced index layers.

3. Once the index is traversed all matching queries are executed sequentially to hide the
type of query and the number of queried record sets.

To the best of our knowledge, there is no usage scenario for outsourcing the bitmap index
structure. Outsourcing the index structure is only feasible, if it is too large to be stored on
the mediator. If this is the case, it also can’t be fully retrieved from the SP for every access,
because then the mediator would need to hold available the same free storage space as if it
would just store the whole index structure in the first place. So we need to establish some
kind of hierarchy or distribution, which brings us back to a structure similar to a B-tree.
It might however be feasible to store the index structures of some attributes in a bitmap
index structure on the mediator to reduce access times. This is why we compare the index
structures in this setting.

Figure 19 shows the average query latencies of a B-tree and a bitmap index structure mea-
sured in PathCONFDB and BurstCONFDB. The x-axis shows the number of distinct at-
tribute values used for the measurement. The tests are set up as described in Section 4.2. It
can be seen that for a low number of distinct attribute values a B-tree and a bitmap index
structure have almost the same query latencies for both ORAM schemes. As the number
of distinct attribute values rises, the query latency of a bitmap index structure rises signif-
icantly, whereas the query latency of the B-tree based ORAM schemes remains low. Even
though the bitmap index structure performed slightly better for a small number of distinct
values, there is almost no visible difference between the index structures for low numbers,
since the index lookup only takes a small fragment of the query latency. Most of the query
time results from network traffic and computation (encrypting and decrypting), as can be
seen by the big difference in performance between the Burst ORAM and the Path ORAM
implementations of both index structures. It is a good idea to not outsource small indexes
but to keep them on the mediator, since they only take up little space and access times
are orders of magnitude faster. In this case, the bitmap has significantly lower access la-
tencies for indexes with a low number of distinct attribute values. However, these index
lookup times are marginal compared to the much higher access times of data records in
all PATCONFDB protocols. It can be concluded that it is not feasible to use a bitmap index
structure in the PATCONFDB framework even for a very small number of distinct attribute
values. An evaluation of the storage or network overhead is not feasible since the bitmap
index structure was not outsourced onto the SP.
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7 Functionality Extensions

We address the challenges in complying to access pattern confidentiality in DaaS scenarios
with multiple types of indexes, i.e. strings, numbers, and dates, for the use of the PAT-
CONFDB approach. In Figure 20 an example of a scenario with two index structures for
the attributes ’Name’ and ’Age’ is shown. The index structures are kept in separate ORAM
instances, which both have pointers to records in the same record store.

We discuss two situations in which PATCONFDB would leak information about the pat-
tern of queries, if used in the same way as in a single index type scenario. A basic equality
selection results in one query to each index layer and one query to the record store.

Insert and delete operations have to access I (number of index types) DCs from the index
layer to insert or delete every attribute value of each record to the corresponding data
record. Therefore an attacker can differentiate between an equality selection and an insert
or a delete operation.
To prevent this information leak, I DCs from the index layer have to be retrieved, before
the record store is queried.

Update operations have to access a DC of every index type, which is involved in the SQL
operation, from the index layer and then one DC of the record store. Since it is impossible
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to know the current value before it is updated, another DC has to be queried from the index
layer, to delete the reference that is no longer needed. Therefore an attacker can differentiate
between an equality selection and an update operation. To prevent this information leak, a
randomly chosen set of DCs from the index structure would have to be retrieved after the
actual query is executed.

Further query types. In this paper, we investigated how equality, range, and prefix se-
lections can be evaluated on access pattern confidentiality-preserving databases. We intro-
duced equality, range and prefix selections based on strings. However, our concepts can
be seamlessly applied for range and prefix selections on other data types like integers. We
argue that our investigated query types are already sufficient for many scenarios in which
relational databases are used. PATCONFDB and modified shuffled B-trees can be extended
to support table joins and nested queries. Again the queries are divided into sequential
equality selections so that they are indistinguishable from any other query. For this to
work, all indexes of all tables have to be stored in the same B-tree. If more than one B-tree
is used for indexing, every B-tree has to be accessed every time a query is executed for the
queries to be indistinguishable. In future work we plan to implement and evaluate these
query types to give recommendations on which setup performs best for which database
scenario.

8 Conclusions & Future Work

To investigate the feasibility of access pattern confidentiality preserving index structures,
we proposed PATCONFDB, an ORAM-based concept to achieve access pattern confiden-
tiality, and provided variants of prefix and range selections for existing shuffled B-tree ap-
proaches. In particular, empirical measurements of these concepts showed that enforcing
access pattern confidentiality through confidentiality-preserving index structures in rela-
tional databases only induces an overhead in query latency of factor 1.5 for evaluating
equality conditions on a data set of up to 10 million records, compared to a plain text
database. We showed that BurstCONFDB has lower query latencies for equality selections
than the extended Shuffle Index approach, while at the same time delivering better security
guarantees. Since there are many scenarios in which an equality selection to retrieve data
records is sufficient, one can already profit from the security guarantees of PATCONFDB,
while inducing a very reasonable overhead in query times and server storage. Our Shuf-
fle Index variant, however, induces only a small combined overhead in query latency of
about factor 5.2 (average over all test cases) for a setup with equality and range selections,
but does not yet provide a strict and well-defined access pattern confidentiality guaran-
tee. This means that shuffled B-tree approaches remain a viable alternative for scenarios in
which large amounts of data is accessed frequently and the strict security guarantees are
not required. Our performance evaluation showed to which extend the induced overhead
in query latency depends on the network link to the SP, the structure of the data and the
query workload of the outsourcing scenario. It can also be seen that an ORAM scheme
like Burst ORAM can have a very low query latency for a single equality selection and is
therefore very well usable in some scenarios, the benefit comes with the drawback of more
network traffic and more storage overhead on client and on server.

The findings of this paper highlight multiple future research directions. It is worth-
while to aim for further efficiency improvements of ORAM-based index structure. The
superior efficiency of shuffled B-tree approaches makes it also worthwhile to aim for an
advanced understanding of their security guarantees. The availabilty of various imple-
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mentations of shuffled B-tree schemes brings us closer to a tunable security scheme, in
which users can choose the security requirements of specific database columns that are
then outsourced with a different CPI scheme. Furthermore, we plan to investigate how
both ORAM-based and shuffle-based schemes can be extended to provide access pattern
confidentiality-preserving indexes also for the case of relational databases with multiple
index types and queries that include more complex operations.
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