
TRANSACTIONS ON DATA PRIVACY 12 (2019) 91–115

Inference Attacks on Fuzzy Searchable
Encryption Schemes
Daniel Homann∗, Lena Wiese∗

∗Universität Göttingen, Institut für Informatik, Goldschmidtstraße 7, 37077 Göttingen, Germany

E-mail: homann@cs.uni-goettingen.de, wiese@cs.uni-goettingen.de

Received 21 May 2018; received in revised form 27 October 2018; accepted 2 December 2018

Abstract. Searchable Encryption allows to securely store and search data on remote servers. Fuzzy
searchable encryption is an extension of this technique which can find results matching approximately
the search term. Low information leakage is a very important property of searchable encryption
schemes. We show that the fuzzy searchable encryption schemes of Chuah and Hu, Wang et al., and
Hu and Han do not have the claimed security properties. We describe several attacks on these schemes.
For these attacks we use techniques as the reconstruction of information from Bloom filters, and the
algebraic analysis of encryption schemes. These attacks show the difficulty of constructing secure and
efficient fuzzy searchable encryption schemes.

Keywords. Searchable Encryption, Fuzzy Search, Security Analysis

1 Introduction

Searchable Encryption allows to securely store and search data on remote servers. The
basic assumption of searchable encryption is that the user wants to save money by storing
documents on remote cloud servers. The cloud provider might be curious and monitor
its customers. Therefore, the user needs to encrypt sensitive documents to keep them
confidential. Standard encryption schemes (e.g. AES) provide confidentiality. However,
they do not allow to search encrypted documents efficiently. Searchable encryption solves
this problem (see e.g. [3, 7, 9, 11, 15, 16, 19, 24, 25, 35, 36]). It allows a client to search
documents stored on the server, while preserving their confidentiality towards the server.

When a user searches for a misspelled word with Google, he will find results which match
the intended search term. For example, about a fifth of all Google queries for ‘Britney Spears’
are misspelled and corrected by the search engine [17]. Such functionality is also desirable
when using searchable encryption schemes. This is provided by fuzzy searchable encryption
schemes [2, 4, 10, 14, 20, 21, 28, 29, 31, 37–39, 42]. Fuzzy searchable encryption schemes are
also known as similarity searchable encryption schemes.

Generally a (fuzzy) searchable encryption scheme works as follows: In a first step, a client
generates some encryption keys. With these keys the client encrypts a set of documents. The
encrypted documents are sent to the server and stored in a search index. When a search for
a certain keyword should be performed, the client generates a trapdoor for this keyword
with the help of the secret keys. This trapdoor is then sent to the server, which performes a

91

92 Daniel Homann, Lena Wiese

search in its index for documents containing the desired keyword. The resulting documents
are returned to the client and decrypted.
It is possible to construct searchable encryption schemes which provide nearly perfect

security. They do not leak any information about the stored documents except the size
of the document collection. However, they require a search runtime and communication
bandwidth linear in the size of the document collection [32]. Since cloud servers are used
to save cost and improve the runtime, such schemes are of low practical value. To keep
runtime and bandwidth requirements low, many searchable encryption schemes accept that
a certain amount of information is leaked to the server, the so-called leakage.

To be considered secure, it must be proven that a searchable encryption scheme satisfies a
security definition. This security definition (e.g. [11]) then limits the leakage of the scheme.
Such bounds on the information leakage allow to evaluate the suitability of a certain scheme
for a given application. Hence, it is important that a scheme really satisfies the claimed
security definition. In this work we show that three fuzzy searchable encryption schemes
do not fulfil the claimed security definitions. Their leakage is much higher than stated by
their security definitions.
The searchable encryption schemes investigated in this work mainly use symmetric en-

cryption operations. The only exception is the scheme of Wang et al. which uses asymmetric
encryption for result ranking. Other techniques which have been used for encrypted search
are fully homomorphic encryption and oblivious RAM (ORAM): Fully homomorphic en-
cryption can be used to build very flexible searchable encryption schemes [5]. However, fully
homomorphic operations have high computational cost. Consequently, fully homomorphic
encryption based searchable encryption schemes are impractical for many use cases. ORAM
is another technique which was proposed for use in searchable encryption. Naveed [32]
showed that the use of ORAM alone does not lead to efficient and secure searchable en-
cryption schemes. Nevertheless, ORAM inspired searchable encryption schemes have been
proposed [20, 36]. Fully homomorphic encryption or ORAM are not used in the investigated
schemes.
In this paper we show that three fuzzy searchable encryption schemes do not meet their

security definition. For this aim we give several attacks on these schemes. In detail the
contributions of this work are:

1. For the scheme of Chuah and Hu [10] we show that the index leaks a large amount
of information: We give algorithms which derive the length of an index entry, the
similarity between two index entries and the membership of a given word in the index.
Depending on background knowledge and keyword length we can even infer the
complete set of keywords contained in the index. All this information should not leak
according to the security definition. The main idea of the attacks is to reconstruct
information from Bloom filters. We also provide a practical evaluation of our attack
based on a realistic email data set.

2. For the scheme of Wang et al. [38] we give four attacks which reconstruct information
about the number and similarity of queries and keywords. They exploit the algebraic
structure of the underlying encryption scheme. These attacks have an asymptotic
advantage of 1/2 and show that the scheme does not provide the claimed non-adaptive
semantic security [11]. Our attacks show that the scheme does not even fulfil a
weakened version of the claimed security definition.

3. For the scheme of Hu and Han [21] we construct an adversary that can derive informa-
tion about stored keywords by querying for a similar keyword. When r is the number

TRANSACTIONS ON DATA PRIVACY 12 (2019)

Inference Attacks on Fuzzy Searchable Encryption Schemes 93

of hash functions, the advantage of this adversary is greater than 1/2− 1/2r. To achieve
reasonable search quality, the number of hash functions needs to be greater than one.
This shows that in any practical configuration the scheme does not achieve the claimed
IND-CKA security [16].

The rest of the paper is organized as follows: In the next section we describe related work on
security of searchable encryption schemes. In Section 3 we give more information about the
investigated schemes and the used data structures. The following three sections are devoted
to the three investigated fuzzy searchable encryption schemes. In each of these sections we
proceed as follows: First the fuzzy searchable encryption scheme is recapitulated. Then the
claimed security definition of the scheme is given. Finally, we give attacks for the scheme
and describe why the claimed security definition is not met. In Section 7 we summarise our
results.

2 Related Work

Several works investigated the security of non-fuzzy searchable encryption schemes. They
usually take one or both of the following roads to argue that a scheme is insecure:

• They show that a scheme’s leakage, as given by its security definition, is too high to
protect the confidentiality of certain practical datasets [8, 23, 26, 33, 34]. These attacks
usually require the adversary to have a certain background knowledge.

• They assume a more powerful adversary than assumed by the scheme’s security
definition and show that this leads to a high leakage [8, 43].

Both types of attacks are called inference attacks because the adversary infers information
about the cleartext datasets. Results on the security of non-fuzzy searchable encryption
can be applied to fuzzy searchable encryption because the leakage of fuzzy schemes is
usually higher than the leakage of non-fuzzy schemes. In contrast to the above works, in this
work we show that the investigated fuzzy searchable encryption schemes do not fulfil their
security definition, i.e. their leakage is higher than their security definitions allow. Most of
our proposed attacks do not require the adversary to have any background knowledge.
Few works considered the security of fuzzy searchable encryption schemes explicitly.

Boldyreva and Chenette [2] showed that a very strict security definition of fuzzy searchable
encryption can only be achieved by very space-inefficient schemes. Furthermore, they
showed that the scheme of Liu et al. [31] does not fulfil this security definition.
One of the schemes we investigate in this work is the scheme of Wang et al. An attack

on this scheme was also described by Lin et al. [30]. Their attack uses a ciphertext-only
setting (queries and index entries) and recovers the plaintexts belonging to these ciphertexts.
They note that the task of the adversary is related to solving a non-linear optimisation
problem (sparse non-negative matrix factorization). By solving the optimisation problem
approximately, they give estimates for the reconstructed ciphertext. However, in a realistic
setting, with a low number of chosen buckets in a query (ρ = 5%) and a sufficiently large
Bloom filter (L = 1000), their attack is less effective than randomly guessing decryptions of
keywords. Random guessing would give a precision and recall of the bits in the Bloom filter
of 5%, which is higher than the precision and recall of their attack in this setting.

Yao, Li and Xiao [41] proposed a chosen-plaintext attack on the encrypted k-nearest neigh-
bour scheme of Wong et al. [40]. This scheme is used in the encrypted search of Wang et al.

TRANSACTIONS ON DATA PRIVACY 12 (2019)

94 Daniel Homann, Lena Wiese

However, the existence of this attack on the underlying ranking scheme does not violate the
security definition of the searchable encryption scheme.
One key technique for information retrieval used in this work is the extraction of infor-

mation from Bloom filters. In attacks on non-fuzzy searchable encryption schemes, this
technique has been used by Pouliot and Wright [34]. In contrast to their work, statistical
background information is not available in our scenario. Furthermore, our reconstruction
technique works on Bloom filter encodings of parts of words (bigrams) instead of whole
words.

3 Background

The basic setting of (fuzzy) searchable encryption consists of a server and a client. The user
wants to store searchable data on the server, which should be encrypted, but still should
be searchable. The advantages of offloading data sets to the server are a reduced storage
demand on the client devices. Furthermore, the data can be accessed from a variety of
client devices (notebook, smartphone, etc) whithout the need of data duplication on all
these devices. In the security model of searchable encryption it is assumed, that the user is
trustworthy. However, the server might be compromised and act againest the interest of the
users. Therefore, the aim of searchable encryption is to prevent data breaches by the server.

3.1 Investigated Fuzzy Searchable Encryption Schemes

In this section we want to give an overview of the three investigated fuzzy searchable
encryption schemes. Fuzzy means that the schemes allow to search for a word and find
documents which contain the same or a very similar word.

The schemes have in common an honest-but-curious threat model and the ability to perform
dynamic updates. An honest-but-curious adversary can monitor operations performed on
the server. In contrast to a malicious adversary it is not allowed to deviate from the given
protocol. An update operation is either the addition of a new document to the index or
the deletion of an existing document from the index. A searchable encryption scheme can
always perform updates by completely rebuilding its data structure. Therefore, a scheme
is considered dynamic if there is a more efficient way to update the index than completely
rebuilding its index.
The schemes differ in the used security definitions, the ability to perform multi-keyword

searches, and their encoding of keywords. The schemes use three different security defi-
nitions: The game-based IND-CKA security definition of Goh [16], the simulation-based
non-adaptive semantic security definition of Curtmola et al. [11] and a third less formal
definition. The last definition is not completely precise in its formulation, but sufficiently
precise to show that the proposed scheme does not fulfil this definition. The schemes of
Wang et al. and Chuah and Hu can perform a multi-keyword search, i.e. they can search for
documents most similar to a given set of search terms instead of just searching one word
at a time. The schemes also vary in the way they allow to search for similar words. The
scheme of Hu and Han uses wildcard characters in search queries to express fuzziness. The
others measure the similarity between a search query and a document by the similarity of
the corresponding bigram sets. Table 1 shows a comparison of the schemes.

TRANSACTIONS ON DATA PRIVACY 12 (2019)

Inference Attacks on Fuzzy Searchable Encryption Schemes 95

Table 1: Properties of the investigated fuzzy searchable encryption schemes

Scheme Security definition Multi-
keyword

Dynamic
updates Similarity

Chuah and Hu [10] Custom Yes Yes Bigram

Wang et al. [38] Non-adaptive
semantic security [11] Yes Yes Bigram

Hu and Han [21] IND-CKA [16] No Yes Wildcard

3.2 Bloom Filter and Locality-Sensitive Hashing (LSH)

Bloom filters and locality-sensitive hashing are important techniques to understand the
investigated fuzzy searchable encryption schemes. They also play an important role in our
proposed attacks. Therefore, we briefly revise these two concepts in this section.

A Bloom filter is a probabilistic data structure [1]. It allows for fast membership tests. A
Bloom filter consists of a familyH = (hi)1≤i≤r of hash functions and a bit array v ∈ {0, 1}L.
The variables vi are also known as buckets and initialized with zero. The hash functions
map from a feature space F to {1, . . . , L}, i.e.

hi : F 7→ {1, . . . , L}

for all 1 ≤ i ≤ r. A feature f ∈ F is stored in the vector v by setting:

vj =

{
1 if ∃1 ≤ i ≤ r : hi(f) = j

vj otherwise
for all 1 ≤ j ≤ L.

A Bloom filter stores multiple features by adding them consecutively. To check whether
a feature f ′ ∈ F is contained in a Bloom filter v, the hash values hi(f ′) are calculated for
1 ≤ i ≤ r. If one of the buckets vhi(f ′) is not set to 1, the feature f ′ is not contained in the
Bloom filter. Otherwise, no definite statement about the membership is possible. However,
the probability of f ′ being included in the Bloom filter can be calculated and is usually very
high. The concept of Bloom filters was extended to counting Bloom filters. Counting Bloom
filters do not only store that a certain bucket was hit, but also how often it was hit, i.e. they
use a v ∈ NL.
A family of locality-sensitive hash (LSH) functions can be used to encode similarity [22].

Let dist be a similarity metric on the feature space F . Then a family of hash functionsH is
called a (r1, r2, p1, p2)-sensitive LSH family if for any features x, y ∈ F and for any h ∈ H it
holds:

• if dist(x, y) ≤ r1, then P(h(x) = h(y)) ≥ p1
• if dist(x, y) ≥ r2, then P(h(x) = h(y)) ≤ p2.

Assume that a (r1, r2, p1, p2)-sensitive LSH familyH is given. Then an LSH familyH′ of an
arbitrary sensitivity (r′1, r

′
2, p
′
1, p
′
2) can be constructed by an AND- and OR-combination of

the hash functions ofH.

4 Scheme of Chuah and Hu

The scheme of Chuah and Hu [10] is rather complex. Therefore, we will only discuss the
aspects of the construction which are relevant for the attacks. The basic server-side data

TRANSACTIONS ON DATA PRIVACY 12 (2019)

96 Daniel Homann, Lena Wiese

structure of the scheme is a Bed-tree [44]. This data structure is used to store key-value
pairs (v, P). Each unique keyword in the set of stored documents corresponds to exactly
one key-value pair in the Bed-tree. The Bed-tree is chosen for performance reasons. For our
security analysis it can be understood as a simple key-value store.

The payload P of a key-value pair is used to store information for measuring the similarity
of keywords. The structure of P is rather complex. As P is not relevant for our attack, we
will not describe it here. The key v of a key-value pair (v, P) is given by the gram counting
order [44].
The gram counting order is calculated by splitting the keyword up in bigrams. To denote

the whitespace before the first and after the last character a special whitespace character (#)
is used when building the bigram sets. The bigram set of the word CASTLE, for example, is
given by:

{#C,CA,AS, ST,TL,LE,E#}.

Then these bigrams are inserted in a counting Bloom filter. The used hash functions H =
{h1, . . . , hr} do not depend on any secret key. Applying the described counting Bloom
filter on a bigram set yields the gram counting order v ∈ NL. The vector v is then stored in
unencrypted form with the payload P on the server.

For an example of the gram counting order assume L = 4, r = 1, and let h1 be given by:

h1(f) =

1 if f = #C or LE
2 if f = E# or AS or CA
3 if f = ST or TL
4 otherwise.

Then the gram counting order of w = CASTLE is given by: v = (2, 3, 2, 0). For the sake of
the example, a small size L of the Bloom filter was chosen here. In a realistic application the
Bloom filter size would be higher: Chuah and Hu proposed a Bloom filter size of L = 32 and
the choice of r = 2 hash functions.
They do not claim any security guarantees when search operations are performed (see

Section 4.1). Hence, search operations are not relevant for our attacks and, consequently,
their description is omitted here.

4.1 Security Definition

According to the authors, their scheme fulfils the following security definition. It should
prevent the adversary ‘from learning additional information from any dataset and its
associated index’ in the following cases (based on [6]):

Known-ciphertext model: A ciphertext-only setting where the adversary gets only a copy
of the data stored on the server.

Known-background model: A setting where the adversary has additional statistical infor-
mation (e.g. keyword frequencies) about the stored documents.

This type of security definitions is sometimes called snapshot security, as the adversary has
only access to a snapshot of the index data structure. Obviously, the attacker in the first
setting is strictly less powerful than in the second setting. Compared to the commonly used
security definitions for fuzzy searchable encryption (e.g. [28]) both security definitions are
rather weak.

TRANSACTIONS ON DATA PRIVACY 12 (2019)

Inference Attacks on Fuzzy Searchable Encryption Schemes 97

Table 2: Inference attacks on the scheme of Chuah and Hu [10]
Applicable

Information derived Section Known-
ciphertext

Known-
background

Length of stored keywords 4.2.1 Yes Yes
Similarity of stored keywords 4.2.2 Yes Yes
Membership of a given word in the index 4.2.3 Yes Yes
Keywords contained in the index 4.2.4 No Yes
Keywords contained in the index 4.2.5 Yes Yes

Usually, the security definitions of searchable encryption schemes capture the leakage
which is caused by search operations. This is a more realistic security definition because in
the cloud setting such information is available to the adversarial server running the scheme.
The leakage of search operations consists of trapdoors sent to and corresponding result sets
received from the server.

Although the above-stated security definition does not even consider the leakage of search
operations, it is still not met by the proposed scheme. This is shown in the next section.

4.2 Attacks

In this section we describe which information the adversary can infer from a given index.
Table 2 gives an overview of our attacks.

4.2.1 Length of Keyword

In the known-ciphertext setting the server can deduce the lengths of all stored keywords.
Let w be a keyword stored on the server. The gram counting order v of w is available to the
server because it is the key in the Bed-tree data structure stored on the server. The gram
counting order v leaks the length |w| of w by:

|w| =
∑L

i=1 vi
r

− 1.

This holds because each bigram is added r times to the Bloom filter. Therefore, each bigram
increases the sum of v by r. A word w of length |w| consists of |w| − 1 bigrams. When the
bigrams are generated in the scheme of Chuah and Hu, the keyword w is surrounded by #
characters. Therefore, the encoding of a word w of length |w| consists of |w|+ 1 bigrams.

4.2.2 Similarity

In the known-ciphertext setting the adversary can estimate the similarity of two index
entries. Let v1 and v2 be the index entries for the keywords w1 and w2. Then an estimate for
the similarity of the keywords w1 and w2 is given by:

s
(
w1, w2

)
:=

∑L
i=1

∣∣v1i − v2i ∣∣
maxk∈{1,2}

∑L
i=1 v

k
i

.

TRANSACTIONS ON DATA PRIVACY 12 (2019)

98 Daniel Homann, Lena Wiese

The function s takes values in the interval [0, 1]. A value of 0 denotes high, 1 low similarity.
The definition of s can be explained as follows: The numerator of s counts the similarity of
the vectors. This figure is correlated to the number of coinciding bigrams. The denominator
normalises this measure by the total number of occuring bigrams.
Furthermore, the gram counting order can be associated with the edit distance of the

corresponding words [44]. A lower bound on the edit distance edit-dist(w1, w2) of the
keywords w1 and w2 is given by:

edit-dist(w1, w2) ≥
max

(∑
v1
i>v2

i
v1i − v2i ,

∑
v1
i<v2

i
v2i − v1i

)
rL

.

4.2.3 Membership Test

In the known-ciphertext setting the adversary can infer with high probability whether a
word w is contained in the index. For this, the adversary calculates the gram counting order
v of w. The adversary can do this because the calculation of the gram counting order v does
not depend on a secret key. If v is not contained as key in the Bed-tree, the adversary can
deduce that w is not contained in any of the stored documents. When v is contained in the
Bed-tree, the conclusion is not clear. Due to the probabilistic structure of the counting Bloom
filter, it could happen that two different words map to the same gram counting order v.
Therefore, it holds: If v is contained in the Bed-tree, it is very probable, but not certain, that
w is contained in one of the stored documents.

4.2.4 Content Reconstruction with Background Information

In the known-background model the adversary can deduce for which keyword w a given
Bed-tree entry v stands. As background knowledge it requires to know a set (dictionary)
that the keywords were chosen from.
To perform the attack the adversary calculates the gram counting order of all keywords

of the dictionary and compares the results to v. There might be several words w1, . . . , wi

matching v. One of these words is the correct keyword w. The other keywords are words
having the same gram counting order as w. So the adversary can only tell that v belongs to
one keyword from the set {w1, . . . , wi}. As this set of keywords would also be returned when
users search for w, here the quality of the search for legitimate users directly corresponds to
the information derivable by the adversary. To speed up the attack, the adversary computes
in a first step the length of the attacked keyword w (see Section 4.2.1). Then it only needs to
consider the terms from the dictionary having this length.
To perform the attack, the adversary requires a dictionary of possible keywords. For the

problem domain of text search such dictionaries are readily available if the language of the
documents is known. These dictionaries might not contain all keywords occurring in the
document collection but at least the most common ones. Consequently, background knowl-
edge about the language of the stored documents is sufficient. We will show the practical
feasibility of the attack with this low amount of background knowledge in Section 4.3.1.

4.2.5 Content Reconstruction without Background Information

If no background information is available (known-ciphertext model), the attacker can
perform a depth-first search for the keyword. Our attack function is given by Algorithm 1.
This function computes a candidate set that contains the searched keyword.

TRANSACTIONS ON DATA PRIVACY 12 (2019)

Inference Attacks on Fuzzy Searchable Encryption Schemes 99

Algorithm 1 Calculation of keywords corresponding to a given gram counting order v
function SEARCH(v)

len←
∑L

i=1 vi
r − 1

w ← ∗ · · · ∗︸ ︷︷ ︸
len-times

return SEARCHTREE(v, len, w, 1)

Algorithm 2 Recursive search for keywords corresponding to a given gram counting order
function SEARCHTREE(v, len, w, pos)

if pos = len+ 1 then
return {w}

else
res← ∅
w′ ← w
for all c ∈ A do

w′pos ← c
v′ ← GRAMCOUNTINGORDER(w′)
if vi − v′i ≥ 0 ∀0 ≤ i < L then

res← res ∪ SEARCHTREE(v, len, w′, pos+ 1)

return res

The algorithm requires to know the alphabet A from which the letters of the keywords
are chosen (e.g. lowercase letters). Let ∗ be a special character with ∗ /∈ A. The func-
tion GRAMCOUNTINGORDER(w) returns the gram counting order of a keyword w. When
a ∗ character is contained in a bigram, this bigram is skipped and not included in the
counting Bloom filter.
On a high level the proposed algorithm works as follows: To find the set of possible

keywords belonging to a given gram counting order v, the function SEARCH(v) (Algorithm 1)
is called. This function initializes the parameters of the search for keywords matching v.
With these parameters, the recursive, depth-first search function SEARCHTREE (Algorithm 2)
is called. Starting at the first letter, it recursively fixes letters of possible keywords. A new
keyword w′ derived from w is considered for further search if its gram counting order
SEARCHTREE returns a candidate set, consisting of words with gram counting order v. This
set contains the searched keyword.
In detail SEARCH(v) works as follows: The function calculates the length len of the corre-

sponding keyword (see Section 4.2.1). Then it creates a keyword w of this length with each
∗ character standing for a yet unknown character from the alphabet A. Finally, it calls the
recursive function SEARCHTREE and returns its result.

The algorithm SEARCHTREE calculates the possible letters for position pos of a keyword w.
As additional arguments it receives the gram counting order v of the searched keyword and
its length len. When the end of the word is reached, i.e. no more letters are to be chosen,
SEARCHTREE returns the set containing the current word w. At this point it is guaranteed
that all ∗ characters of w have been replaced by letters from A. Otherwise, it tests all possible
letters for the current position pos. For each tested letter the gram counting order v′ of the
resulting word w′ is calculated. A word w′ belongs to the candidate set if its gram counting
order v′ is in no dimension higher than the gram counting order v of the keyword. This
is captured by the condition vi − v′i ≥ 0 for all 0 ≤ i < L. If this condition is fulfilled, the

TRANSACTIONS ON DATA PRIVACY 12 (2019)

100 Daniel Homann, Lena Wiese

function fixes the current letter and recursively considers the next position of the word. In
the end, a result set of all matching words is returned.
It is guaranteed that the result set is non-empty and contains the keyword belonging to v.

But as before the result set might contain other words having the gram counting order v.
The worst-case runtime of this algorithm is O(|A||w|) for a word w of length |w|. Although
the runtime of the attack is exponential in the word length, it is feasible for many words
because words in many common languages tend to be short. This feasibility of the attack
will also be shown in Section 4.3.2.

4.3 Experimental Evaluation

In this section we provide an experimental evaluation for the keyword reconstruction attacks
proposed in Section 4.2.4 and Section 4.2.5. By evaluating the known-background attack, we
also implicitly evaluated the membership attack (Section 4.2.3) because both attacks use the
same idea for information reconstruction.

For the evaluation we assume that the user indexed a large set of mails with the searchable
encryption scheme of Chuah and Hu. As email data set we used the complete Enron data set
[13, 27]. We processed these 517 401 mails as follows: In a first step the header of the mails
containing information as timestamp and subject of the mail was removed. Subsequently all
lines containing binary data (e.g. mail attachments) were removed as well. The remaining
lines constitute the body of the mail. Punctuation marks, parentheses and numbers were
removed from the body. Finally, all words were changed to lowercase letters and split in
single words. In total the data set contains 424 943 different words. The high number of
words compared to English language dictionaries is caused by multiple incorrect spellings of
one word which are contained in the data set and counted as different words. Furthermore,
the list of words contains mail addresses and proper names.

4.3.1 Reconstruction with Background Knowledge

To perform the described attack, the adversary needs some knowledge about the set where
the keywords were chosen from. Here, we assume that the attacker only knows that the
keywords are English language words. The adversary then can use a freely available list
of English language words, in our case the words alpha list [12]. This list contains 370 099
words. If two (or more) of the words in the list have the same gram counting order, the
adversary simply assumes the first word to be the correct cleartext for this gram counting
order.

Our implementation takes about a minute on a standard desktop machine to perform the
attack against the whole Enron word set. Depending on the parameters of the scheme, our
attack can correctly identify up to 65 626 different words. Since the attacker’s dictionary
and the Enron word set have 65 638 words in common, this means that all except 12 words
from the Enron data set contained in the attacker’s dictionary could be recovered. Higher
recovery rates could be achieved by using a better dictionary containing more of the words
from the target data set. The 12 words which could not be recovered have non-unique
bigram sets and therefore an incorrect keyword was chosen by the adversary. Detailed
results can be found in Figure 1. We also evaluated the false-positive rate of our attack
(Figure 2). For reasonable parameter choices the false-positive rate is very low. Chuah
and Hu, for example, proposed the choice of L = 32 and r = 2 for which our attack has a
false-positive rate of about 0.02%. The number of false-positives never falls below 0.018%.

TRANSACTIONS ON DATA PRIVACY 12 (2019)

Inference Attacks on Fuzzy Searchable Encryption Schemes 101

4 6 8 10 12 14 16 18 20 22 24
0

20

40

60

80

100

Size of Bloom filter (L)Su
cc

es
sf

ul
ly

re
co

ve
re

d
ke

yw
or

ds
(%

)

r = 1
r = 2
r = 3
r = 4
r = 10

Figure 1: Percentage of words that our known-background attack on the scheme of Chuah
and Hu recovers correctly with regard to Bloom filter size (L) and used number of hash
functions (r)

This is caused by 78 words from the Enron word set which have the same bigram set as
some words from the attackers list, although the words are not equal.

4.3.2 Reconstruction without Background Knowledge

We also implemented the keyword reconstruction technique which does not require back-
ground knowledge. In addition to the lowercase letters the keywords in the Enron word set
contain some special characters like ‘@’ and ‘&’. This alphabet A of all appearing characters
was known by the adversary. We tested our attack with the preferred encoding parameters
of Chuah and Hu (L = 32 and r = 2). With one day of computation time on an Intel
i7-7700K@4.20GHz CPU we were able to determine 38.3% of the words from the Enron
word set correctly. For these words the candidate set had size 1, so the words were directly
determined. For an additional 10.8% of the word set the algorithm computed candidate sets
with an average size of 3.2 words.

4.4 Mitigation and Discussion

As these attacks show, the scheme leaks lengths, similarity and membership of keywords in
the index. Depending on word length and background knowledge, it is even possible to
reconstruct many keywords stored in the index. All this information should not be leaked
according to the security definition.

Some of the leakage could be prevented by changing the searchable encryption schemes as
follows: The leakage of word lengths could be prevented by padding all words to a certain
maximal keyword length. The reconstruction of words could be prevented by using keyed
hash functions with a secret key instead of the un-keyed hash functions in the Bloom filter
construction. However, this would not prevent all leakage. Especially the leakage of the
similarity between stored keywords is hard to prevent.

It is important to note that all described attacks only use the leakage induced by the index

TRANSACTIONS ON DATA PRIVACY 12 (2019)

102 Daniel Homann, Lena Wiese

5 10 15 20 25 30 35
10−4

10−3

10−2

10−1

100

Size of Bloom filter (L)

Fa
ls

e-
po

si
ti

ve
ra

te

r = 1
r = 2
r = 3
r = 4
r = 10

Figure 2: False-positive rate of our known-background attack on the scheme of Chuah and
Hu for different Bloom filter sizes L and different numbers of hash functions r

data structure. When search trapdoors are available to an adversary, this causes additional
leakage to the adversary. Its impact is not discussed here because the security definition of
the scheme does not claim it to be secure when the search leakage is considered.

5 Scheme of Wang et al.

Wang et al. [38] gave two versions of their scheme. The enhanced version is described here.
Let A be the alphabet where the letters of the keywords were chosen from. Given some key
length L it requires a family

H :=
{
hi : {0, 1}|A|×|A| → {1, . . . , L}

∣∣∣ 1 ≤ i ≤ r}
of LSH functions and a keyed pseudo-random function

fki
: {1, . . . , L} → {1, . . . , L}.

The key of the scheme is given by a tuple (M1,M2, S, k) whereM1,M2 ∈ RL×L are invertible
matrices, S = (sj)1≤j≤L ∈ {0, 1}L is a binary vector, and k = (ki)1≤i≤r is a set of keys for
the keyed pseudo-random function f . Although this is not explicitly stated by Wang et al.,
we assume that the components of the key (M1, M2, S, and k) are chosen randomly from the
uniform distribution on their respective sets. Any other choice of these parameters would
further increase the leakage of the scheme.

The index of the scheme is built document-wise. For each document D ∈ D a Bloom filter
I = (ij)1≤j≤L of length L is created. Each keyword w of D is then interpreted as vector ~w in
the space {0, 1}|A|×|A| by the following embedding:

~wi =

{
1 if the i-th bigram of A× A is contained in w
0 otherwise.

TRANSACTIONS ON DATA PRIVACY 12 (2019)

Inference Attacks on Fuzzy Searchable Encryption Schemes 103

Then the functions fki
◦ hi(~w) for 1 ≤ i ≤ r are calculated. The corresponding buckets in

the Bloom filter I are set to one. This is done for all keywords w ∈ D. Floating-point arrays
U = (uj)1≤j≤L and V = (vj)1≤j≤L are defined based on I :

uj = vj = ij , if sj = 1

uj =
ij
2
+ t and vj =

ij
2
− t, if sj = 0

for some random t ∈ R. These vectors are encrypted with M1 and M2:

UEnc :=MT
1 U and VEnc :=MT

2 V.

Finally, the tuple (id(D), UEnc, VEnc) is stored on the server. Here, id(D) is the identifier of
the document D. This is done for all documents D of the document collection D.
The generation of search queries works similar. The keywords are inserted in a Bloom

filter Q of length L as explained above. Then arrays X = (xj)1≤j≤L and Y = (yj)1≤j≤L are
generated from Q = (qj)1≤j≤L via:

xj = yj = qj if sj = 0

xj =
qj
2

+ t and yj =
qj
2
− t if sj = 1 (1)

for some random t ∈ R. The only difference to the generation of index entries is that the
cases are switched, i.e. xj = yj = qj is chosen for sj = 0 instead of sj = 1. The query is
encrypted by:

XEnc :=M−11 X and YEnc :=M−12 Y,

and the resulting trapdoor (XEnc, YEnc) is then sent to the server. The server now calculates
for all stored documents D ∈ D a score with regard to this trapdoor. The score s(D,w) of a
document D with regard to a query w is calculated by:

s(D,w) = (UEnc)
T
XEnc + (VEnc)

T
YEnc

=
(
MT

1 U
)T
M−11 Q1 +

(
MT

2 V
)T
M−12 Q2 = UTQ1 + V TQ2 = ITQ.

The above calculation shows that the score calculated from encrypted trapdoors and index
entries matches the score of the plaintext query and index entry. Finally, a list of document
identifiers with their corresponding scores is returned to the client.
Wang et al. gave two versions of their scheme. We described the enhanced, supposedly

more secure, version. The only difference to the basic version is that the basic version does
not use the pseudo-random function f . In the basic scheme keywords are inserted in Bloom
filters during index and query generation only using the LSH functions. In Section 5.2
we will describe the attacks only for the enhanced version of the scheme. With slight
modifications they also apply to the basic version.

5.1 Security Definition

The basic construction should provide non-adaptive semantic security as defined by Curt-
mola et al. [11]. The enhanced version of the scheme should be able to withstand an even
more powerful adversary, which they call an adversary in the known-background model. In
addition to the capabilities available to the adversary in the previous setting, this adversary

TRANSACTIONS ON DATA PRIVACY 12 (2019)

104 Daniel Homann, Lena Wiese

has access to statistical information about the stored documents, like keyword frequencies.
The known-background model lacks a formal definition. Furthermore, the adversary in
the known-background model is strictly more powerful than in the non-adaptive semantic
security setting. This means all attacks possible in the latter setting are also possible in the
former setting. In Section 5.2 we assume that the attacker only has the capabilities of the
non-adaptive semantic security setting.
Let us recall (nearly verbatim) the simulation-based definition of non-adaptive semantic

security [11].

Definition 1 (Non-adaptive semantic security for searchable encryption).
Let SSE = (GENERATEKEYS, ENCRYPTDOCS, TRAPDOOR, SEARCH,DECRYPTDOC) be a
searchable encryption scheme, L ∈ N be the security parameter, A be an adversary, S
be a simulator and consider the following probabilistic experiments:

function REALSSE,A(L)
K ← GENERATEKEYS

(
1L
)

(H, stA)← A
(
1L
)

parseH as (D,W)
(I, c)← ENCRYPTDOCSK(D)
for all 1 ≤ i ≤ q do

ti ← TRAPDOORK(Wi)

let t = (t1, . . . , tq)
return V = (I, c, t) and stA

function SIMSSE,A,S (L)
(H, stA)← A

(
1L
)

V ← S(T (H))
return V and stA

We say that SSE is semantically secure if for all polynomial-size adversaries A, there exists a
polynomial-size simulator S such that for all polynomial-size distinguishersD the advantage
of the adversary A

AdvA = |P(D(REALSSE,A(L)) = 1)− P(D(SIMSSE,A,S(L)) = 1)|

is negligible in L. The probabilities are taken over the coins of GENERATEKEYS and
ENCRYPTDOCS.

In this definition D is the set of stored documents and W the set of performed searches.
The generated index is denoted by I and the collection of encrypted documents by c. The
internal state of the adversary is given by stA. The history H describes the state of the
searchable encryption scheme, i.e. it consists of the stored documents and the performed
search queries. The view V contains the information that is visible to the adversary. The
trace T describes what should be the maximal amount of information that the adversary is
able to infer.

In an informal way Definition 1 says that the server can never know more about the stored
data than defined by the trace T . In the security definition of Wang et al. the trace T is:

T (H) = {T (Wi) | 1 ≤ i ≤ q}, where T (Wi) = {(id(D), s(D,Wi)) | D ∈ D}.

Here, s(D,Wi) is the calculated similarity score between the query Wi and the document D.

5.2 Attacks

The attacks described here work for the most secure version of the scheme (enhanced
version) assuming only the least powerful attacker capabilities (non-adaptive semantic

TRANSACTIONS ON DATA PRIVACY 12 (2019)

Inference Attacks on Fuzzy Searchable Encryption Schemes 105

Table 3: Inference attacks on the scheme of Wang et al. [38]

Applicable for trace definition

Information exploited Section Original T (H) Extended T ′(H)
Number of trapdoors 5.2.1 Yes No
Number of documents 5.2.2 Yes No
Similarity of trapdoors 5.2.3 Yes Yes
Similarity of documents 5.2.4 Yes Yes

security). To show that the scheme does not satisfy its security definition we will define an
adversary A and a distinguisher D such that every simulator S will lead to a non-negligible
advantage AdvA. We will furthermore introduce a new extended trace definition and show
that even this trace definition will not capture all the leakage of the scheme. Our attacks are
summarised in Table 3.

5.2.1 Number of Trapdoors

The adversary outputs a history H = (D,W). The set of documents D is empty, i.e. D = ∅.
For the set of queries the adversary samples a bit b from the uniform distribution on {0, 1}.
Depending on b it chooses the set of queries as follows:

W =

{
∅ if b = 0

(w) otherwise,

where w is some fixed keyword. The distinguisher D generates an output based on the
view V = (I, c, t). It outputs:

D(V) =

{
0 if |t| = 0

1 otherwise.

All histories generated by the adversary contain an empty set of documents D. This means
that for all these histories the trace is empty, i.e. T (H) = ∅. Based on this trace, the simulator
needs to generate a view V = (I, c, t). In particular, it needs to decide how many trapdoors
it generates. The simulator knows that the number of trapdoors is 0 in one half of the cases,
and 1 in the other half of the cases. Since the trace T (H) is an empty set, it does not contain
any information about the number of trapdoors. Therefore, the output of D(SIMSSE,A,S)
is independent of the initial choice of b by the adversary. When the protocol is executed,
the number of trapdoors is visible to the distinguisher as part of the view. Consequently,
D(REALSSE,A) always returns the correct bit b. This means the adversarial advantage AdvA
is at least 1/2. This advantage is not negligible in L and therefore the scheme does not meet
its security definition.

5.2.2 Number of Documents

In the previous attack we exploited the fact that the trace does not contain the number of
queries if no documents are stored on the server. Likewise, the trace does not contain the
number of stored documents if no queries are performed. Therefore, we could define an

TRANSACTIONS ON DATA PRIVACY 12 (2019)

106 Daniel Homann, Lena Wiese

adversary which samples a bit b according to the uniform distribution and chooses

D =

{
∅ if b = 0

(D) otherwise,

where D is some fixed document. It then outputs H = (D,W) where W = ∅. The distin-
guisher D is defined as follows:

D(V) =

{
0 if |c| = 0

1 otherwise

for a given view V = (I, c, t). With an analogous argumentation as before it follows that for
any simulator holds:

AdvA ≥
1

2
.

5.2.3 Similarity of Trapdoors

As a consequence of the above attacks one might want to fix the trace definition. The above
attacks could be prevented if the simulator is given access to the number of trapdoors and
documents. Therefore, we consider the following new definition of the trace T ′(H):

T ′(H) = (T (H), |t|, |c|).

In this definition, T (H) is the original trace definition. By leaking more information, schemes
having this new trace would be less secure than schemes with the original trace definition.
In this section we give another attack on the scheme of Wang et al. This attack is feasible for
the original and the new trace definition. This means that the leakage of the scheme is even
higher than the leakage contained in T ′(H).

The basic idea of the attack is to investigate the dimension of the space spanned by several
keywords. The more similar the keywords are, the smaller is the dimension of this space.
In the following we will formalize this intuition for the case r = 1. The idea of the attack
works as well for r > 1. However, the calculation of the adversarial advantage in this setting
becomes more complex. Therefore, we do not present it here.
For the attack in the case r = 1 the adversary chooses an empty set of documents D = ∅.

Depending on the value of a variable b sampled from the uniform distribution on {0, 1} it
chooses the set of queries:

W =

(w1, . . . , w1︸ ︷︷ ︸

L−times

) if b = 0

(w1, . . . , wL) otherwise.

The keywords w1, . . . , wL are chosen such that:

h1(wi) = i

for all 1 ≤ i ≤ L. Such a choice of the wi is possible because the LSH function h1 is not
supposed to be a cryptographic hash function. For the LSH function proposed by Wang
et al. a suitable wi can be found in the (small) space of bigrams A× A.

TRANSACTIONS ON DATA PRIVACY 12 (2019)

Inference Attacks on Fuzzy Searchable Encryption Schemes 107

For the L queries generated by the adversary the trapdoors ((X1
Enc, Y

1
Enc), . . . , (X

L
Enc, Y

L
Enc))

are generated. The distinguisher calculates the dimension of the vector space spanned by
the Xi

Enc:
d := dim(X1

Enc, . . . , X
L
Enc). (2)

Depending on d it outputs:

D(V) =

{
0 if d ≤ b 23Lc
1 otherwise.

In the following, we will calculate the adversarial advantage resulting from this definition.
If b = 0, then L queries for the same keyword w1 are calculated. The application of the LSH
function h1 and the keyed hash function fk1 sets exactly one bucket in the Bloom filter to 1.
All the L repetitions of the keyword w1 result in this same Bloom filter Q1 = · · · = QL. For
the Xi = (xij) generated from this Bloom filter holds:

x1j = · · · = xLj if sj = 0 for all 1 ≤ j ≤ L.

Let ones(S) be the number of ones in S. So it follows: dim(〈X1, . . . , XL〉) ≤ ones(S). If sj = 1,
a random t ∈ R is added to xj/2. Since the t are sampled independently, it follows that the
probability of Xk+1 ∈ 〈X1, . . . , Xk〉 for some k < ones(S) is zero. Therefore, it holds with
probability one:

dim(X1, . . . , XL) = ones(S).

Since M1 is invertible, it is rank-preserving and it holds with probability one:

d = dim(X1
Enc, . . . , X

L
Enc) = dim(M−11 X1, . . . ,M−11 XL) = ones(S).

S is chosen uniformly from {0, 1}L. Consequently ones(S) is distributed according to a
binominal distribution:

d = ones(S) ∼ Binom(L, 1/2).

By the normal approximation of the binominal distribution, it follows:

P

(
d ≤

⌊
2

3
L

⌋ ∣∣∣∣ b = 0

)
→ 1 for L→∞.

If b = 1, then the wi are chosen such that h1(wi) are pairwise different. Applying the
pseudo-random function fk1

these keywords result in Bloom filters Q1, . . . , QL. Since r = 1,
these Bloom filters have exactly one bucket set to 1. Due to the pseudo-randomness of f , we
get for the dimension d′ = (Q1, . . . , QL) the following probability distribution:

P(d′ = k) =

(
L
k

)
k!
{
L
k

}
LL

.

Here,
{
L
k

}
denotes the Stirling number of the second kind [18]. The number d′′ of different

vectors which have xj = 1, where sj = 0 is described by the hypergeometric distribution:

P(d′′ = k) =

L∑
i=k

P(d′ = i) ·HyperGeo(L, i, L− ones(S), k).

In the dimensions, where sj = 1, the Xi span, as before, a ones(S)-dimensional space.
Therefore, it follows:

d = dim(X1
Enc, . . . , X

L
Enc) = dim(X1, . . . , XL) = ones(S) + d′′.

TRANSACTIONS ON DATA PRIVACY 12 (2019)

108 Daniel Homann, Lena Wiese

Hence:

P

(
d ≤

⌊
2

3
L

⌋ ∣∣∣∣ b = 1

)
=

b 2
3Lc∑
k=0

k∑
j=0

min(L,k)∑
i=k−j

L!i!
{
L
i

}
2LLL(i− k + j)!(k − j)!(L− k)!(k − i)!

→ 0

for L→∞. By the definition of the trace, the simulator does not receive any information
about the similarity between the trapdoors. Therefore, it can do nothing better than guessing,
whether the adversary has chosen b = 0 or b = 1. It follows:

AdvA →
1

2
for L→∞.

The advantage of the adversary is not only asymptotically perfect. A computation shows
that for a key length as low as L = 8 the adversary already has an advantage of 0.36. For a
key length of L = 32 the advantage AdvA is greater than 0.48.

5.2.4 Similarity of Documents

The similarity of trapdoors is not captured by the trace definitions (neither the original nor
the new one). We exploited this fact for the last attack. Likewise, the similarity of documents
is not captured by the trace definition. This can be exploited for an attack as well. In this
attack the adversary does not choose any queries. The documents are chosen in the same
way as the queries in the previous attack. The attack then works completely analogously to
the last attack.

5.3 Discussion

Since Wang et al. provide a detailed security proof for their scheme, one might ask where this
proof goes wrong. Within their scheme they use the k-nearest neighbour encryption scheme
of Wong et al. [40] for result ranking. Unfortunately, they assume that this encryption
provides indistinguishability. The used k-nearest neighbour method is mainly a classic
polygraphic substitution cipher, also known as Hill cipher, combined with some random
padding. This explains the lack of indistinguishability.

6 Scheme of Hu and Han

The scheme of Hu and Han [21] is a modification of the scheme of Suga, Nishide and Sakurai
[37]. As Suga, Nishide and Sakurai used another security definition than Hu and Han,
the attack of this chapter does not apply to their scheme. Similarity in the scheme of Hu
and Han is expressed by wildcard characters which can stand for an arbitrary number
of characters. The index generation as well as the trapdoor generation of the scheme use
an encoding which maps a keyword to a set of strings. As the search terms can contain
wildcards, they define this mapping for words which may contain wildcards. Wildcards
cannot occur during the index generation.
Let w1, . . . , w|w| denote the characters of w. Let a be the position of the first wildcard

character, or |w| + 1 if no such character exists. Let b be the position of the last wildcard

TRANSACTIONS ON DATA PRIVACY 12 (2019)

Inference Attacks on Fuzzy Searchable Encryption Schemes 109

character, or 0 if no such character exists. LetGn(w) be the set of all n-grams of a stringw. Let
G(w) := {Gn(w) | 1 ≤ n ≤ |w|}. Furthermore, let W (w) be the set of strings generated when
splitting the string w at the positions of the wildcard characters, or w, when no wildcard
characters are present in w. Now define sets A, B and C as follows:

A = {i‖wi | 1 ≤ i < a}
B = {(i− |w| − 1)‖wi | b < i ≤ |w|}

C =
⋃

s∈W (w)

{0‖x | x ∈ G(s)}.

Here, ‖ denotes string concatenation. Each feature w of a stored document is encoded in the
following set of subfeatures:

T ′ = A ∪B ∪ C.
From T ′ we get the final embedding by adding lmax − |T | additional random strings.
For each different feature exactly one Bloom filter is created. In this Bloom filter all the

elements of T are encoded with r hash functions each. The index then consists of pairs of
Bloom filters and an encrypted list of the documents containing this keyword. A trapdoor
for a feature w is generated by applying the mapping as defined above and generating the
corresponding Bloom filter.
We would like to explain this embedding with an example. The sets A, B and C for the

keyword CAT are:

A = {1‖C, 2‖A, 3‖T}
B = {−3‖C,−2‖A,−1‖T}
C = {0‖C, 0‖A, 0‖T, 0‖CA, 0‖AT, 0‖CAT}.

So we get:

T ′ = {1‖C, 2‖A, 3‖T,−3‖C,−2‖A,−1‖T, 0‖C, 0‖A, 0‖T, 0‖CA, 0‖AT, 0‖CAT}.

After adding the required number of random dummy entries, this set is encoded in a Bloom
filter. We provide another example for the query generation. Assume that the user wants to
search for C∗T. Then the corresponding sets are:

A = {1‖C}
B = {−1‖T}
C = {0‖C, 0‖T}.

This gives us the complete query:

T ′ = {1‖C,−1‖T, 0‖C, 0‖T}.

The search result of a query consists of the documents which have the highest number of
Bloom filter entries in common with this query.

6.1 Security Definition

The authors claim that their scheme satisfies IND-CKA security for indexes as given by Goh
[16]. However, this is not true. We will show here that the given scheme does not satisfy
IND-CKA security. For this purpose, let us first recall almost verbatim the security definition
of IND-CKA for indexes [16]. It uses a game between a challenger C and an adversary A.

TRANSACTIONS ON DATA PRIVACY 12 (2019)

110 Daniel Homann, Lena Wiese

Definition 2 (IND-CKA security for indexes).

Setup: The challenger C creates a set S of q words and gives this to the adversary A. The
adversary A chooses some subsets from S. This collection of subsets is called S∗ and
is returned to C. Upon receiving S∗, the challenger C runs Keygen to generate the
master key K, and for each subset in S∗, the challenger C encodes its contents into an
index using BuildIndex. Finally, C sends all indexes with their associated subsets to
the adversary A.

Queries: The adversaryA can query C on a word x and receives the trapdoor Tx for x. With
Tx, the A can invoke SearchIndex on an index I to determine if x ∈ I .

Challenge: After making some Trapdoor queries, A decides on a challenge by picking a
non-empty subset V0 ∈ S∗, and generating another non-empty subset V1 from S such
that |V0 \ V1| 6= 0, |V1 \ V0| 6= 0, and the sum of the characters of the words V0 is equal
to that in V1. Lastly, Amust not have queried C for the trapdoor of any word in the
symmetric difference V0 4 V1. Next, A gives V0 and V1 to C who chooses b ∈ {0, 1},
invokes BuildIndex(Vb,K) to obtain the index IVb

for Vb, and returns IVb
to A. The

challenge for A is to determine b. After the challenge is issued, A is not allowed to
query C for the trapdoors of any word V0 4 V1.

Response: The adversary A eventually outputs a bit b′, representing its guess for b.

The advantage of A in winning this game is defined as:

AdvA = |P(b = b′)− 1/2|,

where the probability is taken over A and C’s coin tosses. We say that an adversary A
(t, ε, q)-breaks an index if AdvA is at least ε afterA takes at most t time and makes q trapdoor
queries to the challenger. We say that I is a (t, ε, q)-IND-CKA secure index if no adversary
can (t, ε, q)-break it for any initial choice of S.

Hu and Han claim that their scheme is (u, ε, v/r)-secure given that some pseudo-random
function f is (u, ε, v)-secure. The authors do not state explicitly where they use this pseudo-
random function f in their scheme. However, the only functions which could be reasonably
modelled as pseudo-random functions are those hash functions, which are used for embed-
ding strings in Bloom filters.

6.2 Attack

The attack described here does not depend on the properties of the hash functions used in
the scheme. Our argument would even work when the used pseudo-random functions are
perfect (i.e. modelled as random oracles). We will show that there exists an adversary with
an advantage of:

AdvA =
1

2
− 1

2r
.

To achieve this advantage the adversary A only needs to perform a single trapdoor query.
Furthermore, the adversary has a very moderate runtime.

Let S = {A, AB, CD, EF}. Let the adversary A choose S∗ := S. The challenger C generates
the ciphertexts for all subsets of S∗ and gives them to the adversary A. The adversary
A queries the challenger C for the Trapdoor TA for the word A. This is the only trapdoor
query the adversary A performs. The adversary A chooses the sets V0 = {AB,EF} and
V1 = {CD,EF}. This choice is permissible as the following statements hold:

TRANSACTIONS ON DATA PRIVACY 12 (2019)

Inference Attacks on Fuzzy Searchable Encryption Schemes 111

• V0 and V1 are non-empty

• |V0| = |V1|

• |V0 \ V1| 6= 0 and |V1 \ V0| 6= 0

• The adversary A did not query the challenger C for any word from the symmetric
difference V0 4 V1 = {AB,CD}.

Now the adversary A receives the encrypted index IVb
of Vb and outputs a guess b′ for b. As

V0 and V1 both contain exactly two features, it follows that IVb
contains exactly two Bloom

filters. Let IiVb
for i ∈ {1, 2} denote these Bloom filters. The adversary A knows TA. If many

of the hashes from TA are contained in IVb
the adversaryA can deduce that b was probably 0,

otherwise b was probably 1. More concrete the adversary A outputs:

b′ =

{
0 if exists i ∈ {1, 2} such that

∣∣TA ∩ IiVb

∣∣ ≥ 2r

1 otherwise.

The advantage of the adversary employing this strategy can be calculated as follows: It
holds |TA| = lmax > 3r as the set consists of r hashes belonging to each of the strings
{1‖A,−1‖A, 0‖A}, and additionally random padding values. The index I0V0

or I1V0
contains

the hashes belonging to {1‖A, 0‖A}. Therefore, it holds |TA ∩ IV0
| ≥ 2r.

Furthermore,
∣∣IiV1

∣∣ = lmax > 7r for i ∈ {1, 2}. As the hashed strings in IiV1
for i ∈ {1, 2} do

not coincide with the strings hashed in TA, the probability of each of these strings to be in
the set of hashes of TA is 1

t where t is the length of the Bloom filter. So it holds for i ∈ {1, 2}:

P
(∣∣TA ∩ IiV1

∣∣ ≥ 2r
)
=

lmax·r∑
n=2r

(
lmax · r
n

)(
1

t

)n(
t− 1

t

)lmax·r−n

.

By Markov’s inequality applied on the binominal distribution it follows for i ∈ {1, 2}:

P(
∣∣TA ∩ IiV1

∣∣ ≥ 2r) ≤ r · lmax

2rt
.

It follows:
P
(∣∣TA ∩ IiV1

∣∣ ≥ 2r for some i ∈ {1, 2}
)
<
r · lmax

rt
.

If |TA ∩ IVb
| < 2r it can be deduced with certainty that b = 1. So it holds for the advantage

of the adversary A as defined above:

AdvA =

∣∣∣∣P(b = b′)− 1

2

∣∣∣∣ > 1

2
− r · lmax

2rt
. (3)

If the searchable encryption scheme does not generate too much false-positive search results,
the number of entries in the Bloom filter is much smaller than its size. Therefore, it follows
that r · lmax < t. Plugging this in (3) yields:

AdvA >
1

2
− 1

2r
.

It follows that the proposed scheme is insecure in the IND-CKA security model for any
number of hash functions r which is larger than 1.

TRANSACTIONS ON DATA PRIVACY 12 (2019)

112 Daniel Homann, Lena Wiese

The edge case r = 1 is not relevant for practical applications because the low number
of calculated hash values will lead to many false-positives. According to Hu and Han
the use of r = 1 would lead to the (unacceptably high) false-positive rate of at least 50%.
Furthermore, using different estimations we could still get, depending on the values of t
and lmax, a non-negligible advantage of the adversary A in the case r = 1.

7 Conclusion

For the practical application of fuzzy searchable encryption, a well-defined information
leakage to the server is very important. We showed that the information leakage of three
schemes is higher than it was claimed to be. Two of the schemes, those of Chuah and Hu
[10] and Hu and Han [21], exhibited such a high leakage that they are of no practical use.
The high leakage of these schemes is caused by Bloom filters which are used to protect
confidentiality. The information leakage of the scheme of Wang et al. [38] is also higher than
claimed. However, this information leakage still might be small enough for certain practical
use cases.
Two of the examined schemes [21, 38] used security definitions invented and normally

used for non-fuzzy searchable encryption. Fuzzy searchable encryption schemes inherently
need to process more information about keywords than non-fuzzy searchable encryption
schemes. Therefore, it would be surprising if a fuzzy scheme leaked the same amount of
information as a non-fuzzy scheme.
In addition to the attacked fuzzy searchable encryption schemes, several more schemes

have been proposed. These schemes have different security definitions and performance
properties. It is still an open question which security definition for fuzzy searchable en-
cryption is best suited for which practical use case. Therefore, at the moment it has to be
evaluated on a case by case basis whether a scheme with suitable security properties and
performance exists for a certain use case.

Furthermore, more research on security definitions is required. It is still an open question
which asymptotic performance can be reached for a given security definition, and vice versa.
In our opinion, it is promising to look for security definitions explicitly chosen for fuzzy
searchable encryption. Based on Curtmola et al. [11], some custom security definitions for
fuzzy search have been proposed [20, 28]. In those security definitions the search result
quality directly correlates with the leakage of the schemes. It would be useful to find security
definitions for fuzzy searchable encryption not showing this correlation.

Acknowledgment

This work was funded by the DFG under grant number Wi 4086/2-2.

References

[1] Burton H. Bloom. ‘Space/Time Trade-offs in Hash Coding with Allowable Errors’. In:
Commun. ACM 13.7 (1970), pp. 422–426. DOI: 10.1145/362686.362692.

[2] Alexandra Boldyreva and Nathan Chenette. ‘Efficient Fuzzy Search on Encrypted
Data’. In: FSE 2014. Vol. 8540. LNCS. Springer, 2014, pp. 613–633. DOI: 10.1007/978-
3-662-46706-0_31.

TRANSACTIONS ON DATA PRIVACY 12 (2019)

https://doi.org/10.1145/362686.362692
https://doi.org/10.1007/978-3-662-46706-0_31
https://doi.org/10.1007/978-3-662-46706-0_31

Inference Attacks on Fuzzy Searchable Encryption Schemes 113

[3] Christoph Bösch et al. ‘A Survey of Provably Secure Searchable Encryption’. In: ACM
CSUR 47.2 (2014), 18:1–18:51. DOI: 10.1145/2636328.

[4] Christoph Bösch et al. ‘Conjunctive Wildcard Search over Encrypted Data’. In: Secure
Data Management 2011. Vol. 6933. LNCS. Springer, 2011, pp. 114–127. DOI: 10.1007/
978-3-642-23556-6_8.

[5] Michael Brenner, Henning Perl and Matthew Smith. ‘Practical Applications of Homo-
morphic Encryption’. In: SECRYPT 2012. SciTePress, 2012, pp. 5–14.

[6] Ning Cao et al. ‘Privacy-preserving multi-keyword ranked search over encrypted
cloud data’. In: INFOCOM 2011. IEEE, 2011, pp. 829–837. DOI: 10.1109/INFCOM.
2011.5935306.

[7] David Cash et al. ‘Dynamic Searchable Encryption in Very-Large Databases: Data
Structures and Implementation’. In: NDSS 2014. The Internet Society, 2014. DOI:
10.14722/ndss.2014.23264.

[8] David Cash et al. ‘Leakage-Abuse Attacks Against Searchable Encryption’. In: CCS
2015. ACM, 2015, pp. 668–679. DOI: 10.1145/2810103.2813700.

[9] Yan-Cheng Chang and Michael Mitzenmacher. ‘Privacy Preserving Keyword Searches
on Remote Encrypted Data’. In: Applied Cryptography and Network Security 2005.
Vol. 3531. LNCS. 2005, pp. 442–455. DOI: 10.1007/11496137_30.

[10] M. Chuah and W. Hu. ‘Privacy-Aware BedTree Based Solution for Fuzzy Multi-
keyword Search over Encrypted Data’. In: ICDCS 2011 Workshops. IEEE, 2011, pp. 273–
281. DOI: 10.1109/ICDCSW.2011.11.

[11] Reza Curtmola et al. ‘Searchable Symmetric Encryption: Improved Definitions and Ef-
ficient Constructions’. In: CCS 2006. ACM, 2006, pp. 79–88. DOI: 10.1145/1180405.
1180417.

[12] Dwyl Ltd. english-words. Commit: be341d3. GitHub repository. 2017. URL: https:
//github.com/dwyl/english-words (visited on 14/10/2018).

[13] William W. Cohen. Enron email dataset. May 2015. URL: https://www.cs.cmu.edu/
˜./enron/ (visited on 14/10/2018).

[14] Zhangjie Fu et al. ‘Enabling Personalized Search over Encrypted Outsourced Data
with Efficiency Improvement’. In: Trans. Parallel Distrib. Syst 27.9 (2016), pp. 2546–2559.
DOI: 10.1109/TPDS.2015.2506573.

[15] Benjamin Fuller et al. ‘SoK: Cryptographically Protected Database Search’. In: SP 2017.
IEEE, 2017, pp. 172–191. DOI: 10.1109/SP.2017.10.

[16] Eu-Jin Goh. ‘Secure Indexes’. In: IACR Cryptology ePrint Archive (2003). Report 2003/216.

[17] Google. Misspellings of the name Britney Spears. 2010. URL: https://www.google.
com/jobs/britney.html. Available via: https://web.archive.org/web/
20100208221904/https://www.google.com/jobs/britney.html (visited
on 14/10/2018).

[18] Ronald L. Graham, Donald E. Knuth and Oren Patashnik. Concrete mathematics – a
foundation for computer science. 2nd ed. Addison-Wesley, 1994.

[19] Florian Hahn and Florian Kerschbaum. ‘Searchable Encryption with Secure and
Efficient Updates’. In: CCS 2014. ACM, 2014, pp. 310–320. DOI: 10.1145/2660267.
2660297.

TRANSACTIONS ON DATA PRIVACY 12 (2019)

https://doi.org/10.1145/2636328
https://doi.org/10.1007/978-3-642-23556-6_8
https://doi.org/10.1007/978-3-642-23556-6_8
https://doi.org/10.1109/INFCOM.2011.5935306
https://doi.org/10.1109/INFCOM.2011.5935306
https://doi.org/10.14722/ndss.2014.23264
https://doi.org/10.1145/2810103.2813700
https://doi.org/10.1007/11496137_30
https://doi.org/10.1109/ICDCSW.2011.11
https://doi.org/10.1145/1180405.1180417
https://doi.org/10.1145/1180405.1180417
https://github.com/dwyl/english-words
https://github.com/dwyl/english-words
https://www.cs.cmu.edu/~./enron/
https://www.cs.cmu.edu/~./enron/
https://doi.org/10.1109/TPDS.2015.2506573
https://doi.org/10.1109/SP.2017.10
https://www.google.com/jobs/britney.html
https://www.google.com/jobs/britney.html
https://web.archive.org/web/20100208221904/https://www.google.com/jobs/britney.html
https://web.archive.org/web/20100208221904/https://www.google.com/jobs/britney.html
https://doi.org/10.1145/2660267.2660297
https://doi.org/10.1145/2660267.2660297

114 Daniel Homann, Lena Wiese

[20] Daniel Homann, Christian Göge and Lena Wiese. ‘Dynamic Similarity Search over
Encrypted Data with Low Leakage’. In: Security and Trust Management 2017. Vol. 10547.
LNCS. Springer, 2017, pp. 19–35. DOI: 10.1007/978-3-319-68063-7_2.

[21] Changhui Hu and Lidong Han. ‘Efficient wildcard search over encrypted data’. In:
Int. J. Inf. Sec. 15.5 (2016), pp. 539–547. DOI: 10.1007/s10207-015-0302-0.

[22] Piotr Indyk and Rajeev Motwani. ‘Approximate Nearest Neighbors: Towards Re-
moving the Curse of Dimensionality’. In: STOC 1998. ACM, 1998, pp. 604–613. DOI:
10.1145/276698.276876.

[23] Mohammad Saiful Islam, Mehmet Kuzu and Murat Kantarcioglu. ‘Access Pattern
disclosure on Searchable Encryption: Ramification, Attack and Mitigation’. In: NDSS
2012. The Internet Society, 2012.

[24] Seny Kamara and Charalampos Papamanthou. ‘Parallel and Dynamic Searchable
Symmetric Encryption’. In: FC 2013. Vol. 7859. LNCS. Springer, 2013, pp. 258–274. DOI:
10.1007/978-3-642-39884-1_22.

[25] Seny Kamara, Charalampos Papamanthou and Tom Roeder. ‘Dynamic searchable sym-
metric encryption’. In: CCS 2012. ACM, 2012, pp. 965–976. DOI: 10.1145/2382196.
2382298.

[26] Georgios Kellaris et al. ‘Generic Attacks on Secure Outsourced Databases’. In: CCS
2016. ACM, 2016, pp. 1329–1340. DOI: 10.1145/2976749.2978386.

[27] Bryan Klimt and Yiming Yang. ‘Introducing the Enron Corpus’. In: Conference on Email
and Anti-Spam 2004. 2004.

[28] Mehmet Kuzu, Mohammad Saiful Islam and Murat Kantarcioglu. ‘Efficient Similarity
Search over Encrypted Data’. In: ICDE 2012. IEEE, 2012, pp. 1156–1167. DOI: 10.
1109/ICDE.2012.23.

[29] Jin Li et al. ‘Fuzzy Keyword Search over Encrypted Data in Cloud Computing’. In:
INFOCOM 2010. IEEE, 2010, pp. 441–445. DOI: 10.1109/INFCOM.2010.5462196.

[30] Weipeng Lin et al. ‘Revisiting Security Risks of Asymmetric Scalar Product Preserving
Encryption and Its Variants’. In: ICDCS 2017. IEEE, 2017, pp. 1116–1125. DOI: 10.
1109/ICDCS.2017.20.

[31] Chang Liu et al. ‘Fuzzy keyword search on encrypted cloud storage data with small
index’. In: Cloud Computing and Intelligence Systems 2011. IEEE, 2011, pp. 269–273. DOI:
10.1109/CCIS.2011.6045073.

[32] Muhammad Naveed. ‘The Fallacy of Composition of Oblivious RAM and Searchable
Encryption’. In: IACR Cryptology ePrint Archive (2015). Report 2015/668.

[33] Muhammad Naveed, Seny Kamara and Charles V. Wright. ‘Inference Attacks on
Property-Preserving Encrypted Databases’. In: CCS 2015. ACM, 2015, pp. 644–655.
DOI: 10.1145/2810103.2813651.

[34] David Pouliot and Charles V. Wright. ‘The Shadow Nemesis: Inference Attacks on
Efficiently Deployable, Efficiently Searchable Encryption’. In: CCS 2016. ACM, 2016,
pp. 1341–1352. DOI: 10.1145/2976749.2978401.

[35] Dawn Xiaodong Song, David A. Wagner and Adrian Perrig. ‘Practical Techniques
for Searches on Encrypted Data’. In: SP 2000. IEEE, 2000, pp. 44–55. DOI: 10.1109/
SECPRI.2000.848445.

TRANSACTIONS ON DATA PRIVACY 12 (2019)

https://doi.org/10.1007/978-3-319-68063-7_2
https://doi.org/10.1007/s10207-015-0302-0
https://doi.org/10.1145/276698.276876
https://doi.org/10.1007/978-3-642-39884-1_22
https://doi.org/10.1145/2382196.2382298
https://doi.org/10.1145/2382196.2382298
https://doi.org/10.1145/2976749.2978386
https://doi.org/10.1109/ICDE.2012.23
https://doi.org/10.1109/ICDE.2012.23
https://doi.org/10.1109/INFCOM.2010.5462196
https://doi.org/10.1109/ICDCS.2017.20
https://doi.org/10.1109/ICDCS.2017.20
https://doi.org/10.1109/CCIS.2011.6045073
https://doi.org/10.1145/2810103.2813651
https://doi.org/10.1145/2976749.2978401
https://doi.org/10.1109/SECPRI.2000.848445
https://doi.org/10.1109/SECPRI.2000.848445

Inference Attacks on Fuzzy Searchable Encryption Schemes 115

[36] Emil Stefanov, Charalampos Papamanthou and Elaine Shi. ‘Practical Dynamic Search-
able Encryption with Small Leakage’. In: NDSS 2014. The Internet Society, 2014. DOI:
10.14722/ndss.2014.23298.

[37] Takanori Suga, Takashi Nishide and Kouichi Sakurai. ‘Secure Keyword Search Using
Bloom Filter with Specified Character Positions’. In: ProvSec 2012. Vol. 7496. LNCS.
Springer, 2012, pp. 235–252. DOI: 10.1007/978-3-642-33272-2_15.

[38] Bing Wang et al. ‘Privacy-preserving multi-keyword fuzzy search over encrypted
data in the cloud’. In: INFOCOM 2014. IEEE, 2014, pp. 2112–2120. DOI: 10.1109/
INFOCOM.2014.6848153.

[39] Cong Wang et al. ‘Achieving usable and privacy-assured similarity search over out-
sourced cloud data’. In: INFOCOM 2012. IEEE, 2012, pp. 451–459. DOI: 10.1109/
INFCOM.2012.6195784.

[40] Wai Kit Wong et al. ‘Secure kNN computation on encrypted databases’. In: SIGMOD
2009. ACM, 2009, pp. 139–152. DOI: 10.1145/1559845.1559862.

[41] Bin Yao, Feifei Li and Xiaokui Xiao. ‘Secure nearest neighbor revisited’. In: ICDE 2013.
IEEE, 2013, pp. 733–744. DOI: 10.1109/ICDE.2013.6544870.

[42] Xingliang Yuan et al. ‘Enabling Privacy-Assured Similarity Retrieval over Millions of
Encrypted Records’. In: ESORICS 2015. Vol. 9327. LNCS. Springer, 2015, pp. 40–60.
DOI: 10.1007/978-3-319-24177-7_3.

[43] Yupeng Zhang, Jonathan Katz and Charalampos Papamanthou. ‘All Your Queries
Are Belong to Us: The Power of File-Injection Attacks on Searchable Encryption’. In:
USENIX Security 2016. USENIX, 2016, pp. 707–720.

[44] Zhenjie Zhang et al. ‘Bed-tree: an all-purpose index structure for string similarity
search based on edit distance’. In: SIGMOD 2010. ACM, 2010, pp. 915–926. DOI:
10.1145/1807167.1807266.

TRANSACTIONS ON DATA PRIVACY 12 (2019)

https://doi.org/10.14722/ndss.2014.23298
https://doi.org/10.1007/978-3-642-33272-2_15
https://doi.org/10.1109/INFOCOM.2014.6848153
https://doi.org/10.1109/INFOCOM.2014.6848153
https://doi.org/10.1109/INFCOM.2012.6195784
https://doi.org/10.1109/INFCOM.2012.6195784
https://doi.org/10.1145/1559845.1559862
https://doi.org/10.1109/ICDE.2013.6544870
https://doi.org/10.1007/978-3-319-24177-7_3
https://doi.org/10.1145/1807167.1807266

	Introduction
	Related Work
	Background
	Investigated Fuzzy Searchable Encryption Schemes
	Bloom Filter and Locality-Sensitive Hashing (LSH)

	Scheme of Chuah and Hu
	Security Definition
	Attacks
	Length of Keyword
	Similarity
	Membership Test
	Content Reconstruction with Background Information
	Content Reconstruction without Background Information

	Experimental Evaluation
	Reconstruction with Background Knowledge
	Reconstruction without Background Knowledge

	Mitigation and Discussion

	Scheme of Wang et al.
	Security Definition
	Attacks
	Number of Trapdoors
	Number of Documents
	Similarity of Trapdoors
	Similarity of Documents

	Discussion

	Scheme of Hu and Han
	Security Definition
	Attack

	Conclusion

