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Abstract. Synthetic data generation has been proposed as a flexible alternative to more traditional
statistical disclosure control (SDC) methods for minimising disclosure risk. However, a barrier to the
use of synthetic data is the uncertainty about the reliability and validity of the results that are derived
from these data. Surprisingly, there has been a relative dearth of research on how to measure the
utility of synthetic data. Utility measures developed to date have been either information theoretic
abstractions or somewhat arbitrary collations of statistics, and replication of previously published
results has been rare. In this paper, we adopt a methodology previously used by Purdam and El-
liot (2007), in which they replicated published analyses using disclosure-controlled versions of the
same microdata used in said analyses and then evaluated the impact of disclosure control on the an-
alytic outcomes. We utilise the same studies as Purdam and Elliot, based on the 1991 UK Samples
of Anonymised Records, to facilitate comparisons of synthetic data utility between different utility
metrics.
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1 Introduction

With the increasing centrality of data in our lives, societies and economies and the drive for
greater government transparency and release of open data, there has been a concomitant
increase in demand for public release microdata. This demand cannot always be met by
using traditional statistical disclosure control (SDC) techniques as SDC techniques can - if
they are to provide sufficient confidentiality protection - strongly impact data utility. This
is illustrated by Purdam and Elliot (2007) who tested the data utility of two SDC techniques
– local suppression, which creates missing values to replace some of the key variables, and
Post-Randomization (PRAM) which swaps categories for selected variables based on a pre-
defined transition matrix – and found that these SDC techniques had a significant impact
on a sample of published analytic outputs.
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An alternative to traditional SDC techniques is synthetic data. The idea of synthetic data
was first introduced by Rubin (1993), who proposed multiply imputing an entire dataset,
so that no real micro-data would be released. As an alternative, Little (1993) introduced
a method that would only replace some of the variables in the observed data, referred to
as partially synthetic data. Since fully-synthetic data does not contain any original data,
the disclosure of sensitive information from the synthetic data is much less likely to occur.
Likewise for partially synthetic data, the sensitive values are synthetic, and thus disclosure
of sensitive information is also less likely to occur compared to the original data.

However, to be useful, synthetic data must yield valid statistical analyses. Validity is
important since synthetic data can be used to study policy-relevant outcomes and inform
policy decisions; for example, the US Census Bureau released a synthetic version of the
Longitudinal Business Database (Kinney et al, 2014; 2011) and in Germany a synthetic ver-
sion of the IAB Establishment Panel has been released (Drechsler et al, 2008a; 2008b). Both
of these datasets provide relevant information on businesses in their respective countries,
and the quality of these data are of great importance to data users. If the synthetic data
produces results that are distorted, incorrect economic conclusions could be drawn. Re-
iter (2005b) argues that the validity of synthetic data is dependent on the models used to
generate them and will not reflect relationships that are present in the original data but not
represented in the data generation model. He, also, points out that if the distributional as-
sumptions built into the model are incorrect, then these incorrect assumptions will also be
built into the users’ analysis models. The importance of this issue is exacerbated by the fact
that the vast majority of utility tests for synthetic data are not necessarily representative of
the work that data analysts intend to undertake.

Rubin’s initial proposal for producing synthetic data was based on multiple imputation
(MI) techniques using parametric modelling. Originally, MI was created by Rubin in the
1970s as a solution to deal with missing data by replacing missing values with multiple
values, to account for the uncertainty of the imputed values. Recent research has exam-
ined non-parametric methods - including machine learning techniques - which are better
at capturing non-linear relationships for generating synthetic data (Drechsler and Reiter,
2011). These methods include classification and regression tress (CART) (Reiter, 2005), ran-
dom forests (Caiola and Reiter, 2010), bagging (Drechsler and Reiter, 2011), support vector
machines (Drechsler, 2010), and genetic algorithms (Chen et al, 2016). CART, originally
developed by Breiman et al (1984) as a non-parametric modelling tool based on decision
trees, has become the most commonly used nonparametric method for generating synthetic
data. For example, Kinney et al (2014) used CART to generate synthetic data for some of
the variables in the US Longitudinal Business Database.

To generate synthetic data from a CART model, Reiter (2005) explains that each variable
is fitted to a tree that splits into branches based on a series of binary splits. These branches
continue to divide until they terminate in leaves. The values in the terminal leaf represent
the conditional distribution of the predicted variable given the covariates used to grow the
tree. The synthetic data is then generated by sampling from the leaves. Reiter (2005) notes
the advantages of the CART synthetic data method, including (1) straightforward imple-
mentation especially for non-smooth continuous data, and (2) providing a semi-automatic
way to fit the most important relationships in the data (p.12). Previous work by Drechsler
and Reiter (2011) found that when comparing different methods of machine learning for
synthetic data generation, CART yielded the highest data utility. They tested the utility
by comparing distributions of different variables and coefficient estimates from a fitted lo-
gistic regression model. Likewise, Nowok (2015) compared different tree-based synthetic
datasets against a parametric synthetic dataset by using coefficient estimates from a linear
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regression, a logistic regression, and a Poisson regression to test data utility. Compared to
the other tree-based synthetic data approaches, Nowok found CART performed better, but
not as well as the parametric method. Previous studies tend to be limited in their assess-
ment of data utility in that they typically choose only a limited number of analytic models
and outcomes, and additionally they tend to analyse said models using a single metric (e.g.
confidence intervals).

Synthetic data was originally designed under a multiple imputation framework, how-
ever, new rules around the calculation of the variance (Raab et al, 2016) have raised the
question of whether a singly imputed synthetic dataset is sufficient to produce high lev-
els of analytical validity. Raghunathan et al (2003) and Reiter et al (2002) introduced the
classic combining rules for multiply imputed synthetic data in the early 2000s and for over
a decade they were the only set of combining rules available until Raab et al (2016) intro-
duced a new approach for calculating variance estimates for fully synthetic data. Unlike
the Reiter/Raghunathan variance equations, the Raab variance equation can produce valid
variance estimates for singly imputed fully synthetic data. MI can be very time consuming
to produce in comparison to SI. However, the main benefit of MI is that it accounts for the
uncertainty of imputations. However, if the Raab variance equation can account for the
uncertainty of a single imputation synthesis, this could be potentially a boon to the dis-
semination of synthetic data. Another argument for the exploration of SI synthetic data is
given CART’s tendency to overfit, the multiples of CART might not be as diverse as those
of traditional parametic MI therefore reducing the benefit of multiple imputation. While
Drechsler and Reiter (2009) and Reiter (2002) have explored how the number of imputa-
tions has affected parametric synthetic data utility, no such study has been done for CART
synthetic data. If CART synthetic data does not have a congruent utility increase alongside
a disclosure risk increase, then multiple imputations of CART may not have a beneficial
risk-utility trade-off.

In this paper, we focus on assessing how well singly and multiply imputed CART gener-
ated synthetic data can replicate real world analyses. Following Purdam and Elliot (2007),
we replicate 9 different sets of analyses involving 28 different tests and models to evaluate
the utility of CART synthetic data. The remainder of this article is organised as follows.
In Section 2 we discuss some alternative definitions of data utility, give a brief overview
of data utility tests, and state the research questions addressed in this paper. In section 3
we describe the dataset being utilised and provide an overview of methods used for syn-
thesising and combining the data. Additionally, we describe the methods used to measure
synthetic data utility. Section 4 presents the results of our evaluation and discusses the
effectiveness of different utility metrics and the differences in SI and MI CART synthetic
data, leading to the overall conclusion in Section 5.

2 Data Utility

To describe data utility, Winkler (2005) introduces the terms analytically valid and analyt-
ically interesting. He classifies a dataset as analytically valid if the following criteria are
approximately preserved:

• Means and covariances on a small set of subdomains

• Marginal values for a few tabulations of data

• At least one distributional characteristic
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Winkler (2005) classifies a dataset as analytically interesting if it provides at least six vari-
ables on important sub-domains that can be validly analysed. However, both concepts,
analytically valid and analytically interesting, do not answer the most important question
– will the perturbed dataset produce the same results as the original for analyses that are of
most interest to data users? Winkler asserted that it would be impossible to create a file that
satisfied a large number of analytic needs while still remaining confidential. A side effect
of this proposition is that Winkler’s definition of utility does not directly address the needs
of the analysts or their research, but rather attempts to address issues of the dataset itself
- it is data-focused. However, it should be noted that when Winkler’s work was published
synthetic data was still in its infancy. With the increasing popularity of data synthesis and
its potential to produce low risk datasets, a more ambitious perspective on approaching
data utility is warranted.

Purdam and Elliot (2007) define the loss of analytical validity as occurring when ”a disclo-
sure control method has changed a dataset to the point at which a user reaches a different
conclusion from the same analysis” (p. 1102). This definition is more in keeping with the
analysis-focused approach to data utility, which we also adopt here. While the Winkler def-
inition of data utility is certainly easier to assess than Purdam and Elliot’s definition, it
could classify data as having high utility but allow for analyses that come to erroneous
conclusions.

2.1 Common Utility Measures

Drechsler and Reiter (2009, p.592) classify two existing types of utility measures for syn-
thetic data:

1. Comparisons of broad differences between the original and released data (broad mea-
sures)

2. Comparisons of differences in specific models between original and released data
(narrow measures)

Traditionally, most synthetic data applications have used narrow measures of data utility.
For example, Drechsler et al (2008a) and Drechsler and Reiter (2009) used confidence in-
terval overlap, a narrow measure developed by Karr et al (2006), to test the utility of both
fully and partially synthetic data. Alternatively, broad measures tend to quantify some
kind of statistical distance between the entire original and released datasets, utilising mea-
sures such as the Kullback-Leibler divergence (Karr et al, 2006) or the Hellinger distance
(Shlomo et al, 2015). More recently, Snoke et al (2016) adapted Woo et al’s (2009) Propensity
Score Measure mean-squared error (pMSE), to be compatible with synthetic data, by creat-
ing two alternatives to the traditional pMSE: the pMSE ratio and the standardised pMSE
(See Snoke et al for more details).

Both broad and narrow utility measures have their weaknesses. Karr et al (2006) reflect
that narrow measures are really good for certain analyses, but they do not give a complete
picture of a dataset’s utility and that broad measures are ”pretty good” for many analyses
but ”really good” for none. In essence we need a utility measure that bridges the gaps
between the broad and narrow utility measures, that avoids the traps of being theoretic
abstractions, while showing utility for a multitude of data uses.

Purdam and Elliot (2007) introduce a more hands-on approach to evaluating data utility
using narrow measures but across a sample of analyses, so as to avoid the trap where nar-
row measures report artificially high or low utility measures based a single set of analyses.
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Their method could be considered a systematically sampled narrow measure, as opposed
to a traditional ad hoc narrow measure. Using the 1991 Sample of Anonymised Records
(SAR) from the British census, they examined a sample of twenty-three published papers,
replicated the analyses for ten of them on SDC perturbed data, and compared their re-
sults to the original (published) results. This method for evaluating the utility of perturbed
data will henceforth be referred to as the Purdam-Elliot methodology. The Purdam-Elliot
methodology has the benefit of testing data utility by using analyses that have actually been
published and which are of interest to a substantive audience, as opposed to evaluations
based on hypothetical analyses (such as those used by Nowok (2015)). Using particular sets
of analyses to test data utility has been used in previous studies to evaluate synthetic data
(Drechsler et al, 2008b; Lee et al, 2013), however, the Purdam-Elliot methodology provides
wider range of applicability due to the volume and variety of analyses that can be used.

In this paper, we use the same base data and same analyses as Purdam and Elliot (2007)1

(See Appendix A and B for description of the analyses) to evaluate the utility of synthetic
data. This approach is beneficial for two reasons: first, the papers that they selected show-
case a variety of analytic techniques, including cross-tabulations, logistic regression, probit
regression, and multi-level modelling; second, it will allow direct comparisons of the syn-
thetic data results with the SDC controlled data results presented in Purdam and Elliot
(2007). This paper will address the following research questions:

1. How does CART synthetic data perform when using the Purdam-Elliot methodol-
ogy?

2. How does the Purdam-Elliot methodology compare to numerical utility metrics in its
application to synthetic data?

3. Does singly versus multiply imputed CART synthetic data affect utility?

3 Data Sources and Methods

Following Purdam and Elliot (2007), we use the 1991 individual SAR as our base dataset.
This dataset consists of 1,116,181 records, which represents a 2% sample of the population
of Great Britain. The SAR is available to researchers under an end user license and con-
tains information on topics such as age, gender, ethnicity, household size, household type,
employment, and health2. We utilize three versions of these data: 1) the original 1991 SAR
without any perturbation as a control; 2) ten singly imputed (SI) CART-generated synthetic
versions of the 1991 SAR and; 3) a multiply imputed (MI) CART-generated synthetic ver-
sion of the 1991 SAR with m=10.

We use ten different singly imputed synthetic datasets, to reduce the risk of drawing a
very good SI dataset by chance. For each singly imputed dataset the utility metrics were
calculated separately.We then averaged the results across the 10. Realistically, if a data
producer were to be using single imputation then their goal would be to release only one
such dataset, and therefore an analyst would only have one dataset with which to run their
analyses. However, given that this is an empirical test, it is more robust to average across
multiple draws.

1Of the original ten papers that were reanalysed in Purdam and Elliot (2007), only nine were used for this
paper due to problems with replicating the 10th.

2The 1991 SAR can be found at https://www.ukdataservice.ac.uk

TRANSACTIONS ON DATA PRIVACY 13 (2020)



6 Taub, Elliot, Sakshaug

3.1 Creation of Synthetic Data Files

CART is used to synthesise each variable of the SAR data (see appendix C for synthesising
order and appendix D for descriptions of the variables). Due to the size of the dataset and
the subsequent computational load, the data was randomly divided into 100 subsets and
each subset was synthesized independently for both m=1 and m=10. Then the 100 samples
were aggregated together to form the entire synthetic dataset.

The CART synthetic data were generated using the r-package synthpop version 1.3-0 (Nowok
et al, 2016). The method for synthpop was set to ”CART”, which is derived from the rpart
package. For comparison, the original (unperturbed) SAR is used as a control to ensure
that all analyses are correctly replicated. The evaluation considers both a singly imputed
CART synthetic dataset (m=1) and a multiply imputed CART synthetic dataset (m=10). The
missing data from the original 1991 SAR are left unchanged in the synthesis process and no
attempt is made to impute them. We used the default setting of synthpop, which included
proper=FALSE, which means the synthetic data was generated without drawing from the
posterior distribution. This is important to note since it can lead to some bias when using
the Ragunathan et al (2003) and Reiter (2002) combining rules described in 3.1.1.

3.1.1 Imputation Combining Rules

To analyse the MI CART synthetic datasets, the combining rules from Ragunathan et al
(2003) were employed, along with the variance equations from Reiter (2002) and Raab et al
(2016).

A point estimate of the target parameter derived from the synthetic data can be obtained
through the following expression:

q̄m =
1

m

m∑
i=1

qi with i = 1, ...,m (1)

where q̄m is the estimated mean of the individual estimates qi derived from each of the m
synthetic populations.

Ragunathan et al calculate the total variance of the point estimate as follows:

Ts = (1 +m−1)bm − v̄m (2)

where v̄m refers to the mean of the within-imputation variances and bm refers to the between-
imputation variance. The mean of the within-imputation variance is calculated as:

v̄m = m−1
m∑
i=1

vi (3)

where vi is the estimate of variance of the point estimate based on synthetic dataset i. The
between-imputation variance is calculated as:

bm =
1

m− 1

m∑
i=1

(qi − q̄m)2 (4)

Reiter (2002) notes that using equation 2 to calculate the total variance can lead to a negative
variance and proposed the following fix to account for this problem:

T ∗
s = max(0, Ts) + δ ∗ (

nsyn
n

v̄m) (5)
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where δ = 1 if Ts < 0, and δ = 0 otherwise. This means that if the variance from equation 2
is positive it would not be altered and if negative it would be adjusted. As yet another way
of estimating variance for synthetic data, Raab et al (2016) suggested the following:

Ts = v̄m(1 +
1

m
) (6)

With the Raab combining rules v̄mis intended to account for both the between imputation
variance and the within imputation variance, therefore bm is omitted from equation 6. Since
bm is not included in equation 6, there is nothing inherently specific to multiple imputation
in equation 6, and therefore one can obtain valid variance estimates for singly-imputed
synthetic datasets. This is in contrast to equations 2 and 5, which are specifically designed
for making inference from multiply imputed synthetic datasets. It should be noted that the
Raab et al combining rules were created for data derived from a simple random sample
(SRS). The SAR is not strictly a SRS, but rather a stratified random sample. However, the
stratification is minimal and we concur with Marsh (1993) who argues that the 2% individ-
ual SAR can be treated as a SRS.

In this article, we calculate point estimates for the CART m=10 synthetic data using equa-
tion 1 and calculate the variance using both equations 5 and 6. For the singly imputed
CART synthetic data we calculate the variance using equation 6. We have selected to use
both sets of combining rules since they have different advantages. The Reiter/Ragunathan
combining rules are more established in the synthetic data literature. However, Raab et al
(2016) makes a clear case that the previous rules are not needed and there is the additional
advantage that the Raab rules can be used for SI synthetic data, allowing a direct compar-
ison between MI and SI synthetic data. Since one of the utility metrics that we employ is
based on overlapping confidence intervals, the way in which the variance is estimated can
potentially make a significant difference in the evaluation. Thus, it’s important to compare
the impact of the different combining rules.

3.2 Utility Metrics

We assess the utility of synthetic data using three measures: confidence interval overlaps,
ratio of estimates, and severity ratings. To calculate the confidence interval overlap (CIO)
we use 95% confidence intervals. The CIO is calculated as:

Jk =
1

2
(

U,k − L,k

Uorig,k − Lorig,k
+

U,k − L,k

Usyn,k − Lsyn,k
) (7)

where U,k and L,k, denote the respective upper and lower bounds of the intersection of the
confidence intervals from both the original and synthetic data for estimate k, Uorg,k and
Lorg,k represent the upper and lower bounds of the original data, and Usyn,k and Lsyn,k

of the synthetic data. The CIO is then averaged across all coefficients in the model to give
an overall mean for each model. Likewise, for tabular data all cells are averaged to give a
mean CIO. Separate CIOs are calculated for each of the different combining rules used for
variance estimation.

The ratio of estimates (ROE) is a new measure that is calculated by taking the ratio of the
synthetic and original data estimates, where the smaller of these two estimates is divided
by the larger one. Thus, given two corresponding estimates (e.g. totals, proportions), where
y1orig is the estimate from the original data and y1synth is the corresponding estimate from
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Severe The results are sufficiently different
Moderate Change in emphasis rather than a completely different finding
No effect Indicates that the figures may be slightly different but the overall pattern

is not, indicating the same conclusion can be consistently drawn

Table 1: Key for Severity Ratings

Figure 1: An Example of the Paper could Effect Severity

the synthetic data, the ROE is calculated as:

min(y1orig, y
1
synth)

max(y1orig, y
1
synth)

(8)

If y1orig = y1synth then the ROE = 1. Given that regression models show more complicated
results, such as coefficients with positive and negative values, we will be restricting the
ROE to cross-tabs and frequency tables. This allows the ratio of estimates to provide a
value between 0 and 1. For each categorical variable the ratio of estimates are averaged
across categories to give an overall ratio of estimates for each synthetic variable. We refer
to both ROE and CIO as utility metric scores.

In contrast to the utility metrics described above, the severity ratings take a more holis-
tic approach to assessing data utility. Using the key in Table 1, which is taken from the
definitions provided by Purdam and Elliot (2007, p. 1109), each synthetic data analysis is
evaluated on how severely3 the analysis is affected by the synthesis. The severity rating is
not based upon the findings of CIO or ROE scores, but rather the conclusions of each paper
are taken into account to assess whether or not the authors of the original papers would
come to the same conclusions using synthetic/perturbed data as they had in their papers
using the original data. Figure 1 illustrates an example of what would constitute the dif-
ferent severity effects, given that the analyst’s had concluded that condition AC > BC and
AD < BD. As shown, the ”no effect” classification does not require the perturbed dataset
to be identical with the original but the values are sufficiently similar that they would not
affect the conclusions drawn. The moderate effect example has more markedly different
numbers, but shows a similar overall relationship between the two variables as the origi-
nal. Finally, in the severe effect example, the relationship found in the original data is not
respected.

4 Results & Discussion

Table 2 shows the severity ratings, average ROE and CIO scores for the singly imputed and
multiply imputed CART synthetic data. For more detail, Table 3 breaks the utility metrics

3”Severity” is a subjective measure based on the authors’ judgement.
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down by table for the papers based on cross-tabulations/frequency tables and Table 4 does
the same for the regression models. Table 3 shows that the ratio of estimates and confidence
interval overlaps can vary drastically from one another, while Table 3 and 4 show that for
MI synthetic data the Reiter and Raab methods for calculating the variance lead to similar
CIO scores. Appendix E shows the results for the individual single imputation scores.

Table 5 summarises the severity ratings from Table 2, and also includes the findings from
Purdam and Elliot on suppression and PRAM. The singly imputed CART synthetic data
has lower utility than the multiply imputed CART synthetic data. The MI data performs
similarly to PRAM and better than when the data was perturbed by both suppression and
PRAM. Neither synthetic dataset performs better than suppression alone.

Paper Severity ROE CIO Severity ROE CIO CIO
Rating SI SI Raab SI Rating MI MI Reiter Raab MI

Ballard (1996) Moderate 0.704 0.408 Moderate 0.685 0.36125 0.330
Champion (1996) Moderate 0.782 0.573 Moderate 0.835 0.519 0.456
Drinkwater and Moderate NA 0.569 Moderate NA 0.611 0.616
OLeary (1997)
Eade et al (1996) Severe 0.785 0.349 Severe 0.805 0.386 0.372
Gardiner and Hill (1996) Moderate NA 0.594 Moderate NA 0.638 0.64
Gardiner and Hill (1997) Severe 0.746 0.484 Moderate 0.673 0.418 0.352
Gould and Jones (2000) Severe NA 0.191 Moderate NA 0.554 0.546
Green (1997) Moderate 0.771 0.231 Moderate 0.780 0.239 0.270
Leventhal (1994)4 No effect 0.810 NA No effect 0.839 NA NA

Table 2: Severity Rating, Ratio of Estimates, and CIO for the Overall Paper

4For Tables 2 and 3 Leventhal was left blank for the CIO due to the complexity of how the figure was calculated
(See Leventhal (1994) for more details).
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Paper Table or Severity ROE CIO Severity ROE CIO CIO
Figure Rating SI SI Raab SI Rating MI MI Reiter Raab MI

Ballard
(1996)

Figure 5.1 No effect 0.618 0.502 No effect 0.585 0.449 0.388
Figure 5.2 Moderate 0.594 0.531 Moderate 0.545 0.457 0.430
Figure 5.3 Moderate 0.784 0.333 Moderate 0.789 0.304 0.280
Figure 5.4 Moderate 0.818 0.265 Moderate 0.822 0.235 0.221

Champion (1996) Table 4.7 Moderate 0.782 0.573 Moderate 0.835 0.519 0.456
Eade et al
(1996)

Table 6.3 Moderate 0.789 0.343 Moderate 0.795 0.319 0.337
Table 6.4 Severe 0.780 0.354 Severe 0.786 0.319 0.322

Gardiner and
Hill (1997)

Table 1 Severe 0.795 0.346 Severe 0.646 0.278 0.263
Table 2 Moderate 0.804 0.508 Severe 0.644 0.354 0.340
Table 3 Moderate 0.723 0.482 Moderate 0.579 0.313 0.292
Table 4 Severe 0.660 0.599 No effect 0.823 0.726 0.511

Green (1997)

Table 4.1 Severe 0.742 0.206 Severe 0.748 0.208 0.204
Table 4.2 Moderate 0.730 0.212 Moderate 0.749 0.202 0.219
Table 4.3 Severe 0.775 0.190 Moderate 0.781 0.229 0.229
Table 4.4 Moderate 0.772 0.173 Moderate 0.786 0.189 0.246
Table 4.5 No effect 0.831 0.373 No effect 0.817 0.357 0.396
Table 4.6 No effect 0.773 0.233 No effect 0.799 0.246 0.328

Leventhal
(1994)

Figure 1 No effect 0.886 NA No effect 0.891 NA NA
Figure 2 No effect 0.760 NA No effect 0.651 NA NA
Figure 3 No effect 0.847 NA No effect 0.858 NA NA
Figure 4 Moderate 0.728 NA Moderate 0.782 NA NA
Figure 5 Moderate 0.716 NA Moderate 0.777 NA NA
Figure 6 No effect 0.890 NA No effect 0.966 NA NA
Figure 7 No effect 0.844 NA No effect 0.945 NA NA

Table 3: Severity Ratings, ROE, and CIO for Individual Tables and Figures

Paper Table or Severity CIO Severity CIO CIO
Figure Rating SI Raab SI Rating MI Reiter Raab MI

Drinkwater and
OLeary (1997)

Table 5 for males Moderate 0.524 Moderate 0.600 0.606
Table 5 for females Moderate 0.614 Moderate 0.622 0.626

Gardiner and Hill (1996) Table 4 Moderate 0.594 Moderate 0.638 0.640
Gould and Jones (2000) Table 4 A Severe 0.191 Moderate 0.554 0.546

Table 4: Severity Ratings and CIO for Individual Regression Models

No Effect Moderate Severe
CART m=1 1 5 3
CART m=10 1 7 1
Suppressions 5 5 0
Post-randomisation 2 7 1
Both Suppressions and PRAM 1 5 4

Table 5: Summary of the Effect of Perturbations (Information on PRAM and Suppressions
from Purdam and Elliot, 2007, p. 1110)
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4.1 Relationships Between Severity Ratings and Utility Metrics

To determine if there is a relationship between the severity ratings and the utility metrics,
six one-way analyses of variance (ANOVA) were conducted. The results are displayed in
Table 6. None of the results have a significant F-value at the p<0.05 level. However, the
CIO score calculated using the Reiter method for the multiply imputed data is significant at
the p<0.1 level. This shows that there is not a clear relationship between the utility metrics
and how well the synthetic dataset performs for a given analysis.

Single
Imputation

ROE F(2,21)= 1.664 P= 0.213
CIO-Raab F(2,14)= 0.122 P= 0.886

Multiple
Imputation

ROE F(2, 21)= 1.754 P= 0.197
CIO-Reiter F(2,14)= 2.89 P= 0.089
CIO-Raab F(2,14)= 1.822 P= 0.198

Table 6: ANOVA between Severity Ratings and Utility Metrics

4.2 Comparing MI and SI CART Synthetic Data

Our third research question concerns whether the multiply imputed CART data performs
better than the singly imputed CART data. To answer this question, all utility metrics were
utilised. Table 5 shows that the MI CART synthetic data performs slightly better when
using the severity ratings, since fewer analyses were severely affected. In comparison,
a Pearson’s test of the ratio of estimates for the MI and SI synthetic has a correlation of
r=0.547, showing that the results are correlated. The confidence interval overlaps for SI
and MI CART data show a stronger Pearson’s correlation than the ROE (as shown in Table
7). Table 7 additionally shows the Pearson correlation comparing the different combining
rules for MI synthetic data. It shows that the Reiter and Raab combining rules result in very
similar results.

Overall, the utility metrics show that there is a strong relationship between the utility of SI
and MI CART synthetic data. In fact the only paper with major differences was Gould and
Jones (2000), which was classified as severe for the SI CART data but moderate for the MI
CART data. Overall, we did not see a huge increase in utility for the MI compared to the
SI. While there is the concern that SI could be affected by randomness, Appendix E shows
the variance between the different SI draws and overall the SI synthetic dataset appears to
perform similarly to one another. In fact, for some of the analyses the SI dataset average
outperformed the MI dataset, such as the Gardniner and Hill (1997) paper, which shows
higher utility scores for the SI synthetic data than for the MI synthetic data.

CIO-Reiter CIO- Raab MI
CIO Raab SI 0.777 0.697
CIO- Reiter 0.928

Table 7: Pearson’s R Comparing the CIO scores

4.3 Weaknesses with the Utility Metrics

We found that all three utility metrics have weaknesses. One weakness that all three mea-
sures share is that they are descriptive measures. While the ROE and Severity Ratings are
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more clearly descriptive, the CIO is also descriptive since it merely describes the variance
of the measure. There are no measures of data utility currently in the literature that are
intended for non-descriptive statistics.

4.3.1 Confidence Interval Overlap

While the confidence interval overlap is the standard method for determining utility it also
suffers from two weaknesses.

First, assessing synthetic data utility is not the primary purpose of confidence intervals.
The primary purpose of confidence intervals is to make inferences from samples to a pop-
ulation. Synthetic data are not a sample of a population; the data generating process is the
synthesis model. When two samples are drawn from the same population, as their sample
size increases their confidence intervals would get smaller, but any estimands will also tend
to converge monotonically and therefore the confidence interval overlaps would tend to be
stable across sample sizes. However, that is not necessarily the case for a synthetic dataset.
In this case we would expect that as the dataset size increases any estimand will converge
to the model not to the population value. To the extent that the model fails to capture all of
the variance in the estimand of interest in the original data then as the dataset size increases
any estimand derived from the synthetic data will converge to the population at a slower
rate than the rate at which the confidence interval shrinks. Therefore, CIO’s tend to worsen
as dataset size increases.

Second, the confidence interval overlap score does not distinguish between instances of
non-overlap, despite the fact that the degree of non-overlap can vary greatly. Figure 2
displays two examples of non-overlap; image A represents two intervals that just miss each
other, while image B shows two intervals that are vastly different. The confidence interval
overlap has no way of differentiating near misses versus far misses. All scores that do not
overlap are treated the same. One solution would be to use a larger confidence interval
such as a 99% confidence interval instead of a 95% confidence interval. It is even possible
to double or triple the existing confidence interval so that all scores will overlap. However,
this risks causing the opposite problem where all CIO scores are artificially high.

Figure 2: Examples of Confidence Interval Misses

4.3.2 Ratio of Estimates

The ratio of estimates can be problematic for three reasons.
First, in its treatment of zeros. If there is a zero in the numerator, the ratio of estimates

gives a value of zero, regardless of the denominator; but intuitively and arithmetically 0
and 1 are much closer than 0 and 1000. Likewise, the ratio of estimates does not take scale
into account. For example, if the synthetic data had a score of 1.5% and the original 1%,
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Figure 3: An Example of Contextualization for ROE

the ratio of estimates would be 0.666. However if the synthetic was 91.5% and the original
was 91% the ratio of estimates would be 0.995. Given that in many instances a data analyst
would consider 1% versus 1.5% quite similar, it seems arbitrary that example 1 has a low
ROE score while example 2 is quite high.

Second, the ROE needs contextualisation on whether it is performing well or not. De-
pending on the number of units in a given table, whether or not the score is informative
varies. Figure 3 gives the example of two different perturbed datasets where one has a
larger number of units than the other. For both datasets, the ROE for column B is 0.5. How-
ever, in the example where the number of units is 500, the difference between 5 and 10 is
not that important since it is a very large dataset and 5 and 10 are comparatively both very
low counts. In the example where the number of units is 25, the difference between 5 and
10 could be considered more important. However, the example with 25 units actually has a
larger ROE score. So, despite the similar average ROE scores, the example with more units
is performing better.

Finally, the ROE does not take the uncertainty of the estimator into account. The ability to
take uncertainty into account is the main advantage of the CIO as a utility metric. The ROE
is on the other hand a more intuitive heuristic, and therefore more appropriate as an initial
test for data utility, before using more complicated and time-consuming tests.

4.3.3 Severity Rating

The severity rating is a subjective measurement and therefore cannot be replicated in the
same way that the other measures can. Due to this subjectivity, it was - for some analyses -
harder to evaluate than for others, where the effect was more obvious.
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For example, for the Champion (1996) paper the CART synthetic data follows the relation-
ship that the white ethnic group has more people moving long distances than other ethnic
groups, and that black ethnic groups have the lowest numbers moving 200+ km or more,
as discussed in the original paper. However, it does not pick up on the finding that more
Chinese move 200+ km than other non-white ethnic groups, which was also discussed in
the original paper. Since the synthetic data overall has the same findings as the original
paper, even with the exception of the Chinese migrant data, we classed it as ”moderate.”
Whilst there is an argument to be made for a severity rating of ”no effect”, we ultimately
decided that picking up on the relationships of the smaller ethnic groups did matter, hence
it was classed as moderate.

The Eade et al (1996) paper threw up similar difficulties in classification, being on the
boundary between ”severe” and ”moderate”. The Eade et al paper is about the Bangladeshi
experience in the UK, although the frequency tables created from the 1991 SAR include all
10 ethnic groups, as well as a category for those born in Ireland. For many of the ethnic
groups, the trends shown by the CART synthetic data are very similar to that of the original
data, though not for the Bangladeshi ethnic group, which was the focus of their paper.
Ultimately, we rated one of the tables as having a ”moderate” effect since it captured most
of the relationships, though not the focus of the paper, and the other table as ”severe”
since there was more smoothing of the racial differences. This translates to the Eade paper
having a high average ratio of estimates, but a severe effect. One solution to this problem is
to add more categories; such as, ”no effect”, ”slight effect”, ”moderate effect”, ”moderately
severe effect” and ”severe effect”. However, judging which of the five categories an impact
falls into may be just as problematic. Furthermore, the severity ratings are non-trivial to
determine and resource intensive.

The severity ratings do however have some advantages compared to the numeric utility
metrics. The severity ratings are the only method that takes into account intention. Many
government agencies use data that has undergone some form of perturbation and based on
these data, important policy decisions can be made. Only a data analyst can go through a
perturbed dataset and determine whether the same decisions are likely to be made.

4.4 Analyses Associated with High and Low Utility

The results also raise the question of why the synthetic data produced high utility outputs
for the analyses from some papers but not others, and if there are certain kinds of analyses
that are more suited to be conducted with synthetic data.

One example of an analysis not replicated was in the Gardiner and Hill (1997) paper.
While the sample size for Gardiner and Hill’s Table 4 was 3,532, it ran into problems be-
cause most of that sample consisted of white participants and they were looking at racial
variation. Gardiner and Hill (1997) report that 4.08% of black people in Leicester cycle to
work, however that statistic is made up of only two cycling black Leicester residents who
make up only 0.000179% of the entire data set. This micro-sample was not replicated by the
single imputation synthetic data, but it was by the MI synthetic data (showing some of the
advantages gleaned by MI). However, had it not been replicated it would not be regarded
as problematic because Gardiner and Hill’s reporting of it in the first place was somewhat
misleading. In general, we should not be concerned about replicating findings that appear
to be spurious.

A paper like Leventhal (1994) was easier for the synthetic datasets to replicate. He was
interested in how many people fit a target demographic (head of household, aged 55+,
employed, owns home). This was a large category consisting of 1.46% of the overall pop-
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ulation and he only ever compared his target variable to one other variable at a time. So
when looking at the prevalence of his target demographic in different ethnic groups and so
forth the results of the synthetic data stayed true to that of the original.

4.5 Comparisons to other work–Severity Ratings

The SI CART synthetic data (Table 5) shows similar utility to when the data is perturbed
by both local suppression and PRAM. The MI CART performed better than the SI data and
better than when both local suppression and PRAM were used. It performed similarly to
the PRAM dataset, but not as well as the data that was suppressed. Based on their findings,
Purdam and Elliot determined that suppression and PRAM had a high level of distortion
of the data and that many of the original analyses could not be replicated. As a caveat
for these findings we note that all are dependent on the parameter setting for the method
and cannot properly be calibrated without also considering disclosure risk. Furthermore,
the utility of CART synthetic data is highly dependent on the selection of the complexity
parameter. Given that the default value for the complexity parameter in synthpop 1.3 is 0.01,
this will lead to synthetic data with less analytical validity compared to using a smaller
parameter value. Therefore the fact that the synthetic data perform similarly to other SDC
methods despite using the default value is a good sign for the utility of the synthetic data.

4.6 Disclosure Risk and Synthetic Data

The focus of this paper is on the utility of synthetic data, however it is worth mention-
ing disclosure risk. Synthetic data is, in theory, without disclosure risk since its values do
not reflect real individuals. However, several papers (Taub et al, 2018; Reiter et al, 2014;
McClure and Reiter, 2012; Reiter and Mitra, 2009) have explored the quantification of dis-
closure risk for synthetic data. These papers have found that synthetic data is not free of
disclosure risk. Elliot (2014), followed by Taub et al (2018), used Differential Correct Attribu-
tion Probability (DCAP) to evaluate synthetic data coming from the synthpop package, (the
package we use here). Elliot (2014) found that the data produced by synthpop contained
little disclosure risk. Taub et al found that while the synthetic data files had less disclosure
risk than had the original been released, they also found that as the number of imputations
increased, so did the the disclosure risk.

5 Conclusion

This paper introduced the Purdam-Elliot methodology as a device for assessing the utility
of synthetic data. The Purdam-Elliot methodology has the advantage of running a broad
sample of real analyses and striking a balance between the non-specificity of general met-
rics and the ad hoc nature of traditional narrow measures (since for a particular set of analy-
ses a synthetic dataset may perform with high utility, it may still falter for another analyses,
as demonstrated by the results herein). The Purdam-Elliot methodology takes into account
that researchers use the data in unexpected ways, by subsetting the data and/or creating
their own compilation variables and that it is important to have synthetic data that fulfils
these diverse needs within reason. Therefore, this methodology was useful in investigating
which kinds of analyses were more amenable to being replicated with synthetic data.

In terms of MI and SI CART synthetic data, the MI data did perform better for some
analyses, but not for all. Depending on how complicated an analysis is, a researcher could
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be justified in using SI synthetic data. One of the main arguments for using MI is that
MI accounts for uncertainty, which is demonstrated by the increased variance. Therefore,
the Raab combining rules allow for SI synthetic data to account for the additional variance
without the hassle of MI is a great boon. Additionally, the CIO scores did tend to be similar
for MI and SI.

Further research should be used to determine if the CIO is correlated more strongly with
the severity ratings for regression models. The sample of papers used in this paper favoured
frequency tables and therefore the sample of regression models was small. It is possible that
there might be a stronger relationship between CIO scores and severity ratings for regres-
sion models. Likewise, the ROE scores appeared more indicative of the severity ratings for
the frequency tables.
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Appendices

A Description of Analyses used in Papers

Paper Variables Used Table Description

Ballard (1996)
AGE, COBIRTH, DCOUNTY,
ETHGROUP, MSTATUS,
REGIONP, SEX

Figure 5.1 Bar chart of country of origin and age
Figure 5.2 Bar char of age and marital status
Figure 5.3 Pie chart of region
Figure 5.4 Bar chart of region and ethnicity

Champion
(1996)

DISTMOVE, ETHGROUP Table 4.7 Frequency table of distance moved by
ethnicity

Drinkwater
and
O’Leary
(1997)

AGE, CESTSTAT, COBIRTH,
DCOUNTY, DEPCHILD,
ECOPRIM, MSTATUS, REGIONP,
SEX, WELSHLAN

Table 5
males

Probit regression of whether employed by
age, marital status, long-term limiting illness,
qualifications, housing status, area, and
welsh fluency

Table 5
females

Eade et al
(1996)

AGE, COBIRTH, ETHGROUP,
SEX, SOCLASS

Table 6.3 Cross-tab ethnicity by social class, gender by
tableTable 6.4

Gardiner
and Hill
(1996)

AREAP, CARS, ETHGROUP,
LTILL, SEX, TENURE

Table 4 Logistic Regression car ownership by age,
gender, house ownership, ethnicity and
long-term limiting illness

Gardiner
and Hill
(1997)

AREAP, ETHGROUP,
QUALEVEL, SEX, SOCLASS,
TRANWORK

Table 1 Frequency table of cycling rate for area
Table 2 Frequency table of cycling rate for area by

gender
Table 3 Frequency table of cycling rate for area by

ethnicity
Table 4 Frequency table of cycling rate by ethnicity,

for Leicester
Gould and
Jones
(2000)

AGE, ETHGROUP, LTILL,
RESIDSTA, SEX

Table 4
Model A

Multilevel logistic model for long-term
limiting illness, level 2: area, by age, gender,
ethnicity, and interaction terms

Green
(1997)

DISTWORK, ETHGROUP,
HOURS, INDUSDIV,
OCCMAJOR, OCCSUBMJ, SEX,
TRANWORK

Table 4.1 Frequency table of ethnicity by industry
growth of employment, gender by tableTable 4.2

Table 4.3 Frequency table of ethnicity by occupation
growthTable 4.4

Table 4.5 Frequency table ethnicity by hours worked
per weekTable4.6

Leventhal
(1994)

AGE, CARS, CENHEAT,
ECPOSFHP, ETHGROUP, RELAT,
SEGROUP, SOCLASS, TENURE

Figure 1 Bar chart comparing prevalence of target
group by region

Figure 2 Marital status
Figure 3 Ethnic group
Figure 4 Social class
Figure 5 Socio-economic group
Figure 6 Availability of home central heating
Figure 7 Number of cars
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B Description of Subsetting and Sample Sizes used in the
Papers

Paper Table/Figure Subset Sample size-
original

Ballard (1996)

Figure 5.1 Pakistani male 4,904
Figure 5.2 Pakistani female 4,512
Figure 5.3 Pakistani 9,416
Figure 5.4 South Asian (Pakistani, Indian,

and Bangladeshi)
29,724

Champion(1996) Table 4.7 Migrants within Britain 95,177

Drinkwater and
O’Leary (1997)

Table 5 males Wales, age 16-64, resident of
Britain, male

14,016

Table 5
females

Wales, age 16-59, resident of
Britain, female

9,843

Eade et al (1996)

Table 6.3 Age 16+, answered question on
social class, not armed forces,
male

340, 958

Table 6.4 Age 16+, answered question on
social class, not armed forces,
female

292, 852

Gardiner and Hill
(1996)

Table 4 Sheffield, Age 50+ 3,532

Gardiner and Hill
(1997)

Table 1 Answered question on travel to
work and from selected areas

26,124
Table 2
Table 3
Table 4 Answered question on travel to

work, and from Leicester
2,048

Gould and Jones
(2000)

Table 4
Model A

Resident of Britain, Aged 30-60 419,550

Green (1997)

Table 4.1
Male 540,967Table 4.3

Table 4.5
Table 4.2

Female 575,241Table 4.4
Table 4.6

Leventhal (1994)

Figure 1

Age 16+ 894,115Figure 2
Figure 3
Figure 6
Figure 4 Age 16+, answered social class

question 647,323Figure 5
Figure 7 Age 16+, answered car question 866,097
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C Synthesizing Order

AREAP, AGE, HOURS, COBIRTH, OCCSUBMJ, DISTMOVE, INDUSDIV, ETHGROUP, ECON-
PRIM, TENURE, OCCMAJOR, TRANWORK, DISTWORK, SOCLASS, RELAT, MSTATUS,
WELSHLAN, CARS, RESIDSTA, QUALEVEL, QUALNUM, CESTSTAT, ECPOSFHP, SEGROUP,
CENHEAT, SEX, DEPCHILD, LTILL

Given that REGIONP, DCOUNTY, and AREAP are hierarchical variables, REGIONP and
DCOUNTY are not involved in the synthesis, since they can be derived from AREAP.

D Description of Variables from the Codebook

Variable name Number of categories
(excluding N/A)

Description

REGIONP 12 Individual SAR region
AREAP 278 Individual SAR area
ECONPRIM 10 Economic position (primary)
DISTMOVE 13 Distance of move-migrants
LTILL 2 Limiting long-term illness
TRANWORK 9 Mode of transport to work
SOCLASS 9 Social class (based on occupation)
CARS 3 Number of cars
OCCMAJOR 9 Occupation: SOC Major groups
OCCSUBMJ 22 Occupation: SOC Sub-major groups
INDUDSDIV 10 Industry (SIC Divisions)
COBIRTH 42 Country of birth
AGE 95 Age
MSTATUS 5 Marital status
SEX 2 Sex
DCOUNTY 63 Counties (Aggregations of SAR areas)
DISTWORK 7 Distance to work
ETHGROUP 10 Ethnic group
HOURS 72 Hours worked weekly
DEPCHILD 2 Number of resident dependent children
QUALEVEL 3 Level of highest qualification
WELSHLAN 5 Welsh language (Wales Only)
QUALNUM 3 No. of higher educational qualifications
TENURE 10 Tenure of household space
CESTTSTAT 3 Status in communal establishments
RESIDSTA 3 Resident status
RELAT 8 Relationship to household head
SEGROUP 20 Socio-economic group
CENHEAT 3 Availability of central heating
ECPOSFHP 3 Economic position of family head
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E Single Imputation Totals

Paper Table or syn 1 2 3 4 5 6 7 8 9 10 avg
Figure

Ballard (1996) Figure 5.1 0.563 0.463 0.517 0.512 0.472 0.501 0.473 0.445 0.555 0.521 0.502
Figure 5.2 0.544 0.538 0.525 0.562 0.5 0.509 0.524 0.54 0.528 0.536 0.531
Figure 5.3 0.306 0.369 0.302 0.336 0.334 0.32 0.321 0.374 0.339 0.327 0.333
Figure 5.4 0.253 0.266 0.24 0.245 0.289 0.263 0.237 0.284 0.28 0.293 0.265

Champion (1996) Table 4.7 0.534 0.576 0.567 0.579 0.598 0.588 0.522 0.569 0.595 0.605 0.573
Drinkwater and Table 5 0.511 0.501 0.518 0.562 0.542 0.495 0.523 0.536 0.506 0.542 0.524
O’Leary for males

Table 5 0.62 0.621 0.612 0.658 0.623 0.592 0.605 0.614 0.636 0.563 0.614
for females

Eade et al (1996) Table 6.3 0.334 0.321 0.361 0.35 0.332 0.348 0.369 0.344 0.337 0.334 0.343
Table 6.4 0.365 0.368 0.346 0.349 0.345 0.371 0.341 0.362 0.351 0.344 0.354

Gardiner Table 4 0.566 0.555 0.519 0.604 0.575 0.595 0.67 0.556 0.626 0.67 0.594
and Hill (1996)
Gardiner Table 1 0.381 0.319 0.457 0.336 0.277 0.345 0.388 0.348 0.313 0.294 0.346
and Hill(1997) Table 2 0.516 0.497 0.554 0.493 0.467 0.52 0.519 0.513 0.477 0.526 0.508

Table 3 0.53 0.453 0.566 0.48 0.508 0.451 0.408 0.48 0.483 0.467 0.482
Table 4 0.53 0.635 0.599 0.714 0.698 0.648 0.563 0.516 0.538 0.549 0.599

Gould and Table 4 0.185 0.167 0.203 0.193 0.209 0.202 0.159 0.22 0.157 0.217 0.191
Jones (2000) Model A
Green (1997) Table 4.1 0.216 0.193 0.235 0.197 0.208 0.199 0.19 0.208 0.204 0.212 0.206

Table 4.2 0.198 0.243 0.233 0.2 0.201 0.246 0.171 0.188 0.196 0.247 0.212
Table 4.3 0.206 0.178 0.202 0.227 0.173 0.152 0.199 0.221 0.181 0.158 0.19
Table 4.4 0.176 0.187 0.159 0.122 0.223 0.191 0.153 0.209 0.126 0.183 0.173
Table 4.5 0.344 0.406 0.424 0.379 0.411 0.363 0.339 0.334 0.377 0.358 0.373
Table 4.6 0.245 0.204 0.235 0.225 0.202 0.232 0.203 0.241 0.286 0.26 0.233

Table 8: Single Imputation CIO Scores
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Paper Table or syn 1 2 3 4 5 6 7 8 9 10 avg
Figure

Ballard (1996)

Figure 5.1 0.660 0.581 0.644 0.624 0.621 0.614 0.600 0.583 0.651 0.600 0.618
Figure 5.2 0.564 0.602 0.604 0.600 0.560 0.602 0.595 0.594 0.605 0.609 0.594
Figure 5.3 0.782 0.785 0.775 0.785 0.784 0.779 0.785 0.793 0.787 0.781 0.784
Figure 5.4 0.819 0.816 0.807 0.811 0.830 0.815 0.813 0.817 0.821 0.835 0.818

Champion (1996) Table 4.7 0.818 0.822 0.832 0.834 0.836 0.833 0.815 0.834 0.595 0.605 0.782

Eade et al (1996) Table 6.3 0.787 0.782 0.799 0.790 0.783 0.787 0.796 0.791 0.791 0.786 0.789
Table 6.4 0.779 0.782 0.781 0.775 0.777 0.786 0.774 0.784 0.785 0.776 0.780

Gardiner Table 1 0.809 0.784 0.830 0.797 0.773 0.793 0.809 0.793 0.785 0.776 0.795
and Hill (1997) Table 2 0.836 0.797 0.810 0.798 0.794 0.806 0.812 0.789 0.791 0.808 0.804

Table 3 0.760 0.713 0.730 0.714 0.755 0.739 0.681 0.707 0.733 0.695 0.723
Table 4 0.582 0.764 0.658 0.796 0.689 0.680 0.592 0.672 0.587 0.584 0.660

Green (1997)

Table 4.1 0.751 0.738 0.746 0.737 0.737 0.744 0.739 0.743 0.741 0.743 0.742
Table 4.2 0.721 0.744 0.735 0.722 0.730 0.739 0.732 0.712 0.722 0.742 0.730
Table 4.3 0.772 0.775 0.773 0.785 0.772 0.768 0.778 0.785 0.772 0.775 0.775
Table 4.4 0.775 0.775 0.776 0.757 0.783 0.780 0.773 0.777 0.742 0.782 0.772
Table 4.5 0.822 0.835 0.849 0.830 0.843 0.830 0.825 0.818 0.839 0.825 0.831
Table 4.6 0.773 0.772 0.781 0.765 0.758 0.771 0.757 0.774 0.789 0.787 0.773

Leventhal (1994)

Figure 1 0.883 0.867 0.865 0.872 0.887 0.921 0.880 0.890 0.898 0.897 0.886
Figure 2 0.780 0.778 0.742 0.776 0.740 0.736 0.785 0.773 0.749 0.738 0.760
Figure 3 0.836 0.846 0.829 0.869 0.874 0.843 0.847 0.881 0.818 0.825 0.847
Figure 4 0.734 0.712 0.728 0.702 0.758 0.708 0.715 0.731 0.738 0.756 0.728
Figure 5 0.728 0.711 0.710 0.709 0.724 0.737 0.704 0.712 0.711 0.716 0.716
Figure 6 0.883 0.872 0.876 0.876 0.885 0.909 0.879 0.879 0.921 0.918 0.890
Figure 7 0.846 0.825 0.816 0.833 0.850 0.856 0.854 0.845 0.850 0.864 0.844

Table 9: Single Imputation ROE Scores
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