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Abstract. We consider the re-identification of users of on-line social networks when they partici-
pate in several different on-line social networks, potentially using several different accounts. The
re-identification of users serves several purposes: (i) commercial use so as to avoid redundant mail-
ing to the same user; (ii) enhancement of the information available about these users by unifying in-
formation from different sources; (iii) consolidation of accounts by on-line social network providers;
(iv) identification of potentially malicious users and/or bots. We highlight that all this should oc-
cur within the bounds of the data protection and privacy laws as well as the users’ expectations on
such matters to avoid backlash. In this paper, we explore this situation first by a formalization using
the SAN model to conceptually structure information as a graph, which includes user and attribute
type nodes. This formalization enables us to reason on two issues. First, how to identify that two or
more user-accounts belong to the same user. Second, what gains in predictability are obtained after
re-identification. For the first issue, we show that a set-difference approach is remarkably effective.
For the second issue we explore the impact of re-identification on the predictability by two different
machine learning algorithms: C4.5 (decision tree induction) and SVM-SMO (Support Vector Ma-
chine with SMO kernel). Our results show that as predictability improves, in some cases different
SAN metrics emerge as predictors.

Keywords. Data Privacy, On-line Social Networks, Graph Representation, Re-Identification, User
Link and Attribute Prediction.

1 Introduction

Users subscribe to different on-line applications, such as On-line Social Networks (OSNs),
content providers and e-mail services because they offer complementary functionalities
which give a rich and diverse user experience on the Internet. Also, the information a user
defines in each application and their activity in those applications offers the potential to
construct an aggregated footprint [20]. A data analyst can then use such personal footprints
to improve targeting of commercial services or consolidate user-accounts within an on-
line application. Recent trends in the IT Industry which have led to the amalgamation of
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major Web application providers into the same group of companies set up the context for
such analyses. For example, Google now owns YouTube (formerly, one a search engine
and the latter, a video sharing service), as well as the Google+ social network. Facebook
has acquired WhatsApp. Should such corporations be able to analyze users’ usage-data as
different services become combined? Should users be provided with alerts of the inferences
obtained by such amalgamations? The organizations managing such personal data could
also benefit the user experience by re-identification. In particular, redundant marketing can
be avoided, and consolidation of accounts and an improved service could be offered. In this
paper, we evaluate and quantify how users of multiple on-line social networks who may
also have multiple user-accounts in the same OSN can be re-identified based on user-user
and user-attribute links which form a distinctive ‘footprint” pattern.

The original contributions of the paper are: (1) to verify that the prediction obtained from
the fusion of two (or more) OSNSs is superior to the prediction obtained from using them
separately; (2) to show how the privacy of an individual is closely related to the privacy
of others, so that the revelation of sensitive attributes from quasi-identifiers of a given in-
dividual can lead to the revelation of sensitive attributes of other individuals; (3) to show
how some attributes and social relations of OSN users’ may be predicted in one social net-
work, using data from a different social network; (4) the use in this context of a graph data
model called SAN (Social-Attribute Network) which allows us to represent and reason on
user-user relations and user-attribute relations in a unified scheme.

In order to address these challenges, two relevant issues have been tackled: firstly, how to
identify that two or more user-accounts belong to the same user, and secondly, what type of
gains in predictability are obtained after re-identification. For the first issue we show that a
set-difference approach is remarkably effective. For the second issue we explore the impact
of re-identification on the predictability by two different machine learning algorithms: C4.5
(decision tree induction) and SVM-SMO (Support Vector Machine with SMO kernel). Our
results show that as predictability increases, different combinations of SAN metrics emerge
as the predictors.

By generating such models we also study the possibility of attribute disclosure, consid-
ering how a combination of attribute values from several users may predict the values for
another users’ attributes, even when the latter have not been provided by the users in the
network. In this sense, such attributes play the role of quasi-identifiers (or predictors) for
other sensitive attributes. This has been previously studied in [8, 9, 10] with the aim of
empowering users and raising their awareness on the possibility of involuntarily revealing
their confidential attributes by publishing non-confidential ones.

The paper is organized as follows: Section 2 presents related work; Section 3 presents a
formalization of the problem, and briefly describes the machine learning algorithms which
we use for building predictive models. In this section, we also present the SAN model and
metrics used as features for learning and inference. For illustration, in Section 4 we provide
an example of two OSNs and their amalgamation, represented using the SAN model. In
Section 5 we apply the ideas proposed in the examples of Section 4 to a bigger dataset
derived from a real on-line social network. We demonstrate empirically that a set-difference
results in a remarkably effective re-identification prediction. Such re-identification then
enables building a larger SAN and expand on the prediction of user’s links and attribute-
values. However, by exploring using two state-of-the-art supervised learning algorithms
(C4.5, SVM-SMO), we observe that several predictors exist. This phenomena could be seen
as detrimental to the privacy of individuals but beneficial to the aim of completing the
footprint image of users. Section 6 summarizes the present work.
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Christian  h@sports.com Football, SF j@sports.com, o@myuni.edu
Joana o@myuni.edu Skiing h@sports.com

Figure 1: A sample social network of hobbies and ludic interests

2 Related Work

In a recent study, Singh et al. [20] analyzed the privacy risk of a user’s publicly avail-
able information from multiple on-line social applications, such as Google+ and LinkedIn.
Naturally, if more data is available, machine learning algorithms can usually build more
accurate classifiers, and if more predictor attributes are known about an individual, more
alternative classifiers can be constructed to infer an attribute-value pair that a user con-
siders confidential. Fig. 1 displays an example of a simple social network of hobbies and
ludic interests. The service provider may not know the identity of the users, as it only
knows the user-accounts identified by e-mail addresses. While none of this data may be
confidential, more data about the users of this OSN may enable inferring attribute val-
ues these users may consider confidential (for example Joana has not disclosed her city of
residence). The work by Singh et al. [20] considered as predictors only the attributes of
the user itself, without taking into account neighbor connections and neighbor attributes.
Singh et al. [20] define a footprint for OSN users which represents the union of the attribute-
value pairs derived from different on-line, public domain sources. Much more information
can be derived when the neighbor connections and neighbor attributes are also taken into
account [18, 19], but previous work considered separate OSNs. The SAN [11] model for-
malizes an on-line social network as the mathematical model of a graph. This model uses
two types of vertices: social vertices which represent the users and attribute vertices which
represent the attributes. Edges can exist between social vertices and between social vertices
and attribute vertices. Yin et al. [24, 25] presented a first version of the SAN model under
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the name of augmented graph. We remark that the SAN model for social vertices represents
user-accounts and not user’s themselves. For example, in Fig. 1, user Christian is known
to the service operator as h@sports.com (but it is possible that the same user created more
than one user-account). The original SAN represented all the information available as ver-
tices and edges. For example, in Fig. 1, solid edges represent social neighbors (the friends).
On the other hand, black dashed edges signify known information about a user-account,
such as o@myuni.edu has Skiing as sport (we represent different attributes with different
dashing styles). The attributes sport having the value Skiing is known as an attribute-value
pair for user-account o@myuni.edu. However, in this paper we are going to consider the
link between user Joana and her user-account o@myuni.edu as unknown. But we consider
such knowledge as an inferable link (however, if Joana participates in the same OSN with
two user-accounts, their identification, while profitable for the service provider may be
an invasion of privacy from Joana’s point of view). Similarly, if user-accounts in different
OSNs are identified as belonging to the same person.

The SAN enables the definition of a family of metrics for two classes of edges. The CN
metric, defined by Liben-Nowell and Kleinberg [13], is a metric on two social vertices (from
our perspective, two user-accounts) that returns a count of all their mutual connections.
The AA metric, defined originally by Adamic and Adar [1], takes as input a user and
an attribute and returns a count of all users and attributes which they have in common.
Backstrom and Leskovec [2] defined a link-prediction algorithm which used the number of
common neighbors as an edge attribute. Gong et al. [11] built on such previous work, us-
ing and extending the SAN model for link prediction and attribute inference. In their work,
Gong et al. [11] introduced the metric, CN-SAN, which given two users, returns all their
mutual connections plus their mutual attributes. We re-introduce the formal definitions
later in Section 3.5.

Estivill et al. [8] first demonstrated how to calculate personalized risk for users, by using
an information gain calculation on sets of attributes found heuristically using forests of de-
cisions trees derived from the OSN’s data. That is, the information gain is used to quantify
the risk for quasi-identifiers concerning a sensitive attribute designated by the individual
user. It is important to emphasize that the risk is a personalized risk value calculated for
each user u and a specified attribute-value pair. In our example, Joana may wish to keep
her place of residence confidential although others disclose it. This focus on the individual’s
choice of what is sensitive differentiates the approach from the typical method of building
a general model for all users which is then used to predict a risk value for each user. The
approach is tested only on the attribute-data (no evaluation is made of the links that appear
between users in social networks) [8]. Estivill and Nettleton [9, 10] extended this method [8]
to OSN graphs using Gongs SAN model. That is, the SAN metrics (see Section 3.5) can be
included as quasi-identifiers (they become derived features) to predict an attribute-value
pair a particular user considers confidential. The SAN metrics can be interpreted as the
strength of the relation between two social nodes or between an attribute-value pair and
a social node. In essence, such inference is predicting an edge of those which should be
illustrated as dotted lines in Fig 1, but which is not present. In our example, the connection
between o@myuni.edu (i.e. Joana) and h@sports.com (i.e. Christian), who has disclosed
San Francisco, may be sufficient to infer this confidential information about o@myuni.edu
as his/her residence. As we pointed out, in some cases, the relation between two user-
accounts is what is considered a sensitive attribute, and the SAN metrics can act as quasi
identifiers (of those edges illustrated as solid in Fig 1). Also, a specific attribute-value pair,
such as political orientation=left, religion=Muslim or illness=diabetes can be considered a sensi-
tive attribute. In the empirical section of this paper we extend beyond the information gain
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heuristic calculation [9, 10] and we use supervised learners (C4 . 5 [15], SVM-SMO [14, 22])
to identify predictors of sensitive attributes.

This can be said to have an analogy to the imputation of missing data in a dataset. Both of
these machine learning approaches enable the discovery of which attributes are more influ-
ential, or provide more information in the prediction of the class. That is, they identify pre-
dictor attributes; and thus, they have been used to protect confidential attributes in on-line
social networks [9]. Therefore, our approach could be considered analogous to decision-
tree-based missing-value imputation (DMI) [17], k-decision tree based missing value im-
putation (kDMI) [16] and k-nearest neighbour based imputation (kNNI) [3]. Although
missing value imputation approaches may also result in user-account re-identification, our
approach reveals what attributes or connections are more influential for re-identification.
The comparison of techniques for the assignment of missing values is outside the scope of
the present work.

3 Definitions and Formalization of the Problem

3.1 Encoding Social Networks as a SAN

As motivated already, we shall represent the i-th social network S* as a graph G* = (V*, E")
with two types of vertices. The first type of vertices in V* are user-account vertices; each
account with credentials in the social network S is such a user-account vertex. The sec-
ond type of vertices in V* are attribute-value vertices A’. The set of all the edges in S°
is denoted by E’. Note that each vertex in A’ is an attribute-value pair. For example, if
the attribute is income and the attribute-value may be low, medium or high, then the do-
main of income is {low, medium, high} and then all attribute-value pairs are vertices a; € A'.
When the attribute is self-evident, we may identify an attribute-value pair just with the
value. To emphasize, an attribute-value pair refers to an attribute having a specific value,
like income=medium. That is, for a particular user-account u, we know the attribute-value
pair, then we link the user-account vertex u in the social network S* with an edge in
E' between the vertex u and the corresponding attribute-value vertex representing the
attribute-value pair. For example, if we know user-account franco@myunit.edu’s income,
and that such income is medium, we place an edge between franco@myuni.edu and the
vertex income=medium. Note that there may be another attribute (for example promiscuity)
that also has the same domain {low, medium, high} as income, but franco@myunit.edu’s
promiscuity is low; so there will also be an edge in E* between the vertex representing
franco@myunit.edu and the attribute-value pair promiscuity=low.

Also, a connection between two user-accounts in the social network S* will be represented
by an edge in E*. A user may hold several accounts within the same social network, and
the credentials to participate through the account may be different for each account within
the same social network, and also within other social networks. Therefore, we will not
assume that the vertex corresponding to the same user-account identifier in different net-
works correspond to the same vertex u in all the graphs G*. In fact, we assume that each
G' = (V, E") is a sub-graph of a much larger SAN which also has edges of the type “user
holds user-account” but currently such information may not be known. For example, sup-
pose the user Samuel Franco uses franco@myuni.edu as a professional social network and
s@clubs.org for his sports interests (and therefore, he uses each e-mail address as his ID in
two different social networks). Thus, there is a user vertex Samuel Franco which we may
know exists, but we do not know the information that creates the edges in the super SAN
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Figure 2: We suggest a super-SAN for what previously have been separate SANs

income = low € S* — income = low € S7
income = medium € S* — income = medium € S7
income = high € S* — {income = high, income = very high}inS?
income = low € S7 — income = low € S*
income = medium € S7 — income = medium € S*
income = high € S — income = high € S°
income = very high € S7 — income = high € S*

Table 1: An illustration of a mapping defined between attributes that exists in two social
networks S% and 7.

that incorporates the sub-SANs(refer to Figure 2).

However, we assume there is a corresponding well-known mapping for the vertices rep-
resenting attribute-value pairs for compatible/same attributes that belong to two different
social networks. For example, suppose franco@myuni.edu uses another social network S7
and that in this network income is an attribute with domain {low, medium, high, very high},
then we assume that analysts have a correct mapping so that each attribute-value pair in
S7 can be mapped to the correct value pair in S*. For example, one such mapping is to map
values as in Table 1. The important point is that we assume that attribute-value pairs for the
same attribute (property) are easily identified across different social-networks. With these
definitions and notation we represent the relations between user-accounts and the known
properties (attribute-values pairs) for a set of several social networks.

3.2 Encoding Social Networks as an Adjacency List

The representation of the SAN is a conceptual model to organize the information on a social
network. It may actually be represented in slightly different forms in implementations for
performing analytics with its information. Typically, because the SAN is sparse it is repre-
sented as an adjacency list. We make the following observations, which are derived from
the adjacency-list representation of a SAN. All social vertices have a unique integer identi-
fier. All attribute-value pairs also have a unique integer identifier. The set of identifiers for
user-accounts and the set of integers for attribute-value pairs are disjoint.
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user income promiscuity
low | medium | high || low | medium | high
Franco || false true false || true false false

Table 2: Fragment of attributes for just one row of the tabular model for the social network
information.

The information for a user-account has two lists: the list of its social neighbors and the list
of its attributes. Thus, a user who holds a user-account in each SAN would have a record in
each. When a user participates with a user-account u' in one social network S!, we denote
by

(ul, {01,1, 01,2, e ,cl’tl,alyl, Cl1’27 e 7a1,81a }> (1)
the record in SAN S! , where each c1,; is a connection to another user-account in SAN S 1
and each a; ; is an attribute-value pair also in SAN S'. Analogously,

<u27 {62,17 C22,---,C215,021,022,...,02 55, }> (2)

is the record for user-account us in SAN S2.

3.3 Encoding Social Networks as a (Boolean) Table

We present another conceptual model that enables us to organize the information for the
context of machine learning. In this tabular model, we have a matrix M*® with Boolean
values, for the social network S* where each row corresponds to a user-account, and each
column corresponds to an attribute-value pair. Thus, in our running example, there will
be a row for franco@myuni.edu and there will be 3 columns to indicate the known in-
come=medium. For further illustration, Table 2 shows another set of columns for a second
attribute. In a real social network, the number of columns is large and the number of rows
corresponds to the number of user-accounts in the social-network. However, this tabu-
lar model corresponds to the canonical representation of instances in supervised machine
learning. In this case, a classifier is learned from the instances which are considered a
learning set. When a user does not disclose an attribute-value pair, and considers this in-
formation confidential, the data available for this user-account and the data about many
other user-accounts may enable inference of this user’s attribute-value pair. This could be
useful for account re-identification and to avoid duplicate marketing, or simply for issuing
an alert.

3.4 The Supervised Learning Methods

Once we have the social network conceptually defined as a tabular training set, we can
use machine learning methods to learn a classifier that predicts a particular attribute-value
pair that a user has not disclosed. The analyst has the freedom to permute which is the
dependent variable and which are the independent variables.

We have selected two methods which enable us to contrast different learning paradigms,
and which are considered to be among the top ten algorithms in data mining [23]: (1) Quin-
lan’s C4.5 algorithm [15] is widely used in data mining and induces trees in a top down
fashion by splitting attributes based on information gain, which in turn has a solid theo-
retical basis in Shannon’s information theory. This is particularly relevant for the present
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work; (2) The SMO [14] Support Vector Machine [22] is also widely used in data min-
ing and offers a contrasting theoretical basis for splitting the information based on finding
“support vectors” in the solution space.

The particular implementation we will use for Quinlan’s C4.5 algorithm is J48 as denoted
in the Weka software [12]. Canonical decision trees learners build the tree from the root
down. At each node expansion, the algorithm selects the attributes to be placed at the cur-
rent node of the tree using heuristics that aim at minimizing the height of the tree (and
thus increase generalization power). A common approach is to pick an attribute to ex-
pand a node based on information gain. There is a rationale to using the information gain,
namely information gain is correlated to how informative the attribute is for determining
the class (and such rationale has also been used for feature selection).

For the second learning method, SMO Support Vector Machines (SVM-SMO), the particular
implementation we will use is LIBSVM [5]. Using sequential minimal optimization (SMO)
as the learning process is an alternative to the original formulation that required to solve
a large quadratic programming (QP) optimization problem. Support Vector Machines find
a hyper-plane separating the class in a high-dimensional space where instances are taken
virtually, depending on the choice of a kernel base. Such hyper-plane is chosen as the one
that maximizes the margin. As a result of this learning (optimization), some of the instances
are identified as support vectors that are within the margin, or close to the margin and thus
define the classification.

3.5 The Metrics in the SAN

The tabular form of the SAN presented earlier suggests only attribute-value pairs as predic-
tors. We show in this section that the data for learning from the SAN includes metrics that
summarize influence within the local neighborhood of each social vertex. These features
(or additional columns to the tabular data model) are SAN metrics.

To describe these metrics we need some notation. First we need notation for the so-
cial neighbors of a user-account u. These are all other accounts in the social network
connected to u, and this 1-hop neighborhood will be denoted I';i (u) where I's; (u) =
{v|v is a social vertex and (u,v) € E}. This notation will also be used to describe the set
of all user-accounts that hold a particular attribute-value pair. In that case I's; (a = value)
is defined for an attribute-value pair, and is also the 1-hop neighborhood I';  (a = value) =
{v|v is a social vertex and (v,a = value) € E}. Again, when the attribute is evident from
the value, we write I's (a = value) as I's (value). Note the use of the subindex with s
to indicate these neighborhoods consist only of social vertices (user-accounts in the social
network). The subindex + stands for distance one neighborhood, so I's; will be all social
vertices at distance two.

The next definition of neighborhood does not restrict the vertices to social vertices and
therefore we no longer use the subindex s. Thus,

't (u) = Tsy(u) U {a = A| user u has value & for attribute a}.

The summarization of data into informative features leads to the definition of some met-
rics. As we suggested earlier, the number of neighbors in common between two vertices u;
and u; is indicative of high interconnectivity between these two vertices independently of
whether u; and u; are connected. Thus CN [13] (common neighbor) is defined as follows.

men (i, uj) = > w(u), 3)

w€l s (ui)NCsq (uy)
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where w(u) is a weight associated to user-account v (which could take into consideration
other relevance factors).

While CN considers only the interaction of u; and u; through social networks, the metric
CN_SAN [11] also includes the attributes in common.

meN_SAN (i, u;) = > ww). 4)

wel ¢ (u; )NC 4 (uy)

A metric widely used to construct a feature for attribute prediction is the Adamic-Adar
statistic [1] (AA) which evaluates the information between a social vertex v and an attribute-
value pair a = A.

w(uy;)

_— 5
o I8 T (0] ©

mAA(u,a:A): Z

w; Eley (u)NT oy (a=

Note again that m p a (, ) can be calculated even if the graph does not have the edge between
user-account v and the attribute-value pair a = A, nevertheless it counts all social neighbors
of u that have attribute-pair ¢ = A and weighs them by their neighborhood sizes. That is,
it scales the importance of a common neighbor by the inverse of the social degree of that
neighbor.

4 Multiple Network Membership

To aid the discussion, in this section we will provide some simple examples of SANs. In
Figure 3, we see five LinkedIn users and five attribute-value vertices which represent spe-
cific skills. We can see that data privacy is the most frequent skill (3 users have it) and all
other skills have two edges. We can also see that b@mycenter.org (the account used by
Bob) and c@inst.ac (the account used by Carol) have the most skills (3 apiece). Also, we
see a general tendency that users who are connected also tend to have edges to common
attribute-value vertices. For example, c@inst.ac and b@mycenter.org are connected and
also have two skills in common (data privacy and machine learning). For illustration, the
attribute skill will be considered a quasi-identifier (that is, we assume this is information
users make public and is available to infer other attributes). Also in Figure 3, we see two
attribute-value vertices which represent where people live (the attribute place of residence).
We see that a@myuni.edu (used by Alice), b@mycenter.org and c@inst.ac all are accounts
that indicate their users live in New York, and e@campus.edu (used by Eve) and the account
used by Dave both live in Chicago. To further the illustration, the place of residence attribute
values will be considered as confidential attribute-value pairs. That is, not all users divulge
this attribute.

In Figure 1 we saw seven Facebook user-accounts and five attribute-value vertices which
represent specific sporting interests. We can see that Football is the most frequent sport (4
user-accounts like it) and Skiing is the least frequent (only Joana likes it). As before, we
see a general tendency that user-accounts who are connected tend to have edges to com-
mon attribute-value vertices. For example, b@mycenter.org is connected to a@myuni.edu
and j@sports.com and all three of them like Football. However, if we compare Figure 3
with Figure 1 we see that the user-account sets and attribute sets vary. For our discus-
sion, in the Facebook example, the sporting interest attribute values will be considered as
quasi-identifiers. Here we assume people disclose this attribute to find others who they
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Eve e@campus.edu Cryptography, Statistics, CH d@aca.edu

Figure 3: A sample social network of professional connections where users disclose at-
tributes regarding their profession

can engage in the common interest. Also in Figure 1 we saw two attribute-value vertices
which represent where people live (place of residence). We see that the users of accounts
a@myuni.edu, b@mycenter.org and c@inst.ac live in New York, whereas Christian, John and
Sam all live in San Francisco. The residence attribute values will again be considered as con-
fidential attributes.

Figure 4 shows an amalgamation of the LinkedIn and Facebook graphs we saw in Figure 3
and Figure 1. We see that three user-accounts (Alice, Bob and Carol) who have an account

in LinkedIn also have an account in Facebook. Furthermore, all three of these users who
are connected in LinkedIn are also connected in Facebook.

4.1 Revisiting Re-identification with Several OSNs

Consider Figure 1 (our sample Facebook graph), and user-account Bob. Let us suppose that
residence is confidential for Bob and that the network predictive precision is under a given
threshold for Bob. That is, an analysis [8, 9] of the information available on the Facebook
network finds that there are no attributes that can be used to predict Bob’s residence with
a confidence above . However, Bob has two friends (Alice and Carol) who also live in
New York. It is known that people who are connected in social networks tend to live geo-
graphically close [6], so it could be inferred that Bob has a higher than average likelihood
of living in New York even though he has not stated it. Also, other attributes that Bob still
has public (such as liking Tennis) may be a high predictor of residence=New York. Then, if
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Figure 4: Two meta attribute-value nodes (OSN name), nine user-account vertices and
associated edges from the amalgamation of Figure 3 and Figure 1
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we consider the LinkedIn graph as well (Figure 3), the relation between Bob and Carol will
be potentiated, and as Carol likes Tennis, this would probably increment the likelihood that
there is a predictive model that infers that Bob lives in New York with certainty above the
threshold 6.

We illustrate the power of the features introduced in the previous section furthering this
example. First, we can calculate the neighborhoods. We will use the superscript F' to
denote that the calculations are with respect to the social network in Figure 1. The one-

hop social neighborhood of Alice is I'F’, (Alice) = {Bob, Carol}. Similarly, the one-hop social

neighborhood of Bob is 'Y, (Bob) = {Alice, Carol, John, Sam}. The one-hop neighborhood
(including attribute-value pairs) of these two user-accounts is as follows.

'Y (Alice)
= {Bob, Carol, sporting interest = Football, sporting interest = Skating,
residence = New York}
'Y (Bob)
= {Alice, Carol, John, Sam, sporting interest = Football,
sporting interest = Ping Pong, sporting interest = Tennis,

residence = New York}

While the user-accounts with the residence are as follows.
'Y’ (New York) = {Alice, Bob, Carol}.

Assuming all weights are 1, we can illustrate the three metrics with respect to the social
network also as seen in Figure 1.

mcN (Alice, Bob)”
= |{Carol}| = 1.

mceN_sAN (Alice, Bob)”

= |{Carol, sporting interest = Football, residence = New York}| = 3.
m A (Alice, residence = New York)"
= |{Carol, Bob}| = 2.

Under these conditions, the analysis to predict Bob’s residence, finds that the rule
connected to Carol — residence = New York

is a predictor.

4.2 Multiple OSNs

We now propose the generation of features from the metrics of several multiple overlap-
ping OSNs. For this, assume that the two social networks have a set C,, of common user-
accounts. That is, the e-mail, or some other identifier, is shared and the set C,, are users
who have explicitly revealed they are the same person. In our example, we see that Alice,
Bob and Carol have all used the same e-mail as their identifier for both social networks in
Figure 1 and Figure 3. Moreover, in our example, there are no users that are using a dif-
ferent credential across the network. Similarly, although the on-line social networks may
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have different ambitions, they share a set C,; of common attributes. For example the user’s
place of residence is a property that appears in both networks in Figure 1 and Figure 3 al-
though there are other properties specific to each of the social networks.

More interesting is the fact that we can consider the sub-SAN consisting of the intersection
of all the on-line social networks we are fusing. Each user-account in each sub-SAN has a
projected record; in particular, the original record in S* (given by Equation (1)) and the orig-
inal record in S? (given by Equation (2)) are projected. If the corresponding user-accounts
have not been identified, the record is shorter. The record is projected on the attributes of
the intersection. For SAN S! we have the following record.

record(u', S* N 5%)
= <U1, ({01,17 01,27 ceey cl,tl} N Cu) U ({al,la al,Qa ceey al,sl N Ca)}>

And similarly for SAN S2.

record(u?, S' N S?)
= <U2, ({62,1, 02,2, ey Cg,tz} N Cu) U ({a271, CLQ,Q, ey a2732 n Ca)}>

Essentially we project the records to the intersection of S! and S2.
If the user accounts are identified and u! = u?, then the record is projected to the intersec-
tion as

record(u', S' N S?)
= <(U1 = U2), ({(61717 6172, ey Cl,tl 5 6271, 62_’2, e aCQ,tz)} N Cu)
U({(a1,1,a2,1), (a1,2,a222), - - (a1, e, a1, c. )} N Ca)})-

We note that some attributes are potentially multi-valued because the user may have sup-
plied value a; ; for the first attribute of C, in SAN S! and a different value as; in SAN
52 (but in most instances this would be the same). In our running example the three users
in the intersection, Alice, Bob and Carol, all have matching values for the attribute in the
intersection.

Similarly, the connections may belong to identified or non-identified user-accounts. In
our simple illustration the three users Alice, Bob and Carol in the intersection have used
the same user-id across the two on-line social networks. So, their record in the intersection
SAN is simply of a list of connections to the others (in the adjacency list representation).

The following observation constrains the values of the metrics when the metrics are con-
sidered relative to a particular SAN. The metrics count edges (to social vertices, attribute
vertices or both). Also, the intersection SAN is a subset of each of the SANs being merged,
who themselves are sub-graphs of the union (or super-SAN). Therefore, the metric value
on the intersection is less than the same metric value on the SAN being merged, which is
less that the metric value relative to the super-SAN. For example,

1 2 1

mCN(ui,uj)S ns < mCN(ui,uj)S < mCN(ui,uj)

SlLJSQ

For illustration, if we have our Facebook and LinkedIn networks, we can construct the
metric CN* for Facebook and CN* for LinkedIn provided the user-accounts of u; and
are identified across the OSNs (we will discuss re-identification later).

Even the metric AA can be computed for all those attributes C, that the networks have
in common. However, the intersection graph would have fewer attributes than each SAN
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and the super SAN that results from the union will list all attributes in all the sub-SANS.
The numerator of the AA metric will also have the monotonic relationship of values: the
count relative to the intersection is a smaller value than the count relative to each of the
SANSs, and this value, in turn, is smaller than the count for the union of the SANs. If we
make the denominator constant to the users in C,, (users for whom we have identified their
user-accounts), the metric values are also monotonic for the metric AA.

To illustrate these concepts, we now return once more to our two examples of Figure 1
and Figure 3, which are combined in Figure 4. We see that three user-accounts (Alice, Bob,
and Carol) are members of both OSNs, and that all three are connected in both of the social
networks.

The neighborhoods for Alice and Bob with respect to Figure 3 are as follows.

I'Z (Alice) = {Bob,Carol}

I'Y (Bob) = {Alice,Carol}

I'%(Alice) = {Bob,Carol,skill = data privacy, residence = New York}
FJLF(Bob) = {Alice, Carol, skill = data privacy,

skill = machine learning, residence = New York}

Now we can evaluate the metrics for the OSN in Figure 3 as we did earlier for Figure 1.

mcN (Alice, Bob)® = |{Carol}|
= 1
mceN_SAN (Alice, Bob)® = |{Carol, skill = graphs,skill = data privacy,
residence = New York}|
= 4
m A (Alice, residence = New York)" = |{Bob,Carol}|
2.

If we consider the intersection SAN, because the only attribute in common is place of residence,
some of the counts are smaller. For example,

mceN_SAN (Alice, Bob)"™* = |{Carol, residence = New York}| = 2

However, the information of the combined OSNss show these neighborhoods.

TFE (Bob)
= {Alice, Carol, John, Sam},
I (Bob)
= {Alice, Carol, John, Sam,
skill = graphs, skill = data privacy, skill = machine learning,
interest = Football, interest = Tennis, interest = Ping Pong,
residence = New York}

Clearly, this is a richer picture (digital footprint) of the user-account Bob in terms of his
professional contacts and skills, as well as other (more informal) contacts and interests. All
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of this information could be used to identify user-accounts that are not currently identified
and to infer attribute-value pairs for those user-accounts with identified connections, as
well as existing but unidentified connections.

5 Illustrative Example

In this section we will first attack the problem of re-identification. Our results suggest that
it is possible to re-identify users across different social networks even if the intersection sets
Cy and C,, are relative small with respect to the size of the typical on-line social networks
we have in mind. For this, we will describe the results of applying a set-theoretical re-
identification technique. We follow this by the results of applying predictive models built
using machine learning techniques with SAN metrics as inputs. We investigate the sen-
sitivity of the CN, CN_SAN and AA metrics of Subsection 3.5 to their consideration with
respect to the sub-SANs involved. In particular, which of these metrics remain predictors
of a binary condition (whether a user-account has a certain attribute-value pair although
not disclosed or whether two user-accounts are connected although not yet disclosed).

5.1 Experimental Setup, Dataset and Metrics

For both approaches, we use a real dataset [11] to demonstrate the concepts proposed in
Section 3 and Section 4. The dataset infer-attrib/SEP4.txt is about applicants and their
background in areas of information technology. This data set has more than 5,000 user-
accounts and over 10,000 attributes. On average, each user-account has about 4 attributes.
Because attributes can have many values, the corresponding SAN will still have many
attribute-vertices. In the file for this SAN, each line represents the information of a user-
account in the adjacency-list format introduced before. We identified 7 attribute-nodes in
the corresponding SAN whose total count is 92 or more in the complete dataset.

For each user and each attribute, we took the position that the user wants to keep confi-
dential which indicates whether they have or don’t have the attribute. Data cleansing of
this data set consists of filtering by two key attributes: education and employment [10].

/i

Among the most frequent attributes, were “bangalore institute of technology”, “aspiag ser-
vice srl”, “th aachen”, “general studies” and ”post graduate in marketing”. From these
nodes, the edges are constructed from coincidences where people studied and worked,
and what they studied or do.

In order to facilitate the reproducibility of the experiments by other researchers, we have
made the Java programs and files publicly accesible at: https:// github.com/ dnettlet/

OverlappingOSNsUserPrivacy , under the GNU GENERAL PUBLIC LICENSE v3.0.

5.2 Re-identification using a Set-theoretical Approach

In this section we provide an illustration of the power of combining two social networks
to identify users of different user-accounts. In particular, we consider a user participation
with a user-account u! in one social network S! and another user-account »? in a second
social network S2. Can the combination of data from both social networks establish that
the two user-accounts correspond to the same person? Such re-identification [21, Page 123]
can have many variants, and our approach here can be seen as data matching [21, Page 133],
record linkage [7] or entity resolution [4].
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5.2.1 Empirical Evaluation of Re-identification using Set-theoretical Approach

Re-identification of users in multiple OSNs can be related to distance based record link-
age methods on databases [21, Section 5.4.8]. In distance based record linkage, the record
assigned in one file is the nearest record on the other file. In our case, we will match the
nearest records (user accounts) under Jaccard distance, after projecting them on the in-
tersection. That is, we will use the intersection of two SANs and the set C,, of common
user-accounts and the set C, of common attributes, and focus our attention on users whose
user-accounts are not identified. Recall that in this case, we project the records onto the
intersection of S and S2.

Can we identify when two user-accounts u! and u? correspond to the same user? We
argue that this is remarkably likely without having to resort to the calculation of metrics
of the SAN model either. We argue that we just need to find for each user-account u! the
user-account u? most similar in the intersection of S* and S?, where most similar is simply
the largest intersection between record(u1, S* N S?) and record (ug, S* N S?)L.

We substantiate this claim by the following analysis. A record of a user-account in the
intersection of S! and S? is nothing more that a subset of C,, U C,, when expressed as in
Equation (1). If we assume that the record(u', S' N S?) consists of r values and all records
are taken as being equally likely, the probability of another record matching it is

1
(HCu;JCaH)'

We note that if we let I = ||C,, U C, || be the size of common information between the two

SANs, then because
Ir (I ) Ir
< <,
T A\r 7!

we see that very rapidly most user-accounts will have a record which is different from
any other user as the number of connections or attributes that appear in both networks
increases. When [ is large and r is much smaller than 7,

T,T
<I> ~ (I/r—0.5)"e . ©)

r 2mr
This shows the rapid decrease in probability that, by randomly picking r connections and
attributes in the common space of the two SANs, we choose a given user with such a record.
Therefore, the probability of two user-accounts being the same given that r edges match,
rapidly increases with r.

Although not all connections nor attributes are equally likely, this still suggests that user-
accounts belonging to different users will display different records in the intersection of the
two SANs. Conversely, two user-accounts of the same user, even if not identified, will hold
very similar records. In the terminology of probabilistic record linkage [21, Section 5.5]. we
are saying that the probability of re-identification grows exponentially with the number r
of matches in the coincidence vector.

We created a procedure to split a SAN into two SANs randomly. The intention is to emu-
late the existence of two subSANs with some common identified users, but also with some
common unidentified users. Furthermore, the two subSANs will have a mixture of com-
mon shared attributes together with some non-shared attributes. Our splitting method re-
quires a value p,, € [0, 100] for the percentage of the total number of users that have uniden-
tified user-accounts. That is, if the original SAN has |U|| user-accounts, the two new SAN’s

IBecause ||S' N S?|| is constant across user-accounts, we are basically maximizing the Jaccard coefficient.
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will also have ||U]| user-accounts, but as many as p,||U||/100 user-accounts will be masked
completely in the second network. That is, a set P of private users with || P|| = p,||U]|/100
user-ids is selected randomly and a random permutation 7 : P — P is chosen by which
each network identifier ¢; in the first network is replaced by 7(c¢;) in the second network.
Records within P are randomly shuffled among themselves in the production of the second
network, so the order of file records for the second SAN provides no information about the
identification mapping 7.

The attributes are split separately, in this case a value p, € [0, 100] indicates the size of the
overlap of the two new SAN s relative to the original set A of attributes. Namely,

| A1 N As|
W = 100 x 2L 220 7
P A @)

Thus, this is implemented by randomly selecting a subset of the attributes of size || A1 N As||
from A and then tossing a binary coin for each remaining attribute to place it in one or
(exclusively) the other network. For example p, = 25 for 10,000 attributes means that the
networks will have 2,500 attributes in common and approximately 3,750 attributes will be
exclusively to one and not the other.

This setting allows us to have two SANs where we can attempt to discover 7. That is,
which is the corresponding user-account in the first network that corresponds to the other
user-account in the second network. Using the data of the entire infer-attrib/SEP4.txt SAN
with p, = 10% and p, = 20% we have two SANs where the challenge is to re-identify 520
user-accounts.

Our proposed re-identification method of a user-account u' simply searches in the other
SAN for a user-account u? that maximizes the intersection of the records. With the infer-
attrib/SEP4.txt SAN, one pass of this technique typically identifies 92% of the user-accounts
(less that 9% of user-accounts remain un-identified after a first pass). All user-accounts that
in the original SAN had more than 7 items are identified in the first pass.

When are records not identified? Usually when records have very little information. For
example, in one instance of our experiment, record 380 had only one connection in network
one to user-account 2535 (no attributes). In the other network, this user has a different id
(7(380) = 926) and has only one user-account as a connection (user-account 1237) and two
attributes. Both 2535 and 1237 happen to be un-identified user-accounts, but in the first
pass of the method 7(2535) = 1237 is identified.

In fact, every time the method identifies that a user-account in one network matches a user
account on the other, the set C,, grows. The identification of 92% of the user-accounts was
performed where each identification exercise is using the initial C,,. In fact, if one updates
the identified accounts and performs a second pass, all user-accounts are identified.

We also note that we recorded as unidentified in the first pass those user-accounts for
which there is not a unique best match. However, for all user-accounts, the first pass nar-
rows the identification to only two possibilities (there is a tie in the size of the intersection
of the records).

Figure 5 shows the results of repeating 30 times the random generation of two SANs from
the infer-attrib/SEP4.txt SAN, with different values for p, € {5,10, 15, 20,25, 30,35} (the
bars in the figure are 95% confidence intervals). The lower tics of the z-axis plot show
the value of p, while the upper tics of the z-axis show the size of the set P of private
users. In particular, we see in Figure 5a that when the number of the private users (those
who have not identified themselves in the two OSNSs) is larger, then more of those users
cannot be re-identified using only the common part of the two SANs. The plot in Figure 5a
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Figure 5: Illustration that the smaller the set of private users, the more those users are
identifiable
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would suggest that a larger number of unidentified user-accounts increases exponentially
the number of those that are safe from re-identification. But, surprisingly, in relative terms,
this is not so. Figure 5b shows that in percentage terms, the unidentified accounts are only
linearly related with a shift of about 5%. That is, when the two online social networks have
30% of unidentified users, about 25% of those users can be identified with this information
on the very first attempt.

We note again that in fact an exercise of identification of two user-accounts would proba-
bly be performed incrementally. That is, as soon as two user-accounts are identified as the
same, then the set C, would grow by one. The data of this experiment shows that in any
case, the vast majority of the unidentified users can be identified immediately giving us
many candidates by which to enlarge C,,.

5.3 Predictive Modeling Approach using SAN Metrics

In this section we contrast predictive models of the overall SAN with those of separate sub-
SANs. We build predictive models using machine learning techniques and incorporating
the CN, CN_SAN and AA metrics as independent variables. In the following we refer to
the two machine learning algorithms as J48 (the Weka implementation of Quinlan’s C4.5
algorithm) and SVM-SMO (Support Vector Machine, Sequential Minimal Optimization),
which have been described previously in Section 3.4.

5.3.1 Data Pre-processing

We identified, in the whole graph, the top five most highly connected users and the two
most frequent attributes. The most highly connected users will be labeled as topid-0, topid-1,
topid-2, topid-3, and topid-4. We refer to the two most frequent attributes as topatt-0 and
topatt-1. The objective is to predict, for a given user, to which top users it is connected and
which top attributes it possesses. We contrast this relatively easy task when the data for the
whole graph is available, against a split into two sub-graphs. The two sub-graphs will be
different because top users and frequent attributes are partitioned across the sub-graphs.
Using the data of the entire infer-attrib/SEP4.txt SAN we construct two subgraphs of it (S*
and S?) with the following properties.

1. Graph S! is the subgraph induced by topid-2, topid-3, and topid-4. That is, it includes
these users and all their neighbors, but excludes topid-0 and topid-1. It includes all in-
formation about topatt-0, but excludes topatt-1. Similarly, S? is the subgraph induced
by topid-0, and topid-1, and which excludes topid-2, topid-3 and topid-4. It also excludes
all information about topatt-0, but includes topatt-1.

2. We calculate the SAN metrics (CN, CN_SAN and AA) for all 5 top users and the 2 top
attributes.

3. The data set is organized so that the property to predict is whether a user is connected
or not to a topid and also whether a user has topatt as an attribute-value pair.

Predictive models: for S' we have three potential links to predict and one attribute (4
classifiers in this case). For S? we have two potential links to predict and one attribute (3
classifiers in this case). For the entire SAN we have 5 links and 2 attributes. (7 classifiers
in this case). However, we also tried predicting the users and attributes which were not
present in S* and 5?2, using the class labels from the entire SAN as outputs. Thus we had a
total of 21 predictive models (7 for each SAN).
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Classifier Prediction topid-0 topid-1 topid-2 topid-3 topid-4 topatt-0 topatt-1
Technique type Prec | Recall || Prec | Recall || Prec | Recall | Prec | Recall || Prec | Recall || Prec | Recall || Prec | Recall
48 No edge 0.976 | 0.732 || 0.884 | 0.633 || 1.000 | 0.829 || 0.852 | 0.767 | 0.982 | 0.966 || 1.000 | 1.000 || 0.955 | 0.889
J48 Edge exists || 0.583 | 0.955 | 0.371 | 0.722 || 0.400 | 1.000 || 0.417 | 0.556 || 0.905 | 0.950 || 1.000 | 1.000 || 0.273 | 0.500
SVM-SMO No edge 0.846 | 0.786 || 0.936 | 0.733 || 0.984 | 0.871 || 0.866 | 0.967 | 0.982 | 0.948 || 0.966 | 1.000 || 0.958 | 0.958
SVM-SMO || Edge exists || 0.538 | 0.636 || 0.484 | 0.833 || 0438 | 0.875 || 0.818 | 0.500 | 0.864 | 0.950 || 1.000 | 0.964 || 0.500 | 0.500

Table 3: Learning on 50% of all users of of the entire infer-attrib/SEP4.txt SAN (randomly
selected). Precision and recall reported on remaining unseen 50% users. The classifier aims
to predict whether the user has (or does not have) a social edge to one of the top users as
well as the two most frequent attributes.

Classifier | Prediction topid-0 topid-1 topid-2 topid-3 topid-4 topatt-0 topatt-1
technique type Prec | Recall || Prec | Recall || Prec | Recall | Prec | Recall || Prec | Recall | Prec | Recall || Prec | Recall
J48 Noedge [ 0.857 | 0.783 | 0.966 | 0.933 || 1.000 | 0.667 || 0.667 | 0.571 || 0.955 | 0.778 || 1.000 | 0.462 || 0.846 | 0.379
J48 Edge exists || 0.545 | 0.667 || 0.000 | 0.000 || 0.500 | 1.000 || 0.700 | 0.778 | 0.333 | 0.750 || 0.650 | 1.000 || 0.053 | 0.333
SVM-SMO | Noedge [ 0.895| 0.739 | 0.968 | 1.000 || 0.857 | 0.750 || 1.000 | 0.500 | 0.931 | 1.000 || 0.806 | 0.692 || 0.882 | 0.517
SVM-SMO || Edge exists || 0.538 | 0.778 || 0.000 | 0.000 || 0455 | 0.625 || 0.720 | 1.000 || 1.000 | 0.500 || 0.730 | 0.833 || 0.067 | 0.333

Table 4: Learning happens on S! (the subgraph induced by topid-2, topid-3, and topid-4,
excluding any information on topatt-1. The training set is 50% of randomly chosen users.
Precision and recall for predictions reported on other 50% of users as testing set.

For all social networks (the entire SAN, S* and S?), the users (social-nodes) were always
randomly split into two sets each with 50% of the users. One set was used as the training set
and the other as an unseen test set. To use the vanilla learning algorithms from WEKA [12],
all attributes were converted to nominal categories (in particular, the metrics values were
discretized to ranges of 10% percentiles). For the training set, the WEKA boost function was
used to balance the output class. In all cases, we report the precision and recall for instances
in the unseen dataset. Precision and recall have their standard definitions: Precision =
TP/(TP+FP) and Recall = TP/(TP+FN), Where TP is True Positive, FP is False Positive, and
FN is False Negative.

5.3.2 Results

The results support the hypothesis that an overall vision with social edges and attribute
knowledge from multiple graphs with common users improves the predictability of the
users’ social edges and their attributes.

For example, the prediction of whether a user has a social edge to topid-4 is not accurate
when using the data just from S or just from S?, but can be predicted well from the fusion
of these sub-SANs. The pattern is similar for whether a user has a social edge to topid-3:
this issue is poorly predicted with data in 52, but much better with the data of S! or from
the fusion of the SANs. Similarly, whether a user holds topatt-0 is poorly predicted from
data in S?, whereas predictions are more accurate for S!, but the accuracy is even higher
for the fusion of the SANS.

Table 3 displays the precision and recall for the entire SAN. Table 4 shows the results
for S* while Table 5 shows the results for S?. The tables evaluate how well the existence
or non-existence of a edge is predicted. With respect to the five top users, these SAN-
edge represent a connection between user accounts. With respect to the top two frequent
attributes, the SAN-edge represents whether the user has that value for such attribute or
not.

Results for Table 3 are based on the fusion of subgraphs S* and S2. We see that predicting
whether a user is connected or not to one of the five users with most connections has good
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Classifier Prediction topid-0 topid-1 topid-2 topid-3 topid-4 topatt-0 topatt-1
technique type Prec | Recall | Prec | Recall || Prec | Recall || Prec | Recall | Prec | Recall || Prec | Recall || Prec | Recall
J48 No edge [ 0.625 | 0.227 || 0.563 | 0.474 | 0.900 | 0.346 || 0.933 | 0.500 || 0.960 | 0.857 | 1.000 | 0.462 || 0.913 | 0.750
J48 Edge exists || 0.227 | 0.625 || 0.286 | 0.364 || 0.105 | 0.667 | 0.000 | 0.000 [| 0.000 | 0.000 || 0.222 | 1.000 || 0.000 | 0.000
SVM-SMO || Noedge [ 0.724 | 0.955 || 0.538 | 0.368 | 0.897 | 1.000 || 0.952 | 0.714 || 0.966 | 1.000 || 0.818 | 0.692 || 0.933 | 1.000
SVM-SMO || Edge exists || 0.000 | 0.000 || 0.294 | 0.455 | 0.000 | 0.000 || 0.000 [ 0.000 || 0.000 | 0.000 [ 0.000 | 0.000 || 0.000 | 0.000

Table 5: Learning happens on S? (the subgraph induced by topid-0, and topid-1, excluding
any information on topatt-0. The training set is 50% of randomly chosen users. Precision
and recall for predictions reported on other 50% of users as testing set.

predictability for all such popular users except for topid-2. Also remarkable is that fopatt-0
has improved its predictability with respect to the predictability with only S'. However,
the predictability of topatt-1 seems surprisingly low.

In Table 4 we see the predictive results for S'. This subgraph is induced by topid-2, topid-3,
and topid-4. Thus, it is not surprising to see that topid-3, and topid-4 display (relatively)
good predictive precisions. It is surprising that this subgraph has also a strong predictive
precision for topid-0 even when the social edge from a user to topid-0 has been removed.
This implies that the social edges to the other top users and to other attributes are very
informative and act as quasi-predictors for topid-0.

In Table 5 we see the predictive results for subgraph S2. This is the induced graph on
topid-0 and topid-1 and including topatt-1. We see that none of the users or attributes have a
significant predictability.

Contrasting the results presented from Tables 3, 4 and 5, we can see that amalgamating
the subgraphs improves the predictability of topid-1, topid-3, and topid-4 (but not so much
for topid-2). The edges for topid-0 can be predicted as well with the data of S! as with
the entire SAN, but they cannot be predicted as well with only the data of S%. Also, the
predictability of topatt-0 improves but not so for topatt-1 (however this may be due to the
low predictability of topatt-1, noting that this attribute exhibits a high class unbalance).

Figure 6 and Figure 7 show a histogram representation of the SMO results. These figures
plot the F-score derived from the precision and recall data from Tables 3, 4 and 5. The
F-score is derived from the precision P and the recall R by the following formula:

P xR

F:
'“"PrR

X 2. (8)

Thus the F-score provides a weighted measure taking into account both precision and re-
call.

Figure 6 shows the predictive results for identifying when there is no social edge (No edge)
to a top user, or when the user does not have a given (top) attribute.

Examination of Figure 6 (prediction that there is no edge), reveals that, for the five top
users and two top attributes, using the entire SAN enables the best results in 3 cases, equal
first in another three cases and comes second in only one. On the other hand, using St
comes first in 1 case, equal first in 2 cases and equal second in one case. Finally, using S*
comes first in 1 case, equal first in 3 cases and second in one case. Thus it is clear that
overall, the entire SAN provides the most information for learning a predictor to identify
when there is no edge. The sub-SANs S! and S? are less informative.

Fig. 7 shows the predictive results for when there is an edge that should be identified. This
signifies that a user is connected to a given (top) user or the user has a given (top) attribute.
It can be seen that the predictive accuracy in general is much lower than for predicting if
an edge is not there (Fig. 6). This is derived from the sparse nature of the SAN and its sub-

TRANSACTIONS ON DATA PRIVACY 12 (2019)



50 David F. Nettleton, Vladimir Estivill-Castro, Julian Salas

SVM - F-Score - NO

1

topid0 topid1 topid2 topid3 topid4 topatt0 topatt1

o

=
@

=3
~

=)
[N

HEntire SAN 1S’ 18?

Figure 6: F-Score for No edge in the SANs considered (entire SAN, S L'and S?) for all top
users and attributes
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Figure 7: F-Score for predicting existing edges for all SANs, top users and attributes
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Figure 8: Box-plot showing distribution of predictive precisions for different SANs and
classification types

SANSs. The graph is generally sparse and this sparsity results in class unbalance (although
we used the “boost” techniques as a pre-process to improve the training).

For the five top users and two top attributes, the entire SAN has the best results in five
cases, whereas S! comes first in two cases. The sub-SAN S? only obtains a non-zero score
in one case. However, the sub-SAN S! does show usefully high (above 60%) predictive
results for topid-3 topid-4 and topatt-1.

Fig. 8 shows a box with whiskers representation for the distribution of the predictive pre-
cision for different SAN datasets and classification attribute. It can be seen that the entire
SAN has the lowest respective spread of predictive precision (which is desirable) over the
quartiles and more of the spread is in the higher precision range. On the other hand, S*
performs much better than S? for the “Edge exists” class (the latter having no displayable
results) and somewhat worse than the entire SAN.

5.3.3 Top Input Factors used by Predictive Models

In this section we explore whether some subset of the available features are identified
as high predictors of a social edge (indicating a connection between users of the on-line
social network), or an attribute edge (indicating the user holds a certain attribute). This is
relevant for privacy as users may not be aware that such features are available in the data
for data mining from the structure of the SAN, and as the inferred edge may be regarded
as confidential by the user.

The definition of the —SAN metrics (refer to Section 3.5) are fundamentally edge counts.
While CN only accounts for social edges, the other two (CN_SAN and AA) involve the
attributes of social neighbors for given attribute-values. Hence, the information value of
CN_SAN and AA would be expected to be greater than plain CN for social-edge prediction
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as well as attribute prediction. We will now see that the results are concordant with this
expectation. The CN_SAN and AA metrics are identified as those which produce the most
informative features by the machine learning algorithms.

Table 6 contrasts which features are identified by the two learning algorithms as highly
informative and therefore, predictors of the corresponding SAN edge. For the J48 classifier,
the features are ordered by their frequency of use in the induced rules (note that J48
uses an information gain calculation to decide which features to include), and for the
SVM-SMO classifier the features are ordered by the attribute weightings generated by the
algorithm. The information in Table 6 contrasts how the source SAN influenced which
are regarded as the most influential (high predictive value) features. For example, the
same classifier learning algorithm J48 generates classifiers from the entire SAN where
the value of the mcp_gaN(topid-3,u) metric and mcN_gaN(fopid-4,u) metrics are
considered high predictors of whether a user has the attribute topatt-0. But, when the
source of information is the subgraph S, the highest predictor is the value of the metric
mceN_SAN (topid-2,u). Whether a user has a social edge with topid-0 is also interesting.
With the entire SAN as input, the J48 ranks several metrics (CN, AA and CN_SAN) as
predictors, while when restricted to the sub-SAN S, the same algorithm finds only the
metric mcon_gaN (fopid-1,u) as a predictor. The SMO algorithm on the other hand also
used a diversity of AA, CN and CN_SAN metrics as predictors for topid-0, whereas in S?,
the same algorithm used mcpn_gan (topid-1,u), mon_gaN (topid-4,u), ma a (topid-1,a),
m A (topid-2,a), and mp p (topid-4, a). Thus, although there are similarities in the choice of
features derived from metrics that are the main predictors, the models for the sub-SAN 5!
identified fewer predictors.

We note that the largest number of times a feature derived from a SAN metric was selected
as a predictor in the entire graph was four times for mcny_g AN (topid-2, u), mp A (topid-0, a)
and mp a (topid-4,a). Also, the largest number of appearances is 4 when the data is
S', but giving a different set of features identified as predictors: mcp;_gan (topid-1,u),
m A (topid-1,a) and mp A (topid-2,a). Thus, it appears that the algorithms have used
different sub-metrics but the same metric families (CN_SAN and AA).

6 Summary and Conclusions

To summarize, we can say that re-identification in on-line social networks seems to present
a significant risk for those who would like to remain un-identified from one on-line social
network to another. Particularly, if such users are connected to a few users who do not
wish to reveal they are the same owner of two corresponding user-accounts. This seems to
be in radical contrast with the notion of k-anonymity. The connections in common (to user-
accounts) and attributes between one network and another, even if several connections are
missing or some attributes are not revealed from one network to another, are sufficient to
re-identify the user. This is mainly because to whom a user connects is a finger-print that
even if slightly distorted is sufficiently different from any other user fingerprint, so that
matching most similar finger-prints re-identifies the user-accounts.

Figure 5 of Section 5.2 showed that the re-identification accuracy was 75%-95% over corre-
sponding overlap sets with the overlap going down from 30% to 5% across the two graphs.
That is, a smaller overlap set size gives a greater re-identification precision. Interestingly,
across the different overlap values, about 5% of users with non-identifiable ID are always
re-identified in the first attempt.

On the other hand, in terms of predictive precision of the user links and attributes, Fig-
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Edge Classifier | Entire SAN St
mCN_SAN(tOpid—3, w),
topatt-0 J48 meN_oAN (fopid-4, ) mceN_SAN (topid-2,u)
' mCN—SAN(tOPZd 0, u),
mceN_SAN (topid-2,u) mceN_SAN (topid-1,u),
mCN—SAN(tOPid_S’ u), mCN_SAN(fOPId -2 u),
topatt-0 | SVM-SMO mCN_SAN(tOPid-4, u), mCN_SAN(topzd -3,u),
mp A (topid-1,a), mceN_SAN (topid-4,u),
mAA(tOpid—4, a) mAA(topz:d—O, a),
. ma A (topid-2, a)
mAA(tOPZd-O, CL),
mcp (topid-0,u),
topid-0 J48 mceN_SAN (topid-3,u), mceN_SAN (topid-1,u)
mCNisAN(tOPZ'd—Z, u),
mceN_SAN (topid-1,u)
mp p (topid-0,a),
mAA(tOpid—I, a),
mAAgOP?Z‘i ) “;' mCN—SANEtOP”l 5 u;
L : mAA opia-«,a), mCN—SAN fOpl u
topid-0 | SVM-SMO N (topid-0, ), men._ eqn (topid-2,u),
mCN(topid-& u), m A (topid-1, a)
mCNfsAN(topz'd—l, u),
mcN_SAN (topid-2, u)
mcp (topid-2, u), o
) m A (topid-4, a), mCN(tOpl.d 2,u)
topid-4 J48 . mp A (topid-1, a),
mcN (topid-3, u), mn & (topid-2. a)
mc (topid-0, u) AAPOPIA=S,
mcp (topid-2, u), o
mCN_s AN (fopid-2,u), MCN-SAN fopid-1, v),
, m p A (topid-0, a), MCN .- SAN (fopid-4,u),
topid-4 | SVM-SMO mp A (topid-1, a),
ma A (topid-2, a), .
3 ma A (topid-2, a),
mAA(tOPZd -3 CL), m (topid—4 a)
m A (topid-4, a) AA ’
topid-3 48 mcp (topid-2, u)
mc (fopid-2, u)’,
THCN( SAN(tOP)Zd 2, u),
o ; m A (topid-0, a
topid-3 | SVM-SMO nip A (topid-1, a),
ma A (topid-2, a),
ma A (topid-4, a)

Table 6: Top input factors used by predictive models for selected graphs, topids and

topatts.
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ure 8 of Section 5 showed that the average precision for the entire SAN (the fusion of both
sub-graphs) for all top users and attributes was between 60% and 75% for the second and
third quartiles (that is, the bulk of the distribution). However, for S! the average precision
for the same quartiles was down to between 35% and 70%, and for S? the precision was
residual and not displayed. Thus the amalgamation of S and S? produced a very signif-
icant increase in the average predictability of the user and attribute links. Finally, Table 6
showed that the top predictors were found to be the SAN metrics CN_SAN and AA, which
confirms the effectiveness of the SAN derived metrics.
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Notation

This section serves as a reference for notation consistency.
S We use S for a social network and S? for the i-th social network.

V We use V for a a set of vertices and V? for the vertices of the i-th social network.

TRANSACTIONS ON DATA PRIVACY 12 (2019)



56 David E. Nettleton, Vladimir Estivill-Castro, Julian Salas

E We use FE for a a set of links and E* for the edges of the i-th social network.

connections We try to say two users are connected in a social network and avoid two users
are friends (specific to Facebook), two users are linked (specific to LinkedIn), two users
are related (somewhat confusing).

© An account in the social network.

a An Attribute value pair.

A A value for an attribute, we have a macro A

user I am still uncertain on how to use the word user, I would prefer to use user-account
vertex we use this for the basic elements of a graph and avoid node

node we use this for internal tests on attributes in a decision tree, while the class determi-
nation happens at a leaf of the decision tree

edge we use this for the basic elements of a graph and avoid link, arc.
skill We have a macro for names of attributes.

data privacy We have a macro for values of attributes.

Franco We have a macro for names of people.

| | The cardinality of a set.

I'() neighborhood in a graph
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