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Abstract. The synthetic data approach to data confidentiality has been actively researched on, and
for the past decade or so, a good number of high quality work on developing innovative synthesiz-
ers, creating appropriate utility measures and risk measures, among others, have been published.
Comparing to a large volume of work on synthesizers development and utility measures creation,
measuring risks has overall received less attention. This paper focuses on the detailed construction
of some Bayesian methods proposed for estimating disclosure risks in synthetic data. In the processes
of presenting attribute and identification disclosure risks evaluation methods, we highlight key steps,
emphasize Bayesian thinking, illustrate with real application examples, and discuss challenges and
future research directions. We hope to give the readers a comprehensive view of the Bayesian estima-
tion procedures, enable synthetic data researchers and producers to use these procedures to evaluate
disclosure risks, and encourage more researchers to work in this important growing field.

Keywords. Disclosure risks, attribute disclosure, identification disclosure, synthetic data, Bayesian
methods

1 Introduction

Statistical agencies collect microdata of respondents (individuals or business establish-
ments) through various censuses and surveys. The agencies then make some versions of
the collected microdata publicly available, subject to privacy and confidentiality protec-
tion (e.g. Title 13 and Title 26, U. S. Code). The agencies need to protect the identity of
the respondents, as well as the original attribute information of the respondents which are
deemed sensitive. These correspond to identification disclosure and attribute disclosure
respectively.

To provide such protection, at the very least, unique identifiers such as Social Security
Number (SSN) for individuals and Employer Identification Number (EIN) for business es-
tablishments cannot be released in the publicly available microdata. Moreover, other seem-
ingly safe attributes cannot be released at the same time either, because a combination of a
small number of attributes would increase the chance of respondent identification greatly.
Sweeney (2000) demonstrated that using 1990 U. S. Census summary data, 87% (216 mil-
lion out of 248 million) of the US population had reported characteristics that likely made
them unique based only on {5-digit ZIP, gender, date of birth}, and about half (53%) are
likely to be uniquely identified by only {place, gender, date of birth}.
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The statistical agencies thus need to mask the microdata before public release. These
masking techniques are called Statistical Disclosure Limitation (SDL) techniques, which
include i) data swapping, ii) adding random noise, and iii) micro-aggregation, among oth-
ers. Hundepool et al. (2012) provides a comprehensive review of the SDL techniques for
microdata. Though these methods or combinations of them could provide some level of
privacy protection, the utility of the masked data (e.g. results from a regression analysis
using the masked data should be close to that using the original confidential data) are com-
promised (Raghunathan et al., 2003). Moreover, for large and complex surveys, such SDL
techniques need to be applied at a high intensity, which is time-consuming and damages
the utility of final masked data.

One alternative to the SDL techniques is synthetic data. Based on the theory and ap-
plications of multiple imputation methodology for missing data problems (Rubin, 1987),
multiply-imputed synthetic data can be generated from the statistical models estimated
from the original confidential data. Carefully designed statistical models could produce
high utility, low risks public microdata. Multiple synthetic datasets should be generated,
and appropriate combining rules have been developed to provide accurate point estimates
and variance estimates of parameters of interest. Refer to Reiter and Raghunathan (2007);
Drechsler (2011b) for details of the combining rules.

Synthetic data come in two flavors, i) partially synthetic, where only sensitive attributes of
all or some of the records are synthesized (Little, 1993), and ii) fully synthetic, where all at-
tributes of every record are synthesized (Rubin, 1993). Since their proposals, great amount
of research has been done on developing synthesizers, evaluating the utility and risks of
the synthetic data. Refer to Drechsler (2011b) for a comprehensive review of partially and
fully synthetic data and their applications.

It is worth noting that the U. S. Census Bureau has been involved in providing access to
microdata through synthetic data products. Examples of their synthetic data products in-
clude i) OnTheMap (based on Machanavajjhala et al. (2008)), ii) the synthetic Longitudinal
Business Database - SynLBD (based on Kinney et al. (2011, 2014)), iii) synthetic Survey of
Income and Program Participation - SIPP Synthetic Beta (based on Benedetto et al. (2013)),
among others. Germany also has implemented synthetic versions of their German IAB Es-
tablishment Panel (based on Drechsler et al. (2008a,b)). More and more statistical agencies
have started experimenting with synthetic data for their microdata releases.

Among the published work on synthetic data, many focus on developing synthesizers
and proposing utility measures (both the global utility measures (Karr et al., 2006) for syn-
thetic data in general, and outcome specific utility measures for the particular application).
The risk measures, while important, have been paid less attention to overall. This is un-
derstandable for at least three reasons: i) for the attribute disclosure risks (i.e. measuring
the probability of an intruder correctly inferring the original values of the synthesized at-
tributes of a respondent), which exists both in partially synthetic data and fully synthetic
data, the principled evaluation procedure came out only recently and is not a straightfor-
ward procedure to implement; ii) for the identification disclosure risks (i.e. measuring the
probability of correctly identifying a respondent by matching with available information
from elsewhere), which usually only exist in partially synthetic data, the evaluation proce-
dure can be followed in a straightforward manner, encouraging no further development of
the measures themselves; and iii) unlike utility measures, which can vary a lot in different
applications, risk evaluation procedures largely depend on the type of risk measure.

In this paper, we want to present easy-to-follow construction of some Bayesian estimation
methods for evaluating attribute disclosure risks and identification disclosure risks. These
methods use Bayesian thinking in computing probabilities, which are generally natural and
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easy to understand. Bayesian probabilities are subjective and Bayesian methods are useful
for modeling the beliefs of data intruders. Moreover in the estimation process, different
assumptions of intruder’s knowledge and behavior can be incorporated at various stages.
While flexible and intuitive, the actual implementation of the Bayesian estimation process
can be complicated and difficult to execute. Therefore, we aim at highlighting key steps
in the estimation process, and complementing with real applications with a focus on the
risk evaluation aspect of each application. The readers will also see exciting synthetic data
projects for various types of data and protection purposes, and the application-specific
disclosure risk measures being considered in each application. Discussion of challenges
and future directions are throughout the paper as well as at the end as a summary.

The remainder of paper is organized as follows. In Section 2 we give an overview of risk
evaluation for synthetic data and lay out the two types of disclosure risks we consider,
namely the attribute disclosure risks and identification disclosure risks. Section 3 presents
the Bayesian estimation methods of attribute disclosure risks, from notation, to key estimat-
ing steps, then selected examples, and finally discussion and comments. Section 4 follows
a similar structure, where we present the Bayesian estimation methods of identification
disclosure risks. Finally in Section 5, we give a summary.

2 Overview of synthetic data risks evaluation

This paper considers two types of disclosure risks: i) attribute disclosure risks, and ii) iden-
tification disclosure risks. Depending on the synthetic flavor (partially versus fully), one
or both of these two types of disclosure risks potentially exist. In this section, we briefly
discuss why for partially synthetic data, both attribute disclosure and identification disclo-
sure risks potentially exist, whereas for fully synthetic data, only attribute disclosure risks
are considered and evaluated.

We note that these two types of disclosure risks are generic, i.e. for any synthetic data
product, one or both types should be considered and evaluated. Attribute disclosure risks
in particular, come in various forms depending on the nature of the synthesized attributes
and the type of privacy protection. For some applications, such as Hu et al. (2014) where
fully synthetic individual records were generated, the attribute disclosure risks are in the
form of correctly inferring the attributes of a record. In other applications, for example
when generating synthetic geolocation applications, researchers had created attribute dis-
closure risk measures based on distance between synthesized geolocations and actual ge-
olocations (Wang and Reiter, 2012; Paiva et al., 2014; Quick et al., 2015, 2018). Moreover, for
synthetic business establishment data applications, researchers had created attribute dis-
closure risk measures based on percentages of closest match (Domingo-Ferrer et al., 2001;
Kim et al., 2015), and other measures based on relative difference between the true largest
value and the intruder’s estimate (Kim et al., 2018). We note that not all of these application-
specific disclosure risk measures undergo similar estimation procedures as the ones we
present in this paper.

2.1 Disclosure risks of releasing partially synthetic data

In partially synthetic data, only sensitive attributes of all or some of the records are synthe-
sized and some other attributes are left un-synthesized. When some of the un-synthesized
attributes are available to the intruder via external databases, a matching mechanism based
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on the common available attributes may allow the intruder to identify records in the re-
leased dataset, thus resulting in identification disclosure risks. For example, suppose a
partially synthetic dataset contains 1000 individual records and 6 attributes. Among them,
3 are synthesized sensitive attributes {age, date of birth, annual income} and 3 are un-
synthesized attributes {gender, marital status, county}. Suppose now an intruder knows
that person X is in the sample, and the intruder also knows the gender and the county
of person X . Since both gender and county are un-synthesized, the intruder will have a
reasonable chance of identifying person X in the sample.

In addition to potential identification disclosure risks, attribute disclosure risks exist in
partially synthetic data. We can easily imagine an intruder trying to infer the true values of
the synthesized attributes given the released synthetic data, the un-synthesized attributes
and other information. The availability of the un-synthesized attributes may greatly in-
crease the chance of accurate inference of the synthesized attributes. Continuing the ex-
ample of person X from earlier, with a possible identification, the intruder can now move
to find out the original values of the synthesized age, date of birth and annual income of
person X .

2.2 Disclosure risks of releasing fully synthetic data

Several authors had claimed that in fully synthetic data, identification disclosure risks are
not applicable since there is no unique mapping of the records in the synthetic data to the
records in the original data (Hu et al., 2014; Wei and Reiter, 2016). This is generally true
because all attributes of all records are synthesized in fully synthetic data. However, it
depends on how the fully synthetic data are generated, and we now turn to two different
methods to generate fully synthetic data, and their implications on disclosure risks evalua-
tion.

The first method was proposed by Rubin (1993). It treats all units that did not participate
in the survey as missing data. It first multiply imputes those missing values to generate
synthetic populations and second disseminates synthetic samples from these populations
(Drechsler, 2018). With this method, there is no correspondence between a fully synthetic
record and a real world record with subscript i, therefore there is no one-to-one correspon-
dence and subsequently no identification disclosure risks.

The second method was proposed by Drechsler (2011a), who pointed out that one can
use the partially synthetic approach (Little, 1993) to replace all values in the data by syn-
thetic values, also obtaining a fully synthetic dataset (Drechsler, 2018). While there could
be a one-to-one correspondence between the original and synthetic datasets, we do not as-
sume such information known by the intruder, therefore no identification disclosure risks
exist. The selected examples in Section 3.3 generated fully synthetic data using the second
method.

Although identification disclosure risks are treated as non-existing in fully synthetic data,
regardless of the generation methods mentioned above, attribute disclosure risks poten-
tially exist, as an intruder can try to use the released synthetic data and any other infor-
mation to infer an entire record. For example, suppose a fully synthetic dataset contains
1000 individual records and 6 attributes, {age, date of birth, annual income, gender, marital
status, county}, of which all are synthesized by the second method (i.e. extending partial
synthesis to full synthesis, therefore there exists a one-to-one correspondence). Suppose the
intruder has information of all attributes of every record in the published synthetic data ex-
cept for personX , and the intruder knows that personX is in the published synthetic data.
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Then the intruder might be able to find out the attributes of person X by inferring from
known information of all other records.

2.3 Disclosure probabilities and their summaries

The Bayesian estimation methods we present in this paper focus on calculating the prob-
abilities of attribute disclosure and identification disclosure. For example, for attribute
disclosure risks, we present how to estimate the probability of correctly inferring the origi-
nal values of the synthesized vector of attributes Ys

i of record i to be y∗ given the synthetic
data, the un-synthesized attributes, and any other information.

In addition, synthetic data disseminators can provide file-level summaries of these record-
level probabilities. These file-level summaries can be different depending on the applica-
tions. For example, when synthesizing fully categorical data as in Hu et al. (2014, 2018)
in Section 3.3.1, ranks and re-normalized probabilities are reported as file-level summaries
because of the nature of the synthesis (full) and the nature of the attributes (all categorical).
When synthesizing partially continuous data as in Wang and Reiter (2012) in Section 3.3.2,
Euclidean distances between the intruder’s inferred value of the longitude and latitude and
the actual longitude and latitude, and subsequent counts within a radius are reported as
file-level summaries because of the nature of the synthesis (partial) and the nature of the
attributes (continuous, in particular, the longitude and latitude of a record).

For attribute disclosure, we focus on calculating the record-level disclosure probabilities
in the key estimating steps (Section 3.2). Then in the application section (Sections 3.3), we
present file-level disclosure probability summaries for each application, though we touch
on the record-level disclosure probabilities calculation assumptions briefly. For identifica-
tion disclosure, a standard set of 3 file-level summaries is reported in all selected examples.
Therefore, we present both the methods to calculate the record-level disclosure probabil-
ities and the methods to calculate the file-level disclosure probability summaries in the
key estimating steps (Section 4.2). We want to make the readers aware of the distinction
between the record-level probabilities and file-level summaries of disclosure risks.

3 Bayesian estimation of attribute disclosure risks

As discussed previously with the examples in Section 2.1 and Section 2.2, attribute disclo-
sure risks potentially exist for fully synthetic data and partially synthetic data.

Evaluating the attribute disclosure risks in fully synthetic data had been a seemingly
impossible task for a while. Empirical matching or misclassification-based approaches
(Shlomo and Skinner, 2010) cannot be used since there is no correspondence between the
original and the synthetic datasets. Skinner (2012) called for further research on the existing
Bayesian approaches to disclosure risk assessment, especially to emphasize the Bayesian
thinking rather than simply using the Bayesian machinery in the assessment process. As a
response to the call of Skinner (2012), Reiter (2012) tried to propose principled Bayesian es-
timation procedure for attribute disclosure risks for fully synthetic data. The general frame-
work laid out in Reiter (2012) was extended by and further developed by Reiter et al. (2014)
for both fully and partially synthetic data. This general framework gives interpretable
probability statements of the attribute disclosure risks, and provides flexible incorporation
of different assumptions of the intruder’s knowledge and behavior.

In this section, we present the framework of Reiter et al. (2014) for Bayesian estimation of
attribute disclosure risks. We use similar notations, highlight the key steps, and illustrate
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with selected examples. We have chosen these examples that are built upon the framework
but tailored for specific purposes and needs of the applications. To be as comprehensive as
possible, we focus on the following: i) fully synthetic categorical data (Hu et al., 2014, 2018),
ii) partially synthetic continuous data (Wang and Reiter, 2012), and iii) fully synthetic count
data (Wei and Reiter, 2016). In the end, we will discuss the challenges and future directions
of this framework.

3.1 Notations and setup

Let yi = (yi1, · · · , yip) be the vector response of observation i in the original confidential
dataset, where direct identifiers (such as name or SSN) are removed. When needed, we use
j as the variable index, and j = 1, · · · , p. Among the p variables, i) some are synthesized,
denoted by ys

i ; and ii) others are un-synthesized, denoted by yus
i . We have yi = (ys

i ,y
us
i )

for the i-th observation with its original values, and y = (ys,yus) for the entire dataset
containing n observations with their original values. We note that when full synthesis is
carried out, yus = Ø, therefore y = ys. Without loss of generality, we use y = (ys,yus)
when introducing the notations, setup and key estimating steps.

On the agency side, m > 1 synthetic datasets are released, denoted by Z. Each synthetic
dataset is denoted by Z(l) where l = 1, · · · ,m. See Drechsler (2011b) for review of synthetic
data and the references therein.

On the intruder side, suppose the intruder intends to learn ys
i for some record i in y.

Several pieces of information can be available to the intruder: i) yus = {yus
i : i = 1, · · · , n},

the un-synthesized values of all n observations; ii) A, any auxiliary information known by
the intruder about records in y; and iii) S, denoting any information known by the intruder
about the process of generating Z. We will discuss each piece in detail in Section 3.2.

Let Ys
i be the random variable representing the intruder’s uncertain knowledge of ys

i .
The intruder seeks the distribution of p(Ys

i | Z,yus, A, S). We note that yus is included
in Z, but we leave it in the expression for the purpose of expression factorization in later
steps.

If Ys
i is a vector of categorical variables, then probabilities of accurately inferring the con-

fidential values can be calculated through p(Ys
i = y∗ | Z, A, S), where y∗ is one plausible

combination of categorical responses of those variables. The examples (Hu et al., 2014, 2018)
in Section 3.3.1 on fully synthetic categorical data are illustrations for Ys

i being a vector of
categorial variables. If Ys

i is one or multiple continuous or count variables, context-specific
file-level attribute disclosure probability summaries should be developed to summarize the
attribute disclosure risks. The examples of Wang and Reiter (2012) on partially synthetic
continuous data in Section 3.3.2, and Wei and Reiter (2016) on fully synthetic count data in
Section 3.3.3 provide illustrations for these types of Ys

i .
For the agency, it is paramount to model different intruder’s knowledge and behavior, i.e.

assumptions on the level of knowledge of yus, A, and S. The framework in Reiter et al.
(2014) allows the incorporation of these different assumptions at multiple stages in the
estimating process, thus giving extensive flexibility to parties trying to evaluate attribute
disclosure risks.

3.2 Key estimating steps

The intruder seeks the distribution of p(Ys
i = y∗ | Z,yus, A, S), where y∗ is one possible

inferred value of Ys
i by the intruder. Recall that yus, A, and S are available to the intruder.

According to Bayes rule,
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p(Ys
i = y∗ | Z,yus, A, S) ∝ p(Z | Ys

i = y∗,yus, A, S)p(Ys
i = y∗ | yus, A, S), (1)

where p(Z | Ys
i = y∗,yus, A, S) is the synthetic data distribution given what the intruder

knows, and p(Ys
i = y∗ | yus, A, S) represents the intruder’s prior on Ys

i = y∗ given yus,
A, and S.

The estimation procedure of Equation (1) varies by the variable type of Ys
i , and assump-

tions on the level of knowledge of yus, A, and S, among other things. Here we go through
each of these quantities and their implications in the estimating process, highlight several
common practices that have been adopted, before we illustrate with a selection of attribute
disclosure risk assessment demonstrations with real synthetic data applications in Section
3.3.

3.2.1 Knowledge of yus

Recall yus = {yus
i : i = 1, · · · , n} is the set of un-synthesized values of all n observations.

As mentioned before, when Z is partially synthetic, since intruder has access to Z, yus can
be determined and thus available. When Z is fully synthetic, yus = Ø, therefore we can
drop this term and further simplify the expression for fully synthetic Z as

p(Ys
i = y∗ | Z, A, S) ∝ p(Z | Ys

i = y∗, A, S)p(Ys
i = y∗ | A,S). (2)

Often times Ys
i is further simplified to Yi, as in Hu et al. (2014, 2018). However, without

loss of generality, we keep yus in the following discussion.

3.2.2 Assumptions about A

We use A to denote auxiliary information known by the intruder about records in y. As
yus is either known in partial synthetic or dropped in fully synthetic, A specifically refers
to information about ys, the synthesized values. When the intruder seeks p(Ys

i = y∗ |
Z,yus, A, S), the distribution of record i’s synthesized variables, there are numerous pos-
sible scenarios of what the intruder knows about the synthesized values of every other
record, denoted by the matrix ys

−i. First proposed in (Reiter, 2012), a “worst case” scenario
where the intruder knows the original values of the synthesized variables of all records
except for record i has been a common practice, i.e. A = ys

−i. This practice has been recog-
nized as strong intruder knowledge and conservative, as in many contexts, it is impossible
for the intruder to know ys

−i. However, it has also been argued that if disclosure risks un-
der such conservative assumption are acceptable, disclosure risks should be acceptable for
weakerA (Reiter, 2012; Reiter et al., 2014). As Reiter (2012); Hu et al. (2014) noted, assuming
the intruder knows all records but one is related to, but quite distinct from, the assumptions
used in differential privacy (Dwork, 2006). McClure and Reiter (2012) designed simulation
studies to compare the two paradigms.

3.2.3 Assumptions about S

S denotes any information known by the intruder about the process of generating Z. Ex-
amples include code for the synthesizer and descriptions of the synthesis model. Such in-
formation sometimes can be publicly available with great details. For example, the Census
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Bureau’s Survey of Income and Program Participation (SIPP) Synthetic Beta product has
an accompanying document Benedetto et al. (2013) describing their synthesizing process.
From the document, we gather that they implemented a Sequential Regression Multivariate
Imputation (SRMI) framework, with three main models (linear regression, logistic regres-
sion, and Bayesian bootstrap (Rubin, 1981)) for missing data imputation and synthetic data
generation. Such publicly available detailed information should be assumed known by the
intruder.

3.2.4 Choosing the prior p(Ys
i = y∗ | yus, A, S)

Determining the intruder’s prior beliefs of p(Ys
i = y∗ | yus, A, S) is another nearly impossi-

ble task. Skinner (2012) challenged the use of prior distributions being a more technical one
for the Bayesian machinery to function, and advocated for prior distributions that should
be defensible from the agency’s perspective. A common practice is to specify uniform prior
distributions of Ys

i = y∗ for all possible inferred values y∗, given (yus, A, S) as proposed
in Reiter (2012), but also consider a variety of prior distributions when possible, especially
if more informative prior is available (Wei and Reiter, 2016).

3.2.5 The estimation of p(Z | Ys
i = y∗,yus, A, S)

We now go through the estimation of p(Z | Ys
i = y∗,yus, A, S). The previously discussed

assumptions of A and S are relevant in this part of the estimating process. The importance
sampling techniques coupled with Monte Carlo simulation are adopted common practices,
and we will present and discuss why and how they work.

Typically by the independence of m different synthetic datasets, we work with each syn-
thetic dataset Z(l) separately, therefore we consider p(Z(l) | Ys

i = y∗,yus, A, S) for our
discussion. To ultimately obtain p(Z | Ys

i = y∗,yus, A, S), we have

p(Z | Ys
i = y∗,yus, A, S) =

m∏
l=1

p(Z(l) | Ys
i = y∗,yus, A, S). (3)

For p(Z(l) | Ys
i = y∗,yus, A, S), under the “worst case” scenario where the intruder knows

the original values of the synthesized variables of all records except for record i, i.e. A =
ys
−i, we come to

p(Z(l) | Ys
i = y∗,yus, A = ys

−i, S), (4)

which is very close to the distribution from which the synthetic data Z(l) is generated, as in

p(Z(l) | y, S) = p(Z(l) | Ys
i = yi,y

us, A = ys
−i, S), (5)

where yi is the true record in the original confidential dataset y. As we can see, the only
difference in the conditioned quantities in Equation (4) and Equation (5) is the difference
between y∗ (the random inferred value) and yi (the true record).

In fact, we could utilize the small difference between y and (Ys
i = y∗,yus, A = ys

−i, S) for
estimating p(Z(l) | Ys

i = y∗,yus, A = ys
−i, S). If we use Θ to denote the parameters in the

synthesis modelM , we could easily incorporate Θ draws in our estimation of p(Z(l) | Ys
i =

y∗,yus, A = ys
−i, S) through a Monte Carlo step, as in
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p(Z(l) | Ys
i = y∗,yus, A = ys

−i, S) =

∫
p(Z(l) | Ys

i = y∗,yus, A = ys
−i, S,Θ)

p(Θ | Ys
i = y∗,yus, A = ys

−i, S)dΘ. (6)

The Monte Carlo step requires re-estimation of the synthesis model M for each Ys
i = y∗,

which could be computationally prohibitive if many possible inferred values of Ys
i need

to be evaluated. To avoid the re-estimation of M to draw Θ samples, a common procedure
via importance sampling is adopted. In particular, available draws of Θ from p(Θ | y), the
model used for generating the synthetic dataset Z(l), act as proposals for the importance
sampling algorithm. Readers are referred to Paiva et al. (2014); Hu et al. (2014) for a review
of importance sampling and its usage in the applications therein.

3.3 Selected examples

In this selected examples section, we want to show the readers in a few different applica-
tions, i) what are ys, yus, Ys

i , A, and S; ii) what are the risk scenarios (i.e. assumptions
are made for A and S), and their implications; and iii) what are the specific file-level at-
tribute disclosure probability summaries in each application. For each application, we give
a brief overview of the dataset(s) and research questions to provide the background. We
also mention the synthesizers, but the details of the synthesizers and the evaluation of the
utility of the synthetic data are omitted, as we focus on the estimation of probabilities of
attribute disclosure in this paper. Interested readers should refer to the cited papers for
further information.

3.3.1 Fully synthetic categorical data

Hu et al. (2014) aimed at generating fully synthetic categorical data for a subset of n =
10000 individuals from the 2012 American Community Survey (ACS) public use microdata
sample for the state of North Carolina. They considered 14 unordered categorical variables,
as listed in Table 1. We include the variables, the number of categories of each variable, and
whether a variable is synthesized in this table.

While the authors attempted fully synthetic data generation (Rubin, 1993), they followed
the partially synthetic approach (Little, 1993) to replace all values in the data by synthetic
values (Drechsler, 2011a). Unlike the approach of Rubin (1993), where no correspondence
between a fully synthetic record and a real world record with subscript i exists, their ap-
proach maintains such correspondence, which is a key assumption in their proposed at-
tribute disclosure evaluation methods. For more discussion on the two approaches to gen-
erating fully synthetic data, refer to Drechsler (2018).

The authors used a Dirichlet Process mixture of products of multinomial (DPMPM) syn-
thesizer. The DPMPM is consisted of a set of flexible Bayesian latent class models that
have been developed to capture complex relationships among multivariate unordered cat-
egorical variables (Dunson and Xing, 2009). In recent years, the DPMPM has been pro-
posed as a multiple imputation engine for missing data problems, and a synthesizer for
SDL. Si and Reiter (2013) implemented the DPMPM as a missing data imputation engine
and demonstrated its superior performance comparing to traditional sequential imputa-
tion models such as the multiple imputation with chained equations (MICE; Buuren and
Groothuis-Oudshoorn (2011)). In addition to Hu et al. (2014), Drechsler and Hu (2018+); Hu
and Savitsky (2018+) used the DPMPM synthesizer for generating partially synthetic data
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Table 1: Variables used in the Hu et al. (2014). Data taken from the 2012 ACS public use
microdata samples.

Variable Number of categories Synthesized
Sex 2 Yes
Age 4 Yes
Race 6 Yes
Education level 4 Yes
Marital status 5 Yes
Language 2 Yes
Birth place 7 Yes
Military 3 Yes
Work 3 Yes
Disability 2 Yes
Health insurance coverage 2 Yes
Migration 3 Yes
School 3 Yes
Hispanic 2 Yes

with geocoding information. Variations of the DPMPM include versions of it dealing with
structural zeros (Manrique-Vallier and Reiter, 2014; Manrique-Vallier and Hu, 2018), deal-
ing with extension of the multinomial synthesizer (Hu and Hoshino, 2018), and dealing
with individuals nested within households (Hu et al., 2018; Akande et al., 2018+b,+).

The DPMPM synthesizer assigns an underlying latent class of each record. Conditioning
on the latent class assignment, each attribute independently follows its own distribution.
For unordered categorical variables, such distribution is usually multinomial distribution.
To generate the synthetic vector of attributes of one record, we first sample the latent class
assignment. For each attribute, we generate the value from its independent multinomial
distribution with probabilities sampled from the DPMPM.

We use Yi to represent the random attribute vector of record i (the superscript s is dropped
because this is fully synthetic, i.e. yus

i = Ø and Ys
i = Yi), Y to represent the ran-

dom attribute vectors of all n records, Z(l) to represent each fully synthetic dataset, where
l = 1, · · · ,m, and Z = {Z(1), · · · ,Z(m)} to represent all m fully synthetic datasets.

Following the general setup and notations introduced earlier, we use A to represent the
intruder’s information on person’s attributes in the sample (i.e. auxiliary information), and
S to represent any meta-data released by the agency about the synthesis model. The goal is
to estimate Ys

i for one or more target records in the sample. Specifically in this case, because
all attributes are unordered categorical, we are able to enumerate all possible combinations
of the categorical attributes.

Then the expression of the probability of attribute disclosure of an entire record i becomes
Equation (7),

p(Yi = y∗ | Z, A, S) ∝ p(Z | Yi = y∗, A, S)p(Yi = y∗ | A,S), (7)

where y∗ is an inferred value by the intruder.
Hu et al. (2014) set A = y−i, which corresponds to the “worst case” scenario where the

intruder knows the actual data for all records except for the record i.
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p(Yi = y∗ | Z, A = y−i, S) ∝ p(Z | Yi = y∗, A = y−i, S)p(Yi = y∗ | A = y−i, S).

(8)

To estimate p(Z | Yi = y∗, A = y−i, S), the authors proposed to dramatically reduce
the set of possible combinations that y∗ could take. Specifically, they consider the neigh-
borhood near yi (the true record), which contains only feasible candidates where y∗ differ
from yi in one variable. In their illustrative application, the subset contains only 35 combi-
nations, reduced from 8709120 cells in the contingency table. The authors commented that
if risks of Yi being the true yi are acceptable in this reduced set, then the risks would be
even lower when considering the full set. The risks in the reduced set are the upper bound.
Importance sampling techniques were applied to avoid re-evaluation of probability of ob-
taining the synthetic datasets Z given different combinations of (Yi = y∗, A = y−i, S), as
in Equation (4).

For the prior on p(Yi = y∗ | A = y−i, S), Hu et al. (2014) assumed a uniform prior,
which sums to 1 over the number of combinations in the reduced set (e.g. 1/35 in their
illustration). The prior probabilities were canceled out in the computation process.

To summarize the calculated risks of attribute disclosure of all records, Hu et al. (2014)
created two file-level attribute disclosure probability summaries:

(i) The ranking of the probability of the true record being disclosed, among the subset of
combinations;

(ii) The re-normalized probability of the true record being disclosed, among the subset
of combinations.

In general, the higher the ranking and the re-normalized probability, the higher the at-
tribute disclosure risks.

Additionally, Hu et al. (2014) investigated scenarios where the intruder might know a
subset of values in yi, for example, demographic variables. The authors then defined each
yi as yi = (yi,k,yi,uk), where the additional subscript k denotes the variables known by the
intruder and uk denotes the variables unknown by the intruder. Subsequently, to evaluate
risks for intruders seeking to estimate the distribution of Yi,uk, the authors defined A =
(yi,yi,k), and Equation (8) becomes

p(Yi,uk = y∗uk | Z, A = (yi,yi,k), S) ∝ p(Z | Yi,uk = y∗uk, A = (yi,yi,k), S)

p(Yi,uk = y∗uk | A = (yi,yi,k), S). (9)

The estimation procedure works in a similar way, and we refer interested readers to Hu
et al. (2014) for detail and discussion.

3.3.2 Partially synthetic continuous data

Wang and Reiter (2012) aimed at generating partially synthetic data for sharing precise
geographies. The precise geographies were exact longitude and latitude of each death of
a sample of n = 2670 North Carolina mortality records in 2002. Only exact longitude
and latitude of each record were synthesized, and all non-geographic variables were kept
unchanged. We include the variables, their descriptions, and whether a variable is synthe-
sized in Table (2).
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Table 2: Variables used in the Wang and Reiter (2012). Data taken from the 2012 North
Carolina mortality records dataset.

Variable Description Synthesized
Longitude Recoded (1 - 100) Yes
Latitude Recoded (1 - 100) Yes
Sex Male, female No
Race White, black No
Age (years) 16-99 No
Autopsy performed Yes, no, missing No
Autopsy findings Yes, no, missing No
Marital status 5 categories No
Attendant 3 categories No
Hispanic 7 categories No
Education (years) 0-17 No
Hospital type 8 categories No
Cause of death Binary No

The authors used classification and regression trees (CART; refer to Reiter (2005b) for de-
tails of using CART to generate partially synthetic data) synthesizers for generating longi-
tudes and latitudes. In particular, they first fit a regression tree of longitudes on all non-
geographic attributes, and generated synthetic longitudes using the Bayesian bootstrap.
After obtaining synthetic longitudes, they fit another regression tree of latitude on all non-
geographic attributes and the true latitude, and generated synthetic latitudes using the
Bayesian bootstrap. In the end, the partially synthetic precise geographies were simulated.

We use Ys
i to represent the longitude and latitude of record i, Ys to represent the random

longitudes and latitudes of all n records, yus to represent the un-synthesized value of all
n records, Z(l) to represent each partially synthetic dataset, where l = 1, · · · ,m, and Z =
{Z(1), · · · ,Z(m)} to represent all m partially synthetic datasets.

Following the general setup and notations introduced earlier, we use A to represent the
intruder’s information on person’s attributes in the sample (i.e. auxiliary information), and
S to represent any meta-data released by the agency about the synthesis model. The goal is
to estimate Ys

i for one or more target records in the sample. We now express the probability
of attribute disclosure of estimating the longitude and latitude of record i, which is the same
as in Equation (1) and restated below in Equation (10). Recall that y∗ is a possible original
value of Ys

i by the intruder.

p(Ys
i = y∗ | Z,yus, A, S) ∝ p(Z | Ys

i = y∗,yus, A, S)p(Ys
i = y∗ | yus, A, S) (10)

Wang and Reiter (2012) evaluated two scenarios regarding the choice of A and S.

(i) Scenario #1 (high-risk): The intruder knows everything except for one target’s Ys
i ,

i.e., A = ys
−i, and S includes everything about the CART except the individual ge-

ographies in the nodes. Note that A = ys
−i is the same as the “worst case” scenario

discussed in Section 3.2.
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p(Ys
i = y∗ | Z,yus, A = ys

−i, S) ∝ p(Z | Ys
i = y∗,yus, A = ys

−i, S)

p(Ys
i = y∗ | yus, A = ys

−i, S)

(11)

(ii) Scenario #2 (low-risk): The intruder does not know any records’ geographies, i.e.,
A = Ø, and S includes everything about the CART except the individual geographies
in the nodes.

p(Ys
i = y∗ | Z,yus, A = Ø, S) ∝ p(Z | Ys

i = y∗,yus, A = Ø, S)

p(Ys
i = y∗ | yus, A = Ø, S)

(12)

For the high-risk scenario, to estimate p(Z | Ys
i = y∗,yus, A = ys

−i, S), importance sam-
pling techniques were applied to avoid re-evaluation of probability of obtaining the syn-
thetic datasets Z given different combinations of (Ys

i = y∗,yus, A, S), as in Equation (4).
For the intruder’s prior on p(Ys

i = y∗ | yus, A = ys
−i, S), Wang and Reiter (2012) assumed a

uniform distribution on a grid over a small area containing the target’s true longitude and
latitude.

The authors noted that the uniform prior for p(Ys
i = y∗ | yus, A = ys

−i, S) represents
strong intruder prior information, because the prior was given on a grid over a small area.
They also noted that the value of the risk measure would change if other prior specifica-
tions were given, though they did not consider other specifications in their attribute risk
disclosure evaluation.

Specifically, Wang and Reiter (2012) developed two geographies-specific attribute disclo-
sure risk measures:

(i) A Euclidean distance R1 between the intruder’s inferred value of the longitude and
latitude and the actual longitude and latitude;

(ii) The count R2 recording the number of actual cases in circle centered at the actual
longitude and latitude with radius R1.

In general, larger values of R1 and R2 correspond to smaller attribute disclosure risks.
We also want to note that Paiva et al. (2014) used a similar dataset with the goal of partially

synthesizing geographies. Though their synthesis model was different from the one in
Wang and Reiter (2012), they proposed three other file-level attribute disclosure probability
summaries for synthetic data applications involving geographic locations.

(i) A file-level risk measure of the percentage of records with the true location yi being
the maximum posterior probability of record i;

(ii) A file-level risk measure of the percentage of records with the true location yi being
the maximum posterior probability of record i, and record i has unique patterns;

(iii) A Euclidean distance measure between the true location yi and the inferred value y∗

with the maximum posterior probability of record i.

In general, smaller values of measures (i) and (ii) and larger values of measure (iii) corre-
spond to smaller attribute disclosure risks.
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3.3.3 Fully synthetic continuous data

Wei and Reiter (2016) aimed at generating fully synthetic data for sharing magnitude mi-
crodata from business establishments. The magnitude variables were the number of skilled
laborers, the number of unskilled laborers, wages of skilled laborers, and wages of un-
skilled laborers of a sample of n = 1051 food manufacturing establishments in the country
of Colombia in 1977. All 4 magnitude variables were synthesized, making it a fully syn-
thetic microdata endeavor. We include the variables, their descriptions, and whether a
variable is synthesized in Table (3).

Table 3: Variables used in the Wei and Reiter (2016). Data taken from the 1977 Colombia
food manufacturing establishments sample.

Variable Description Synthesized
Number of skilled laborers Integer Yes
Number of unskilled laborers Integer Yes
Wages of skilled laborers Integer Yes
Wages of unskilled laborers Integer Yes

The authors used three synthesizers based on finite mixtures of Poisson (MP) distribu-
tions. The class of finite mixtures of Poissons can i) capture complex multivariate asso-
ciations among the variables; and ii) model count variables. In addition to the basic MP
synthesizer, Wei and Reiter (2016) proposed the mixture of Multinomial (MM) synthesizer,
which ensures the synthetic values sum to marginal totals in the confidential data. The
marginal totals constraints are satisfied by performing another layer of Multinomial draws
of counts within each occupied Poisson mixture component. Specifically, the totals (e.g.
the number of skilled laborers) and the number of cases (in running the MP, at each MCMC
iteration, each record is assigned to a component) in each occupied Poisson mixture compo-
nent are computed and stored. Based on the totals and the number of cases, a Multinomial
sample is generated, distributing the totals into all levels. Within each occupied Poisson
mixture, the marginal totals match in the synthetic and confidential data, therefore overall
marginal totals also match. Furthermore, the authors proposed the tail-collapsed mixture
of Multinomial (TCMM) synthesizer, which effectively performs a model-based variation
of microaggregation plus noise, by collapsing tails of individual variables (i.e. risky val-
ues). For TCMM, one needs to specify a parameter associated with the quantile, namely q,
which acts as a threshold to control the amount of collapsing.

We use Yi to represent the random vector of the numbers of skilled and unskilled laborers
and their corresponding wages of record i, Y to represent the 4 random magnitude vari-
ables of all n records, Z(l) to represent each fully synthetic dataset, where l = 1, · · · ,m, and
Z = {Z(1), · · · ,Z(m)} to represent all m fully synthetic datasets. Note that we dropped the
superscript s in Ys and use Y and Yi directly because every variable is synthesized.

Specific to the business establishment survey data, we need to define a few other quanti-
ties before we can describe the risk scenarios and file-level attribute disclosure probability
summaries. We use y(1)j and y(2)j to represent the largest and second largest values of
variable j in y, the original confidential dataset. When the intruder does not know these
values, we use Y(1)j and Y(2)j as the random variables representing the intruder’s uncertain
knowledge about them. Furthermore, we let Tj be the total of variable j in y, and use y(1)

and y(2) to represent the values of two entire records.
Wei and Reiter (2016) considered a variety of risk scenarios. As an illustration of evaluat-

ing attribute disclosure for fully synthetic continuous data, we present the scenario where
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the intruder, who has the second largest value of a certain variable, y(2)j , attempts to use
the released synthetic data Z to learn about the individual with the largest value of the
variable, the random quantity Y(1)j . Such a scenario is commonly used by official statistics
agencies with business establishment data (Kim et al., 2015, 2018).

Recall that we use A to represent the intruder’s information on person’s attributes in
the sample (i.e. auxiliary information), and S to represent any meta-data released by the
agency about the synthesis model. Translating the scenario above into choices of A and
S, we come to Equation (13), which represents the attribute disclosure risk probability of
correctly inferring Y(1)j = y∗(1)j when Tj is available.

Pr(Y(1)j = y∗(1)j | Z,y(2), Y(1)j ≥ y(2)j , Tj) ∝ Pr(Z | Y(1)j = y∗(1)j ,y(2), Tj)

Pr(Y(1)j = y∗(1)j | y(2), Y(1)j ≥ y(2)j , Tj),
(13)

where y∗(1)j is a possible original value of Y(1)j by the intruder.
To estimate Pr(Z | Y(1)j = y∗(1)j ,y(2), Tj), techniques of using Z to approximate the set

of records in the same component occupied by the target record were applied to simplify
the computation. We refer the readers to Wei and Reiter (2016) for the details regarding the
MM and TCMM synthesizers.

For the intruder’s prior on Pr(Y(1)j = y∗(1)j | y(2), Y(1)j ≥ y(2)j , Tj), Wei and Reiter (2016)
discussed the choice of a non-uniform prior distribution, which could provide more ac-
curate prior inferred values and is worth noting here. In their empirical illustration of
synthesizing fully magnitude data from the Colombia food manufacturing establishments
dataset, the authors estimated the chance that the largest value of the number of skilled
laborers falls into an interval, with the lower bound being the second largest value and
the upper bound being pre-defined. Among the three different synthesizers, the attribute
disclosure risks under the MP and the MM synthesizers are extremely high, whereas the
risks under the TCMM synthesizer are overall much lower. Furthermore, the risks de-
crease as the threshold parameter q decreases, which is expected because of the amount of
tail collapsing increases as q decreases. Interested readers are encouraged to consult Wei
and Reiter (2016) for their explanations.

We also want to point out that Wei and Reiter (2016) evaluated two other sets of scenarios,
both of which assume the intruder seeks to correctly infer the values of variable j of two
records, y(1)j and y(2)j . The first scenario is the intruder knows all but one or two values in
y, which means the intruder seeks to estimate the probability of (Y(1)j = y∗(1)j , Y(2)j = y∗(2)j)

given Z, Y(1)j + Y(2)j = T2j and different combinations of A and S. The second scenario is
the intruder knows all data values except for one or two records, which means the intruder
seeks to estimate the probability of (Y(1)j = y∗(1)j , Y(2)j = y∗(2)j) given Z, Y(1) + Y(2) = T2

and different combinations of A and S.

3.4 Discussion and comments

There are few common practices for evaluating attribute disclosure risks in the selected
examples, as well as in other synthetic applications. The first one is on the assumptions
about A, the auxiliary information known by the intruder about records in ys. The “worst
case” scenario of letting A = ys

−i, i.e. the intruder knows all the original values of the syn-
thesized variables of all records except for record i, although it provides an upper bound
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on the identification risks, is a very strong and probably unrealistic assumption. The sce-
nario greatly simplifies the estimation of p(Z | Ys

i = y∗,yus, A, S) as in Section 3.2.5 and
Equation (3), by setting A = ys

−i. If the assumption is weaker, for example, the intruder
only knows the synthesized values of next record i + 1, then A = ys

i+1, which means the
approximation in Equation (4) to (6) will involve extra steps of imputing all the other syn-
thesized values {ys

i′ , i
′ 6= i, i′ 6= i+ 1} (see Paiva et al. (2014) for a potential solution). Such

weaker assumptions are much more realistic, but almost computationally infeasible with
the current setup. McClure and Reiter (2016) examined the effect on attribute disclosure
risks in fully synthetic data by decreasing the number of observations knows (i.e. weaken-
ing the assumption of A = ys

−i). Future research in designing faster algorithms to estimate
p(Z | Ys

i = y∗,yus, A, S) with weaker A is desired.
The common practice of setting the prior p(Ys

i = y∗ | yus, A, S) as a uniform distribu-
tion has been adopted in various applications. Because of the cancellation in Bayes’ rule,
using a uniform prior for p(Ys

i = y∗ | yus, A, S) essentially simplifies the estimation, as
we only need to estimate p(Z | Ys

i = y∗, A, S) in Equation (2). We should recognize not
only its convenience in computation, but also its constraint. Using a uniform prior can be
un-informative for some cases, but it might be strongly informative in other cases, as in
Wang and Reiter (2012), which might not be realistic. Using a uniform prior can be realistic
in some cases, but it might need to adjusted to reflect more realistic prior belief. For exam-
ple, it is possible to argue that the 35 combinations in the reduced subset in Hu et al. (2014)
should not really be treated equally likely (i.e. a uniform prior). Rather, some combina-
tions might be more plausible than the others, thus carrying higher prior probability. The
general advice is to consider a wide range of prior distributions for p(Ys

i = y∗ | yus, A, S)
if possible. Also, do not choose uniform only for its simplicity. Choosing a more realistic
prior distribution provides a more reasonable attribute disclosure risks measure (Wei and
Reiter, 2016).

When estimating p(Z | Ys
i = y∗,yus, A, S), importance sampling techniques are widely

used to avoid re-estimating the synthesis modelM for each Ys
i = y∗. First of all, we should

recognize that if A is not as strong as A = ys
−i, even the importance sampling techniques

will not help much. See the discussion in the first paragraph of this section. Second of
all, typically the set of inferred values of Ys

i , {y∗}, is reduced to a much smaller set than
the full set containing all possible combinations. Even though the reduction provides an
upper bound on the attribute disclosure risks (Hu et al., 2014, 2018), it is really for com-
putational feasibility that such reduction is applied. Further research paths include faster
algorithms to expand the small reduced set, and new algorithms to search for y∗ that gives
high probability estimation of p(Z | Ys

i = y∗,yus, A, S) in an efficient way, therefore en-
abling the data disseminator to check against the actual truth ys

i and determine its attribute
disclosure risks level. Third of all, to use the Monte Carlo approximation coupled with im-
portance sampling techniques in Equation (6), draws of Θ are necessary, which means the
final synthetic data generation process involves parametric models. Among the selected
examples, Hu et al. (2014); Wei and Reiter (2016) had parametric models for the outcome
(multinomial and poisson, respectively). Even though Wang and Reiter (2012) used non-
parametric CART synthesizers, their ultimate synthetic data generation process involves
Bayesian bootstrap sampling with mixture normal distributions. It is unclear how to es-
timate the attribute disclosure risks for true non-parametric synthesizers, which can be a
fruitful research path.

There are additional possible difficulties in implementing the Bayesian estimation proce-
dure of attribute disclosure risks evaluation. As noted in Manrique-Vallier and Hu (2018),
their proposed synthesizers for categorical variables with structural zeros had serious sta-
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bility issues with the estimation of p(Z | Ys
i = y∗,yus, A, S), as its values varied by sev-

eral thousands in the log-scale from one sample of Θ to another, resulting in enormous
mean-squared error. The authors then developed an indirect bootstrap hypothesis testing
framework to approximate the ranking of y∗ in the reduced set. We refer the readers to
Manrique-Vallier and Hu (2018) for details.

One final comment to make is the work of McClure and Reiter (2012), where the authors
compared the disclosure risk criterion of ε-differential privacy with a criterion based on the
attribute disclosure risk probabilities. The evaluation from their simulation studies was
that the two paradigms are not easily reconciled. Moreover, sometimes attribute disclosure
risks can be small even when ε is large. The authors proposed an alternative disclosure risk
assessment approach, one integrates both paradigms, though great computation challenges
were foreseeable. Further research on risk assessment integrating the two paradigms is
desired.

4 Bayesian estimation of identification disclosure risks

As discussed previously, we only consider identification disclosure risks for partially syn-
thetic data.

Researchers have worked on Bayesian probabilistic matching to estimate the probabilities
of identifications of sampled units. Duncan and Lambert (1986, 1989); Lambert (1993) de-
veloped Bayesian approaches to i) model the behavior of intruders, and ii) quantify sources
of uncertainty about those estimated probabilities. Their work is followed by Fienberg et al.
(1997), who estimated probabilities of identification for continuous microdata, which had
undergone SDL techniques by adding random noise.

Observing the lack of illustrative applications on genuine data, Reiter (2005a) extended the
Duncan-Lambert framework using data from the Current Population Survey (CPS). Com-
mon SDL techniques (recoding, topcoding, swapping, adding random noise, and combi-
nations of these techniques) were applied to genuine microdata in their illustrations. They
also considered different assumptions of intruders’ knowledge and behavior and incorpo-
rated such information into the estimation of the identification probabilities.

The step-by-step probability estimation procedure in Reiter (2005a) has been standard
practice for Bayesian probabilistic matching ever since, especially after the synthetic data
approach has gained its momentum. Reiter and Mitra (2009) in particular first set up the
framework for the Bayesian probabilistic matching for partially synthetic data.

We now turn to the framework in Reiter and Mitra (2009) for identification disclosure risks
estimation for synthetic data, which was an extension of the general framework for identi-
fication disclosure risks estimation of data that have been subjected to common SDL tech-
niques in Reiter (2005a). We use similar notations, highlight the key steps, and illustrate
with selected examples. We have chosen these examples that are built upon the frame-
work but tailored for specific purposes and needs. To be as comprehensive as possible,
we present two partially synthetic categorical data applications i) Reiter and Mitra (2009),
ii) Drechsler and Hu (2018+), and iii) partially synthetic categorical and continuous data
(Drechsler and Reiter, 2010). In the end, we will discuss the challenges and future direc-
tions of this framework.
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4.1 Notations and setup

In the sample S of n units and p variables, the notation yij refers to the j-th variable of the
i-th unit, where i = 1, · · · , n and j = 0, 1, · · · , p. The column j = 0 contains some unique
identifiers (such as name or Social Security Number), which are never released. Among
the recorded variables, i) some are available to users from external databases, denoted by
yA
i , and ii) others are unavailable to users except in the released data, denoted by yU

i . We
therefore have the vector response of the i-th unit, yi = (yi1, · · · , yip) = (yA

i ,y
U
i ). We also

have the matrix Y = (YA,YU ) representing the original values of all n units.
On the agency side, suppose it releases all n units of the sample S. Similar to the split of

yi, we have zi = (zi1, · · · , zip) = (zAi , z
U
i ). Among the available variables, we further split

them into i) zAs
i the synthesized variables, and ii) zAus

i the un-synthesized variables. We
therefore have zi = (zAus

i , zAs
i , zUi ), and we let Z = (ZAus ,ZAs ,ZU ) be the matrix of all

released data. We also let YAs be all n unit’s original values of the synthesized variables.
We note that in some cases, the agency might only release r ≤ n units of the sample (Reiter,
2005a).

On the intruder side, let t be the vector of information that the intruder has. t may or
may not be in Z, but we assume t = yA

i for some unit in the population. This vector t
only contains un-synthesized and synthesized variables (no unavailable variables as in yi

and zi), thus we have t = (tAus , tAs). The intruder’s goal is to match record i in Z to the
target when zi0 = t0. Additionally, two other pieces of information can be available to
the intruder. Let S represent the meta-data released about the simulation models used to
generate the synthetic data, and let R represent the meta-data released about the reason
why records were selected for synthesis. Either S or R could be empty.

There are n released units in Z. Let I be the random variable that equals to iwhen zi0 = t0
for i ∈ Z and equals n + 1 when zi0 = t0 for some i /∈ Z. The intruder intends to calculate
Pr(I = i | t,Z, S,R) for i = 1, · · · , n+ 1. The intruder is particularly interested in learning
whether any of the calculated identification probabilities for i = 1, · · · , n are large enough
to declare an identification.

For the agency, it is paramount to model different intruder’s knowledge and behavior
when estimating identification risks from releasing synthetic dataset. The framework in
Reiter and Mitra (2009) allows the incorporation of these different assumptions at multiple
stages in the estimating process, thus gives extensive flexibility to parties trying to evaluate
identification disclosure risks.

4.2 Key estimating steps

The intruder intends to calculate Pr(I = i | t,Z, S,R) = for i = 1, · · · , n+ 1. Based on the
split of Z = (ZAus ,ZAs ,ZU ), we re-write the probability as

Pr(I = i | t,ZAus ,ZAs ,ZU , S,R). (14)

In fact, the intruder does not know the actual values in YAs , all n unit’s original values
of the synthesized variables. Therefore for the intruder, integrating over its possible values
when computing the match probabilities is necessary, as in

Pr(I = i | t,ZAus ,ZAs ,ZU , S,R) =

∫
Pr(I = i | t,ZAus ,ZAs ,ZU , S,R,YAs)

Pr(YAs | t,ZAus ,ZAs ,ZU , S,R)dYAs . (15)
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The estimation procedure of Equation (15) varies by the variable(s) in t (e.g. whether in
tAus or in tAs ), the variable types, assumptions on the level of knowledge of t being in Z or
not, of S and R, among other things. Here we go through each of these aspects/quantities
and their implications in the estimating process, highlight several common practices that
have been adopted, before we illustrate with a selection of identification disclosure risk
assessment demonstrations with real synthetic data applications in Section 4.3.

4.2.1 The variable(s) in tAus

An immediate simplification of Pr(I = i | t,ZAus ,ZAs ,ZU , S,R,YAs) in Equation (15) is

Pr(I = i | t,ZAus ,ZAs ,ZU , S,R,YAs) = Pr(I = i | t,ZAus ,YAs). (16)

This is true because when YAs is given, I = i and {ZAs ,ZU , S,R} are conditionally inde-
pendent. That is, the intruder would use (ZAus ,YAs) without the synthetic data ZAs , the
unavailable variables ZU , S, or R to attempt re-identification. Equation (16) will be used in
Sections 4.2.2 and 4.2.3 as well.

Consider any variable k in tAus . Since it is an un-synthesized variable, for any unit i in
ZAus where the released value of zik 6= tk, Pr(I = i | t,ZAus ,YAs) = 0.

4.2.2 The variable(s) in tAs

For categorical variables in the synthesized set tAs , the intruder matches directly on ZAs .
For numerical or continuous variables in tAs , while exact match could be pursued, the
nature of the numerical/continuous variables will result in zero probabilities for most if
not all of the records. Therefore, it is advisable to match numerical components of ZAs

within some acceptable distance (e.g. Euclidean or Mahalonobis) from the corresponding
tAs .

4.2.3 Whether t is in Z or not

The overall assumption we have is that the vector of information that the intruder has,
t = yA

i for some unit in the population, but not necessarily in Z. When t = yA
i is in Z, then

the quantity in Equation (16) for I = n + 1 is 0, i.e. Pr(I = n + 1 | t,ZAus ,YAs) = 0. This
simplifies calculating Pr(I = i | t,ZAus ,YAs) for i ≤ n. For example,

Pr(I = i | t,ZAus ,YAs) =
1

nt
, (17)

where nt is the number of units in (ZAus ,YAs) with yA
i consistent with t.

When t = yA
i is not in Z, then Pr(I = n+1 | t,ZAus ,YAs) 6= 0. If we letNt be the number

of units in the population that have (zAus
i ,yAs

i ) consistent with t which are also included
in Z, then

{
Pr(I = i | t,ZAus ,YAs) = 1

Nt
,

P r(I = n+ 1 | t,ZAus ,YAs) = Nt−nt

Nt
.

(18)

DeterminingNt can be done from census totals, or can be estimated from available sources.
Reiter and Mitra (2009) discussed possible ways for estimation using survey weights. Model-
based approaches to estimating Nt can be applied too, for example Elamir and Skinner
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(2006), among others. Additional approaches to accounting for intruder uncertainty due to
sampling were proposed in Drechsler and Reiter (2008).

It is important to recognize that setting Pr(I = n+ 1 | t,ZAus ,YAs) = 0 results in conser-
vative measures of identification disclosure risks.

4.2.4 Assumptions about S and R

Previously, we let S represent the meta-data released about the simulation models used to
generate the synthetic data, and R represent the meta-data released about the reason why
records were selected for synthesis. We note that in practice, R is usually dropped because
reasons why records were selected for synthesis are difficult to come by. However, S can
be available in many cases. For example, in Section 3.2, information about the synthesis
models of the SIPP Synthetic Beta is available online (Benedetto et al., 2013), which should
be assumed to be known by the intruder. Not only the SIPP, information about the synthesis
process of the SynLBD is publicly available in Kinney et al. (2011, 2014).

4.2.5 Estimating Pr(I = i | t,ZAus ,ZAs ,ZU , S,R) through Monte Carlo

This description follows the description given in Drechsler and Hu (2018+). The construc-
tion in Equation (15) suggests a Monte Carlo approach to estimating each Pr(I = i | t,Z, S)
(note that Z is used in place of (ZAus ,ZAs ,ZU ); R is dropped, assumed unavailable), and
we re-write it as

Pr(I = i | t,Z, S) =

∫
Pr(I = i | t,Z, S,YAs)Pr(YAs | t,Z, S)dYAs . (19)

For the Monte Carlo approach, perform the following two-step process.

(i) Sample a value of YAs from Pr(YAs | t,Z, S), and let Ynew represent one set of
simulated values.

(ii) Compute Pr(I = i | t,Z, S,YAs = Ynew) using exact matching assuming Ynew are
collected values.

This two-step process is iterated h times, where ideally h is large, and Equation (19) is
estimated as

Pr(I = i | t,Z, S) ≈ 1

h

∑
h

Pr(I = i | t,Z, S,YAs = Y(h)
new), (20)

where YAs = Y
(h)
new indicates one iteration of the two-step process.

When S has no information, the intruder treats the simulated values as plausible draws
of YAs .

4.2.6 Three summaries of identification disclosure probabilities

For attribute disclosure risk measures in Section 3.3, summaries of attribute disclosure
probabilities vary by variable types and contexts. For example, fully synthetic categori-
cal data uses summaries of i) ranking, and ii) re-normalized probability of the true record
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being disclosed, as in Hu et al. (2014) in Section 3.3.1. Partially synthetic continuous data,
specifically in Wang and Reiter (2012) where synthetic precise geographies are released,
summaries of i) the average Euclidean distance between the intruder’s inferred value of
the geography and the actual geography, and ii) the count of the actual cases in circle cen-
tered at the actual geography within radius in i) are reported.

Unlike the summaries of attribute disclosure probabilities, summaries of identification
disclosure probabilities are more generally applicable, regardless of the variable types and
contexts. There are three summaries of identification disclosure probabilities, which now
we describe, following Drechsler and Hu (2018+).

We need the following notations and definitions before we present the three summaries.
Let ci be the number of records with the highest match probability for the target ti; let
Ti = 1 if the true match is among the ci units and Ti = 0 otherwise. Let Ki = 1 when
ciTi = 1 and Ki = 0 otherwise, and let N denote the total number of target records. Finally,
let Fi = 1 when ci(1− Ti) = 1 and Fi = 0 otherwise, and let s equal the number of records
with ci = 1.

Now we can present the three widely used summaries (file-level) of identification disclo-
sure probabilities using the notations and definitions given above.

(i) The expected match risk:

n∑
i=1

Ti
ci
. (21)

When Ti = 1 and ci > 1, the contribution of unit i to the expected match risk is the
probability of finding the correct match by randomly selecting for the ci candidates.
In general, the higher the expected match risk, the higher the identification disclosure
risks.

(ii) The true match rate:

n∑
i=1

Ki

N
, (22)

which is the percentage of true unique matches among the target records. In general,
the higher the true match rate, the higher the identification disclosure risks.

(iii) The false match rate:

n∑
i=1

Fi

s
, (23)

which is the percentage of false matches among unique matches. In general, the lower
the false match rate, the higher the identification disclosure risks.
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4.3 Selected examples

In this selected examples section, we want to show the readers a few different applications
of partially synthetic data. We will illustrate the variables in t = (tAus , tAs) for each ap-
plication. All applications follow similar estimating procedures, and report the same three
summaries as presented in Section 4.2.6: i) the expected match risk, ii) the true match rate,
and iii) the false match rate.

For each application, we give a brief overview of the dataset(s) and research questions to
provide the background. We also mention the synthesizers, but the details of the synthe-
sizers and the evaluation of the utility of the synthetic data are omitted. Interested readers
should refer to the cited papers for further information.

4.3.1 Partially synthetic categorical data 1

Reiter and Mitra (2009) aimed at partially synthesizing a sample of n = 2562 of the 1987
Survey of Youth in Custody. There are 23 variables on the file, and the authors illustrated
partially synthesizing two categorical variables, facility and race. Table 4 gives a partial
list of the variables with their description, synthesis information and whether known by
the intruder. All other un-listed 20 variables are not known by the intruder during the
identification disclosure risks evaluation.

Table 4: Selected variables used in the Reiter and Mitra (2009). Data taken from the 1987
Survey of Youth in Custody.

Variable Description Synthesized Known by intruder
Facility Categorical, 46 levels Yes Yes
Race Categorical, 5 levels Yes Yes
Ethnicity Categorical, 2 levels No Yes

To synthesize the facility and race variables, the authors first use multinomial regressions
to synthesize facility. All other variables except race and some variables causing multi-
collinearity are included in the multinomial regressions as predictors. Once all values of
the facility variable are synthesized, the authors then synthesize race using multinomial
regressions. The predictors in these multinomial regressions include all other variables
plus indicator variables for facilities, except those causing multi-collinearity. Reiter and
Mitra (2009) note that the new values of race are simulated conditional on the values of the
synthetic facility indicators.

For the identification disclosure risks evaluation, the authors considered facility and race
in tAs , and ethnicity in tAus . They also assumed that all targets are in the sample, i.e.
Pr(I = 2562 + 1 | t,ZAus ,YAs) = 0.

4.3.2 Partially synthetic categorical data 2

Drechsler and Hu (2018+) aimed at comparing a few existing synthesizers on a large Ger-
man administrative database called the Integrated Employment Biographies (IEB) to pro-
vide access to detailed geocoding information. There are approximately 22 million records
in the IEB. The authors considered 11 variables as listed in Table 5. We include the variables,
the description, whether a variable is synthesized, and whether the variable is known by
the intruder in the identification disclosure risks estimation (i.e. whether in t) in this table.
The authors in fact experimented with different numbers of variables to be synthesized
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in order to provide higher protection. However, Table 5 considers the main synthesis ap-
proach, on which the authors presented most of the utility and risks results too.

Table 5: Variables used in the Drechsler and Hu (2018+). Data taken from the IEB database
in Germany. Note that the exact geocoding information is recorded as distance in meters
from the point 52 northern latitude and 10 eastern longitude. It is converted to categorical
for two out of the three synthesizers.

Variable Description Synthesized Known by intruder
Exact geocoding info Longitude and latitude Yes Yes
Sex Male, female No Yes
Foreign Yes, no No Yes
Age 6 categories No Yes
Education 6 categories No No
Occupation level 7 categories No No
Occupation 12 categories No Yes
Industry of the employer 15 categories No Yes
Wage 10 categories (quantiles) No No
Distance to work 5 categories No No
ZIP code 2,063 ZIP code levels No No

The authors considered three synthesizers. The first synthesizer is the DPMPM synthe-
sizer used in Hu et al. (2014), where the exact geocoding information was discretized into
one unordered categorical variable, and the Dirichlet Process mixture model on the joint of
the 11 unordered categorical variables was estimated and used to generate synthetic data.
The second synthesizer is the CART synthesizer used in Wang and Reiter (2012), where the
exact geocoding information (the latitude and longitude) were treated as continuous and
synthesized sequentially. We call this CART synthesizer the CART continuous. The third
synthesizer is also a CART synthesizer, but similar to the DPMPM synthesizer, the exact
geocoding information was discretized into one unordered categorical variable. We call
this CART synthesizer the CART categorical. All three synthesizers were applied to gener-
ate partially synthetic IEB, where only the geocoding information was synthesized (either
as categorical or as continuous).

For the identification disclosure risks evaluation, the authors considered the exact geocod-
ing information in tAs , and sex, foreign, age, occupation, and industry of the employer in
tAus . Because the IEB is a census, the authors also assumed that all targets are in Z, i.e.
Pr(I = n + 1 | t,ZAus ,YAs) = 0. They reported the expected match risk, the true match
rate, and the false match rate for different synthesizers. While the CART categorical syn-
thesizer produced synthetic data with the highest utility, the identification disclosure risks
may be deemed too high, therefore the authors recommended two approaches for increas-
ing the level of protection: i) aggregate the geocoding information to a higher level, and
ii) synthesize additional variables in the dataset. Drechsler and Hu (2018+) preferred ii)
over i), and interested readers are referred to the paper for their discussion and general
recommendations.

4.3.3 Partially synthetic categorical and continuous data

Drechsler and Reiter (2010) aimed at partially synthesizing a sample of n = 51016 of the
March 2000 U.S. CPS. The authors in fact treated the sample as a census to illustrate their
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sampling with synthesis methodology, but for our illustration purpose, we will ignore the
differences. There are 10 variables on the file, and the authors illustrated partially synthe-
sizing three variables (2 are categorical and 1 is continuous). Table 6 gives the list of the
variables with their description, synthesis information and whether known by the intruder.

Table 6: Variables used in the Drechsler and Reiter (2010). Data taken from the March 2000
U.S. CPS. HH stands for household.

Variable Description Synthesized Known by intruder
Sex Male, female No Yes
Race Categorical, 4 levels Yes Yes
Marital status Categorical, 7 levels Yes Yes
Highest education level Categorical, 16 levels No No
Age Range 0-90 Yes Yes
# of people in HH 1-16 No No
# of people in HH under 18 0-11 No No
Household property taxes 0, 1-99,997 No No
Social security payments 0, 1-50,000 No No
Household income -21,011-768,742 No No

The authors synthesized age, race, and marital status sequentially using CART synthesiz-
ers. The synthetic values were generated through the Bayesian bootstrap.

For the identification disclosure risks evaluation, the authors considered race, martial sta-
tus, and age in tAs , and sex in tAus . They reported the expected match risk, the true match
rate, and the false match rate for a selected subset of 1089 sensitive cases.

4.4 Discussion and comments

Current practices focus on the three summaries of identification disclosure probabilities
(the expected match risk, the true match rate, and the false match rate). These are important
and useful file-level measures. While important, there might be additional useful measures
worth being developed.
R, the meta-data released about the reason why records were selected for synthesis, is

usually dropped because of lack of information. More simulation studies with different
scenarios of R could potentially provide insight on the effect of R in identification disclo-
sure risks assessment.

The assumption about what the intruder knows (the “Known by intruder” column in
Tables 4, 5, 6) when performing matching can be arbitrary, and the calculated identification
disclosure risks can be very sensitive to the assumption. To the best of our knowledge,
no work on the sensitivity of identification disclosure risks to the intruder’s knowledge
assumption has been done, which is an important future work path.

Another important future work direction is matching with synthesized continuous at-
tributes. As discussed in Section 4.2.2, matching numerical components of ZAs within
some acceptable distance is preferred to exact matching. For example, if the continuous in-
come attribute is synthesized, the intruder can declare a match if the synthesized income of
a record is within some distance of an absolute value (e.g. $10,000) from its original income
value, or within some distance of a relative value (e.g. 20% of the original income value)
from its original income value. How to select the radius most likely depends on the statis-
tical agency’s threshold of what is considered as acceptable risks. Further research on the
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distance selection and evaluation of effects of the distance selection is needed to provide
guidelines to data disseminators.

We primarily focus on estimating identification disclosure risks for synthetic data in this
paper. However, the Duncan-Lambert framework developed in Reiter (2005a) can be ap-
plied to masked data that have been subjected to SDL techniques (e.g. data swapping,
adding random noise, and micro-aggregation). Interested readers can refer to the general
framework of Reiter (2005a) for further details of the estimation process and examples with
SDL techniques.

5 Summary

Estimating disclosure risks of synthetic data is an important aspect of evaluating the use-
fulness and feasibility of releasing publicly available synthetic microdata. In this paper,
we present recent developments of Bayesian methods to disclosure risks assessment for
both attribute disclosure and identification disclosure. We present the Bayesian thinking,
highlight key steps, and illustrate with real synthetic data applications. We demonstrate
the flexibility of Bayesian methods in modeling the beliefs of data intruders, as well as the
interpretability of subjective Bayesian probabilities in terms of the disclosure risks evalua-
tion. We also discuss and comment on limitations of current methods and some possible
future research paths.

Our main discussion and comments have been presented separately for attribute disclo-
sure and identification disclosure. However, there are some common points worth men-
tioning here. For one, we have exclusively presented on assessment processes based on
the assumption that any record the intruder intends to make inference about is in the re-
leased sample. More research should be done to evaluate the uncertainty from sampling,
especially for the fully synthetic case. For another, we have exclusively presented on as-
sessment based on synthetic data. We would like to see more research on Bayesian meth-
ods for disclosure risks assessment based on other perturbation techniques, including the
SDL techniques. We recognize that not all agencies are comfortable to generate and release
synthetic microdata yet, therefore disclosure risks assessment based on other perturbation
techniques is an important and promising research path.

Finally, there are other forms of risk that are not currently researched on extensively. For
example, for both fully and partially synthetic data, one can ask the question “can an in-
truder accurately infer from the synthetic data that some record with particular values is in
the confidential data?” We believe such risk scenarios and other forms should be further re-
searched on, providing a more comprehensive risk assessment of synthetic data, and more
generally, of perturbed microdata.
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