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Abstract. This paper concerns the challenge of protecting confidentiality while making statistically
useful data and analytical outputs available for research and policy analysis. In this context, the con-
fidentiality protection measure known as differential privacy is an attractive methodology because of
its clear definition and the strong guarantees that it promises. However, concerns about differential
privacy include the possibility that in some situations the guarantees may be so strong that statistical
usefulness is unacceptably low. In this paper, we propose an example of a relaxation of differential
privacy that allows confidentiality protection to be balanced against statistical usefulness. We give a
practical illustration of the relaxation implemented as Laplace noise addition for confidentiality pro-
tection of contingency and magnitude tables. Tables are amongst the most common types of output
produced by national statistical agencies, and these outputs are often protected by noise addition.
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disclosure limitation; Privacy-preserving data analysis.

1 Introduction

National statistical agencies and similar data custodians face two competing objectives. On
the one hand, an important part of their purpose is to make detailed and accurate data and
statistical outputs available to researchers, policy-makers and the community. On the other
hand, they must meet their legal and other obligations to protect the confidentiality of the
data they collect. These two objectives compete in the sense that releasing data as collected
may lead to personal information of individuals being revealed, however releasing only
confidentiality-protected data or statistical outputs may reduce their usefulness. There is
a large body of research on methods designed to achieve both goals simultaneously with
an appropriate balance between them, under the name of statistical disclosure control, or
statistical disclosure limitation, see [6, 7, 18, 23].

In order to determine an appropriate balance between confidentiality protection and sta-
tistical usefulness, it is important to be able to measure the extent to which each is achieved.
Traditional measures for confidentiality protection have been focussed on estimating re-
identification risk, and required assumptions about a potential intruder’s additional knowl-
edge and computational resources. Amongst several attempts to provide a more robust
definition of confidentiality protection, differential privacy has emerged over recent years
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as a strong contender. Informally, the property of differential privacy for an analysis es-
sentially guarantees that adding the data of a single individual to a dataset is unlikely to
change the output of that analysis by very much, and hence it should be unlikely that much
can be learned about the added individual from the analysis output. Differential privacy is
an attractive standard because of its clear definition of privacy and the strong guarantees
that it promises.

While differential privacy has had a marked impact on theory and literature in computer
science [11], it has had far less impact in the statistical literature and statistical practice.
The main concern seems to be that the definition of differential privacy does not mention
statistical usefulness at all, so the guarantees may be so strong that analysis outputs are
altered to the point where they no longer provide sensible inferences, see for example [15].
In order to address this perceived issue, various relaxations of differential privacy have
been proposed with the objective of increasing the statistical usefulness of the outputs.
While none of these relaxations has yet been widely adopted in practice, we agree with the
opinion that: “it is fruitful to consider various relaxations of differential privacy to gain a
deeper understanding of the trade-offs between the strength of the privacy guarantee and
the accuracy of the data release mechanism” [16].

This paper proposes and studies a new relaxation of the definition of differential privacy,
whereby instead of requiring that analysis outputs do not differ by very much under the
addition of any individual to the dataset, the condition is required to hold for individuals
from a more restricted population. In particular, the relaxation requires that the added
individual is again an individual already represented in the dataset. The relaxation has the
following features:

• Enables weaker confidentiality protection guarantees than differential privacy.

• Provides a clear description of the weaker confidentiality protection guarantee, thus
enabling a consideration of whether the relaxation is acceptable in any given situa-
tion.

• Provides a data-dependent definition of the weaker confidentiality protection guar-
antee, that depends only on the given dataset.

• Allows for the generation of data-dependent analysis outputs with the weaker confi-
dentiality protection guarantee.

• Allows a clear description of the accuracy in one important general class of algo-
rithms. In that case, the accuracy is greater than for differential privacy.

• May be useful in scenarios where the population is unknown, since the relaxation
depends only on the dataset, which is known to the data custodian implementing the
protection.

• Causes relevant quantities to always be bounded, since they are defined on the known
dataset. However, although the space of possibilities is discrete, it may still be imprac-
tically large for numerical optimisation.

The new relaxation we propose certainly provides weaker guarantees than those associ-
ated with differential privacy, however the guarantees that it provides can be clearly de-
scribed. We can easily construct a class of examples based on an adaptation of the Laplace
mechanism, that may be useful for many complex and flexible models since computing
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the sensitivity quantity required for the definition of the Laplace Mechanism is often in-
tractable, either because there simply is no upper bound, or because it is hard to calculate
the upper bound analytically. Using this adaptation of the Laplace mechanism also gen-
erally increases the statistical usefulness of the outputs, by an amount that can be readily
quantified. While we do not suggest that the relaxation replace differential privacy, there
may be scenarios in which the weaker confidentiality protection under the relaxation may
be sufficiently acceptable, especially given the increase in statistical usefulness.

The rest of this paper is structured as follows. Section 2 provides background definitions
and notations, and Section 3 describes our proposed relaxation of differential privacy. The
rest of the paper is devoted to discussion and demonstration of implementing the relax-
ation in practice. In order to keep our discussion practical and useful, we focus on confi-
dentiality protection through the addition of random “noise”, since that has traditionally
been one of the most widely-used methods in statistical agencies. Further, we focus on
the scenario of the release of confidentiality-protected tables, since these include the most
in-demand and most common type of output currently released by national statistical agen-
cies. In Section 4 we adapt the method of adding Laplace-distributed noise, show that the
adaptation is indeed a relaxation of differential privacy, and in Section 5 we illustrate its
use in protecting confidentiality of contingency and magnitude tables. We provide a clas-
sification for relaxations of differential privacy, and discuss our relaxation in comparison
to others proposed in the literature, in Section 6. The paper concludes with a discussion of
ideas for further research.

In summary, the particular contributions of this paper include:

• An example of a relaxation of differential privacy that allows confidentiality protec-
tion to be balanced against statistical usefulness.

• A practical illustration of the relaxation implemented as Laplace noise addition for
confidentiality protection for contingency and magnitude tables.

• A classification framework for variants of differential privacy.

2 Background and preliminaries

Some necessary background, definitions and preliminaries are reviewed in this section. For
a useful introduction to the problems and techniques of differential privacy, see [11] and its
references.

2.1 Terminology

The differential privacy framework assumes the scenario of a trusted data custodian agency
holding a dataset on a secure server, and releasing outputs of statistical analyses on the
dataset requested by users [10].

We model a dataset as a multiset of rows, where each row contains data corresponding
to a single individual. Let U denote the collection of all possible dataset rows. We denote
by Un the collection of all datasets of size n with rows in U . We remark that the available
information about U can range from full information to very little information in different
scenarios.

The term output of statistical analyses is intended to be interpreted quite widely, and can
include statistics such as mean or median, counts or contingency tables, parameters de-
termined during model fitting, outputs of hypothesis tests, and even entire (synthetic)
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datasets. In all cases we model a statistical analysis on a dataset x as a function f on
datasets with output in some range Range(f). Often the output is a real-valued vector,
so that f(x) = (f1(x), . . . , fk(x)) and Range(f) ⊆ Rk for some k, where R denotes the real
numbers.

Informally, a randomized mechanismM is an algorithm that takes as its inputs a dataset x
and some random numbers, and produces an output in some range. (For a formal defi-
nition, see [11, Definition 2.2].) For example, given a dataset of incomes of individuals in
an employment survey in some country, an algorithm that calculates the average income
and adds an amount of noise randomly chosen from some distribution with parameter de-
pending on the distribution of incomes in the whole population of that country, would be
a randomized mechanism.

2.2 Differential privacy

The concept of a randomized mechanism enables a framework for protecting confidential-
ity for individuals in a dataset. The intuition is that replacing the data of a single individual
with the data of another single individual in a dataset should be unlikely to change the out-
put of a statistical analysis on that dataset by very much, and hence it should be unlikely
that much can be learned from the output about either individual involved in the replace-
ment. This intuition is embodied in the definition of differential privacy, guaranteeing that
a randomized mechanism gives similar outputs when applied to similar input datasets.

Two datasets x, y ∈ Un are neighbours if y can be obtained from x by replacing a row of x
with a row from U . Thus neighbouring datasets always have the same size as multisets.

Definition 1. [Differential privacy [8, 10]] A randomized mechanismM satisfies ε-differential
privacy if for all neighbouring datasets x, y ∈ Un, and all measurable S ⊆ Range(M), we
have:

Pr(M(x) ∈ S) ≤ eε × Pr(M(y) ∈ S). (1)

Since Equation (1) is required to hold for all neighbouring datasets x, y ∈ Un, it can be
written equivalently as:

e−ε ≤ Pr(M(x) ∈ S)

Pr(M(y) ∈ S)
≤ eε.

We call Equation (1) the differential privacy condition. It holds trivially when x = y. Note
that when ε is small, then eε is approximately equal to (1+ε), so that the differential privacy
condition is essentially that the difference between Pr(M(x) ∈ S) and Pr(M(y) ∈ S) is at
most approximately ε× Pr(M(y) ∈ S).

In order to protect the output f(x) of applying a function f to a dataset x (where f could be
the identity function but is typically some statistical analysis), one traditional approach has
been to add some random noise to f(x). Under the differential privacy approach, one con-
structs a randomized mechanism that satisfies the property in Equation (1) of the definition
of differential privacy, and releasesM(x) instead of f(x). While Equation (1) ensures the
privacy guarantee, it is also necessary for the data custodian to separately verify that the
valueM(x) released by the mechanism is an acceptable approximation to the true value of
f(x), and that the value of ε is sufficiently small that the privacy guarantee is meaningful.

2.3 Achieving differential privacy

There have been many differentially private randomized mechanisms proposed in the lit-
erature, see [11] and its references for a useful introduction to the most important examples
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to date. In this section we describe a broadly applicable randomized mechanism satisfying
differential privacy, namely, the Laplace mechanism.

Given a dataset, and a vector-valued function on datasets, the Laplace mechanism com-
putes the output of the function on the dataset and adds a vector of noise values randomly
drawn from a Laplace distribution. The actual distribution used is calibrated by a quantity
known as the sensitivity of the function over the collection of all possible rows, designed
to capture the magnitude by which a single individual’s data can change the output of the
function in the worst case.

Definition 2. Let f be a function on datasets with output in Rk. The `1-sensitivity of f is
the quantity:

∆f = max ‖f(x)− f(y)‖1 (2)

where the maximum is taken over all neighbouring datasets x, y ∈ Un, and ‖ ‖1 is the `1
norm on Rk defined by

‖x‖1 =

k∑
i=1

|xi|.

Sometimes the `1 is dropped when it is understood.
The Laplace Distribution Lap(b) with scale b is the distribution with probability density

function:

Lap(z | b) =
1

2b
exp

(
|z|
b

)
.

This distribution has mean zero and variance σ2 = 2b2.

Definition 3. [Laplace Mechanism [10]] Given any function f on datasets x ∈ Un with
output in Rk, and a parameter ε, the Laplace mechanism (with parameter ε) is:

L(x) = f(x) + (Y1, . . . , Yk)

= (f1(x) + Y1, . . . , fk(x) + Yk)

where Y1, . . . , Yk are independent and identically distributed (i.i.d.) random variables
drawn from Lap(∆f/ε).

It is straightforward to show that the Laplace mechanism (with parameter ε) satisfies ε-
differential privacy, see [11, Theorem 3.6]. The parameter ε is normally understood when
referring to the Laplace mechanism, and so is usually omitted.

It is also straightforward to use properties of the Laplace distribution to prove the follow-
ing probabilistic bound on the accuracy of the Laplace mechanism.

Theorem 4. [11, Theorem 3.8] Let f be a function on datasets x ∈ Un with output in Rk, and let
ε > 0 be a parameter. Given the Laplace mechanism L(x) and for γ ∈ (0, 1], we have:

Pr
(
‖L(x)− f(x)‖∞ ≤ ln

(
k

γ

)(
∆f

ε

))
≥ γ

where
‖x‖∞ = max

i=1,...,k
xi

and ∆f is the `1-sensitivity of f .
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Theorem 4 implies that for each i = 1, . . . , k, the probability that the ith perturbed value
Li(x) lies in an interval of width 2 ln(k/γ)(∆f/ε) centred at the value fi(x) is at least γ.
If we interpret the interval endpoints as bounds on the difference between the observed
value fi(x) and the perturbed value Li(x), then they provide a bound on the error due to
the perturbation. For that reason, we call the quantity

(
ln

(
k

γ

)(
∆f

ε

))−1
(3)

the γ-accuracy of L, so that greater accuracy corresponds to an interval of smaller width,
and a consequently smaller upper bound on the error due to the perturbation. Since error
bounds are of interest to analysts seeking to make inferences based on the perturbed data,
we interpret the γ-accuracy as one type of utility measure. Note that a higher value for the
`1-sensitivity of a function f will result in lower accuracy under the Laplace mechanism.

3 Bootstrap differential privacy

There have been several examples in the literature of relaxing the definition of differential
privacy in order to weaken the confidentiality protection guarantee in the hope of improv-
ing statistical usefulness of outputs, see for example [1, 3, 9]. Some of these approaches are
reviewed in Section 6, and we are proposing another. In our relaxation of the definition of
differential privacy, we consider restricting the set of neighbouring datasets over which the
differential privacy condition Equation (1) is required to hold.

This type of restriction is motivated essentially by two observations. First, suppose that
the universe of possible data sets is not known, contrary to the assumption generally made
in the case of differential privacy. If there is very little information available about the col-
lection U of possible rows, then it may be very difficult to determine the impact of replacing
a row in the data with any other row in U , and thus to develop provably differentially pri-
vate randomized mechanisms. A classic example would be that of salary. While we know
that salary is a real number, it is not easily capped. Second, in the Laplace mechanism the
scale of the noise must be sufficient to ensure the differential privacy condition in the worst
case, that is, even for possible dataset rows that are extremely rare or have values that are
outliers with respect to any possible values. Since sensitivity is computed on a worst-case
scenario, in many situations its value may be quite high, and may lead to unacceptably low
mechanism accuracy.

In contrast, everything about an observed datasetD is known to the data custodian imple-
menting the protection, including the presence or absence of rare or outlying individuals.
So in theory the two issues outlined above do not arise. In addition, in many situations
such as statistical sampling theory and the bootstrap method, the set of individuals in an
observed dataset is assumed to be reasonably representative of the collection U of all pos-
sible rows. In that case, the observed dataset D could be used to estimate the impact of
replacing a row in the dataset with any other row in U in order to develop differentially
private mechanisms. Given these observations, it may not be unreasonable to propose a
relaxation of differential privacy that depends only on the observed dataset. Such a relax-
ation may be useful in some range of scenarios.
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3.1 Definition

Under the relaxation we propose, instead of considering the impact of replacing a row of
a dataset D with a row of U when developing provably private randomized mechanisms,
we consider the impact of replacing a row of D with a row of the restricted and known set
D itself. In that way, neighbouring datasets D1, D2 will differ in a row that must be a row
of D. Thus, in the definition of neighbours, instead of allowing the rows of D1 and D2 to
vary over the full collection of rows in U , we allow them to vary over only the (generally
smaller) collection of rows in D. Given a dataset D, the collection of such datasets D1 and
D2 underpins the bootstrap method [12, 13, 14]. It is this connection, and the notion that the
properties of a sample can represent properties of the population, that gives our proposed
relaxation its name.

Definition 5. LetD be a dataset of size n. A randomized mechanismM satisfies ε-bootstrap
differential privacy for D if for all neighbouring datasets D1, D2 ∈ Dn, and all measurable
S ⊆ Range(M), we have:

Pr(M(D1) ∈ S) ≤ eε × Pr(M(D2) ∈ S). (4)

We remark that the main difference between the definition of bootstrap differential pri-
vacy (Definition (5)) in comparison with that of differential privacy (Definition (1)) is that
the condition is required to hold over all neighbouring datasets in the subset Dn of Un,
rather than all neighbouring datasets in Un. This is emphasised by the qualifier “for D” in
the definition, though this can be omitted if it is understood.

However, there is an additional difference between bootstrap differential privacy and tra-
ditional differential privacy, since the privacy protection is necessarily weaker. The defini-
tion of bootstrap differential privacy allows the leakage of information about the dataset
D. For example, the mechanismM that, for any dataset D, always outputs the whole set
of distinct rows in D, satisfies the definition of bootstrap differential privacy and clearly
leaks the set of distinct rows in D. An example of the potential for leakage of less informa-
tion about D is discussed in Section 4.1. The data custodian must therefore also separately
verify that the leakage of any additional information is acceptable in the given scenario.
This would involve understanding the impact of the leakage of such additional informa-
tion about D on the privacy protection offered by bootstrap differential privacy, and the
consequent impact on the property of plausible deniability. We remark that there is a simi-
lar (though perhaps not as concerning) situation in the case of (ε, δ)-differential privacy, see
the paragraph immediately following [11, Definition 2.4], where mechanism with output
a randomly selected small number of rows of the input dataset satisfies (ε, δ)-differential
privacy.

Although there exist such examples of differentially private or bootstrap differentially
private mechanisms that leak an unacceptable amount of information about the dataset,
they would be extremely unlikely to be used in practice - precisely because they leak too
much information. Many examples of mechanisms that leak a lot of information in fact
do not have a random component, however it is known that randomization is essential
to privacy protection, see [11, Section 2.3]. A full theoretical investigation of information
leakage in the general case is beyond the scope of this paper.

Finally, just as in the case of differential privacy, the data custodian must separately verify
that the mechanism releases an acceptable approximationM(D) to the true value of f(D),
and that the value of ε is sufficiently small that the privacy guarantee is meaningful.
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3.2 Privacy guarantees

3.2.1 Plausible deniability

We extend to our case of bootstrap differential privacy, the traditional explanation of the
differential privacy guarantee as plausible deniability and interpretation of the parameter
ε as privacy loss, see [11, Section 2.3]. In differential privacy, the property of plausible deni-
ability is enjoyed by all individuals, whether they belong to the dataset in question or not.
However, in bootstrap differential privacy the property is only guaranteed for individuals
represented in the dataset, or with data identical to another individual represented in the
dataset.

To be precise, let f be a function on datasets, let D be a fixed dataset, and let M be a
bootstrap differentially private mechanism for D. Suppose that the output s = M(D) is
released, for some value of ε. We consider two cases, according as whether an individual
Alice’s data is or is not included in the dataset.

First, let d1 be a row of D, containing Alice’s data. Suppose that an intruder guesses that
Alice’s data is d1. Alice wishes to deny that d1 is her row of data, by claiming that instead
her row is another row d2 of D. Alice can choose any row d2 of D for this purpose, even
d2 = d1. Let D2 = (D \ d1) ∪ d2, and note that D2 is a bootstrap neighbour of D. Now
Equation (4) in the definition of bootstrap differential privacy gives

Pr(M(D2) = s) ≤ eε × Pr(M(D) = s).

Alice’s claim cannot be refuted within the guarantee provided by the parameter ε, since the
released value in the case that her row is d2 cannot be distinguished from the released value
in the case that her row is d1, up to the factor exp(ε) as promised by bootstrap differential
privacy.

Next, suppose that Alice’s data d is not in D = (d1, . . . , dn), and suppose that an intruder
knows or guesses Alice’s data d. For each i = 1, . . . , n let Di = (D \ di) ∪ d. If Alice’s
data d is distinct from each of d1, . . . , dn, then Di is not a bootstrap neighbour of D for any
i = 1, . . . , n. In this case, Equation (4) does not hold and Alice cannot plausibly deny that
her data are not inD, that is, she cannot plausibly claim that her data are inD. On the other
hand, it is possible that d = dj for some value j (that is, Alice’s data row happens to be the
same as an individual represented in the dataset). In that case, Dj is a bootstrap neighbour
of each Di = (D \ di) ∪ d, and Equation (4) holds for each pair (Di, Dj . In this case, Alice
can plausibly deny that her data are not in D, that is, she can plausibly claim that her data
are in D.

3.2.2 Outlying observations

To further explore the privacy guarantees provided by this relaxation of differential pri-
vacy to bootstrap differential privacy, we consider the impact of outlying observations on
analyses of datasets.

Suppose we have a datasetD with the single variable income and a bootstrap differentially
private mechanismM on datasets that releases the (privacy-protected) value of the average
income of the individuals in the dataset. Suppose the individuals in the dataset come from
a population, and let Bill Gates be an individual with income value very much larger than
anyone else in the population. We now discuss the impact of replacing an individual in D
with another individual (with a different row) in the dataset D, separating the discussion
into the two cases that Bill is or is not in the dataset D.
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Suppose first that Bill is in the dataset D. Under M the mechanism response would be
almost the same if Bill were replaced by a different individual in D (so that Bill’s income
would be missing from D), or if another individual were replaced by Bill (so that there
would be two copies of Bill’s income inD). Therefore, any individual inD would be able to
plausibly claim that their income was as large as any other person in the dataset, including
Bill. Any individual not in D would only be able to make the same claim plausibly if their
income was the same as one of the individuals in D, including Bill. Thus, in this case, only
individuals with income equal to one of the income values in D (including Bill’s income
value) enjoy the property of plausible deniability with regard to their income value.

On the other hand, if Bill is not in the datasetD, then we can make no statement about how
much the mechanism response might change if one of the individuals were replaced by
Bill to the dataset. (Note that this scenario should not be confused with the prior situation
in which Bill is in the original dataset, then a second copy of Bill’s row is added.) Any
individual in D would be able to plausibly claim that their income was as large as any
other person in the dataset, which does not include Bill. Any individual not in D would
only be able to make the same claim plausibly if their income was the same as one of the
individuals in D, which does not include Bill. Again, in this case, only individuals with
income equal to one of the income values in D (thus not including Bill’s income value)
enjoy the property of plausible deniability with regard to their income value.

If the mechanismM were actually differentially private, then any individual either in or
out of the dataset D can plausibly claim to have any possible value of income, regardless
of whether Bill is in the dataset or not. The plausible deniability of bootstrap differential
privacy is clearly less than that of differential privacy, as individuals can only plausibly
claim to have an income value that is already in the dataset. This reduced protection may
be acceptable in some situations. One such situation might be that the datasetD adequately
represents the population - for example, it is a small sample of a census file, or it is known to
include all likely values of the relevant variables. In other situations there may be auxiliary
information that reduces the scope of an individual’s plausible deniability, for example,
lifestyle choices may indicate broad limits of income values.

Of course there is an additional challenge if Bill is not initially in the dataset D, but re-
places another individual in it after the bootstrap differentially private mechanism has al-
ready released the value of average income. If Bill joins D (replacing another individual),
then the true average income will change significantly, and the mechanism response may
also change significantly, thus revealing information about Bill’s income. In addition, since
only some individuals in the population have any plausible deniability, it is possible that
challenging an individual that does not enjoy such plausible deniability actually reveals
the lack of plausible deniability, thus revealing that their income value is different from
any income value in the dataset. Bootstrap differential privacy may not be a good choice
for privacy protection in cases where it is important to avoid such information leakage.

In summary, the main ways that the privacy protection offered by bootstrap differential
privacy is weaker than that of differential privacy are:

• Individuals in the dataset enjoy a reduced scope of plausible deniability. They cannot
claim to have any possible data value, but they can claim to have the same value as
anyone else in the dataset.

• Outliers in the population that are not in the dataset and with data value different
from a value already in the data will not be protected from information leakage if
they replace an individual in a dataset.
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3.3 Other properties

Bootstrap differential privacy satisfies two important desirable properties of any relaxation
of differential privacy, namely strictness and composability.

Result 6. A randomized mechanism M satisfying ε-differential privacy for some value
of the parameter ε also satisfies ε-bootstrap differential privacy for any dataset D, for the
same parameter ε. In this case there is no leakage of information about the datasetD. There
exist randomized mechanisms satisfying ε-bootstrap differential privacy for some dataset
D that do not satisfy ε-differential privacy, for the same parameter ε.

The first statement follows since if the differential privacy condition holds for all neigh-
bouring datasets D1, D2 ∈ Un, then since D ⊆ U it also holds for all neighbouring datasets
D1, D2 ∈ Dn.

For the second statement, the bootstrap Laplace mechanism to be introduced in Section
4.1 will satisfy ε-bootstrap differential privacy for D but not ε-differential privacy. The
argument is provided in Section 4.1.

Bootstrap differentially private algorithms for the same dataset D compose according to
the following rule.

Result 7. Let D be a dataset, and letMi be a εi-bootstrap differentially private algorithm
for D, for i = 1, . . . , k. Then (M1(x), . . . ,Mk(x)) is

∑k
i=1 εi-bootstrap differentially private

for D. The information about D that is leaked by M is the aggregate of the information
about D leaked byM1, . . . ,Mk.

The proof is essentially the same as the proof of [11, Corollary 3.15].

Finally, we prove another composability result needed later in the paper.

Result 8. Let D be a dataset, and let D1, . . . , Dk be a partition of the rows of D. For each
i = 1, . . . , k, letMi be a randomised mechanism satisfying ε-bootstrap differential privacy
for Di. We define a new mechanism M on the set of bootstrap samples of D as follows.
For a given bootstrap sample B of D, let (B1, . . . , Bk) be the partition of B induced by the
partition of D, and define

M(B) = (M1(B1), . . . ,Mk(Bk))

ThenM is ε-bootstrap differentially private for D. The information about D that is leaked
byM is the aggregate of the information about D leaked byM1, . . . ,Mk.

Proof. The proof is straightforward from the definition of bootstrap differential privacy. Let
D1, D2 ∈ Dn be neighbouring datasets, and letD1

1, . . . , D
k
1 andD1

2, . . . , D
k
2 be the partitions

of D1, D2 induced by the partition of D. Suppose without loss of generality that the row of
D1 that has been replaced in order to form D2 falls into Dk

1 and hence also Dk
2 . Note that

Di
1 = Di

2 ∀i 6= k. For a measurable subset S ⊆ Range(M), we have S = (S1, . . . , Sk) where
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Si ⊆ Range(Si), for i = 1, . . . , k. Then:

Pr(M(D1) ∈ S) = Pr
(
(M1(D1

1), . . . ,Mk(Dk
1 )) ∈ S

)
=

k−1∏
i=1

Pr(Mi(D
i
1) ∈ Si)× Pr(Mk(Dk

1 ) ∈ Sk)

=

k−1∏
i=1

Pr(Mi(D
i
2) ∈ Si)× Pr(Mk(Dk

1 ) ∈ Sk)

≤
k−1∏
i=1

Pr(Mi(D
i
2) ∈ Si)× eεPr(Mk(Dk

2 ) ∈ Sk)

= eε
k∏

i=1

Pr(Mi(D
i
2) ∈ Si)

= eεPr
(
(M1(D1

2), . . . ,Mk(Dk
2 )) ∈ S

)
= eεPr(M(D2) ∈ S),

where we use the independence of the mechanismsMi, i = 1, . . . , k and apply the defini-
tion of bootstrap differential privacy for each.

4 Bootstrap differential privacy through noise addition

The addition of noise to data has traditionally been one of the most widely-used meth-
ods for statistical disclosure control in confidential datasets and the outputs of statistical
analyses on such datasets, see for example [7, 17, 23]. For that reason, and inspired by the
Laplace mechanism, in this section we focus on achieving bootstrap differential privacy via
mechanisms that add random noise.

4.1 Bootstrap Laplace mechanism

Adapting the definitions of `1-sensitivity and the Laplace mechanism in Definitions 2 and
3 respectively gives an example of a bootstrap differentially private mechanism.

Definition 9. [Bootstrap sensitivity] Let D be a dataset, and let f be a function on datasets
with output in Rk. The `1-bootstrap sensitivity of f for D is the quantity:

∆Df = max ‖f(D1)− f(D2)‖1

where the maximum is taken over all neighbouring datasets D1, D2 ∈ Dn.

We remark that the only difference between the definition of bootstrap sensitivity in com-
parison with that of (traditional) sensitivity is that the maximum is taken over all neigh-
bouring datasets in the subset Dn of Un. Again, this is emphasised by the qualifier “for D”
in the definition, though this can be omitted if it is understood.

The notion of bootstrap sensitivity is somewhat reminiscent of local sensitivity [22]. In
particular, local sensitivity at D is the maximum of ‖f(D1)−f(D)‖1 over the neighbours D1

of D. However, bootstrap sensitivity differs from local sensitivity in two ways. First, boot-
strap sensitivity allows both datasets to vary while local sensitivity fixes one, and second,
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bootstrap sensitivity restricts both datasets to be inDn while local sensitivity has one inDn

and lets the other vary over Un.
Given a dataset D, the `1-bootstrap sensitivity captures the magnitude by which the re-

placement of any row inD by any other row inD can change the value of the function f , in
the worst case. Recall that in contrast, the `1-sensitivity of Definition 2 has to capture such
worst-case magnitude for the replacement of any row of U .

Definition 10. [Bootstrap Laplace mechanism] Let D be a dataset. Given any function f
on datasets with rows in D and with output in Rk, and a parameter ε, the bootstrap Laplace
mechanism (with parameter ε) for D is:

L(x) = f(x) + (Y1, . . . , Yk)

= (f1(x) + Y1, . . . , fk(x) + Yk)

where Yi are i.i.d. random variables drawn from Lap(∆Df/ε).

We remark that the main difference between the definition of bootstrap Laplace Mecha-
nism in comparison with that of the (traditional) Laplace Mechanism is that the maximum
is taken over all neighbouring datasets in the subset Dn of Un. This is emphasised by the
qualifier “for D” in the definition, though this can be omitted if it is understood. The pa-
rameter ε is normally understood when referring to the bootstrap Laplace mechanism, and
so is usually omitted.

One can easily prove the following result, with an argument analogous to that in [11,
Theorem 3.6]:

Result 11. Let D be a dataset and let f be a function on datasets x ∈ Dn and with output in
Rk. Let ∆Df be the `1-bootstrap sensitivity of f . The bootstrap Laplace Mechanism Lwith
parameter ε satisfies ε-bootstrap differential privacy.

In fact, the bootstrap Laplace mechanism satisfies ε-bootstrap differential privacy but not
ε-differential privacy. To see this, consider a single attribute and the function f on datasets
that returns the maximum value of that attribute over the individuals in a dataset. LetD be
a dataset and suppose that there is an element in the population with value of the attribute
greater than the maximum over the individuals in D. The `1-bootstrap sensitivity of f is
less than the `1-sensitivity of f . The bootstrap Laplace mechanism will satisfy ε-bootstrap
differential privacy but not ε-differential privacy.

There are two potential advantages to considering the bootstrap Laplace mechanism in-
stead of the ordinary Laplace mechanism. First, the bootstrap sensitivity of any function f
for a datasetD should be less than the sensitivity of f , so the bootstrap Laplace mechanism
will require Laplace noise of smaller scale and will thus have higher accuracy (see Section
4.2). Second, since every row of D is known, the bootstrap sensitivity of f for D can in
theory be determined, and is also bounded on the collection of datasets with rows in D. If
it is not possible to compute the bootstrap sensitivity of f for D directly, or if the problem
is computationally infeasible due to the size of the dataset, then it may be necessary to use
some discrete optimisation or other algorithm. In any case the search space for bootstrap
sensitivity is bounded and would generally be smaller than the search space for sensitivity,
although it is not clear that this would make the computation easier in all cases. This situ-
ation is different to the case for differential privacy, where in extreme cases sensitivity may
be unbounded or it may be hard to calculate analytically.

In addition to separately verifying that the bootstrap Laplace Mechanism gives an accept-
able approximation to f(D), the data custodian needs to also verify that any released or

TRANSACTIONS ON DATA PRIVACY 12 (2019)



Bootstrap Differential Privacy 13

leaked information is acceptable. For example, the bootstrap Laplace mechanism may leak
information about the bootstrap sensitivity. In some cases this will be acceptable and in
other cases not. (Note in particular that the bootstrap sensitivity is revealed if the mech-
anism is published.) Consider, as an example, the case of a dataset comprising a single
binary variable, and the function that counts the number of 1’s. The sensitivity of this func-
tion for a datasetD is usually 1, but is 0 in the case that the count is 0 or n. In many practical
situations, this does not reveal too much information about the dataset, for two reasons. If
the sensitivity is 1, then leaking this value simply reveals that there are both 0s and 1s in the
dataset, which would be the expected situation. On the other hand, if the sensitivity is 0,
then either everybody or nobody in the dataset has the value 1. Leaking this value would,
therefore, be likely to be unacceptable to a data custodian, see [17].

4.2 Accuracy

We can also compute the gain in accuracy that is achieved by the bootstrap Laplace mecha-
nism in comparison to the Laplace mechanism. Recall from Section 2.3 that we can interpret
the γ-accuracy as one type of utility measure. This gain in accuracy quantifies the advan-
tage inherent in the reduced privacy protection.

Result 12. Let D be a dataset and let f be a function on datasets x ∈ Dn and with output
in Rk. Let ∆f be the `1-sensitivity of f , and let ∆Df be the `1-bootstrap sensitivity of f . Let
L denote the Laplace mechanism and let LD denote the bootstrap Laplace mechanism for
D, both with the same parameter ε. Then for γ ∈ (0, 1) the gain in γ-accuracy of LD over L
can be represented by the non-negative difference:(

ln

(
k

γ

)(
∆Df

ε

))−1
−
(

ln

(
k

γ

)(
∆f

ε

))−1
or the ratio:

∆f

∆Df

Proof. Since ∆f ≥ ∆Df > 0, ε > 0, 0 < γ < 1 and k ≥ 1, then it is straightforward that
ln(k/γ)(∆Df/ε) ≤ ln(k/γ)(∆f/ε) and the result follows from the definition of γ-accuracy
in Equation (3).

4.3 Weaknesses and guidance

In this section we further explore and analyse the weaknesses of bootstrap differential pri-
vacy in comparison with differential privacy. We provide specific guidance to data cus-
todians on how to decide whether bootstrap differential privacy is acceptable in a given
situation). In both cases, we focus in particular on the case of the Laplace mechanism and
bootstrap Laplace mechanism.

The main weakness of bootstrap differential privacy, already discussed in this paper, is
that the privacy guarantees are weaker than those provided by differential privacy, in par-
ticular:

• Privacy guarantees provided to individuals in the dataset are weaker than those pro-
vided by differential privacy.
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14 Christine M. O’Keefe, Anne-Sophie Charest

• Privacy guarantees are not provided to individuals not present in the dataset, includ-
ing individuals who later join the dataset. This is a particular problem for individuals
with values that are outliers with respect to the dataset.

In addition, the amount of information about the protection mechanism that can be pub-
lished is more restricted under bootstrap differential privacy, as follows. Under differential
privacy, details of the protection mechanism used to generate the output can be published
along with the output, without degrading the privacy guarantees. (See, for example, [11,
p88] or [19].) This is helpful for users wishing to take the noise into account in their analy-
sis and inference. Under bootstrap differential privacy, unfortunately publication of details
of the mechanism may reveal information about the dataset. In the case of the bootstrap
Laplace mechanism, publishing the mechanism would reveal the value of the bootstrap
sensitivity, which in turn reveals information about the original dataset. For example, sup-
pose the original dataset is D = {1, 2, 3}, and we are interested in publishing the sum f(D)
of the values in the dataset. Then the bootstrap sensitivity of f is ∆Df = 2, and the Laplace
mechanism with parameter ε operates by adding Laplace noise drawn from the distribu-
tion Lap(∆Df/ε). An intruder knowing the parameter of the Laplace noise, and the value
of ε, can work out the value of the sensitivity. Suppose now that the intruder also knows
all observations in the dataset D apart from one, say 1 and 2. With all this information, the
intruder can determine that the unknown dataset element is either 0 or 3. The probability
of a correct guess (given no further information) is therefore 1/2. Continuing this thought
experiment, suppose the intruder only knows n− 2 observations as well as the value of the
sensitivity. Then still some information about the original dataset is leaked. For example, if
the intruder knows the value 1 and that the sensitivity is 2, then it is easy to conclude that
the other two observations can not be smaller than −1 or larger than 3.

Therefore, in contrast to the situation under differential privacy, publishing the mecha-
nism used to achieve bootstrap differential privacy is likely to leak information about the
dataset. Depending on the context, one may prefer not to release the mechanism used.
Even if the mechanism is not released, it is still necessary to verify that the information
leaked is within acceptable limits.

Given these weaknesses, situations in which bootstrap differential privacy may be useful
include situations where:

• Higher statistical usefulness is considered to justify weaker formal data-centric pri-
vacy guarantees.

• The use of other privacy protections such as secure data centres or user registration
is considered to justify weaker formal data-centric privacy guarantees.

• The dataset is fixed with respect to participants.

• The population is relatively homogeneous, with few or no outliers.

• The worst-case scenario in computing the sensitivity is extremely rare.

• Very little is known about the collection of possible dataset rows.

• Calculating the sensitivity (for the Laplace Mechanism) is intractable, either because
there simply is no upper bound to it; or it is hard to calculate the upper bound ana-
lytically. This can occur in complex or flexible models.

• It is not expected that details of the protection mechanism be released.
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Further, in addition to the usual checks that the mechanism releases an acceptable approxi-
mation to the true value of f(x), and that the value of ε is sufficiently small that the privacy
guarantee is meaningful, under bootstrap differential privacy it is necessary to check that
the amount of information leaked is acceptable in the given scenario.

5 Illustrations

In this section we illustrate the use of the bootstrap Laplace mechanism in protecting con-
fidentiality when releasing a count or a total computed on a dataset, as well as releasing
a contingency table and a magnitude table. After presenting the methodology in Sections
5.1 and 5.2, we provide a numerical example in Section 5.3. We have chosen to focus on
tables since they include the most in-demand and most common type of output currently
released by national statistical agencies, and this is likely to remain the case for the foresee-
able future, see [4].

5.1 Counts and contingency tables

Suppose that given a dataset D of n rows, we wish to release the number f(D) of rows in
D that satisfy a certain property. Given any dataset D1 with rows in D, replacing a row of
D1 by any row of D, can only change the count f(D1) by at most 1. In the particular case
where the count f(D) = 0, so that no row of D satisfies the property, then any dataset D1

with rows in D will also have f(D1) = 0. Similarly, if f(D) = n, so that all rows satisfy
the property, all datasets D1 with rows in D will also have f(D1) = n. Thus, if D has at
least one but not all rows with the required property, then the bootstrap sensitivity of f for
D is 1, and otherwise it is 0. For example, suppose that f(D) computes the number of odd
numbers in the dataset D. Then, its sensitivity will be 1 if D = {1, 2, 3}, but it will be 0 if
D = {2, 4, 6} or if D = {1, 3, 5}.

Thus, the definition of the ε-bootstrap Laplace mechanism for a given observed dataset D
depends on D itself as well as the function of interest f . If the dataset of interest is such
that f(D) = 0 or f(D) = n, one can directly release the value of f(D) and still satisfy
ε-bootstrap differential privacy for any ε > 0. Otherwise, the mechanism

M(x) = f(x) + Y

where Y is a value drawn from Lap(1/ε), is an ε-bootstrap differentially private mechanism
for D.

Now suppose we wish to release a contingency table f(D) constructed on D, where in
cell i the value fi(D) is the number of rows in D satisfying the properties that define the
cell. Given any dataset D1 with rows in D, replacing a row of D1 by a row of D can only
change the count in exactly one cell, since the cells partition the dataset. Since each count
can be changed by at most 1, the maximum `1 difference between two contingency tables
from neighbouring datasets will be 1, and thus the bootstrap sensitivity of f(D) is 1. We
can therefore generalize the mechanismM above to a mechanism on contingency tables,
such that for each cell fi(D) of the contingency table,

Mi(x) = fi(x) + Yi

where Yi are observations drawn independently from a Lap(1/ε) distribution. Then M
is a ε-bootstrap differentially private mechanism for D. Note that this mechanism is also
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ε-differentially private. Thus, bootstrap differential privacy only offers in this case a small
improvement in utility over differential privacy, namely the possibility to publish counts
of 0 or n directly. This is because the sensitivity is easily bounded (by the value 1) for
contingency tables. Bootstrap differential privacy potentially offers more benefits in the
case of large or unbounded sensitivity, as will be discussed in the next section.

5.2 Totals and magnitude tables

A magnitude table differs from a contingency table in that the number of individuals in
each cell is replaced by the total of the values of a variable for individuals in that cell.

First we consider the case of designing a bootstrap Laplace mechanism to release a single
total f(D) on a dataset D. Two neighbouring datasets D1 and D2 with rows in D will only
differ in the value of one observation, say the nth one. The total will thus be reduced or
increased by the difference between the nth observation in D1 and the nth observation in
D2. The bootstrap sensitivity of a total is thus the maximum absolute difference between
two observations of D, which we denote V . Define a mechanismM by:

M(x) = f(x) + Y

where Y is a value drawn from Lap(V/ε). Then M is a ε-bootstrap differentially private
mechanism for D. Note that the mechanism depends on D through the value of V .

Note also that to satisfy the original differential privacy definition, the bootstrap sensi-
tivity for dataset D, ∆Df = V , would need to be replaced in the mechanism by ∆f , the
general sensitivity of the function f(D), which depends on the universe U . The gain in ac-
curacy of using ε-bootstrap differential privacy instead of the original ε-differential privacy
to release a total will depend on how much larger ∆f is compared to ∆Df . In particular, if
the variable of interest is unbounded, then the sensitivity ∆f will be infinite so that there
will not exist any differentially private mechanism to output the total, whereas the boot-
strap differentially private mechanism will still be valid.

Now, suppose we wish to design a bootstrap Laplace mechanism to release a magnitude
table f(D) constructed on D, where in cell i the value fi(D) is the sum of the values for the
rows in D satisfying the properties that define that cell. Let k denote the number of cells
in the magnitude table. The bootstrap differential privacy sensitivity will be different for
each fi(D), and equal to Vi the maximum absolute difference between two observations in
cell i. To release the entire magnitude table with ε-bootstrap differential privacy, we have
at least two options.

(i) Consider the entire magnitude table as a single output. Neighbouring datasets D1

and D2 with rows in D will differ in only one cell, so that the sensitivity of the entire
magnitude table will be the maximum sensitivity for all of the cells:

∆Df = max ‖f(D1)− f(D2)‖1 = max
i=1,...,k

Vi = Vimax.

The mechanismM which computes for each cellMi(x) = fi(x) + Yi, where Y is a
value drawn from Lap(Vimax/ε) will be ε-bootstrap differentially private for releasing
the magnitude table for D.

(ii) Consider each fi(D) as a separate output from D. By the composition property of
bootstrap differential privacy, we can simply release each total fi(D) using the boot-
strap Laplace mechanism with the sensitivity ∆Dfi = Vi and privacy parameter ε/k
to obtain an ε-bootstrap differentially-private mechanism for dataset D.
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The best approach, in terms of utility of the released magnitude table, will depend on the
number k of cells in the table as well as the variability in the sensitivities {Vi, i = 1, . . . , k}.
Approach (ii) uses a smaller privacy parameter ε/k, which will require adding more noise,
but allows for less noise to be added to cells with smaller sensitivities. If one or a few Vi
are much larger than the others, it may thus be advantageous to use option (ii).

Note that similar approaches could also be used to satisfy the original differential privacy
definition. Under option (i), one would use ∆f = V , which depends on U , instead of
∆Df = Vimax. Just as for the release of a single total, the gain of utility of using bootstrap
differential privacy instead of differential privacy will depend on the difference between
these two quantities. Under option (ii), the sensitivity used for each cell could be different
only if we can a priori identify different universes Ui for the values of the variable of inter-
est in each of the cells. This may however not be easily achieved in a practical situation.
Bootstrap differential privacy is thus advantageous in this case.

Note also that a third option is available if one is willing to make a further assumption,
namely that cell membership for each observation is public information. This may be a
fair assumption in some cases, for example if the dataset is about companies and the cells
are formed based on geography and type of business. Under the assumption that cell
memberships are public, one can, without any privacy loss, split the observations into k
datasets where dataset Di contains the observations classified into cell i. Then, releasing
the total in each of the cells represent independent queries. By Result 8, a mechanism M
which uses independently the bootstrap Laplace mechanism for each dataset Di, with cell-
specific bootstrap sensitivity Vi and privacy parameter ε will provide overall ε-bootstrap
differential privacy for the whole magnitude table for dataset D. Note that under this
assumption, bootstrap differential privacy still provides plausible deniability, but now an
individual can only claim to have value equal to any value from among the values in the
cell he belongs to, including his, instead of any value among all values in the dataset.

We now illustrate some of these results with a numerical example.

5.3 Numerical example

In this section we illustrate the bootstrap Laplace mechanisms for a magnitude table as
described in Section 5.2 on a small real dataset. We also offer some numerical comparisons
with the corresponding differentially private Laplace mechanisms. We use ε = 1 for all
examples.

We use a datasetD of attributes of rice farms in India, available as a standalone file associ-
ated with the plm library of the R statistical software package [5, 24]. The dataset contains
1026 observations, with 21 variables. Although the dataset actually comprises a time series
of 6 observations on each of only 171 farms, we will treat it as a single observation on each
of 1026 different farms for the purpose of this illustration. Even on repeated observations
of the same farm, the values can vary quite markedly as event status, size and varieties
produced are not constant over time.

For the purposes of our illustration, the farms are classified according to the variable
Status, with values Mixed, Owner, and Share, and the variable Varieties, with values
High, Both, and Traditional (Trad). Table 1 shows, for each cell of this two-way classification,
the number n of farms falling into that cell, the total net output total nout of rice mea-
sured in kilograms, and the maximum output max and minimum output min of rice of any
farm in the cell, again in kilograms. Note that the net output is the value which would be
shared in the magnitude table.

TRANSACTIONS ON DATA PRIVACY 12 (2019)



18 Christine M. O’Keefe, Anne-Sophie Charest

Table 1: Two-way classification of rice farms in India by Status and Varieties, showing
number n of farms, net output (nout) of rice (kg), maximum output (max) and minimum
output (min) of rice (all in kg) for farms in the cell

Varieties
Status High Both Trad

Mixed n 33 7 171
total nout 56,965 11,187 189,528

max 900 3,400 3,200
min 234 800 180

Owner n 227 41 468
total nout 416,820 76,917 436,757

max 17,610 12,000 8,100
min 82 200 42

Share n 34 2 43
total nout 58,669 1,105 25,236

max 14,520 705 2,000
min 184 400 100

5.3.1 Publishing a cell total

We first consider the task of publishing one cell total with bootstrap differential privacy. To
do so, we simply apply the bootstrap Laplace mechanism. We present here some results for
each of the cells in the magnitude table, to illustrate the properties of the mechanism. Note
that each cell total will be protected at level ε, so that the overall magnitude table would
have protection 9ε if released.

Individual cell sensitivities are given in table 2. Figure 1 shows the distribution of 1000
independent replicates of the bootstrap Laplace mechanism for the total net output of each
cell. Totals for cells with smaller bootstrap sensitivity are less perturbed by the mechanism.

Table 2: Bootstrap cell sensitivities for the farm example

Varieties
Status High Both Trad

Mixed 8766 2600 3020

Owner 17528 11800 8058

Share 14336 305 1900

Note that by design of the mechanism the average, and median, of the totals within a
cell is expected to be the true cell total. This is illustrated in Figure 2 which shows the
distributions of the relative bias for the 1000 replicates of the mechanism.

It is interesting to note that cells with the smallest bias are not necessarily those with the
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Figure 1: Distributions of 1000 independent replicates of the bootstrap Laplace mechanism
for the total net output of each cell. Each cell is perturbed separately by the mechanism
with ε = 1 and its own cell specific sensitivity.

smallest sensitivity. In fact, relative bias increases with sensitivity but decreases with size
of the true total, and thus indirectly with sample size. Cells where the sensitivity represents
a higher proportion of the total will be more perturbed relative to the size of the total, as
can be seen from comparing Figure 2 with Table 3 which gives the ratio of the sensitivity to
the total, in percentage, for each cell.

It is logical to ask how these results differ from the ones we could obtain with the original
differentially private Laplace mechanism. First, note that in general the output of rice from
a farm is an unbounded quantity, and thus there would exist no Laplace mechanism to
output the cell counts. One may be able to provide ahead of time a maximum value for
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Figure 2: Relative bias (%) of 1000 independent replicates of the bootstrap Laplace mecha-
nism for the total net output of each cell. Each cell is perturbed separately by the mecha-
nism with ε = 1 and its own cell specific sensitivity.

the amount of rice to be produced in a farm, and use this to compute the sensitivity ∆f .
The smallest plausible value to use in our example would be the maximum output of all
observations, namely 17,610. Using this value instead of ∆Df would result in a loss of
accuracy for many of the nine cells. The ratios of accuracy values

bootstrap differentially private γ-accuracy
differentially private γ-accuracy

=
∆fi

∆Dfi

for each of the nine cells under this assumption are given in Table 4. Cells for which the
sensitivity is smallest gain most from the use the bootstrap Laplace mechanism.
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Table 3: Ratio of bootstrap cell sensitivities to cell totals (percentages %)

Varieties
Status High Both Trad

Mixed 15.39 23.24 1.59

Owner 4.21 15.34 1.84

Share 24.44 27.60 7.53

Table 4: Ratios of bootstrap differentially private to original differentially private
γ−accuracy for the farm example if we use the largest observation in the dataset to bound
the possible net output on a farm

Varieties
Status High Both Trad

Mixed 2.009 6.773 5.831

Owner 1.005 1.492 2.185

Share 1.228 57.738 9.268

Instead of simply using the overall maximum rice output, one could provide a maximum
output for the farms in the cell of interest, or estimate that value in a differentially private
manner from the observed dataset. In both cases, the bootstrap Laplace mechanism would
still provide a gain in utility in comparison with the Laplace mechanism, but in might be
much smaller than those in Table 4.

5.3.2 Publishing the entire magnitude table

We have defined earlier two different mechanisms to publish the entire table. In method
(i), we use the maximum cell-specific sensitivity to add Laplace noise directly on the vector
of totals in the magnitude table. In our example, we thus have ∆Df = 17, 528, whereas
∆f = 17, 610 which will lead to a slight improvement in γ−accuracy. This improvement
will be larger in cases where the values vary a lot between cells, but are similar within cells,
so that the distance between any two observations will be much larger than the maximum
distance between any two observations in the same cell.

In method (ii), we simply use the same mechanism as for publishing a cell, but with ε/9
instead of ε so that the overall magnitude table is generated with privacy parameter ε. This
of course results in a reduction in the utility for every published cell compared to when we
considered publishing a single cell.

The choice between method (i) and method (ii) will depend on the specifics of the dataset.
Figure 3 shows the cell values for 1000 magnitude tables perturbed with each of the two
methods for the farms example. We fist note that the noise added here is larger than that
required to release a single total, as illustrated in Figure 1. Also, note that the noise added

TRANSACTIONS ON DATA PRIVACY 12 (2019)



22 Christine M. O’Keefe, Anne-Sophie Charest

with method (i) is identical for all of the cells, whereas the noise added with method (ii) is
larger for cells with higher bootstrap sensitivity. In this particular example, only one cell
(with values share-both) is more perturbed under method (i) than method (ii). Since this
cell only contains 2 observations, we may decide to simply not release its total and use
method (i) to release the rest of table.
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Figure 3: Distribution of 1000 independent replicates of the bootstrap-differentially-private
mechanisms (i) and (ii) for the release of the complete magnitude table of the farms exam-
ple.
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6 Variations of differential privacy

Several variations of the definition of differential privacy have been proposed in the liter-
ature, now including bootstrap differential privacy. In this section we give a summary of
some of these, and give some observations about the relationships between them.

The variations we consider can be classified as one of the following types: relaxation of the
bound in the differential privacy condition (bound relaxation), restriction of the collection of
datasets over which the differential privacy condition is required to hold (scope restriction),
replacement of the probability distribution in the differential privacy condition (distribution
replacement), and combinations of these. Bound relaxations and scope restrictions involve
relaxations of the differential privacy condition.

6.1 Bound relaxation

The first example of this type of relaxation is (ε, δ)-differential privacy [10], with condition,
for D1, D2 ∈ Un:

Pr(M(D1) ∈ S) ≤ eε × Pr(M(D2) ∈ S) + δ.

If δ = 0 then (ε, δ)-differential privacy is just ε-differential privacy, and in fact this relax-
ation is so popular that it is often given as the definition of differential privacy.

A full description of the difference between (ε, δ)-differential privacy and ε-differential
privacy is given in [11, Section 2.3].

The second example of a bound relaxation is (ε, γ)-probabilistic differential privacy [20], with
condition:

Pr (Pr(M(D1) ∈ S) ≤ eεPr(M(D2) ∈ S)) ≥ 1− γ. (5)

In probabilistic differential privacy, the overall probability that the differential privacy
condition does not hold is bounded.

The outer probability in Equation (5) is calculated with respect to the joint distribution of
the possible inputs and outputs of the randomized mechanism M. Since M determines
the distribution of outputs conditional on the inputs, computation requires a distribution
over the possible inputs. In the original proposal [20], a uniform distribution over possible
inputs is implicit, but one could use any prior distribution, see Section 6.3. The validity of
the guarantee in practice will however depend on the validity of the assumed distribution
of the dataset.

6.2 Scope restriction

The two examples of this type of relaxation presented here both depend on a given or
observed dataset D. Each restricts the collection of pairs of neighbouring datasets from
those with rows in U to those with rows in some smaller collection of rows that depends
on D.

In the first example, called ε-conditional differential privacy for a given dataset D [2], the
differential privacy condition is required to hold:

for pairsD,D−i whereD−i is obtained fromD by removing the ith observation.

Conditional differential privacy was defined in order to explore the impact on concepts
related to differential privacy on simply removing a row from a dataset, thus its properties
were not fully explored. However, one can immediately see that desirable properties such
as composability will not hold.
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The second example, that of ε-individual differential privacy given a dataset D [25], requires
that the differential privacy condition hold:

for pairs D,D′ where D′ is a neighbour of D.

This relaxation is related to the concept of local sensitivity [22]. It is designed to allow the
data custodian to calibrate the noise magnitude to an actual dataset, normally resulting in
greater analytical accuracy. While the same guarantees as for standard differential privacy
hold for individuals under this relaxation, there are no such guarantees for groups of in-
dividuals. We remark that calibrating the noise magnitude to an actual dataset may also
reveal information about the dataset, similarly to the case of bootstrap differential privacy.

The third example is ε-bootstrap differential privacy for D as defined in this paper, for which
the differential privacy condition is required to hold:

for all neighbouring datasets D1, D2 ∈ Dn.

The scope restriction in ε-conditional differential privacy is stronger than that in ε-bootstrap
differential privacy for D, so that there are likely to be more mechanisms satisfying ε-
bootstrap differential privacy for D.

6.3 Distribution replacement

The notion of random differential privacy proposes to view the rows of a dataset D as
random draws from an unknown distribution P on U .

Definition 13. [16] A randomized mechanismM satisfies (ε, γ)-random differential privacy
if for all n = 1, 2, . . ., for all neighbouring datasets D1, D2 ∈ Un, and all measurable S ⊆
Range(M), we have:

Pr (Pr(M(D1) ∈ S) ≤ eε × Pr(M(D2) ∈ S)) ≤ 1− γ

where the outer probability is with respect to the (n + 1)-fold product measure Pn+1 on
Un+1 (since |D1 ∪D2| = n+ 1).

The relaxation makes use of the same condition as probabilistic differential privacy, namely
the condition in Equation (5), however instead of taking the outer probability with respect
to the randomized mechanism, it is taken with respect to the (n+ 1)-fold product measure
Pn+1 on Un+1 (since |D1∪D2| = n+1). This relaxation, then, seeks to relate the differential
privacy condition to the generation process that led to the dataset itself.

If we denote the observed values of the random variables D = (X1, . . . , Xn) by d =
(x1, . . . , xn), then the definition of differential privacy can be informally restated without
loss of generality by saying that Pr(M(x1, . . . , xn) ∈ S) is not strongly affected by subtract-
ing a row xn or adding a row xn+1 ∈ U . Under random differential privacy, this condition
is replaced by the informal restatement that Pr(M(x1, . . . , xn) ∈ S) is not strongly affected
by subtracting a row xn or adding a row xn+1 randomly drawn from P .

The idea of random differential privacy is somewhat similar to the idea of bootstrap dif-
ferential privacy, in that there is a restriction on the collection of rows from which a row
can be added to a dataset to create a neighbour. In particular, neighbours are defined by
removing a row or by adding a row drawn from an (unknown) distribution underlying the
population, not any row of the population. In cases where this distribution is very similar
to the distribution on the observed dataset, then random differential privacy and bootstrap
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differential privacy may give similar results, since the bootstrap distribution is effectively
providing an approximation of the distribution underlying the population. As an example,
the discussion of releasing counts (in a histogram) provided in [16] shows that zero cells
need not be protected under random differential privacy. On the other hand, the confiden-
tiality protection guarantee for random differential privacy may not be so straightforward
to describe, given the more technical definition.

6.4 Combinations

Some pairs of relaxations from Sections 6.1, 6.2, and 6.3 can be combined.
For example, the definition of (ε, δ, γ)-random differential privacy [16] combines the ran-

dom differential privacy relaxation with (ε, δ)-differential privacy relaxation, with corre-
sponding condition, for D1, D2 ∈ Un

Pr (Pr(M(D1) ∈ S) ≤ eε × Pr(M(D2) ∈ S) + δ(n)) ≤ 1− γ

where δ is a function that decreases faster than any inverse polynomial in n.
We remark that the bootstrap differential privacy relaxation could be combined with other

relaxations such as those for (ε, δ)-differential privacy, probabilistic differential privacy, and
random differential privacy. These further relaxations can be the subject of future investi-
gations.

7 Conclusion and future research

In this paper we have proposed bootstrap differential privacy as a relaxation of differential
privacy. Like differential privacy, bootstrap differential privacy also allows a clear descrip-
tion of the confidentiality protection guarantee, as well as a formal measure of accuracy.
The main difference is that bootstrap differential privacy generally provides less confiden-
tiality protection and more accuracy than differential privacy. Another important feature is
that any implementation of bootstrap differential privacy will depend only on the observed
dataset, and does not rely on any properties of a population. Thus, even if the population is
completely unknown, the quantities relevant for bootstrap differential privacy are bounded
and can generally be determined unless there is a computational barrier. While we do not
suggest that the relaxation replace differential privacy, there may be scenarios in which
the weaker confidentiality protection under the relaxation may be sufficiently acceptable,
especially given the increase in statistical usefulness.

Given a dataset D and a collection U of all possible rows, the relationship between boot-
strap differential privacy and differential privacy depends somewhat on the degree to
which D is representative of U . If D is highly representative of U , such as being a large
random sample, then bootstrap differential privacy may be quite similar to differential pri-
vacy. In the extreme case that D = U , they will be the same. In the case of the Laplace
mechanism, if a function f is very sensitive on rows in U \ D that are rather unlikely to
occur, then bootstrap differential privacy requires the addition of less noise and protects
against replacement of rows in D with rows that actually occur in the dataset, not rows
that are very unlikely to occur.

We have provided a classification for relaxations of differential privacy, and discussed our
relaxation in comparison to others proposed in the literature.

We have illustrated the implementation of bootstrap differential privacy in the common
scenarios of releasing contingency and magnitude tables with confidentiality protection
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provided by the addition of random noise. Our illustration has shown that that is very
straightforward to apply bootstrap differential privacy to the release of a contingency table
or a magnitude table, and that the reduction in privacy guarantee may be accompanied by
a non-negligible increase in statistical usefulness.

Our investigation of bootstrap differential privacy has also raised further questions for
future research. Perhaps the most pressing is a full theoretical investigation of the impact
of the leakage of any additional information about D, and the consequent impact on the
property of plausible deniability.

The idea of bootstrap differential privacy suggests the existence of a family of nested vari-
ants of differential privacy that are “in between” bootstrap differential privacy and differ-
ential privacy. Such variants would provide a range of confidentiality protection levels un-
derstood in terms of the scope of the plausible deniability property. It would be interesting
to explore these nested variants in which the differential privacy condition is required to
hold for neighbouring datasets with rows in a given defined sub-population, that is smaller
than the entire population, but larger than the dataset itself. This might be useful in cases
that the population is unknown, or has extremely large outliers in addition to some outliers
that are not so extreme. In any given scenario, a sub-population could be chosen amongst
the collection of all such sub-populations to provide the most acceptable level of confiden-
tiality protection. As a generalisation, if the acceptable level of confidentiality protection
is known in advance, then fake (or synthetic) individuals could be added to the dataset to
ensure the desired level of confidentiality protection.

It would be interesting to explore the impact of relaxing to bootstrap differential privacy
in the definition of other differentially private mechanisms, such as the exponential mech-
anism [21]. Other possibilities include exploring other relaxations of bootstrap differential
privacy, such as (ε, δ)-bootstrap differential privacy. Of particular interest would be to
explore the properties of bootstrap differentially private synthetic datasets, and their suit-
ability in a range of situations.

Another interesting line of investigation would be to explore the potential to exploit the
bootstrap method in differential privacy itself. Under an example of the bootstrap method,
properties of a quantity of interest on a population U are estimated by evaluating the quan-
tity on a large number of random samples drawn with replacement from a dataset D ⊆ U .
Given D, the bootstrap method may give good estimates for quantities of interest to dif-
ferential privacy, such as sensitivity as in the definition of the Laplace mechanism. One
example of this was discussed in Section 6.3, where the bootstrap distribution provides an
approximation of the data generating mechanism required to define and implement ran-
dom differential privacy.
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